
Image Understanding in a Nonparametric Bayesian
Framework

Soumya Ghosh
sghosh@cs.brown.edu

Abstract

We explore recently proposed nonparametric Bayesian statistical models of image
partitions. These models are attractive because they adaptto images of different
complexity, successfully modeling uncertainty in size, shape, and structure of hu-
man segmentations of natural scenes. We improve upon them ina number of key
ways to achieve performance comparable to state-of-the-art methods. Our first
major contribution is a novel discrete search based posterior inference algorithm
which, compared to previous approaches, is significantly more robust and accu-
rate. We then present a low rank version of the spatially dependent Pitman-Yor
processes model, critical for efficient inference. Furthermore, we show how the
Gaussian process covariance functions underlying the proposed models can be
calibrated to accurately match the statistics of human segmentations. Finally, we
present accurate segmentations of complex scenes as well asmultiple hypothe-
sized image partitions (capturing the inherent uncertainty in human scene inter-
pretations) produced by our method.

1 Introduction

Image understanding, or interpreting images by locating and characterizing their content, is arguably
the holy grail of computer vision. A general image understanding system must flexibly deal with
“stuff” (materials) and “things” (objects) [1]. Forsyth etal. [8], define stuff as “a homogeneous
or repetitive pattern of fine-scale properties, but no specific or distinctive spatial extent or shape”
while a thing is defined as “an object with specific shape and size”. For instance, foliage, sky
and gravel are examples of stuff, while cars, tigers and boats are examples of objects (Figure 1).

Figure 1: Stuff and Things

Traditionally, statistical
models have dealt with
either stuff (under the
umbrella of image segmen-
tation) or things (object
detectors) [21] but rarely
both. Recently however,
some progress has been
made in leveraging one
model to better learn the
other. Typically, object
models for a fixed number
of object categories are
specified and learnt from
training data. These are
then used to detect potential objects in an image. These predictions are then combined in a coherent
fashion using “stuff” models. For instance, Heitz et al. [9]use “stuff” based clusters (segments) to
prune away false positives from the predictions of a slidingwindow based car (“thing”) detector.



The success of such models depend crucially on accurate “stuff” modeling, i.e., on producing
accurate image segmentations, which is the primary focus ofthis work.

Image segmentation deals with the problem of partitioning images into “homogeneous” chunks
based on their appearance, location and possibly even semantic content. It has seen a large amount
of research in the computer vision community over the past several decades [3, 7, 17]. However,
in spite of the intense amount of work, segmentation remainsa largely unsolved problem. Part of
the reason behind disappointing results is the fact that existing segmentation algorithms tend to be
semi-automatic at best. They often come endowed with a host of tunable parameters, which need
to be adjusted for each image until the produced segmentations look “reasonable”. Furthermore,
some popular techniques (e.g., [17]) have implicit biases which encourage the segments to be of
roughly equal size. This is in sharp contrast to the segmentsproduced by humans, which tend to
span a wide range of sizes even in a single image. Sudderth andJordan [18] have recently put forth
spatially dependent Pitman-Yor process hierarchical mixture models which make a first attempt at
addressing many of these issues. In this paper, we describe various improvements necessary to make
this approach competitive with state-of-the-art methods.

Our first major contribution involves a new posterior inference algorithm. In [18] the authors pro-
pose a mean field based variational inference algorithm. Mean field methods are known to be highly
susceptible to local optima. As a result, there is reason to believe that the promising results of
[18] can be further improved with a better inference technique. In particular, we combine a discrete
stochastic search to make large moves in the space of image partitions, with an accurate higher-order
variational approximation (based on expectation propagation) to marginalize high-dimensional con-
tinuous latent variables. Our results do indeed show improved accuracy and robustness to initializa-
tion.

Next, we present a novel low rank representation of the modelpresented in [18]. Such a represen-
tation significantly reduces the computational burden of Bayesian inference, allowing for a useful
image segmentation algorithm. Our next contribution lies in replacing various manually tuned pa-
rameters (in [18]) with ones estimated quantitatively fromhuman segmentations.

Also, note that because we employ a nonparametric model we donot need to specify the number
of segments observed in each image. In fact we infer a posterior distributions over segmentations
of varying structure and resolution. We provide interesting examples of multiple modes of this
posterior distribution. Lastly, we demonstrate that our overall performance is both quantitatively
and qualitatively competitive with state-of-the-art methods.

2 Nonparametric Bayesian Segmentation

In this section, we fist review various nonparametric Bayesian models proposed in the literature for
modeling image partitions. In Sec. 2.4, we then propose a model which exploits the low-rank repre-
sentation of the Gaussian distributions underlying our model. This is essential for the computational
tractability of our later algorithms.

2.1 Image Representation

We begin by first dividing each image into roughly 1,000superpixels[15] using the normalized cuts
spectral clustering algorithm [17]. The color of each superpixel is described using a histogram of
HSV color values withWc = 120 bins. We choose a non-regular quantization to more coarsely
group low saturation values. Similarly, the texture of eachsuperpixel is modeled via a localWt =
128 bin texton histogram [12], using quantized band-pass filterresponses. Superpixeli is then
represented by histogramsxi = (xti, x

c
i ) indicating its texturexti and colorxci .

2.2 Pitman-Yor Mixture Models

Natural scenes contain widely varying numbers of objects ofvarying sizes. Not surprisingly, hu-
man segmentations of natural scenes also consist of segments of widely varying sizes. It has been
observed that histograms over segment areas [11] and contour lengths [14] are well explained by
power law distributions. Previous work [18] has shown that such power law distributions in natural
images are well modeled via the Pitman-Yor process [13].
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Figure 2: Learned Pitman-Yor prior model for image partitions, whereπ ∼ GEM(0.6, 3.0). Left:
Beta distributions from which stick proportionswk are sampled fork = 1 (blue), k = 10 (red),
k = 20 (green).Right: Corresponding distributions on thresholds for an equivalent generative model
employing zero mean, unit variance Gaussians (dashed black).

Here, we consider the stick breaking representation of the Pitman-Yor (PY) process. Letπ =
(π1, π2, π3, . . .),

∑
∞

k=1 πk = 1, denote an infinitepartition of a unit area region (in our case, an
image). The Pitman-Yor process defines a prior distributionon this partition via the followingstick-
breakingconstruction:

πk = wk

k−1∏

ℓ=1

(1 − wℓ) = wk

(
1−

k−1∑

ℓ=1

πℓ

)

wk ∼ Beta(1− αa, αb + kαa) (1)

This distribution, denoted byπ ∼ GEM(αa, αb), is defined by two hyperparameters satisfying
0 ≤ αa < 1, αb > −αa. Whenαa = 0, we recover aDirichlet process(DP) with concentration
parameterαb. For the DP,E[πk] decreases exponentially withk; for the PY, it instead has a heavier-
tailed, polynomial decay rateE[πk] ∝ k−1/αa .

For image segmentation, each indexk is associated with a different segment or region with its own
appearance modelsθk = (θtk, θ

c
k) parameterized by multinomial distributions on theWt texture and

Wc color bins, respectively. Each superpixeli then independently selects a regionzi ∼ Mult(π),
and a set of quantized color and texture responses accordingto

p
(
xti, x

c
i | zi, θ

)
= Mult

(
xti | θ

t
zi ,Mi

)
Mult(xci | θ

c
zi ,Mi) . (2)

Note that conditioned on the region assignmentzi, the color and texture features for each of the
Mi pixels within superpixeli are sampled independently. The appearance feature channels pro-
vide weak cues for grouping superpixels into regions. Since, the model doesn’t enforce any spatial
neighborhood cues, it is referred to as the “bag of features”(BOF) model (Figure 3).

2.3 Spatially Dependent Pitman-Yor Process Mixture Models

Here, we review the approach of Sudderth and Jordan [18] which extends the BOF model with spatial
grouping cues. The model is a generalization of earlier workon generalized spatial Dirichlet process
models [6] and combines ideas from Bayesian nonparametricswith ideas from layered models of
image sequences [22], and level set representations for segment boundaries [5].

We begin by elucidating the analogy between PY processes andlayered image models.
Consider the PY stick-breaking representation of Eq. (1). If we sample a random vari-
able zi such thatzi ∼ Mult(π) where πk = wk

∏k−1
ℓ=1 (1− wℓ), it immediately follows that

wk = P[zi = k | zi 6= k − 1, . . . , 1]. The stick-breaking proportionwk is thus theconditionalprob-
ability of choosing segmentk, given that segments with indexesℓ < k have been rejected. If we
further interpret the ordered PY regions as a sequence of layers,zi can be sampled by proceeding
through the layers in order, flipping biased coins (with probabilitieswk) until a layer is chosen.



Figure 3: Generative models of image partitions.From left to right. Bag of features model, full
rank model, low rank model.

Given this, the probability of assignment to subsequent layers is zero; they are effectivelyoccluded
by the chosen “foreground” layer.

The spatially dependent Pitman-Yor process of [18] preserves this PY construction,while adding
spatial dependence among superpixels, via thresholded zero meanGaussian processes(GPs)uk,

zi = min
{
k | uki < Φ−1(wk)

}
, uki ∼ N (0, 1) . (3)

Here,uki ⊥ uℓi for k 6= ℓ andΦ(u) is the standard normalcumulative distribution function(CDF).
Let δk = Φ−1(wk) denote the threshold for layerk. SinceΦ(ui) is uniformly distributed on[0, 1],
we have

P[zi = 1] = P[u1i < δ1] = P[Φ(u1i) < w1] = w1 (4)

P[zi = 2] = P[u1i > δ1]P[u2i < δ2] = (1− w1)w2 (5)

and so on. The extent of each layer is determined via the region on which a real-valued function
lies below some threshold, akin to level set methods. If the GPs have identity covariance functions,
we recover the basic PY mixture model. More general covariances can be used to encode the prior
probability that each feature pair occupies the same segment; developing methods for learning these
probabilities is a major contribution of this paper.

The power law prior on segment sizes is retained by transforming priors on stick proportions
wk ∼ Beta(1− αa, αb + kαa) into corresponding randomly distributed thresholdsδk = Φ−1(wk):

p(δk | α) = N (δk | 0, 1) · Beta(Φ(δk) | 1− αa, αb + kαa) (6)

Fig. 2 illustrates the threshold distributions corresponding to a PY stick-breaking prior learned from
human segmentations in Sec. 4. Figure 3 displays the graphical model corresponding to the spatially
dependent Pitman-Yor process Mixture model.

2.4 Low-Rank Covariance Representations

In the preceding generative model, the layer support functionsuk ∼ N (0,Σ) are samples from
some Gaussian distribution over theN pixels. Analogously to factor analysis models, we can instead
employ a low-rank representation based onD ≤ N dimensions. Samplingvk ∼ N (0, ID), we then
setuk = Avk + ǫk, where A in a N-by-D matrix andǫk ∼ N (0,Ψ), andΨ is a diagonal matrix
chosen to ensure thatΣ = AAT +Ψ has unit diagonal. Figure 3 displays the graphical model to the
generative process described in this section.



3 Inference

In this section we provide a detailed description of the inference algorithm for the low rank model.
The proposed inference scheme lies in the family of Maximization Expectation (ME) [23] tech-
niques. In contrast to the popular Expectation Maximization techniques, we marginalize out the
model parameters and maximize over the latent variables. From figure 3, we observe that our la-
tent variables correspond to segment assignments of super-pixels. Thus, any configuration of these
variables defines a partition of the image. Our strategy is tosearch over the space of these image
partitions with the goal of maximizing the posterior marginal likelihood

ẑ = argmax
z

p (z | x, η) (7)

whereη represents the set of hyper-parameters governing the model. It is worth noting that since
different partitions will have different numbers of segments, we are in fact searching over models of
varying complexities as in traditional model selection techniques.

Thus, the proposed inference scheme has to first evaluate theposterior marginal likelihood for
a given image partitionz. It then has to modify the image partition in an interesting fash-
ion to generate a new partitionz′ and compute the posterior marginal forz′, acceptingz′ if
p(z′ | x, η) > p(z | x, η). This process is repeated until convergence. In what follows, we first
describe the innovations required for evaluating the posterior marginal, followed by the discrete
search responsible for generating new partitions from a given partition.

3.1 Posterior Marginal Computation

In our model (Figure 3) p (z | x, η) factorizes conveniently as

p (z | x, η) ∝ p (x | z, ρ)p (z | α,A,Ψ) (8)

∝ p (z | α,A,Ψ)

∫

Θ

p (x | z,Θ)p (Θ | ρ)dΘ (9)

for the spatial models, wherep (z | α,A,Ψ) can be further expanded as follows

p(z|α,A,Ψ) =

∫

u1...K(z)

∫

δ

p(z|δ, u1...K(z))p(u1...K(z)|AA
T +Ψ)p(δ|α)du1...K(z)dδ(10)

=

K(z)∏

k=1

∫

uk

∫

δk

p (z | δk, uk)p (uk | AAT +Ψ)p (δk | α)dukdδk (11)

whereK(z) is the number of layers in a given partition. Note that this quantity is a function of the
partitionz. From here on we denoteK(z) by justK, to simplify our notation. Unfortunately, these
integrals do not have a closed form solution. Significant innovations are required to evaluate them.
For the BOF modelz depends only onα and the prior simplifies top(z|α).

3.1.1 Likelihood Computation

The likelihood computation involves evaluating the independent color and texture integrals
∫

Θ

p(x | z,Θ)p(Θ | ρ)dΘ =

∫

θc

p(xc | z, θc)p(θc | ρc)dθc
∫

θt

p(xt | z, θt)p(θt | ρt)dθt (12)

which is a standard Multinomial-Dirichlet integral, with aclosed form solution given by

∫

Θ

p(x | z,Θ)p(Θ | ρ)dΘ =

K∏

k=1

∆(ρc)

∆(ρc + x
(c)
k )

∆(ρt)

∆(ρt + x
(t)
k )

(13)

A detailed derivation is provided in the appendix.



3.1.2 Bag Of Features Prior Evaluation

The prior for the BOF model is just

p(z | α) =
K∏

k=1

∫

wk

p(z | wk)p(wk | α)dwk (14)

ForK segments or regions. The above integral has a closed form solution, which follows from the
generalized Chinese restaurant process (CRP) representation of the Pitman-Yor process.

p(z | α) = αK
a

Γ (αb/αa +K) Γ(αb)

Γ(αb/αa)Γ(N + αa)

(
K∏

k=1

Γ(Mk − αa)

Γ(1− αa)

)
(15)

Since both the likelihood and the prior for the BOF model can be evaluated in closed form, our
search based inference for this model is highly efficient.

3.1.3 Thresholded Gaussian Process prior evaluation

Unfortunately, no closed form solution exists for evaluating the spatial prior. Substantial innovations
are required to evaluate the integrals in Equation 11. Note that these integrals can be evaluated
independently for each layer. In the following analysis, itis implied that we are dealing with the
kth layer allowing us to simplify our notation by dropping the dependence onk. From Figure 3 the
per-layer integral can be expressed as follows

p(z | α,A,Ψ) =

∫

u

∫

δ

p(z | δ, u) p(u | AAT +Ψ) p(δ | α)dδdu =

∫

u

∫

δ

∫

v

p(u, v, δ, z | α)dvdδdu (16)

p(u, v, δ, z | α) = p(v) p(δ | α)
N∏

n=1

p(un | v) p(zn | un, δ) (17)

Our strategy here is to approximate the joint distributionp(u, v, δ, z | α) with an easy to deal with
approximate distributionq(u, v, δ, z | α) and to compute the marginal likelihoodq(z | α) as an
approximation to the true marginalp(z | α). Specifically, we choose the approximating distribution
to be a Gaussian, and use expectation propagation (EP) to estimate the “closest” such Gaussian.

In the proposed model,zn is a discrete random variable which takes values in the range{1 . . .K}.
We now introduce a auxiliary binary random variabletn, whose value is deterministically related to
zn

tn =

{
+1 if zn = k =⇒ un < δ
−1 if zn > k =⇒ un > δ

(18)

Note that super-pixels withzn < k have already been assigned to a preceding layer. The corre-
sponding likelihoods are uninformative for thekth layer and are marginalized out before inferring
the latent Gaussian function for thekth layer and can be effectively ignored. For each layer we are
thus inferring latent Gaussian functions corresponding toa binary classification, with the two class
labels beingzn = k or (tn = +1) andzn > k or (tn = −1). Let us now consider the posterior
distribution:

p(u, v, δ | z, α) =
1

Z
p(v) p(δ | α)

N∏

n=1

p(un | v) p(zn | un, δ) (19)

Equivalently,

p(u, v, δ | t, α) =
1

Z
p(v) p(δ | α)

N∏

n=1

p(un | v) p(tn | un, δ) (20)

p(u, v, δ | t, α) =
1

Z
p(v) p(δ | α)

N∏

n=1

p(un | v)I(tn(δ − un) > 0) (21)

p(u, v, δ | z, α) =
1

Z
N(v | 0, I) p(δ|α)

N∏

n=1

N(un | aTnv, ψn)I(tn(δ − un) > 0) (22)



whereZ is the appropriate normalization constant andI is an indicator function. At this stage it
is worth noting that although we have a binary GP classification problem, it is distinct from the
traditional binary GPC presented in the literature. Our problem is complicated by the presence of
an additional random variableδ (the random threshold) in addition to the random variables (un)
corresponding to the latent GP functions seen in standard instances of GPC. Furthermore, the prior
distribution onδ is a non standard distribution, requiring numerical approximations during EP.

We approximate the likelihood factorsI(tn(δ − un) < 0) and the threshold prior factorp(δ | α) with
un-normalized Gaussians̃ZnZ̃δnN (un | µ̃n, σ̃

2

n)N (δ | µ̃δn, σ̃δ
2

n) and Z̃pN (δ | µ̃p, σ̃
2

p)respectively.
The approximate posterior is thus itself a Gaussian distribution

q(u, v, δ | z, α) =
1

ZEP
N (v | 0, I)N (δ | µ̃p, σ̃

2
p)

N∏

n=1

N (un | aTnv, ψn)N (un | µ̃n, σ̃
2
n)N (δ | µ̃δn, σ̃δ

2
n)

(23)
where we have absorbed the normalization constants of the un-normalized Gaussians inZEP . EP
can now be run to progressively refine our approximate posterior until convergence.

3.1.4 Posterior Marginal Computation

Finally, we approximatep(z | α) with

q(z | α,A,Ψ) = ZEP = Z̃p

∏
n

Z̃n

∫ ∫ ∫
N(v|0, I)N(δ | µ̃p, σ̃

2

p)
N∏

n=1

N(un | aTnv, ψn)N(un | µ̃n, σ̃
2

n)N(δ | µ̃δn, σ̃δ
2

n)dvdudδ

(24)
We now have all the tools to evaluatep(z|x, η) and climb the log posteriorlog p(z|x, η) surface.
However, note that our likelihood is defined over pixels, while the prior is defined over super-pixels.
To balance the prior and likelihood terms, we rescale the logposterior as follows

log p(z | x, η) =
1

m̄
log p(x | z, ρ) + log q(z | α,A,Ψ) (25)

wherem̄ is the average number of pixels per super-pixel, and climb the rescaled log posterior sur-
face. A more principled approach to likelihood rescaling involves modeling within super-pixel de-
pendencies instead of treating pixels within a super-pixelindependently. This is a direction we plan
to explore further in future work.

3.1.5 Low Rank Inference

First we note that EP progressively updates the approximateposteriorq(z|α,A,Ψ) to be closer to
the true posterior. When the approximating family is Gaussian, as is the case here, this amounts to a
rank one update of the approximate posterior distribution’s precision matrix. Moreover, at least one
such rank one update needs to be carried out for each intractable factor in the model.

Observe that the full rank model (Figure 3), hasN + 1 intractable factors,N likelihood terms one
for each super-pixel and oneδ term. Updating the posterior for each factor via a rank one update
is anO(N2) operation. Looping through all intractable factors is anO(N3) operation. Evaluating
the spatial prior and the posterior marginalp(z|x, η) once is thus anO(cN3) operation, wherec is
a constant proportional to the product of number of layers and number of EP iterations. Since, we
need to compute the posterior marginal numerous times (in the discrete search phase), we find that
for typical settings ofN ≈ 1000, this cost is prohibitively high.

Figure 3 which displays our lower rank model also hasN + 1 intractable factors. Crucially though,
we can compute the moments of the intractable likelihood factors from the moments ofv asE[un] =
aTnE[v] andcov[un] = aTn cov[v]an + ψn. This observation frees us from maintaining an explicit
posterior over theN dimensional quantityu. Instead, requiring us to only maintain and update the
posterior over theD dimensional quantityv. Thus the cost of evaluating the posterior in the low
rank model isO(cND2). By settingD < N we can extract significant computational speedups,
making the overall search based inference tractable.

3.2 Discrete Tabu Search

We explore the distribution over image segmentations usingdiscrete tabu search. The search per-
forms hill climbing on the posterior probability surface and explores high probability regions of the



segmentation space. This is similar in spirit to MCMC techniques, but has the advantage that it is
considerable easier to incorporate flexible search moves. This flexibility allows for robust inference,
avoiding local optima problems.

Search moves which change the state of a collection of randomvariables are referred to as global,
while those which change one random variable at a time are local. Our algorithm uses a combination
of global and local moves. Given a segmentation we choose from one of the following moves, for
a fixed number of iterations, with a new segmentation being accepted if it has a higher posterior
probability.

1. Merge - Merge two layers. The segments to be merged are sampled from a uniform distri-
bution over the segments in the current segmentation. Furthermore, we maintain a tabu list
of merges, which were proposed but not accepted, to avoid revisiting previously rejected
proposals.

2. Split - A layer is split into two. The split move works, by randomly picking a super-pixel in
the segment to be split. Next we sample a second super-pixel with probability proportional
to its distance(in likelihood space) from the former super-pixel. All other super-pixels are
assigned to one of the two selected super-pixel depending ontheir respective distances from
either super-pixel. Note that there are many possible splitmoves for any segment and it is
hence infeasible to maintain a tabu list.

3. Split Connected Components - We also employ another splitmove, which as the name
suggests, splits disconnected components of a segment.

4. Swap - This move is only used with the spatial model. In the spatial model, the relative or-
dering of segments is explicitly modeled, and partitions with different ordering of segments
have different posterior probabilities. The swap move reorders the depth of two segments
in the current partition. Here, we again maintain a list of tabu moves.

5. Shift - This is a local move which iterates over all the super-pixels in the image and assigns
each super-pixel to a segment which maximizes the posteriorprobability. The purpose of
the shift move is to refine the partitions proposed by the other moves. To understand the
working of the shift move observe that for any super-pixeln we have:

p(z|x, η) ∝ p(zn|z−n, α, A,Ψ)p(z−n|α,K)

∫

Θ

p(x|z,Θ)p(Θ|ρ)dΘ (26)

wherez−n refers to random variables corresponding to all but thenth super-pixel. Further,
observe that assigningzn to ẑn where

ẑn = argmax
zn

p(zn|z−n, α, A,Ψ)

∫

Θ

p(x|z,Θ)p(Θ|ρ)dΘ (27)

≈ argmax
zn

q(zn|z−n, α, A,Ψ)

∫

Θ

p(x|z,Θ)p(Θ|ρ)dΘ (28)

takes us a step in the direction ofẑ The shift move loops through all super-pixels in an
image and assigns each super-pixeln to the correspondinĝzn.

3.3 Segmentation Refinement

The partitions produced by the inference can contain layerswhich are spatially non-contiguous. To
produce the final image segmentation we run connected components on the inference output. This
splits up layers into spatially contiguous segments. All segments containing four or less super-
pixels are merged with a larger spatial neighbor. If multiple larger neighbors exist, then the one
which maximizes the appearance likelihood is chosen.

4 Learning from Human Segmentations

In the previous sections we have described the spatially dependent Pitman Yor process mixture
model and made a case for how it captures important qualitative features of human segmentations. In
this section, we provide methods for quantitatively calibrating the models to the appropriate human



segmentation biases. Specifically, we tune the model hyper-parameters to the human segmentations
from the 200 training images of the Berkeley Segmentation Dataset (BSDS) [11]. We show that in
spite of the inherent uncertainty in the segmentations of animage, we are able to learn important
low level grouping cues.

It is worth noting that although, supervised learning is prevalent for training Markov Random Field
(MRF) models for segmenting predefined predefined object categories [20], the parametrization and
statistical properties of our layered Gaussian Process model are significantly different from that of
discrete MRFs. Furthermore, image segmentation is a less constrained problem than the problem of
segmenting out predefined object categories. As a result, the mapping between model parameters
and human annotations is more subtle and trickier to infer. Learning nevertheless is both possible
and effective for our proposed model, as outlined below.

4.1 Segment Size Distributions

For each imagej in a given training database, letTj denote the number of segmented regions, and
1 ≥ aj1 ≥ aj2 ≥ · · · ≥ ajTj

> 0 their proportions of the image area. To compare these countsto
π ∼ GEM(αa, αb), we also sort the sampled frequencies, producing atwo-parameter Poisson–
Dirichlet (PD) distributed partitioñπ = (π̃1, π̃2, π̃3, . . .) satisfying π̃k > π̃k+1 with probability
one [13]. These ordered histograms then allow the likelihood of the data under any Pitman-Yor
model to be computed, producing maximum likelihood (ML) model parameterŝα = (α̂a, α̂b). For
the BSDS, the estimated parameters equalα̂a = 0.6, α̂b = 3.

4.2 Pairwise Grouping Probabilities

We would like to accurately segment images containing novelobjects and materials. While we
cannot expect our training data to provide examples of all important region appearance patterns,
it does provide other important cues. In particular, via human segmentations we can can learn to
predict the probability thatpairsof superpixels (or image patches) occupy the same segment.

For every pair of superpixels, we consider several potentially informative low-level features: (i)
pairwise Euclidean distance between superpixel centers; (ii) intervening contours, quantified as the
maximal response of the probability of boundary (Pb) detector [12] on the straight line linking su-
perpixel centers; (iii) local feature differences, estimated via log empirical likelihood ratios ofχ2

distances between superpixel color and texture histograms[15]. To model non-linear relationships
between these four raw features and superpixel groupings, each feature is represented via the activa-
tion of 20 radial basis functions. Concatenating these gives a feature vectorφij for every superpixel
pair i, j.

Defining a vector of regression weightsf of the same dimension asφij , the predicted probability
that a given superpixel pair lies in the same segment equals

p(zi = zj | φij , f) = σ(fTφij), σ(a) =
1

1 + e−a
. (29)

We train this logistic regression model via MAP estimation of f under a Gaussian prior. Both the
variance of this prior, and an appropriate bandwidth for theradial basis functions, were determined
via cross-validation. When probabilities are chosen to depend only on the distance between su-
perpixels, the distribution constructed in subsequent sections defines a generative model of image
features. When these probabilities also incorporate contour cues, the model becomes a conditionally
specified distribution on image partitions, analogous to a conditional random field [10].

4.3 From Grouping to Correlations

Our layered image model employs a sequence of support functions sampled from multivariate Gaus-
sian distributions. These Gaussians, whose dimension equals the number of superpixels, have unit
variance and a potentially different correlationρij for each superpixel pairi, j. For each superpixel
pair, the probability that they lie in the same segment isindependentlydetermined by the corre-
sponding correlation coefficient. As detailed in the appendix, using low-dimensional numerical
integrations we can determine the probability that both superpixels are assigned to layer 1, or to
layer 2, and so on. Summing these over allk then produces the overall probability of assignment



to the same layer, whatever its index. This process induces aone-to-one mapping between pairwise
correlationsρij , and probabilitiesqij that the pair of superpixels lie in a common segment. Ap-
plying this mapping produces a model corresponding to any given probability estimates. Figure 5
visualizes the learnt mapping.

Prior samples. Figure 4 displays samples drawn from the spatially dependent Pitman Yor process
prior. Depending on the features used to estimate pairwise super-pixel correlations, qualitatively
different partitions are produced. As expected, conditionally specified image specific partitions
result in segmentations closer to “true” human segmentations. Also, note the effect of dimensionality
on the quality of sampled partitions. With dimensionality the quality of partitions improve, at the
expense of computational efficiency during inference.

Figure 4: Samples from various prior models. Image partitions sampled from PY process as-
signments coupled by Thresholded GPs with different covariance functions. From left to right we
present samples from (a)distance based GP covariance function (b) 100 dimensional projection of a
GP covariance function learnt from low level features introduced in section 4.2 (These are used in
all our experiments) (c) 500 dimensional projection (d) 1000 dimensional projection.
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Figure 5: Left. Heuristic vs Learnt covariance functions. Each point in theplot represents one
image from the BSDS test set. A majority of the points fall above the diagonal suggesting that
higher posterior scores are achieved by the learnt covariance functions on a majority of the images.
Right.Mapping between correlation coefficients and pairwise probabilities.

5 Experiments and Results

We benchmark our algorithm on the Berkeley Image Segmentation Dataset (BSDS300 [11]) and a
set of images extracted from the LabelMe [16] dataset. BSDS300 contains 300 images, 200 training
and 100 test images. The second dataset contains a subset of Olivia and Torralba’s [19] eight natural
categories dataset. We sampled 30 images at random from eachof the eight categories to create a
240 image dataset.

The performance of the algorithms are quantified using the probabilistic Rand Index (PRI) and the
segmentation covering (SegCover) metric introduced in [2]. To be consistent with [2] we report the



covering of a set of Ground truth segmentations by a machine produced segmentation. Furthermore,
we present a number of segmentations discovered by our algorithm as a qualitative measurement of
segmentation quality. In all experiments, our model(PY-learnt)used a100 dimensional low rank
representation and the corresponding inference utilized100 discrete search iterations.

We start off by investigating the effect of the learnt covariance functions. On the 100 BSDS test
images, we compare the log posterior marginal likelihoods of true human segmentations, under
models using learnt and heuristic covariance functions. Figure 5 shows the corresponding scatter
plot. As is evident, the learnt covariance functions assignhigher posterior marginal likelihoods to
human segmentations.

Next, we explore the effect of explicitly modeling the powerlaw characteristic of human segment
sizes. We compare against two spectral clustering based algorithms normalized cuts (Ncuts) [17] and
multi-scale normalized cuts [4] algorithms. Ncuts biases all segments to have roughly equal size,
while multi scale Ncuts somewhat relaxes this bias by incorporating a multi-resolution hierarchy.
Both Ncuts and multi-scale Ncuts require the user to specifythe number of segments to partition an
image into, our algorithm being nonparametric does not. Here, we initialize both spectral algorithms
with the average number of segments in the corresponding human segmentations of the image. The
algorithms thus initialized, are denotedncuts-oracleandhncuts-oraclein Table 1. Our algorithm
outperforms both of these algorithms, in spite of the latterbeing tuned to the “true” number of
segments per image. This gain in performance can be attributed to the fact that the region size
statistics of our model matches the region size statistics of human segmentations.

Next, we quantify the performance PY-learnt and the proposed inference algorithm. We compare
our model against the work of Sudderth and Jordan[18], who also employ thresholded dependent
Gaussian processes to segment images. Remember that the work presented here improves upon [18]
by using a better calibrated model and a more sophisticated inference algorithm. To quantify the
effects of the proposed improvements, we compare our model and inference with three variants of
previously proposed models

1. As a baseline we compare against the Bag of Features model (BOF).

2. The model and inference presented by Sudderth and Jordan (Denoted by SJ in table 1).

3. Sudderth and Jordan’s model with our search based inference (SJ+search).

From table 1, we observe the efficacy of both our inference andthe proposed model.SJ+searchis
significantly better thanSJ, demonstrating the utility of the proposed inference algorithm. Combin-
ing the search based inference with the model proposed in this paper leads to a further performance
jump which is close to state-of-the-art performance. However, we do note that the algorithm pre-
sented in [2] outperforms our algorithm on the BSDS300 test set.

Algorithms PRI SegCover
PY-learnt 0.77±0.12 0.51±0.02
SJ+search 0.71±0.17 0.51±0.17

ncuts-oracle 0.74±0.14 0.34±0.07
hncuts-oracle 0.75±0.14 0.39±0.08

SJ 0.49±0.14 0.40±0.01
BOF 0.46±0.24 0.40±0.20

Table 1: Quantitative performance of various al-
gorithms on BSDS300

Figure 9 illustrates yet another interesting prop-
erty of our model,layer ordering. Remember
that each image partition consists of a particular
order of layers. Thus, in addition to recovering
the most likely image partitions we also auto-
matically recover the ordering of layers. Here,
we illustrate some layer orders recovered by our
algorithm. For the image on the left, the in-
ferred ordering of the layers matches the true
ordering of the objects in the scene. The im-
ages on the right illustrates a case when we infer
an incorrect ordering. Since the model thresh-
old’s smooth GP functions it prefers explaining
the generation of complex shapes through oc-
clusion. As a result when an object in the foreground has a complicated shape, the model infers that
it is more likely to have been generated as a result of occlusion and is moved back in the order.

Figure 8 presents a set of diverse segmentations discoveredby our algorithm. Although, our infer-
ence scheme searches for the MAP estimate, the search explores high probability regions of the dis-
tribution over partitions, hopping from partition to partition. In addition to the most likely partition,
we also store other high probability partitions, leading toa richer description of the distribution over



Figure 6:Segmentation Results.Most likely segmentations for a number of BSDS300 test images

Figure 7: Comparisons across models.From Left to Right: Our model, BOF model,SJ+search,
Multi scale Ncuts

partitions(segmentations). Figure 6 presents a random subsampling of our results from BSDS300
for qualitative evaluation.The complete set of segmentation results for the 240 LabelMeimages
can be found athttp://www.cs.brown.edu/ ˜ sghosh/results.html



Figure 8:Diverse Segmentations.Diverse Segmentations discovered by our proposed algorithm.
Each row depicts multiple segmentations for a given image. The segmentations are ordered in
decreasing order of probability(according to our model)from left to right.



Figure 9:Depth Ordering. Blue segments are closest to the camera and red segments are farthest away. The
two left images display a example where the algorithm infersthe correct ordering. The two right images display
a example where the wrong ordering of layers is inferred.

Algorithms PRI SegCover
gPb-ucm 0.68±0.17 0.54±0.17
PY-learnt 0.72±0.13 0.52±0.16

Table 2: Quantitative performance on LabelMe images

Finally, note that we tuned the hyper-parameters and not theparameters (there are none to tune) of
our model to the Berkeley Training set. One would hope that tuning hyper-parameters would lead to
better generalizability than algorithms such as the one presented in [2] (gPb-ucm) which tune model
parameters via cross validation. To test this, we segmentedthe 240 LabelMe images using models
tuned to the Berkeley dataset. Table 2 and figure 10 present the results of the comparison. While the
segCover score achieved by [2] is higher than our algorithm,we significantly outperform them both
qualitatively and in rand index scores.

6 Conclusion and Future Work

We have presented spatially dependent Pitman Yor process mixture models and developed an effi-
cient, robust and accurate inference algorithm for these class of models. Further, we have shown the
effectiveness of the presented model in partitioning complex natural scenes and its ability to model
the inherent uncertainty found in human segmentations.

There are various natural extensions of this work. Our current models are limited to segment each
image independently. In future work we plan on developing hierarchical versions of our models,
which will collectively segment a group of images leveraging information from one image to help
partition other images. Another aspect of the model which deserves attention is the appearance
model. Our model currently uses naive color and texture histograms. As is standard practice, each
bin of the histogram is considered independent. There is little justification for such independence
assumptions other than computational ease. In fact, in natural images, different bins are often highly
correlated. For instance, the colorwhiteandblueoften occur together (blue sky with white clouds)
suggesting that the corresponding bins should be positively correlated. We will address this issue in
future work, by replacing the Dirichlet prior on the appearance histograms with a logistic Normal
prior. Another exciting avenue of research is to further investigate the layer orderings recovered
by the algorithm. Modeling shape should help the recovery ofmore accurate orderings. Finally,
a long term goal of this work is to develop an image understanding system. Our current work
only addresses the problem of “stuff” modeling and we are very interested in incorporating “thing”
models and varying degrees of supervision to enable holistic natural scene interpretations.



Figure 10:Comparison on LabelME From Left to Right: PY-learnt, gPb-ucm
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7 Appendix

7.1 Likelihood Computation Details

We provide the solution to the color integral here for the sake of completeness (To simplify notation
we denoteθc, xc by justθ andx).

For K segments and N super-pixels we have,

∫

θ

p(x|z, θ)p(θ|ρc)dθ =
K∏

k=1

∫

θk

p(θk|ρ
c)

N∏

n=1

p(xn|zn, θk)
I(zn=k)dθk (30)

=

K∏

k=1

∫

θk

∆(ρc)

Wc∏

w=1

θ
ρc
w−1

kw

N∏

n=1

Wc∏

w=1

(θxnw

kw )I(zn=k)dθk (31)

=

K∏

k=1

∆(ρc)

∫

θk

Wc∏

w=1

θ
ρc
w−1

kw

Wc∏

w=1

(θkw)
∑

n
xnw×I(zn=k)dθk (32)

=

K∏

k=1

∆(ρc)

∫

θk

Wc∏

w=1

(θkw)
xk
w+ρw−1dθk (33)

=

K∏

k=1

∆(ρc)

∆(ρc + xk)
(34)

In the above derivation∆(ρc) =
Γ(

∑
w

ρc
w)

∏
w Γ(ρc

w) andxkw = number of times wordw occurs with segment
k.

7.2 Covariance Calibration Details

We are interested in estimating a mapping between the correlation (ρ) of a pair of Gaussian random
variables (ui anduj), and the conditionally learned probabilitypij of the corresponding super-pixels
i andj being assigned to the same layer. According to our generative model, two super-pixelsi and
j can be assigned to the same layerk iff both ui anduj are less than the thresholdδk. Hence, the
probability of two super-pixels being assigned to layerk is

p−|δk =

∫ δk

−∞

∫ δk

−∞

N

([
ui
uj

] ∣∣∣∣
[

0
0

]
,

[
1 ρ
ρ 1

])
duiduj (35)

Furthermore, we can marginalize out the unknown thresholdsδk

qk
−
(α, ρ) =

∫
∞

−∞

∫ δk

−∞

∫ δk

−∞

N

([
ui
uj

] ∣∣∣∣
[

0
0

]
,

[
1 ρ
ρ 1

])
p(δk|α)duidujdδk (36)



Let us further define

qk+(α, ρ) =

∫ ∞

−∞

∫ ∞

δk

∫ ∞

δk

N

([
ui
uj

] ∣∣∣∣
[

0
0

]
,

[
1 ρ
ρ 1

])
p(δk|α)duidujdδk (37)

which is the probability that bothui anduj are greater than theδk. Note that neitherq− norq+ can
be computed in closed form and are both numerically approximated.

Now observe that two super-pixelsi andj can be assigned to the same layer, if they are both assigned
to the first layer or if neither is assigned to the first layer but both are assigned to the second layer
or if neither is assigned to the first two layers but both are assigned to the third layer and so on. We
can thus expresspij as

pij = q1−(α, ρ) + q2−(α, ρ)q
1
+(α, ρ) + q3−(α, ρ)q

1
+(α, ρ)q

2
+(α, ρ) + . . . (38)

≈
K∑

k=1

qk
−
(α, ρ)

K−1∏

l=1

ql+(α, ρ) (39)

where we have explicitly truncated our model to haveK (some large number) layers. The above
equation defines the sought relationship and allows us to mapconditionally learntpij to pairwise
correlations of Gaussian random variables. The mapping is visualized in figure 5.


