
Spatial Querying for Camera-Based Tracking Platforms

R. Onur Keskin
Brown University, Computer Science Department, Providence, RI 02912

Abstract

We propose a set of techniques for querying camera-
based tracking data effectively. We build an infras-
tructure for efficient processing of different types of
spatial queries, including trajectory-based similarity
and pattern matching queries. To achieve this, we
project the raw tracking data from all the cameras into
a global coordinate system and reduce the projection
noise through partitioning methods. We represent the
trajectories with polynomial approximations. We also
introduce a user interface where user can query the
data intuitively by simply sketching trajectories in a
given 2d scene model.

1 Introduction

One of the most important tasks for camera-based
tracking platforms is querying. However, there is a
lack of study on building a complete system which
would allow us to make spatial queries on the raw
tracking data.

In camera-based tracking platforms, the data is rep-
resented in camera coordinate system. This kind of
data usually is not meaningful for spatial querying
since it includes perspective information added by the
position of the camera. For more accurate and useful
information retrieval, the data from all cameras should
be converted to the same coordinate system.

Camera-tracking based trajectory data is highly
noisy. Even though, from a coarse-grained view, tra-
jectories are consistent, from a fine-grained view they
are highly noisy. Tracking data usually has a noise in
the form of zigzag pattern. We can remove the noise
in a more effective way by taking this pattern into con-
sideration.

We mainly focused on similarity matching queries.
There have been studies using MBRs(Minimum

Bounding Rectangle) for such queries[4],[5]. How-
ever, these methods either suffer a loss in pruning
power or require expensive preprocessing[2]. We
choose to use polynomial approximations for repre-
senting the trajectories. Previous studies show that
polynomial approximations are very effective for com-
paring two trajectories, thus allow building indexing
structures easily[6].

The main contribution of our work is to provide a
framework for querying camera-tracking based trajec-
tory data effectively. We use plane projective trans-
formation in order to combine the raw tracking data
from different cameras into a global coordinate sys-
tem. Considering the distinctive properties of the
tracking noise, we propose a partitioning algorithm
for noise removal. And, we approximate trajectories
with polynomials in order to satisfy different types
of queries, including similarity matching and pattern
matching queries. We also introduce a user interface
for querying. The interface allows users to query vi-
sually and use join operators with different types of
queries.

The rest of the paper is organized as follows. In
section 2, we introduce our data model and discuss
the techniques for converting the raw tracking data to
our data model. In section 3, we show how to rep-
resent a trajectory by using polynomials and we dis-
cuss similarity metrics used for trajectory comparison.
Section 4 introduces our visual querying interface and
describes the key components.

2 Trajectory Model

In camera-based tracking platforms, the tracking data
is usually represented in camera coordinate systems.
The lack of global location information limits query-
ing capabilities. We project the raw tracking data from
all the cameras into a global coordinate system while

1

(a) (b)

Fig. 1: (a) Perspective mapping: a point T on the world plane is imaged as t. φ is the camera center. (b) One-
dimensional Camera Model: The camera center is a distance f (the focal length) from the image line. The ray at
the principal point p is perpendicular to the image line, and intersects the world line at P , with world ordinate s.
w is the angle between the world and image lines.

eliminating the noise with partitioning.

2.1 Plane Projective Transformation

The data represented in camera coordinate system in-
cludes the perspective information effected by the po-
sition of the camera. This kind of data usually is not
meaningful enough for querying since, in this setup,
every query needs to be done in a specific cameras co-
ordinate system. However if we convert this data to
the real world coordinate system, the querying can be
done globally and more easily.

Points on the world plane are mapped to points on
the image plane by a plane to plane homography, also
known as a plane projective transformation(Fig. 1). A
homography is described by a 3 × 3 matrix H(Eq. 1).
Once this matrix is determined, the projection of an
image point to a point on the world plane is straight-
forward.

X = Hx (1)

The matrix can be computed from the relative posi-
tioning of the two planes and camera center(Eq. 2,3).
However, it can also be computed directly from image
to world point correspondences. Due to some advan-
tages, which we will describe in future work section,

we use the latter one.[
X
1

]
= H2×2

[
x
1

]
(2)

H2×2 =

[
α s
µ 1

]
(3)

where H2×2 is a homography matrix. For the ge-
ometry shown in Fig. 1b, the matrix is defined by
α = d

f cos2 w
− s

f tanw and µ = − tanw
f .

In order to computeH directly from image to world
point correspondence, we need to solve the following
equation for H . XW

YW
W

 =

 a b c
d e f
g h 1

 x
y
1

 (4)

using above equation we can derive

x 0 .. xn 0
y 0 .. yn 0
1 0 .. 1 0
0 x .. 0 xn
0 y .. 0 yn
0 1 .. 0 1

−Xx −Y x .. −Xnxn −Ynxn
−Xy −Y y .. −Xnyn −Ynyn

T

a
b
c
d
e

f
g
h

=

X
Y

.

.

Xn
Yn

(5)

2

The form of this equation is Aλ = B and we can
determine λ by

λ =
(
ATA

)−1
ATB (6)

By using a number of known {(x,y),(X ,Y)} cou-
ples(Fig. 2), we solve this equation for λ. From now
on, calculation of the image to world point correspon-
dence for any point x is straightforward(Eq. 1).

2.2 Noise Reduction

Due to the nature of camera-based tracking, the data is
highly noisy. Some of these are caused by misdetec-
tions and some are caused by unprecise tracking. Mis-
detections are usually easy to eliminate. They usually
occur as extreme outliers and are easy to eliminate by
using simple parameters like median step size of the
trajectory.

Unprecise detection is an expected result in camera-
based platforms. This unpreciseness is usually in the
form of a zigzag pattern. In order to remove this kind
of noise, we need to take this pattern into consider-
ation. In the following section we propose an im-
proved version of the trajectory partitioning algorithm
presented in [1].

2.2.1 Trajectory Partitioning

Each trajectory is optimally partitioned and repre-
sented by a smaller set of points. We try to find
the critical points where the behavior of the tra-
jectory rapidly changes. For a trajectory, TR =
{p1, p2, p3...., plenTR}, we determine a set of critical
points, CTR = {pc1, pc2, pc3...., pclenTR} , where the
behavior of the trajectory rapidly changes.

We use the minimum description length(MDL)
principle in order to find the critical points. The MDL
cost consists of two components: L (H) and L (D|H).
Here, H means the hypothesis, and D the data. The
two components are informally stated as follows [9]:
“L (H) is the length, in bits, of the description of the
hypothesis; and L (D|H) is the length, in bits, of the
description of the data when encoded with the help
of the hypothesis.” The best hypothesis H to explain
D is the one that minimizes the sum of L (H) and
L (D|H). We formulize L (H) and L (D|H) as

L (H) =

len(CT R)∑
j=1

log2 (dist (pcj , pcj+1)) (7)

L (D|H) =

len(CT R)∑
j=1

cj+1−1∑
k=cj

{log2 (d⊥ (pcjpcj+1, pkjpkj+1))

+log2 (dθ (pcjpcj+1, pkjpkj+1))} (8)

Let MDLpar (pi, pj) denote the MDL cost(=
L (H) + L (D|H)) of a trajectory between pi and pj
when assuming that pi and pj are only the critical
points - a trajectory which consists of just two points,
pi and pj . Let MDLnopar (pi, pj) denote the MDL
cost when assuming that there is no critical points be-
tween pi and pj - the original trajectory. For a trajec-
tory TR, we try to find the longest subtrajectory pipj
that satisfies MDLpar (pi, pj) ≤ MDLnopar (pi, pj)
for every i,j such that i < j and 1 ≤ i ≤ len (TR),
1 ≤ j ≤ len (TR).

In camera-based tracking systems, a noise in the
form of zigzags tend to be added. Knowing that the
noise follows a pattern, we can improve the algorithm
proposed in [1].

Fig. 3: Example of trajectory partitioning

3 Approximating Trajectories with
Polynomials

We approximate trajectories with polynomials. There
are many possibilities for choosing the polynomial
to be used, though we choose to use Chebyshev
polynomials because of it’s minimax approximation
property[1]. [1],[2] proposed Chebyshev polynomial
approximations and showed that they are easy to com-
pute.

In many tracking systems, the data is obtained by
periodic resampling and previous studies depend on

3

(a) (b)

Fig. 2: We select the points from camera image(a) and floor plan(b) which correspond to each other. Using these
(x,X) couples, we calculate the homography matrix, H . The red contours in the camera image are represented
with blue contours in floor plan. The green contours are mappings of other cameras.

Algorithm 1 Modified Trajectory Partitioning
INPUT: A trajectory, TR = {p1, p2, p3...., plenTR}
OUTPUT: A set of critical points, CP

Add p1 into the set CP ;
startIndex := 1, length := 1, tolerance := 0;
while startIndex+ length ≤ lenTR do
currIndex := startIndex+ length;
costpar := MDLpar (pstartIndex, pcurrIndex);
costnopar := MDLnopar (pstartIndex, pcurrIndex);
if costpar > costnopar then

if tolerance == 2 then
currIndex := currIndex− tolerance;
tolerance := 0;
Add pcurrIndex−1 into the set CP ;
startIndex := currIndex− 1;
length := 1;

else
length := length+ 1;
tolerance := tolerance+ 1;

end if
else
length := length+ 1;
tolerance := 0;

end if
end while
Add plenTR into the set CP ;

this assumption. In our system, there are two sources
of trajectory data. One is our camera-based tracking
system and the other one is the visual querying
interface. As in previous studies, our tracking system
produces a periodicly resampled data. However,
the data from the querying interface are created
by user interaction, thus have different resampling
rates depending on interaction speeds. These two
different sources, causes different behaviors on
time-series and leads to different polynomial approx-
imations even though the spatial components are
similar. For consistent approximations of trajectories
from different sources, we propose a formula for
calculating time points. For a trajectory, TR =
{〈p1, t1〉, 〈p2, t2〉, 〈p3, t3〉,, 〈plenTR , tlenTR〉}, a
time point ti is calculated by the following formula:

T (i) =

{
0 i = 1
dist (pi, pi−1) + T (i− 1) i > 1

(9)
As in similarity-based matchings, we address the

pattern-based matching problem by using polynomi-
als. For each trajectory TRi, we get the vector from
the first point to the last point, ~Vi = −−−−−−→P0PlenTRi (Fig.

4). Using ~Vi. we equalize the transformations of each
trajectory. Thereafter the process is same with the
similarity-based matchings; we approximate the tra-
jectories with polynomials and compare them by us-
ing a similarity metric. In next section, we show how
to approximate a trajectory with Chebyshev polyno-

4

(a) (b) (c)

Fig. 4: (a) Trajectories on XY plane. (b) For each trajectory TR, we get ~V = −−−−−−→P0PlenTR (c) We register each
trajectory TRi, by using ~Vi

mials and introduce a similarity metric for comparing
trajectories.

3.1 Chebyshev Polynomials

The Chebyshev polynomials of the first kind are de-
fined by the recurrence relation

P1 (t) = 1
P2 (t) = t

Pn (t) = 2tPn−1 (t)− Pn−2 (t) (10)

An arbitrary polynomial of degree M can be writ-
ten in terms of the Chebyshev polynomials. Such a
polynomial f (t) is of the form

f (t) =
M∑
n=1

cnPn (t) (11)

We can compute the coefficient cn by the following
formulas.

c0 =
1
M

M∑
n=1

f (tn)P0 (tn) =
1
M

M∑
n=1

f (tn)

cn =
2
M

M∑
n=1

f (tn)Pn (tn) (12)

where tn = cos (n−0.5)π
M . Note that the factors for c0

and cn are different. This is a consequence of orthog-
onality property of Chebyshev polynomials.

For a time series {〈s1, t1〉, 〈s2, t2〉, ..., 〈sN , tN 〉},
we need to compute the coefficients. The above for-
mulation is restricted to interval functions and in con-
trast, a trajectory is a discrete function. For a series,
we normalize the t into the range [-1,1], we divide this
interval into N disjoint intervals(Eq. 13) and we intro-
duce the interval function f(t)(Eq. 14).

Ii =

[
−1, t1+t2

2

)
i = 1[

ti−1+ti
2 , ti+ti+1

2

)
1 < i < N[

tN−1+tN
2 , 1

]
i = N

(13)

f(t) = pi if t ∈ Ii (14)

With this interval function, we can use Eq.12 to com-
pute the coefficients of the Chebyshev approximation.

3.2 Similarity Metric

Previous section shows how to approximate Cheby-
shev polynomials for a given time series. Our goal is to
represent trajectories with Chebyshev approximations
and define a similarity metric for comparing those.

Our trajectories are two dimensional and we ap-
proximate a polynomial for each dimension. We rep-
resent a trajectory TRi = {〈p1, t1〉, ..., 〈pN , tN 〉} by
two time series; TRxi = {〈x1, t1〉, ..., 〈xN , tN 〉} and
TRyi = {〈y1, t1〉, ..., 〈yN , tN 〉}. Let Cxi and Cyi be
Chebyshev coefficients for approximations of these
two time series.

5

We formulate the similarity between two trajecto-
ries as

Distd (TRi, TRj) =

√√√√π

2

M∑
k=0

(
Cdi (k)− Cdj (k)

)2
(15)

Dist (TRi, TRj) =
√
Dist2x (TRi, TRj) +Dist2y (TRi, TRj)

(16)

where d is either x or y, and M is the degree of the
approximated polynomials.

4 Querying Interface

We introduce a user interface where user can query the
data. User can simply pick a query method and sketch
a trajectory on the 2d scene. Join operations also sup-
ported for these queries. Another type of querying
is done by using existing trajectories. User can pick
an existing trajectory and make a similarity-matching
query.

4.1 Panels

An overview of the interface and brief descriptions can
be found in Fig. 5. There are three main panels; 2d
scene, trajectory tree and toolbar.

In querying mode, the 2d scene is the main interface
for both input and output. Querying is done by simply
picking a query method from the toolbar and sketch-
ing a trajectory on the scene as a query constraint. The
constraint trajectory is painted with red on the scene.
The results are also shown on the scene where they
are painted with green with a transparency value de-
pending on the query type and confidence value of the
result. For example, in a similarity-matching query, a
matching trajectory will be less transparent if it is more
similar to the constraint trajectory(Fig. 6).

The trajectory tree, which is the panel on the right,
provides navigation and some basic querying capabil-
ities. If a group is picked, all the trajectories in this
group is shown on the scene.

The toolbar icons are shown in Table 4.1.

4.2 Querying

We define two main querying constraints. The first one
is “matching” and the second one is “intersecting”(Fig.

Navigation
Zoom In

Zoom Out

Reset Zoom

Pointer Behavior

Move Viewport

Select Trajectory

Matching Query

Intersection Query

Matching Method
Similarity(Regular)

Similarity(Omit Translation)

Pattern

Join Operators
And

Or

Table 1: Toolbar icons

8a). Join operations for any combination of those con-
straints can also be done(Fig. 8b,8c,8d).

The “matching” constraint can be defined in
three different ways; similarity-matching(Fig. 6),
similarity-matching by omitting translation(Fig. 7a)
and pattern-matching(Fig. 7b,7c,7d).

The “intersection” constraint is used for finding the
trajectories which intersects a given line. For this spe-
cific query type, we use MBR-based indexing. This
type of querying is done by sketching a line on the
scene.

5 Conclusions

We have presented a set of techniques for querying
camera-based tracking data and built a querying in-
terface using our infrastructure. We showed how to
combine the data from different cameras and external
sources such as our user interface. We proposed rep-
resenting trajectories with polynomial approximations
for efficient comparison and indexing. We built an in-
terface for querying spatial-data intuitively.

In future work, we will investigate clustering tech-
niques for data streams in sensor networks. Our track-
ing system[3] is configured as a sensor network and it
is critical to have a distributed clustering infrastructure
for efficient indexing.

6

Fig. 5: Red: Toolbar; navigation and querying options. Green: 2d scene; main interface for both input and output,
querying is done by sketching to this panel. Blue: Trajectory tree; allows navigation on trajectories. Similarity
queries can also be done via this panel.

7

(a) (b)

(c) (d)

Fig. 6: (a)(b) Examples of similarity-matching queries by using an existing trajectory as constraint(by trajectory
tree panel). The transparency represents the similarity distance. (c)(d) Examples of similarity-matching queries
by sketching a trajectory on 2d scene.

8

(a) (b)

(c) (d)

(e) (f) (g)

Fig. 7: (a) Omit-translation-similarity-matching query example. (b)(c)(d) Pattern-matching query examples.
(e)(f)(g) Zoomed results of pattern-matching queries.

9

(a) (b)

(c) (d)

Fig. 8: (a) An example for intersection query. (b) Join operator(OR) example for two intersection queries. (c)
Join operator(OR) example for two intersection queries and a similarity-matching query. (d) Join operator(AND)
example for an intersection query and a similarity-matching query.

10

References
[1] K. Whang J. Lee, J. Han. Trajectory clustering: A

partition-and-group framework. SIGMOD, 2007.

[2] C. Ravishankar J. Ni. Indexing spatio-temporal trajec-
tories with efficient polynomial approximations. IEEE
Transactions on Knowledge and Data Engineering, 19,
2007.

[3] D. E. Crispell J. Jannotti J. Mao G. Taubin M. Akdere,
U. etintemel. Data-centric visual sensor networks for
3d sensing. GSN, pages 131–150, 2006.

[4] D. Gunopulos V.J. Tsotras M. Hadjieleftheriou, G. Kol-
lios. Indexing spatio-temporal archives. VLDB J.,
15:143–164, 2006.

[5] V.J. Tsotras D. Gunopulos M. Hadjieleftheriou, G. Kol-
lios. Efficient indexing of spatiotemporal objects. Proc.
Int’l Conf. Extending Database Technology(EDBT
’02), pages 351–268, 2002.

[6] R. Ng Y. Cai. Indexing spatio-temporal trajectories
with chebyshev polynomials. SIGMOD, 2004.

11

