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Abstract

This thesis presents an algorithm to find all efficient supported solutions of two-objective optimization

problems. The algorithm is based on the first phase of the two-phase method, which has previously

been studied as a technique to solve multiobjective combinatorial optimization problems. I give

an implementation of the algorithm that can be used on non-convex problems, a class of problems

that the original algorithm could not be used to solve. I also provide a test model that is based

on previous work with the Single Commodity Allocation Problem (SCAP) for disaster recovery, and

give test data for the model on benchmarks designed by Los Alamos National Laboratory. Finally, I

discuss implications of the algorithm for specific use in humanitarian logistics work with the SCAP.
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Chapter 1

Background

I will first give definitions and other provide other background information that will be used through-

out this thesis. Two references for the material in this section are Ehrgott (2005) [3] and Ehrgott

(2006) [2].

1.1 Multiobjective Integer Programming

A single-objective integer program (IP) has the following components:

• Variables

x = [x1, x2, . . . , xn]T , (1.1)

where xi ∈ Z.

• Constraint matrices

A = [a(1), a(2), . . . , a(m)]T

B = [b(1), b(2), . . . , b(p)]T , (1.2)

where a(i), b(i) ∈ Zn.

• Objective vector

C = [c1, c2, . . . , cn], (1.3)

where ci ∈ Z.
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Then for a ∈ Zm, b ∈ Zp, the IP is defined as:

min Cx

subject to:

Ax ≤ aT

Bx = bT . (1.4)

We denote the set of feasible solutions as F , and say that a solution x̂ ∈ F if and only if x = x̂

satisfies (1.4).

A single-objective IP does not allow us to model situations in which there is more than one com-

ponent over which we want to optimize. Because such situations are common to the real world, it is

sometimes necessary to use a multiobjective IP (MOIP) formulation. The mathematical formulation

of the MOIP is almost identical to the single-objective IP formulation given in (1.4), where the only

difference is in the objective, which now becomes a matrix C:

C = [c(1), c(2), . . . , c(n)], (1.5)

where each c(i) ∈ Zk, and k is the number of objective components over which we optimize.

But given this definition of a MOIP, our objective is no longer well-defined. In the single-objective

case, the objective value Cx was a scalar, and thus it was easy to compare two feasible solutions x1

and x2 by asking whether Cx1 ≤ Cx2. In the MOIP case, the objective value Cx is a vector in Zk,

and for two feasible solutions x1 and x2 it is possible to have (Cx1)i < (Cx2)i while simultaneously

having (Cx1)j > (Cx2)j for i 6= j. That is, decreasing the objective in terms of some component c(i)

may increase the objective in terms of a different component c(j). Thus, we need to define a way of

measuring optimality in the multiobjective case.

1.2 Efficiency and Non-Dominance

Let f : F → Zk be the function f(x) = Cx. Note that the value of a MOIP solution x̂ can be plotted

as a point in k-space, whose coordinates correspond to the components of f(x̂). Also let x1, x2 be

solutions to a MOIP, and let y1 = f(x1), y2 = f(x2) be the corresponding objective “values” (where

y1, y2 ∈ Zk). We say that y1 ≤ y2 if for all 1 ≤ i ≤ k, y1
i ≤ y2

i . Similarly, y1 < y2 if for all 1 ≤ i ≤ k,

y1
i < y2

i .
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Now consider a solution x∗ ∈ F . We say that x∗ is an efficient solution (also known as a Pareto-

optimal solution or as a non-dominated solution) if there does not exist another solution x̂ ∈ F such

that f(x̂) ≤ f(x∗). In the case of an efficient solution x∗, we also say that the k-dimensional point

corresponding to f(x∗) is a non-dominated point. If we have x1, x2 ∈ F and f(x1) ≤ f(x2), then we

say that f(x1) dominates f(x2) and that x1 dominates x2.

We differentiate between weakly efficient and efficient solutions. A solution x∗ is weakly efficient

if there does not exist another feasible solution x̂ such that f(x̂) < f(x∗). A weakly efficient solution

corresponds to a weakly non-dominated point.

Intuitively, this means that an efficient solution is one in which you cannot improve a single

component of the objective without strictly worsening at least one other component: a solution x∗

is efficient if for x̂ 6= x∗, i 6= j, c(i)x̂ ≤ c(i)x∗ ⇒ c(j)x̂ > c(j)x∗. A weakly efficient solution is one in

which there is no way to improve every component of the objective while remaining feasible.

The concepts of efficiency and non-dominance provide us with a way to discuss optimality in

a MOIP: a solution is optimal if it is efficient with respect to the k components of the objective

function. (The corresponding points are said to form the Pareto-optimal frontier.) It is important

to note that we no longer have a single optimal value, as we do in a single-objective IP.

1.3 Scalarization

Now that we’ve defined optimality in a MOIP, we still need a way actually to find optimal solutions.

Scalarization is a commonly used technique: transforming the MOIP into a related single-objective

IP. In particular, we are concerned with the weighted-sum scalarization method. Given a MOIP as

described by (1.4) and (1.5), we want to assign a weight λ ≥ 0 to each of the k objectives. That is,

given

λ = [λ1, λ2, . . . , λk] (where all λi ∈ R+
0 ) (1.6)

and variables, constraints, and objectives as in (1.1), (1.2), and (1.5), we want to solve the following

IP:

min
k∑

i=1

λic
(i)x

subject to:

Ax ≤ aT

Bx = bT . (1.7)

3



We have now transformed our k-component objective into an single-component aggregate objec-

tive over the original components. The λs denote the relative “importance” we ascribe to each of the

objective components: for example, if λi > λj , then optimal solutions of (1.7) will favor solutions

that are more minimal with respect to c(i) than with respect to c(j).

We say that x∗ ∈ F is a supported solution of the MOIP defined by (1.4) and (1.5) if it is an

optimal solution to the related IP given by (1.7) for some λ̂ > 0. (If any λ̂i = 0, as allowed by

(1.6), then x∗ is called a weakly supported solution.) We are particularly concerned with efficient

supported solutions: solutions that are efficient with respect to the MOIP given by (1.4) and (1.5)

and supported with respect to the corresponding weighted-sum IP given by (1.7).

4



Chapter 2

Finding Efficient Supported

Solutions

Przybylski, Gandibleux, and Ehrgott [5] presented an algorithm to find efficient solutions of two-

dimensional MOIPs with totally unimodular constraint matricies. (Total unimodularity ensures that

the efficient supported solutions will form a convex set [3].) Their algorithm is based on the two-

phase method, which was originally presented by Ulungu and Teghem [7]. We have adapted the

first phase of the two-phase method to generate a “representative set” (defined below) of all efficient

supported solutions of MOIPs with finite solution sets.1 Note that our algorithm does not require

convexity.

To define the representative set, consider the following: (1) A MOIP may have non-unique

solutions. In particular, x1, x2, . . . , xp ∈ F such that for all i 6= j, 1 ≤ i, j ≤ p,

xi 6= xj

f(xi) = f(xj). (2.1)

And (2), a weighted-sum IP transformation of a MOIP may have multiple solutions x1, x2, . . . , xq ∈ F

such that for a given λ > 0, for all i 6= j, 1 ≤ i, j ≤ q,

xi 6= xj

λ · xi = λ · xj . (2.2)

1For a MOIP with an infinite number of solutions, we could use a variation of this algorithm to find an arbitrarily
large set of solutions by imposing constraints on how similar one solution can be to another in each objective component.

5



Then a representative set R has three properties:

1. For all sets S =
{
x1, x2, . . . , xp

}
that satisfy (2.1), R contains exactly one solution x∗ ∈ S.

2. For all sets T =
{
x1, x2, . . . , xq

}
that satisfy (2.2) for a given λ > 0, R contains at least one

solution x∗ ∈ T .

3. For all other efficient supported solutions x∗ such that x∗ /∈ S and x∗ /∈ T for any λ > 0, R

contains x∗.

That is, a representative set R will contain “all”2 efficient supported solutions such that it does

not contain multiple non-unique solutions and such that it is not guaranteed to contain more than

two of any set of solutions that are collinear with respect to their corresponding two-dimensional

points.

For x̂ ∈ F , let

f1(x̂) = c(1)x̂ (2.3)

f2(x̂) = c(2)x̂. (2.4)

The algorithm works in two steps:

1. Find the two lexicographically extreme solutions xlE and xrE .

2. Recursively find all efficient supported solutions x̂ such that

f1(xlE) < f1(x̂) < f1(xrE) (2.5)

f2(xrE) < f2(x̂) < f2(xlE). (2.6)

2.1 Finding Lexicographically Extreme Solutions

To find the lexicographically extreme solution with respect to the objective component f1, we create

a single-objective IP in which we minimize with respect to f1, and entirely ignore the component

f2. This gives us a solution xl init such that f1(xl init) ≤ f1(x̂) for all other x̂ ∈ F . However,

since we entirely removed f2 from the objective function, this solution xl init may be dominated by

another solution x∗ such that f1(x∗) = f1(xl init) but f2(x∗) < f2(xl init). In order to ensure that

our lexicographically extreme solutions are non-dominated, we then solve a new IP that has the

constraints of the original, in additon to a constraint fixing the value of f1(x) to be equal to the
2In the description and discussion of our algorithm, we will say “all efficient supported solutions” to mean all

solutions in a representative set of efficient supported solutions.
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Figure 2.1: Lexicographically Extreme Solutions

minimal value f1(xl init). In the new IP, we minimize f2 and ignore the component f1. This gives us

a solution xlE that is now guaranteed to be minimal in f1, and further guaranteed to be as minimal

as possible in f2 while maintaining minimality in f1: a non-dominated, lexicographically extreme

solution (see Figure 2.1). The method for finding the second lexicographically extreme solution xrE

is analagous.

2.2 Finding Non-Extreme Solutions

Given lexicographically extreme starting solutions xlE and xrE (where f1(xlE) < f1(xrE) and

f2(xrE) < f2(xlE)), we calculate λ = 〈λ1, λ2〉 such that λ is perpendicular to the vector between

the points (f1(xlE), f2(xlE)) and (f1(xrE), f2(xrE)). We then transform the MOIP into a weighted-

sum single-objective IP defined by the scalars λ: this IP minimizes in the direction of the λ-vector

(see Figure 2.2). If solving that IP gives us a solution x̂ whose value is distinct from the values of

both xlE and xrE and is additionally non-collinear with them, we solve two recursive problems: one

in which our starting solutions are xlE and x̂, and one in which our starting solutions are x̂ and

xrE . Otherwise, we know that there are no more efficient supported solutions between the starting

solutions and therefore stop that branch of recursion.

The full algorithm is given as the three procedures findESS(·), findExtremes(·), and

solveRecursion(·) in Figure 2.3. Note that for these procedures, we assume that our IP solver returns

a single optimal-valued solution rather than a set that contains all optimal-valued solutions.

7



Figure 2.2: Minimize in the Direction of 〈λ1, λ2〉

2.3 Correctness of Algorithm

All solutions are supported. Let S be the set of solutions found by the algorithm. First, note

that the two lexicographically extreme solutions xlE and xrE are only guaranteed to be weakly sup-

ported, since we only showed that they were each supported by a set of λs in which one took on

the value of 0. (If the IP was guaranteed to have a convex set of efficient supported solutions, then

the efficiency of the extreme points, which we show in the next section, would imply that they were

non-weakly supported [3]. Since we are not restricting our algorithm to convex IPs, we cannot prove

non-weak supportedness of the extreme points in the general case.) However, we will show that

the rest of the solutions found by the algorithm are non-weakly supported. By the definition of

supported, it is sufficient to show that λ1, λ2 calculated from parent solutions xl, xr ∈ S are strictly

positive at every iteration of the algorithm (see lines (1–2) of solveRecursion(·)). The general proof

structure will be to break down into specific cases and show that each case is either impossible or

ensures that xl lies strictly above and to the left of xr (as xlE , xrE are positioned in Figure 2.2). We

use strong induction on the depth of recursion, k:

Base Cases: (1) xl = xlE and xr = xrE , (2a) xl = xlE and xr = x̂r, where x̂r was found from

parents xrE and xlE , and (2b) xl = x̂l and xr = xrE , where x̂l was found from parents xlE and xrE .

(1) Case 1: xl = xlE and xr = xrE . (This is depth k = 1 of recursion.) We calculate

λ1 = f2(xlE)− f2(xrE) (2.7)

λ2 = f1(xrE)− f1(xlE). (2.8)

8



Algorithm 1: findESS(C,M)

Input: Two-objective matrix C = [c(1), c(2)], model M defining linear constraints.
Result: Compute all efficient supported solutions of the two-dimensional MOIP defined by

C,M.
Output: The set S of all efficient supported solutions.

xlE , xrE ← findExtremes(C,M)1

if (f1(xlE), f2(xlE)) 6= (f1(xrE), f2(xrE)):2

S ← solveRecursion(C,M, xlE , xrE , ∅)3

else:4

S ← {xlE}5

return S6

Algorithm 2: findExtremes(C,M)

Input: Two-objective matrix C = [c(1), c(2)], model M defining linear constraints.
Result: Compute the two lexicographically extreme efficient supported solutions xlE , xrE .
Output: xlE , xrE .

xl init ← argminx(c(1)x : x satisfies the constraints of model M)1

xr init ← argminx(c(2)x : x satisfies the constraints of model M)2

xlE ← argminx(c(2)x : x satisfies: [the constraints of model M and c(1)x = f1(xl init)])3

xrE ← argminx(c(1)x : x satisfies [the constraints of model M and c(2)x = f2(xr init)])4

return xlE , xrE5

Algorithm 3: solveRecursion(C,M, xl, xr, S)

Input: Two-objective matrix C = [c(1), c(2)], model M defining linear constraints, solutions
xl, xr ∈ F , set of solutions S.

Result: Calculate all efficient supported solutions x̃ that such that c(1)xl < c(1)x̃ < c(1)xr.
Output: Set S of efficient supported solutions.

λ1 ← f2(xl)− f2(xr)1

λ2 ← f1(xr)− f1(xl)2

L← constraints of model M ∪ {f1(xl) ≤ f1(x) ≤ f1(xr)}3

x̂← argminx(λ1c
(1)x+ λ2c

(2)x : x satisfies the constraints given in L)4

oldV al← λ1f1(xl) + λ2f2(xl)5

newV al← λ1f1(x̂) + λ2f2(x̂)6

if newV al < oldV al:7

S1 ← solveRecursion(C,M, xl, x̂)8

S2 ← solveRecursion(C,M, x̂, xr)9

S ← S ∪ S1 ∪ S2 ∪ {x̂}10

return S11

Figure 2.3: Finding Efficient Supported Solutions
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The solution xlE is guaranteed to have the smallest possible value of f1(x) over all x ∈ S, since

it was found by an IP whose objective was to minimize f1 (see lines (1–4) of findExtremes(·)).

Similarly, our other solution xrE is guaranteed to have the smallest possible value of f2(x) over

all x ∈ S. As seen in line (2) of findESS(·), the procedure solveRecursion(·) is only called if

the condition

(f1(xlE), f2(xlE)) 6= (f1(xrE), f2(xrE)) : f1(xlE) 6= f1(xrE) ∨ f2(xlE) 6= f2(xrE) (2.9)

is met. However, we can achieve a stronger result from (2.9):

f1(xlE) 6= f1(xrE) ∧ f2(xlE) 6= f2(xrE) (2.10)

To prove (2.10), assume that f1(xlE) 6= f1(xrE). Then f1(xlE) < f1(xrE), since xlE is minimal

with respect to f1. We also know that f2(xlE) is minimal for fixed minimal value of f1 = f1(xlE).

Now assume that f2(xlE) = f2(xrE). Then f2(xlE) is the minimum possible value taken on by

f2. Also, f1(xrE) is the minimum possible value of f1 given the fixed minimal f2 = f2(xrE).

But f1(xlE) < f1(xrE), and so f1(xrE) is not the minimum value of f1 for a fixed value of f2,

which is a contradiction. We can similarly show that f2(xlE) 6= f2(xrE) =⇒ f1(xlE) 6= f1(xrE),

which concludes our proof of (2.10). �

Given (2.10) and the minimality of f1(xlE) and f2(xrE), we see that:

f1(xlE) 6= f1(xrE) =⇒ f1(xlE) < f1(xrE) (2.11)

f2(xlE) 6= f2(xrE) =⇒ f2(xrE) < f2(xlE) (2.12)

(see Figure 2.4). Then by (2.8), λ1, λ2 > 0, as we wanted to show.

(2) Case 2a: xl = xlE and xr = x̂r, where x̂r was found from parents xrE and xlE . (This is depth

k = 2 of recursion.) We calculate

λ1 = f2(xlE)− f2(x̂r) (2.13)

λ2 = f1(x̂r)− f1(xlE). (2.14)

By lines (4–7) of solveRecursion(·), we see that xlE 6= x̂r. Combining this with the minimality

of f1(xlE), we have that

f1(xlE) < f1(x̂r). (2.15)

10



Figure 2.4: Base Case (1)

Figure 2.5: Base Case (2a)

By (2.14), this implies that λ2 > 0. Furthermore, as shown by Ehrgott [3], if x∗ is an optimal

solution of the weighted-sum IP

min
m∑

i=1

αic
(i)x (2.16)

with αm ∈ R+, then x∗ is an efficient solution of the original corresponding MOIP. Since x̂r

was found from parents xlE and xrE , Case (1) shows that x̂r satisfies the properties of x∗ given

in (2.16). Therefore, x̂r is an efficient solution of the MOIP. Given (2.15), the efficiency of x̂r

implies that f2(x̂r) < f2(xlE) (see Figure 2.5), and so by (2.13), λ1 > 0. Thus, λ1, λ2 > 0, as we

wanted to show.

(3) Case 2b: xl = x̂l and xr = xrE , where x̂l was found from parents xlE and xrE . (This is also

depth k = 2 of recursion.) This is symmetric to Case (2a), and so the same proof holds.

11



This concludes our proof of the base case. �

In order to prove the inductive step, we introduce the following lemma:

Lemma 1: If xl is the left parent of solution x̂, where x̂ was found at recursive depth k + 1, then

either xl = xlE or xl was found at recursive depth i of some branch of solveRecursion(·) such that

i ≤ k. Similarly, if xr is the right parent solution at recursive depth k + 1 then either xr = xrE or

xr was found at recursive depth i of some branch of solveRecursion(·) such that i ≤ k.

Proof of Lemma 1: The first time xlE is given as an argument to solveRecursion(·) (at recur-

sive depth 1), it is given as the left parent solution (see line (3) of findESS(·)). By lines (8–9)

of solveRecursion(·), we see that left parent solutions are only ever used as left parent solutions in

successive calls to solveRecursion(·); that is, a solution that is used as a left parent at some iteration

of solveRecursion(·) will never be used as a right parent at a different iteration. Similarly, solutions

that are used as right parents will never be used as left parents. Thus, xlE may be used as a left

parent at some recursive depth j such that j > 1. If this is true for j = k+ 1, then xl = xlE and we

are done. To complete the proof of the lemma, assume that xl 6= xlE . Since xl is therefore not an

extreme point, we know that xl must have been found using solveRecursion(·). Assume that it was

found at a depth l, where l > k. Then any successive calls to solveRecursion(·) that use xl as a left

parent must occur at recursive depths that are all greater than l. Since xl is a left parent of x̂, this

means that x̂ must have been found at some recursive depth d such that d > l > k =⇒ d > k + 1.

However, we know that x̂ was found at depth d = k + 1, which is a contradiction. The proof of the

lemma for xr is analagous, and will be ommitted. �

Inductive step: For k ≥ 1, assume that any solution x̂i found at recursive depth i such that

1 ≤ i ≤ k is supported. We wish to show that any solution x̂k+1 found at recursive depth k + 1

is also supported. Let xr and xl be the parent solutions that generate x̂k+1. To show that x̂k+1 is

supported, it is sufficient to show that λ1, λ2 > 0, where λ1 = f2(xl)−f2(xr) and λ2 = f1(xr)−f1(xl)

(see lines (1–2) of solveRecursion(·)). Given Lemma 1, there are three cases to consider:

(1) xl = xlE and xr 6= xrE , where xr was found at recursive depth j such that j ≤ k.

(2) xl 6= xlE and xr = xrE , where xl was found at recursive depth j such that j ≤ k.

(3) xl 6= xlE and xr 6= xrE , where xl and xr were found at respective recursive depths j, l such that

j, l ≤ k.

12



Figure 2.6: Inductive Step (3)

The proofs that λ1, λ2 > 0 for Case (1) and Case (2) are analagous to the proofs given in Case

(2a) and Case (2b) of the base case and will therefore be ommitted. The proof of Case (3) is as follows:

It is clear that λ1, λ2 > 0 if and only if

f2(xl) > f2(xr) (2.17)

f1(xr) > f1(xl) (2.18)

(see Figure 2.6). We prove (2.17) and (2.18) by showing that the following three cases are impossible:

(3a) f2(xl) ≤ f2(xr) and f1(xr) ≤ f1(xl).

(3b) f2(xl) ≤ f2(xr) and f1(xr) > f1(xl).

(3c) f2(xl) > f2(xr) and f1(xr) ≤ f1(xl).

The proofs are as follows:

(3a) Case 3a:

f2(xl) ≤ f2(xr) (2.19)

f1(xr) ≤ f1(xl). (2.20)

As seen in lines (4, 8–9) of solveRecursion(·), all recursive calls are given as input the new

solution found at the current iteration and exactly one of its parent solutions. (That is, in

all recursive calls to solveRecursion(·), exactly one of the input solutions is the parent of the

other.) Thus, either xl is the left (see discussion in the proof of Lemma 1) parent solution of
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Figure 2.7: Inductive Step (3a)

xr or xr is the right parent solution of xl. In either case, line (3) of solveRecursion(·) gives

us that f1(xl) ≤ f1(xr). With (2.20), this gives that f1(xr) = f1(xl). But then by (2.19), xr

is dominated by xl (see Figure 2.7). However, by the inductive hypothesis and assumptions

of Case (3), we know that xr is a supported solution, and so (2.16) implies that xr is also an

efficient solution, and therefore cannot be dominated. This is a contradiction, and so Case (3a)

must be impossible.

(3b) Case 3b:

f2(xl) ≤ f2(xr) (2.21)

f1(xr) > f1(xl). (2.22)

In this case, xr is dominated by xl (see figures 2.8 and 2.9). However, since by the inductive

hypothesis and assumptions of Case (3), xr is a supported solution, and so (2.16) implies that

xr must be efficient. This is a contradiction, and so Case (3b) is also impossible.

(3c) Case 3c:

f2(xl) > f2(xr) (2.23)

f1(xr) ≤ f1(xl). (2.24)

By an argument symmetric to the one given in Case (3b), we show that xl is dominated by xr,

which is a contradiction to the efficiency of xl. Thus, Case (3c) is also impossible.

Since cases (3a-3c) are impossible, (2.17) and (2.18) must be true and λ1, λ2 > 0 at depth

14



Figure 2.8: Inductive Step (3b) – Inequality

Figure 2.9: Inductive Step (3b) – Equality

k + 1 of recursion. Combining with our base case, this gives us that all solutions xk found during

solveRecursion(·) for k ≥ 1 are supported, as we wanted to show. �

All solutions are efficient. Let S be the set of solutions found by our algorithm. For any x ∈ S

such that f2(x) ≤ f2(xlE), we know that f1(xlE) < f1(x), since xlE is minimal with respect to

f1 and is furthermore the only solution in S that takes on the minimal f1-value. Thus, xlE is an

efficient solution by definition. Similarly, xrE is efficient by definition. We know that all solutions

x̂ calculated with the procedure solveRecursion(·) are supported, and thus by (2.16) we know they

are also efficient. This proves that all solutions found by findESS(·) are efficient. �

We have found all solutions in a representative set. The general structure of this proof will

be to consider an efficient supported solution x̂, and then to look at the solutions xl and xr that lie
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Figure 2.10: Tightest Region Containing x̂

directly to the left and right, respectively, of x̂. We then show by contradiction that xl and xr must

be considered as parent solutions at some iteration of solveRecursion(·). Finally, we use this fact

to show that if some solution y is efficient and supported but is not found by our algorithm, then

we arrive at a contradiction by looking at the solutions that are found by our algorithm and that lie

directly to the left and right of y. We begin with the following lemma:

Lemma 2: Let S be the set of solutions found by our algorithm, and let x̂ be an efficient supported

solution of the MOIP. Let xl, xr ∈ S be the solutions found by our algorithm such that

f1(xl) < f1(x̂) < f1(xr) (2.25)

f2(xr) < f2(x̂) < f2(xl) (2.26)

and such that f1(xr)− f2(xl) is minimal (see Figure 2.10). That is, xl and xr define the “tightest”

region in which x̂ is contained with respect to its f1-value. Then xl, xr are used as the two parent

solutions at some iteration of solveRecursion(·).

Proof of Lemma 2: If xl is a parent solution of xr or xr is a parent solution of xl, then the lemma

is true, as seen by lines (4, 8–9) of solveRecursion(·)). Then assume that neither solution is a parent

of the other, and also assume without loss of generality that that xl is found before xr. Let ẋr 6= xr

be the solution with which xl is used as a parent such that f1(xl) < f1(xr) < f1(ẋr) and such that

f1(ẋr)− f1(xl) is minimal. That is, xl and ẋr define the “tightest” region in which xr is contained

with respect to its f1-value such that some iteration of the algorithm uses xl, ẋr as parents. By

reasoning given in the proof of Lemma 1, we know that xl is used as the left parent. Let λ1, λ2 be
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Figure 2.11: xr is Dominated by x̃

the weights computed from xl, ẋr. Since by assumption xl is not a parent of xr, it must be the case

that some other solution x̃ is found from parents xl, ẋr. Then one of the following must hold:

λ1f1(x̃) + λ2f2(x̃) < λ1f1(xr) + λ2f2(xr) (2.27)

λ1f1(x̃) + λ2f2(x̃) = λ1f1(xr) + λ2f2(xr). (2.28)

Assume that (2.27) holds. Since λ1, λ2 > 0, at least one of the following must be true:

f1(x̃) < f1(xr) (2.29)

f2(x̃) < f2(xr). (2.30)

If both hold, then xr is dominated by x̃ (see Figure 2.11), which would mean that xr cannot be

efficient. This is impossible, since we have previously stated that xr ∈ S. Therefore, exactly one

must hold. Suppose that (2.29) holds. We also have that f1(xl) < f1(x̃), since xl is the left parent of

x̃. (The reasoning behind this claim was given in the proof that all solutions found by the algorithm

are supported.) Then x̃, ẋr define a tighter region within which xr is contained than that defined by

xl, ẋr. Since x̃, ẋr are used as parents (see line (9) of solveRecursion(·)), this is a contradiction to

our assumption that xl, ẋr define the tightest such region (see Figure 2.12). An analagous argument

shows why it also cannot be the case that (2.30) holds.

Now assume that (2.28) holds. Then x̃ and xr are both optimal solutions to the weighted-sum

problem defined by parents xl, ẋr. It cannot be true that f1(x̃) = f1(xr) and that f2(x̃) = f2(xr),

since we find exactly one solution within any set of non-unique solutions and we have already said
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Figure 2.12: Contradictory Tightest Region Containing xr – Inequality

Figure 2.13: Contradictory Tightest Region Containing xr – Equality

that our algorithm finds xr at some point. Therefore, we have one of the following:

f1(x̃) < f1(xr) and f2(x̃) > f2(xr) (2.31)

f1(x̃) > f1(xr) and f2(x̃) < f2(xr). (2.32)

By lines (4, 9) of solveRecursion(·), we know that we will use x̃, ẋr as parents. But because

f1(xl) < f1(x̃), then (2.31) shows that x̃, ẋr defines a smaller region within which xr is contained

than that defined by xl, ẋr (see Figure 2.13). Since x̃, ẋr are used as parents, this is a contradiction

to the assumption that xl, ẋr defined the smallest such region. We can similarly show that (2.32)

poses a contradiction. Thus, we have proven Lemma 2. �

Now we will prove that our algorithm finds all solutions in a representative set. Let S be the set
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of solutions found by our algorithm, and assume that x̂ /∈ S is an efficient supported solution such

that Ŝ = S ∪ {x̂} is a representative set but S is not. Let xl, xr ∈ S be the solutions found by our

algorithm such that

f1(xl) < f1(x̂) < f1(xr) (2.33)

f2(xr) < f2(x̂) < f2(xl) (2.34)

and such that f1(xr)− f2(xl) is minimal. That is, xl and xr define the “tightest” region in which x̂

is contained with respect to its f1-value.

By Lemma 2, we know that xl, xr are used as the two parent solutions at some iteration of

solveRecursion(·). Therefore, let λ1, λ2 be the weights defined by the iteration of solveRecursion(·)

that uses xl and xr as parent solutions. Since by assumption our algorithm does not find x̂, it must

be the case that there is some other solution x̄ that is found from parents xl and xr. Then it must

hold that

λ1f1(x̄) + λ2f2(x̄) ≤ λ1f1(x̂) + λ2f2(x̂). (2.35)

If the above equation gives equality, then we cannot make any guarantees that our algorithm will in

fact find x̂. However, in this case the point defined by x̂ would be collinear with those defined by

xl and xr, and we have already stated our algorithm is not guaranteed to find more than two out of

any set of collinear points. Therefore, assume that we have a strict inequality:

λ1f1(x̄) + λ2f2(x̄) < λ1f1(x̂) + λ2f2(x̂). (2.36)

By analagous reasoning to that given in the proof of Lemma 2, we can show that this poses a

contradiction to either the assumption that x̂ is efficient or to the assumption that xl, xr define

the tightest region containing x̂. Therefore, we conclude that findESS(·) finds all solutions in a

representative set of all efficient supported solutions, as we wanted to show. �

2.4 Finding All Efficient Supported Solutions.

It may be of interest to ensure that we find all efficient supported solutions, rather than only those

that are guaranteed to be members of a representative set. Given an IP solver that could enumerate

all optimal solutions rather than give just one, this would be easy to accomplish. We would modify

solveRecursion(·) to become solveRecursion2(·), which is given in Figure 2.14. As seen in line
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Algorithm 4: solveRecursion2(C,M, xl, xr, S)

Input: Two-objective matrix C = [c(1), c(2)], model M defining linear constraints, solutions
xl, xr ∈ F , set of solutions S.

Result: Calculate all efficient supported solutions x̃ that such that c(1)xl ≤ c(1)x̃ ≤ c(1)xr.
Output: Set S of efficient supported solutions.

λ1 ← f2(xl)− f2(xr)1

λ2 ← f1(xr)− f1(xl)2

L← constraints of model M ∪ {f1(xl) ≤ f1(x) ≤ f1(xr)}3

set X̂ ← {argminx(λ1c
(1)x+ λ2c

(2)x : x satisfies the constraints given in L)}4

set X̂l ← {argminx(f1(x̂) : x̂ ∈ X̂)}5

set X̂r ← {argmaxx(f1(x̂) : x̂ ∈ X̂)}6

x̂l ← some x̂l ∈ X̂l7

x̂r ← some x̂r ∈ X̂r8

if f1(xl) < f1(x̂l):9

S1 ← solveRecursion2(C,M, xl, x̂l)10

S ← S ∪ S1 ∪ {x̂l}11

if f1(x̂r) < f1(xr):12

S2 ← solveRecursion2(C,M, x̂r, xr)13

S ← S ∪ S2 ∪ {x̂r}14

return S ∪ X̂15

Figure 2.14: Finding Non-Unique and Collinear Efficient Supported Solutions

(4), the algorithm now enumerates all solutions that are optimal with respect to the weighted-sum

scalarization using weights λ1, λ2 for parents xl and xr. Of that set of optimal solutions, it chooses

the two “locally extreme” solutions x̂l and x̂r (that is, one that is minimal with respect to f1 and one

that is maximal with respect to f1 — see lines (5–8)), and solves the recursive problems with parents

(xl, x̂l) and (x̂r, xr). Choosing the “extreme” solutions ensures that solutions will not be found

multiple times, thus making the recursion more efficient. If there is only a single f1 value for optimal

solutions to the weighted-sum scalarization then x̂l = x̂r and the recursive calls are as in the original

procedure solveRecursion(·). Note that we must also modify the procedure findExtremes(·) so

that it enumerates all solutions that take on the extremal f1 and f2 values; this change is similar to

the one made to solveRecursion(·), and so we will not rewrite findExtremes(·) here.

If we did not have an IP solver that could enumerate all optimal solutions but were still interested

in finding collinear solutions, we could modify our algorithm in a different way, which is shown in

Figure 2.15. In this version, we tighten our constraint on the f1-values such that a child solution x̂

must lie strictly in between the f1-values of its parents, xl and xr: f1(xl) < f1(x) < f1(xr) (see line

(3) of solveRecursion3(·)). This allows us to find solutions that are collinear with the two parent

solutions. However, with this stricter requirement, the weighted-sum IP solve in line (4) is no longer

guaranteed to have any feasible solutions. Therefore, we perform an additional feasibility check in

line (5) before proceeding with the algorithm as seen in the original solveRecursion(·).
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Algorithm 5: solveRecursion3(C,M, xl, xr, S)

Input: Two-objective matrix C = [c(1), c(2)], model M defining linear constraints, solutions
xl, xr ∈ F , set of solutions S.

Result: Calculate all efficient supported solutions x̃ that such that c(1)xl < c(1)x̃ < c(1)xr.
Output: Set S of efficient supported solutions.

λ1 ← f2(xl)− f2(xr)1

λ2 ← f1(xr)− f1(xl)2

L← constraints of model M ∪ {f1(xl) < f1(x) < f1(xr)}3

x̂← argminx(λ1c
(1)x+ λ2c

(2)x : x satisfies the constraints given in L)4

if x̂ exists:5

oldV al← λ1f1(xl) + λ2f2(xl)6

newV al← λ1f1(x̂) + λ2f2(x̂)7

if newV al < oldV al:8

S1 ← solveRecursion(C,M, xl, x̂)9

S2 ← solveRecursion(C,M, x̂, xr)10

S ← S ∪ S1 ∪ S2 ∪ {x̂}11

return S12

Figure 2.15: Finding Collinear Efficient Supported Solutions
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Chapter 3

Applications

To test the effectiveness of the algorithm in practice, we use a model that is based on the Single

Commodity Allocation Problem (SCAP) previously studied by Van Hentenryck, Bent, and Coffrin

[4]. The modified problem is presented here.

3.1 Background

Natural disasters such as hurricanes cause resource shortages in affected areas. One concern of the

related SCAP is the pre-allocation of resources among storage locations before the disaster hits such

that the total time needed to send the commodity from the storage points to members of the affected

population is minimized. However, this is not a single-objective minimization problem: for a fixed

percentage of the total demand guaranteed to be satisfied, there is a trade-off between the money

spent to satisfy that demand and the time it takes to do so. In previous work, a four-stage algorithm

to solve all aspects of the SCAP was presented. Here we focus only on a variation of the first stage,

as it is solved by an IP and is therefore useful for demonstrating the effectiveness of the procedure

findESS(·). The first stage, in which we use a modification of the Stochastic Storage Model (SSM),

determines which repositories store the commodity and how much of it they store, as well as which

storage locations will serve which demand points.

3.2 The Modified Single Commodity Allocation Problem

In formalizing SCAPs, a populated area is represented as a graph G = 〈N,E〉, where N represents the

locations of interest to the allocation problem: sites requiring the commodity after the disaster (e.g.,

hospitals, shelters, and public buildings), as well as vehicle storage depots. The required commodity
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Given:
Repositories: i ∈ R

Capacity: RCi

Investment Cost: RIi
Maintenance Cost: RMi

Scenario Data: s ∈ S
Scenario Probability: Ps

Available Sites: ARs ⊂ R
Site Demand: Ds,i∈R

Travel Time Matrix: Ts,1..l,1..l

Satisfiable Demand: SDs

Weights: Wx,Wy

Vehicle Capacity: V C
Demand Percentage: DP

Output:
The amount stored at each warehouse
The amount shipped from each warehouse

to each demand point
Minimize:

Wx ∗Delivery Time +
Wy ∗ Investment Cost +
Wy ∗Maintenance Cost

Subject To:
Vehicle and site capacities
Minimum demand satisfaction

Figure 3.1: The Single Commodity Allocation Problem Specification

can be stored at any node of the graph subject to some side constraints. The graph edges in E

have weights representing travel times. The weights on the edges form a metric space, but it is

non-Euclidean due to the transportation infrastructure. Moreover, travel times can vary in different

disaster scenarios due to road damage [4]. In our modified problem, we additionally specify that a

minimum amount of demand must be satisfied in any solution. The primary outputs of the portion

of the SCAP on which we focus are (1) the amount of commodity to be stored at each node and (2)

how much (if any) commodity is sent from each storage location to each demand point. Figure 3.1

summarizes the modified version of the problem, which we now describe in detail.

Objectives. The two-component objective function minimizes: (1) the total time used to move

the commodity from the storage locations to the demand points, and (2) the cost of storing the

commodity.

Side Constraints. Each repository i ∈ R has a maximum storage capacity RCi. It also has a one-

time initial cost RIi (the investment cost) and an incremental cost RMi per each unit of commodity

to be stored. Every repository can act as a warehouse and as a customer and its role changes on

a scenario-by-scenario basis depending on site availability and demands. A repository may use its

own resources to satisfy its demand. The model is given the maximum amount of demand that

can be satisfied in any given scenario: it may be impossible to satisfy all of the demand of a given

scenario due to either insufficient repository capacity or unreachability of demand points because

of destroyed vehicle routes. The commodity allocation of any feasible solution must guarantee that

for all scenarios s ∈ S, a minimum of SDs DP demand is satisfied — that is, at least the specified

percentage of the total satisfiable demand must be satisfied, regardless of which scenario actually

happens.
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Variables:
Variables for each repository i ∈ R:
Storedi ∈ [0, RCi] - Units pre-allocated to repository i
Openi ∈ {0, 1} - Non-zero storage at repository i

Variables for each scenario s ∈ S, each repository i ∈ R:
Keptsi ∈ [0, Dsi] - Total units kept at repository i
Sentsi ∈ [0, RCi] - Total units shipped from repository i
Unsatisfiedsi ∈ [0, Dsi] - Demand not satisfied at repository i
Incomingsi ∈ [0, Dsi] - Total units coming to repository i
Tripssij ∈ [0, RCi]/V C - Trips needed from repository i to repository j

Minimize:
Wx

∑
s∈S

Ps

∑
i∈R

∑
j∈R

Tsij Tripssij + Wy

∑
i∈R

(RIi Openi +RMi Storedi)

Subject To:∑
i∈R

Unsatisfiedsi ≤
∑
i∈R

(Dsi)− SDi DP ∀s ∈ S (1)

RCi Openi ≥ Storedi ∀i ∈ R (2)
Incomingsi + Keptsi + Unsatisfiedsi = Dsi ∀s ∈ S, i ∈ R (3)
Sentsi + Keptsi ≤ Storedi ∀s ∈ S, i ∈ R (4)∑
j∈R

Tripssij = Sentsi ∀s ∈ S, i ∈ R (5)∑
j∈R

Tripssji = Incomingsi ∀s ∈ S, i ∈ R (6)

Sentsi + Keptsi = 0 ∀s ∈ S, i 6∈ ARs (7)

Figure 3.2: The IP Formulation for the Stochastic Storage Model (SSM)

Stochasticity. SCAPs are specified by a set S of different disaster scenarios. Scenario s ∈ S has

an associated probability Ps and specifies the set ARs of sites that remain intact after the disaster.

Moreover, scenario s specifies for each repository i ∈ R the demand Dsi and site-to-site travel times

Ts,1..l,1..l (where l = |N |) that capture the damages to the transportation infrastructure. It also

specifies the maximum satisfiable demand amount SDs.

3.3 Stochastic Storage

Figure 3.2 presents our variation of the SSM formulation. The meaning of the decision variables

is explained in the figure. The objective function sums the investment and maintenance costs for

the repositories, and the shipping time for each scenario; each are multiplied by their respective

non-negative “importance” weights. Constraint (1) captures the minimum demand satisfaction con-

straint; constraint (2) ensures that a repository is open if it stores any amount of the commodity;

constraint (3) states that the sum of the unsatisfied demand of a repository plus the amount of

incoming supply to the repository plus the amount the repository keeps for itself is equal to the

repository’s demand; constraint (4) expresses that the sum of the supply shipped from repository
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Variables:
Variables for each repository i ∈ R:
Storedi ∈ [0, RCi] - Units pre-allocated to repository i
Openi ∈ {0, 1} - Non-zero storage at repository i

Variables for the given scenario s∗ ∈ S, for each repository i ∈ R:
Kepts∗i ∈ [0, Ds∗i] - Total units kept at repository i
Sents∗i ∈ [0, RCi] - Total units shipped from repository i
Unsatisfieds∗i ∈ [0, Ds∗i] - Demand not satisfied at repository i
Incomings∗i ∈ [0, Ds∗i] - Total units coming to repository i
Tripss∗ij ∈ [0, RCi]/V C - Trips needed from repository i to repository j

Minimize:∑
i∈R

Unsatisfieds∗i

Subject To:
RCi Openi ≥ Storedi ∀i ∈ R (1)
Incomings∗i + Kepts∗i + Unsatisfieds∗i = Ds∗i ∀i ∈ R (2)
Sents∗i + Kepts∗i ≤ Storedi ∀i ∈ R (3)∑
j∈R

Tripss∗ij = Sents∗i ∀i ∈ R (4)∑
j∈R

Tripss∗ji = Incomings∗i ∀i ∈ R (5)

Sents∗i + Kepts∗i = 0 ∀i 6∈ ARs∗ (6)

Figure 3.3: The IP Formulation for the Maximum Satisfiable Demand Problem

i and the supply that repository i keeps for itself cannot exceed the amount of commodity stored

at repository i; constraints (5–6) connect the sent, incoming, and trip variables; and constraint (7)

ensures that damaged repositories ship no commodity.

3.4 Finding Maximum Satisfiable Demand

Our IP is given the maximum satisfiable demand SDs for every scenario s. Because this is a

calulated amount rather than one directly specified by the input data, we describe here our method

of determining it. To find this amount, we use another IP that is very similar to that given in

Figure 3.2. This IP is given a specific scenario rather than a set of scenarios S, and thus is not given

the scenario data seen in Figure 3.1. From the model given in Figure 3.2, we eliminate constraint

(1), and take constraints (3–7) only over the single scenario s∗ ∈ S. We also replace the objective

function with one that minimizes the total amount of unsatisfied demand. The entire model is given

in Figure 3.3. We run this IP for every scenario s ∈ S, and give the set of satisfiable demands as

input to the IP in Figure 3.2.
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3.5 The SCAP and Lexicographically Extreme Solutions

We use the IP given in Figure 3.2 as the input model to our algorithm findESS(·). Here, f1

corresponds to the time component of the objective:
∑
s∈S

Ps

∑
i∈R

∑
j∈R

Tsij Tripssij , and f2 corresponds

to the cost component:
∑
i∈R

(RIi Openi +RMi Storedi).
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Chapter 4

Results

4.1 Implementation, Benchmarks, and Experiments

The algorithm given by precedures findESS(·), findExtremes(·), and solveRecursion(·) was im-

plemented in the Comet system [1], and the experiments were run on an AMD Phenom II X4 955,

3.21GHz processor machine running 32-bit Linux Debian. The benchmarks used to test the results

are the same benchmarks that were used by Van Hentenryck, Bent, and Coffrin. They were pro-

duced by Los Alamos National Laboratory and are based on the infrastructure of the United States

[4]. We ran tests on six of the available benchmarks. Two types of results were obtained: using

the procedure findESS(·) on the modified SCAP model given by Figure 3.1 and Figure 3.2, we

generated (1) graphs showing the solutions found at each recursive depth with an 80% demand satis-

faction constraint, and (2) graphs showing the entire solution sets found with 10% to 100% demand

satisfaction constraints in increments of 10%. In set (1), new solutions at each level of recursion are

shown in magenta, and all other solutions are shown in blue. Note that the blue points directly to

the left and right of each magenta point are the two parent points that were used to generate it. For

graphs in set (2), points for each demand percentage are shown in different colors, as described in

the graph legends. The full set of results is shown in Section 4.5.

4.2 Implementation Correctness Verification

We ran checks on the algorithm implementation and on our data to ensure that the theoretical results

held, to the extent that such checks are possible. For example, we could not check that our algorithm

actually found all efficient supported solutions, since we did not know in advance what the efficient

supported solutions are, but we could perform the following checks:
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(1) All λs found during the tests we ran were strictly positive. This verifies that all solutions we

found were supported. By the theoretical result discussed in (2.16), this also guarantees that all

solutions found by our algorithm are efficient.

(2) None of our solutions were dominated by another solution that we found. This partially verifies

our theoretical assertion that all solutions found by our algorithm are efficient. (Note that with-

out a full list of all solutions to the MOIP, we cannot manually verify complete non-domination

of our solutions.)

4.3 Implications for the SCAP problem

The results confirm that in the SCAP, there is a definite trade-off between time and money, which

is a concern for policy makers who are dealing with real-world disaster situations [4]. The graphs

that plot points for multiple demand levels also confirm that there is a trade-off for both time and

money as demand increases: solutions with higher demand satisfaction constraints use more money

to achieve a specific amount of time than do solutions with lower demand constraints. (Similarly,

solutions with higher demand satisfaction contraints use more time to achieve a specific amount of

money than do solutions with lower demand constraints.) The algorithm could be of great help

to policy makers because for a problem such as the SCAP, there are many feasible solutions from

which one must be chosen in a time of crisis. Our algorithm would allow policy makers to narrow

down their options to a particular set of non-dominated solutions. This is invaluable because (1) it

cuts down the set of options considerably, which is important in time-sensitive situations, and (2) it

eliminates a number of solutions that could be improved in at least one objective without worsening

another (i.e., it eliminates a number of non-efficient solutions), and that would thus be undesirable.

Of particular note is that this algorithm could eliminate the need for policy makers to experiment

with different weights to set on the different objective components by providing a systematic way to

explore trade-offs between two of the three objective components (where demand was an objective

component in the original three-component SCAP [4]).

The algorithm could be further streamlined for optimization in the SCAP by imposing additional

constraints on time and budget. Our algorithm was designed to find all efficient supported solutions,

not just ones that fell within a feasible range for each component. In real-world disaster situations,

clearly some of the points found by our algorithm would be unreasonable or infeasible. For example,

consider the results for Benchmark 1 seen in Figure 4.2: a number of the left-most points represent

solutions in which more money is spent than would be possible in a real situation. Adding temporal
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and budgetary constraints would allow us to prune off solutions that would not be of interest to pol-

icy makers, thus further cutting down the set of solutions they must consider. There are also areas

of the graphs in which solutions are more dense than in other areas. (For example, in Benchmark 2

(see Figure 4.3), solutions are dense around time ≈ 1400, whereas there is a large gap in which there

are no solutions between 1500 and 1600.) In the interest of cutting down the number of options,

policy makers may want to eliminate solutions that are relatively similar to other solutions. We

could achieve this by setting bounds on how close a solution can be in f1- or f2-value to either of its

parents, therefore ensuring that recursion stops when the graph becomes sufficiently dense.

4.4 Limitations of the Algorithm and Future Research

Our algorithm is limited in two particular ways: (1) it cannot find non-supported efficient solutions,

and (2) it can only be used to find solutions of two-dimensional multiobjective problems.

Consider the point xns in Figure 4.1. xns is not dominated by either xl or xr, but our algorithm

would be unable to find it because it is not supported. In general, non-supported but efficient

solutions are those that fall in the “upper triangle” between two efficient supported solutions, as

seen in the figure: solutions x such that f1(xl) < f1(x) < f1(xr) and f2(xr) < f2(x) < f2(xl), and

such that the point defined by x lies above the line between the points xl and xr (our algorithm

can find solutions that are below that line). For the SCAP in particular, policy makers may be

interested in non-supported efficient solutions, due to constraints on time and budget. For example,

the graph of results for Benchmark 6 (Figure 4.7) has large gaps (e.g., between time ≈ 1200 and

time ≈ 1500) in which there are no efficient supported solutions. Policy makers may be interested

in solutions that lie within those gaps because there is more money available than is used by the

solution directly to the left of the gap but less money than is used by the solution directly to the

right of the gap. (Similarly, they may wish to spend an amount of time that is in between the time

spent by the two solutions xl and xr.) The second phase of the two-phase method is one existing

approach to finding such solutions, but as of yet there is no known algorithm that will efficiently

compute all non-supported efficient solutions [5].

We are also interested in extending the algorithm to MOIPs with more than two objectives. This

is known to be a considerably more difficult problem to solve, and has also been studied by Pryzbylski,

Gandibleux, and Ehrgott [6]. Of particular interest to the SCAP is an algorithm for three-objective

MOIPs: the original SCAP includes satisfied demand as a third objective, rather than setting it as

a constraint under which time and budget can vary [4]. Although we can easily vary the required
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Figure 4.1: Non-Supported Efficient Solutions

satisfiable demand percentage, the structure of the problem means that the model will always try to

satisfy as little demand as possible such that it will still meet the requirements: it minimizes over

time and money, which are both trade-offs with demand. Thus, although we set lower bounds on the

amount of demand that must be satisfied, they effectively become exact specifications rather than

bounds. A three-dimensional model would give us more flexibility in exploring trade-offs among

all three objectives without restricting the space within which one objective value will fall. In our

preliminary work to formulate the algorithm to find efficient supported solutions in three dimensions,

we have already encountered some aspects that are more complicated than in the two-dimensional

case. For example, six initial extreme points rather than two are required to begin the algorithm (one

for every permutation of the order in which to minimize the three objectives). Additionally, using

three points to define a plane and then minimizing in the direction of the vector that is perpendicular

to the plane no longer guarantees that the λ-values remain strictly positive. Further study will be

required to formulate and implement the three-dimensional algorithm correctly.

4.5 Data

We present here the data obtained from our experiments on six different benchmarks. The first set

of tests fixes demand at 80%, and the second set of graphs varies demand from 10% to 100% in

increments of 10%.
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Figure 4.2: Benchmark 1 at 80% Demand Satisfaction
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Figure 4.3: Benchmark 2 at 80% Demand Satisfaction
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Figure 4.4: Benchmark 3 at 80% Demand Satisfaction
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Figure 4.5: Benchmark 4 at 80% Demand Satisfaction
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Figure 4.6: Benchmark 6 at 80% Demand Satisfaction – Levels 0-7
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Figure 4.7: Benchmark 6 at 80% Demand Satisfaction – Levels 8-9
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Figure 4.8: Benchmark 7 at 80% Demand Satisfaction – Levels 0-7
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Figure 4.9: Benchmark 7 at 80% Demand Satisfaction – Level 8

Figure 4.10: Benchmark 1 From 10% to 100% Demand Satisfaction
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Figure 4.11: Benchmark 2 From 10% to 100% Demand Satisfaction

Figure 4.12: Benchmark 3 From 10% to 100% Demand Satisfaction
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Figure 4.13: Benchmark 4 From 10% to 100% Demand Satisfaction

Figure 4.14: Benchmark 6 From 10% to 100% Demand Satisfaction
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Figure 4.15: Benchmark 7 From 10% to 100% Demand Satisfaction
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Chapter 5

Conclusions

This thesis studied an algorithm to find efficient supported solutions of two-objective optimization

problems. I modified an existing algorithm (the two-phase method) for totally unimodular (con-

vex) two-objective optimization problems such that it can also be used for non-convex problems.

I proved theoretical results concerning the correctness of the modified algorithm, and applied my

implementation of it to a particular optimization problem: a modified version of the Single Commod-

ity Allocation Problem (SCAP). I additionally proposed two modifications of my implementation of

the procedure solveRecursion(·) that would allow me to find non-unique and collinear solutions.

Finally, I discussed two related areas that are open to further study: finding non-supported effi-

cient solutions of two-dimensional optimization problems, and finding efficient supported solutions

of three-dimensional optimization problems. These two areas are of particular interest for the SCAP,

in which policy makers may want to find non-supported efficient solutions due to specific budget

constraints and time limitations, and whose original formulation was as a three-dimensional model.

Because they could be of use in solving real-world humanitarian logistics problems, algorithms to find

non-supported efficient solutions of two-dimensional problems, as well as algorithms to find efficient

supported solutions of three-dimensional problems, are interesting from a practical standpoint as

well as from a theoretical one.
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