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Abstract

Segmental duplications, relatively long and nearly identical regions, prevalent in the mam-
malian genome, are successfully modeled by directed acyclic graphs. Reconstructing the evo-
lutionary history of these genomic regions is a non-trivial, but important task, as segmental
duplications harbor recent primate-specific and human-specific innovations and also mediate
copy number variation within the human population. Using novel models derived by Kahn
and Raphael, we formalize this reconstructon task as an optimization problem on the space of
directed acyclic graphs. We employ a simulated annealing heuristic and describe an efficient
way to use the technique to solve the optimization problem in general. We apply the heuris-
tic to both maximum parsimony and maximum likelihood evolutionary models. We use these
models to analyze segmental duplications in the human genome and reveal subtle relationships
between these blocks.
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1 Introduction
Graphs in general, and directed acyclic graphs in particular, are powerful tools for modeling and
studying a huge variety of problems. Graphs have been the subject of intense research in math-
ematics and computer science, and numerous algorithms for computing many of their properties
have been developed. However, because the space of graphs grows super exponentially with the
number of vertices, a broad range of problems (such as Travelling Salesman, Complete Coloring,
Minimum Cut) are NP hard and only approximation algorithms are available. Among those com-
putationally hard tasks is the problem of finding optimal directed acyclic graph (DAG) over the
space of DAGs with respect to a given graph metric (we will define one such problem rigorously
in a later section). Here, we describe an efficient way to utilize simulated annealing technique to
search the space of DAGs. A key component in our strategy is the ability to efficently move from
one location to another which we achieve via incidence and ancestor matrices. We examine the
main properties of a simulated annealing algorithm and implement a generic approach to optimize
over the space of DAGs.

One of the many applications of DAGs is modeling evolutionary history between biological
entities when ancestral relations are represented as directed edges and an entity has more than
one direct ancestor. Of particular interest to us are segmental duplications because they harbor
recent primate-specific and human-specific innovations and also mediate copy number variation
within the human population. Moreover, segmental duplications account for a significant fraction
of the differences between humans and other primate genomes, and are enriched for genes that are
differentially expressed between the species [6]. Reconstructing the evolutionary history of these
genomic regions is an important task which remains an extreme challenge, as they are the “most
structurally complex and dynamic regions of the human genome” [1].

In [16, 17] Kahn and Raphael introduce a novel measure called “duplication distance”. This
measure evaluates the similiarity between strings by counting the minimum number of “copy“
operations needed to generate one string from the other, i.e the maximum parsimony scenario.
In [14] we present a novel probabilistic model of segmental duplication that we use to compute
the likelihood score for an evolutionary relationship between a pair of duplication blocks, i.e the
maximum likelihood scenario.

Using these two models, we formalize the reconstruction of the evolutionary history of seg-
mental duplication as a problem of finding optimal directed acyclic graph. We employ simulated
annealing to solve for the maximum parsimony and maximum likelihood reconstructions and com-
pare them to the analysis of [13]. Our evolutionary reconstruction recapitulates some of the proper-
ties of earlier analysis but also reveals additional and more subtle relationships between segmental
duplications. A more comprehensive exposition of our analysis can also be found in [14].

2 Biological Background
Segmental duplications are relatively long, nearly identical regions of the genome. Bailey and
Eichler [4] find that approximately 5% of the human genome consists of segmental duplications
> 1 kb in length and with ≥ 90% sequence identity between copies. Interestingly, segmental du-
plications often form complex mosaics of contiguous regions known as duplication blocks. Human
segmental duplications contain novel fusion genes [27], genes under strong positive selection [8],
and new gene families [20]. Moreover, the presence of segmental duplications appears to render
regions of the genome more susceptible to recurrent and disease-causing rearrangements [21] as
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well as additional copy-number variants [5] and inversions [28]. Since segmental duplications arise
as copy-number variants that become fixed in a population, the evolutionary history of segmental
duplications reveals information about the mechanisms and temporal dynamics of copy-number
variants in the human genome [18].
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Figure 1: Example of duplicate events
leading to the construction of duplication
block chr9:65.9-66.5Mbp

Jiang et al. [13] produced a comprehensive anno-
tation of this mosaic organization; they derived an “al-
phabet” of approximately 11,000 duplicated segments,
or duplicons, and delimited 437 duplication blocks, or
“strings” of at least 10 (and typically dozens) different
duplicons found contiguously on a chromosome. How-
ever, the relationships between these annotated dupli-
cation blocks are complex and straightforward analysis
does not immediately reveal the evolutionary relation-
ships between blocks.

2.1 Parsimonious Model

Kahn and Raphael [16, 17] introduce a novel parsimo-
nious model of segmental duplications based on duplication distance. They define duplicate oper-
ation as the basic operation δs,t,p(X) which copies a substring Xs,t of a source string X and pastes
it into a target string at position p. The duplication distance, d(X, Y ), for a source string X and a
target string Y is then defined to be the minimum number of duplicate operations needed to con-
struct Y by copying and pasting substrings of X into an initially empty target string. In [15], Kahn
and Raphael cleverly develop a polynomial-time algorithm to compute d(X, Y ). We note that the
duplication distance is not formally a distance because it is asymmetric, d(X, Y ) 6= d(Y,X).

2.2 Likelihood Model

While the parsimonious model is attractive from a theoretical perspective and can produce useful
biological insight, it might be overly restrictive, particularly when there are many different optimal
or nearly optimal solutions. In [14] we define for a given source string X , a feasible generator
ΦX = (Xi1,j1 , . . . , Xik,jk

) to be a sequence of substrings of X such that:

1. the elements of ΦX partition the characters of Y into mutually non-overlapping subsequences
{S1, . . . , Sk},

2. there exists a bijective mapping f : {Xi,j ∈ ΦX} → {S1, . . . , Sk} from substrings of X to
subsequences in Y corresponding to how the elements of ΦX partition Y , and

3. the order of elements in ΦX corresponds to the order of the leftmost characters of the subse-
quences f(Xi1,j1), . . . , f(Xik,jk

) in Y .

A sequence of duplicate operations that constructs Y from X in k operations uniquely defines
a feasible generator ΦX with length k whose elements correspond, respectively, to substrings of
X that are duplicated conjointly in a single operation. Now, consider, as in [14], the following
example:
X = abcdefghijkl and Y = agdbhecifdajebkfclg
The duplication distance, d(X, Y ), is 13 and there is a single feasible generator with this optimum
length. However, there are 989 possible feasible generators for Y , 119 of which have length 14,
just slightly suboptimal.
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Because the space of all possible feasible generators is very large, a probabilistic model might
give very low probability to an optimal parsimony solution. Thus, it is more enlightening to con-
sider a probabilistic model.

In [14] we introduce a novel likelihood score which is derived by computing the weighted
ensemble of all possible duplication scenarios.

3 Optimizing DAGs via Simulated Annealing
In this section we define formally the problem of optimizing DAGs over the space of DAGs:

Definition 1. Let G be the set of directed acyclic graphs (DAGs) with n vertices. Let Ψ : G → R
be a real valued function over G. The optimal graph is argmin

G∈G
Ψ(G).

By a reduction from the problem of Learning Bayesian Networks, this problem is NP-hard [7].
Thus, we use Simulated Annealing approach to derive approximate solutions.

3.1 Simulated Annealing

Simulated Annealing is a powerful heuristic technique for global optimization problems. While
it is not guaranteed that the method will find the optimum it has been shown to efficiently find
close solutions even in the presence of noisy data. The algorithm was described by Kirkpatrickis
et al in [19]. It is based upon that of Metropolis et al. [22] which generates sample states of a
thermodynamic system. Simulated Annealing is named for its similiarity to the metalurgy process
of annealing in which metal is first heated and then gradually cooled so that its atoms could settle at
optimal crystalline structure and thus give the metal more strength. To continue the analogy, in the
algorithm we initially allow for moves that increase the objective function (heating phase) but as the
time progresses we accept only moves that improve the objective (cooling phase). More formally,
the algorithm performs a random search and accepts changes with probability p = exp(−∆E

T
)

where ∆E is the change in the energy (objective function) and T is temperature parameter which is
decreased according to a given cooling schedule. Clearly, when the temperature parameter is high,
bad moves are more likely to be accepted; when T = 0 the probability of accepting such moves
goes to zero. Allowing for those bad moves provides the key advantage of Simulated Annealing
over any greedy algorithm- the ability to avoid being trapped in local optima.
In order to implement an efficient Simulated Annealing algorithm for the space of DAGs we need
to be able to efficiently explore this space, evaluate the change of the objective function, and decide
whether move in that direction at all. Next we describe how to do so.

3.2 Exploring the space of DAGs

In [11] Giudici and Castelo describe an elegant approach for moving from one DAG to another via
three types of simple moves: adding a new edge, removing an existing one, or reversing an existing
one. Clearly, addition and removal are sufficient as reversal is easlily mimicked by performing ap-
propriate addition and removal. However, as illustrated in [11] there is an important consideration
to allow reversals in order to achieve faster convergence. Imagine that the configuration a → b is
the most probable one. If, during random steps of the exploration phase, the edge a← b of oppo-
site direction is chosen, it might be very difficult to remove it later because of the strong marginal
dependence between a and b. This is not an issue if we include reversals.

It is clear that these moves result in a directed graph. The key question is whether they preserve
the acyclic property of the graph. We shall say that a move is legal provided the resulting directed
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graph is acyclic again. An efficient way of testing whether a move is legal is by using the incidence
and the ancestory matrices [11]. Let us formally define:

Definition 2. Let G = (V,E) be a DAG with set of n vertices V and set of edges E.
The Incidence matrix ofG is n×nmatrix I with entries I(i, j) = 1 if and only if there is a directed
edge vj → vi in G and I(i, j) = 0 otherwise.
The Ancestory matrix of G is n × n matrix A with entries A(i, j) = 1 if and only if there is a
directed path from vj to vi in G (i.e. vj is ancestor of vi) and 0 otherwise.

Definition 3. Given DAG G = (V,E) we call the DAG G′ = (V,E ′) a neighbor of G if and only
if we can obtain G′ from G with a single move- adding a new edge, removing, or reversing an
existing edge in G.

Definition 4. Given an objective function Ψ and two DAGs G1, G2 we call ∆G = Ψ(G1)−Ψ(G2)
the difference in their energies.

Now, given a DAG G = (V,E) and a random move proposed by the Simulated Annealing we
need to:
1. Examine whether the move is legal
2. Decide wheter to accept the move based on the probability p = exp(−∆G

T
)

3. Perform the move
Therefore, we split the necessary computational operations in these three phases.

3.3 Legal Moves

When we have to decide whether a proposed move introduces a directed cycle or not we need to
examine the three possible moves separately:

• Addition. Consider adding an edge from vi to vj . It is sufficient to look at the ancestory
matrix. If A(i, j) = 0, then the move is legal and therefore permitted. If A(i, j) = 1, then
vj is ancestor of vi and thus adding the edge vi → vj would introduce a directed cycle.
Examining the matrix is O(1).

• Removal. Clearly, removing an edge could never create a cycle and therefore is always legal,
O(1).

• Reversal. We can analyze the reversal of an edge vi → vj as a two step move: first removing
the edge vi → vj (always legal) and then adding the edge vj → vi. However, this time
checking only the value of A(i, j) is not enough. As there might be another directed path
from vi to vj we need to examine every vertex vk that is in the ancestorship of vi and is parent
of vj and look at the value A(k, j). This takes O(n) time.

Therefore, to decide whether a move is legal it takes O(1) for addition and removal, and O(n) for
reversal. We note that we use O(n2) space to store the matrices I and A.
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3.4 Accepting a Move

To decide whether to accept a move or not we need to compute p = exp(−∆G
T

). Then, we compare
p with a random number in the interval (0, 1) and if p > rand(0, 1) we accept the move. We
note that depending on the complexty of the objective function f(G) computing ∆G could be
very expensive. In fact, this is the case for the max likelihood reconstruction because computing
Pr[Y |X, k] takes in the worst-case O(|Y |3|X|k2). Therefore, we employ a hashtable to store the
cost of every move we have examined. As we do hundreds of independent trials we may often
need to examine the same move multiple times, and the hashtable helps significantly speed up the
search for good moves.

3.5 Performing a Move

Once a move is accepted we update the incidence and ancestor matrix to perform it. Again, we
consider the three types of moves separetely:

• Addition. Suppose we add vi → vj . We need only to set I(j, i) = 1 to update the incidence
matrix. For the ancestor matrix, the first step is to set all ancestors of vi as ancestors of vj .
The second is to add to the ancestors of the descendants of vj the ancestors of vj . Because
we keep the necessary information in the ancestor matrix A we need to do this for every
k = 1, 2, ..., n for which A(k, j) = 1. The complexity is O(n).

• Removal. Let vi → vj be the edge to remove. In this case, the very first thing is to set
I(j, i) = 0. Then, for vj and all its descendant we need to rebuild the corresponding rows of
A. We start with vj by first setting his ancestors to be all of his parents, and then we add to
vj’s ancestors all ancestors of his parents. We repeat this procedure with all descendants of
vj in topological order. The complexity is O(n2).

• Reversal. Let vi → vj be the edge to reverse. This is done by first removing vi → vj and
then by adding vj → vi. The complexity is O(n).

We observe that it takes O(n2) time for removing and reversing but those moves are performed
only after they are accepted. This is another advantage of this approach as costly opperations are
done only when needed.

3.6 Cooling Schedule

Determining what the cooling schedule should be has been a question of great interest and exten-
sive research (see [23] and [3]). One of the most commonly used schedules is the exponential,
originally introduced in [19]. The temperature is updated via the equation Tt+1 = Ttα. Another
widely used is the linear Tt+1 = Tt − µ. Of particular theoretical importance is the logarithmic
cooling scheme developed by Geman and Geman [10]: Tt = c

log(t+d)
, where d is constant, ususally

set to one. Hajek proves in [12] that if c is greater then the biggest energy barrier, given infi-
nite time the algorithm will converge to the global optima. However, this asymptotic decrease in
temperature is so slow that it is impractical to use in any real situation (it might be faster to do
exhaustive search of the space) and it stands as a theoretical result.

Another cooling schedule is threshold acceptance introduced by Dueck and Scheuer [9]. In
threshold acceptance, bad moves are accepted if the increase in the energy is less than a fixed
threshold, and good moves are always accepted. The threshold is gradually lowered with each
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step. This strategy has the advantage of being less computationally expensive than the exponential
one as it doesn’t need to compute exponentials.

In our implementation we employ the exponential schedule, though we allow for any cooling
schedule to be used (even one externally specified). After testing different values for the problem
of reconstructing human segmental duplications we find α = 0.98 to perform best in terms of
efficiency and time. We also find that threshold acceptence perform slightly better in some cases
but only at the cost of greatly increased computational time making it impractical.

4 Exerimental Results - Reconstruction of Human Segmental Duplications
In this section, we formalize the problem of computing a segmental duplication evolutionary his-
tory for a set of duplication blocks in the human genome with respect to either a parsimony or
likelihood criterion. Note that this material is adapted from the manuscript of [14].

The input to the problem is the set of duplication blocks found in the human genome, each
represented as a signed string on the alphabet of duplicons. Our goal is to compute a putative
duplication history that accounts for the construction of all of the duplication blocks starting from
an ancestral genome that is devoid of segmental duplications. A duplication history is a sequence
of duplicate events that first builds up a set of seed duplication blocks by duplicating and aggregat-
ing duplicons from their ancestral loci and then successively construct the remaining duplication
blocks by duplicating substrings of previously constructed blocks.

We make several simplifying assumptions. First, we assume that only duplicate events occur
and that there are no deletions, inversions, or other types of rearrangements within a duplication
block. Second, we assume that a duplication block is not copied and used to make another dupli-
cation block until after it has been fully constructed. As a result of the second assumption, the set
of duplication blocks observed at the present time includes both recently created blocks as well as
“fossils” of seed blocks that were duplicated to construct other blocks. In [25, 24], the authors make
a similar assumption when deriving the evolutionary tree for Alu and other (retro)transposons.
They define the ancestral relations between mobile elements as the minimum spanning tree with
respect to particular distance metric. Building an ancestry tree for duplication blocks, however, is
not appropriate as duplication blocks can have multiple parent blocks.

A more appropriate description of the ancestral relationships between duplication blocks is a
directed acyclic graph (DAG). In an ancestry DAG, the vertices represent duplication blocks and
an edge directed from a vertex u to a vertex v indicates that u is a parent of v. A vertex with
multiple incoming edges and, therefore, multiple parents, is constructed using substrings of all of
the parent blocks. Specifically, given a DAG G = (V,E) and v ∈ V , we define PG(v), the parent
string of v, by PG(v) = v1 � v2 � · · · � vp where vi ∈ {v|(v, Y ) ∈ E} and � indicates the
concatenation of two strings with a dummy character inserted in between. Our second assumption
– that a duplication block can only be a parent to another block once it has been fully completed –
gives the condition that the ancestral relationships cannot contain cycles. We acknowledge that our
two simplifying assumptions restrict the evolutionary history reconstruction problem significantly,
but admit an efficient and consistent method of scoring a solution.

4.1 Maximum Parsimony Reconstruction

We define the optimal DAG with respect to a parsimony criterion using duplication distance (Sec.
2.1 and [14]).
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Definition 5. Given a set of duplication blocks D, the maximum parsimony evolutionary history
is the DAG G = (D, E) that minimizes Ψ(G) =

∑
Y ∈D d(PG(Y ), Y ).

We use a simulated annealing heuristic described in Section 3 to compute the maximum parsi-
mony evolutionary history for a set D of 391 duplication blocks identified by [13]. The resulting
DAG (Supplementary Figure 7) contains 391 nodes and 479 edges. There are 9 connected compo-
nents with at least 4 nodes, and nearly 40% of the nodes appear in the largest connected component.
Figure 6 shows a moderately-sized connected component. Note that there are long, directed paths,
for example the path (383, 141, 250, 118), where each block is descended from a single parent.
There are also some “hub” nodes with high out-degree, such as 395, 399, and 267. These blocks
are suggestive of the primary duplication blocks that seed multiple other duplication blocks in the
two-step model of segmental duplication (reviewed in [5]). In total, the graph contains 28 nodes
with no incoming edges in all the components containing at least 4 nodes. Conversely, 89 nodes
in the graph have multiple parents suggesting that they were likely the result of more complicated
rearrangements where duplicons from disparate loci were copied and aggregated into a contiguous
duplication blocks. The graph also contains a total of 105 singleton nodes for which we did not
infer any ancestral relations with other duplication blocks, mostly (97 nodes) due to our restriction
in the longest common subsequence.

The maximum parsimony DAG represents a scenario in which all 391 duplication blocks could
have been constructed in a sequence of 17,431 total duplicate operations. As a baseline com-
parison, a minimum spanning tree, with respect to duplication distance, on the set of duplication
blocks has a total parsimony score of 28,852 and, by definition, contains 390 edges. It is notable
that the total score of the MST, is significantly worse than that of any graph obtained via simulated
annealing. This suggests that the ancestor relationships between duplication blocks could not be
captured by simple analysis (as also noted in [16]).

4.2 Maximum Likelihood Reconstruction

We can also define the optimal DAG with respect to a likelihood criterion. In phylogenetic tree re-
construction, a maximum likelihood solution is a tree that maximizes the probability of generating
the characters at the leaf nodes over all possible tree topologies, branch lengths, and assignments
of ancestral states to the internal nodes. Typically, the evolutionary process is assumed to be a
Markov process so that the probabilities along different branches are independent. We similarly
define the maximum likelihood DAG using the probabilistic model derived in [14], where the
“branch lengths” are replaced by the number of duplicate operations used to construct a target
block from all of its parents.

Definition 6. Given a set of duplication blocks D, the maximum likelihood evolutionary history
is the DAG G = (D, E) that maximizes the likelihood:

L(G) =
∏

Y ∈D L(Y ),
=
∏

Y ∈D (maxk Pr[F |Y, PG(Y ), k]) ,

=
∏

Y ∈D

(
maxk Q

(k)
PG(Y )(Y )/Z

(k)
PG(Y )

)
,

where Z(k)
PG(X) and Q(k)

PG(Y ) are the partition function and restricted partition functions, defined in
[14].
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We computed the maximum likelihood DAGs for the sets of duplication blocks appearing
within moderately-sized connected components of the maximum parsimony DAG in order to com-
pare the two methods. We chose the components comprised of blocks from clades ‘chr16’ and
’chr10’, respectively. The maximum likelihood subgraphs for these subproblems are shown in Fig.
3(b) and 2(b).

(a) (b)

(a) (b)

Figure 2: (a) Component comprised entirely of
duplication blocks from clade ‘chr10’ in the max-
imum parsimony DAG. (b) Maximum likelihood
DAG for subgraph induced on nodes in (a).

(a) (b)

Figure 3: (a) Component comprised entirely of
duplication blocks from clade ‘chr16’ in the max-
imum parsimony DAG. (b) Maximum likelihood
DAG for subgraph induced on nodes in (a).

We note that an optimal DAG with respect to either parsimony or likelihood is intended only
to represent an approximation of a true duplication history for a set of duplication blocks. Lacking
a definitive and comprehensive way to trace the evolutionary history of human segmental duplica-
tions, we propose these two problems as a computational means for deriving a likely duplication
history for duplication blocks in order to gain insight into their relationships in the same way that
max parsimony and max likelihood phylogenies have been predicted for gene families.

4.3 Comparison between Maximum Parsimony and Maximum Likelihood Reconstructions

The two DAGs for the ‘chr16’ subproblem in Fig. 3 share some characteristics. For example,
node 121 is a common ancestor of every other block and block 276 exhibits high out-degree in
both solutions. But overall, the max likelihood DAG is considerably different than the max par-
simony DAG. One striking difference is the higher average in-degree for blocks in the parsimony
solution (2.2) as compared to the likelihood solution (1.3). A possible explanation is that the par-
simony score for a block does not decrease with arbitrarily many parent blocks. Another notable
difference is the greater length of the longest path in the parsimony graph (10) as opposed to the
likelihood graph (6) in Fig. 3. The parsimony graph in Fig. 2 also exhibits a longer path (12)
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than the longest path in the likelihood graph (5). The consequence is that the duplication histories
represented by the parsimony graphs require more “generations” of duplication block construction
than the likelihood graphs that represent duplication histories in which more blocks could have
been constructed contemporaneously.

A very interesing comparison comes from computing the parsimony score of the maximum
likelihood solution and the likelihood score of the maximum parsimony solution. The maximum
likelihood solution has a very good parsimony score, close to the optimal one. This holds as a
general rule comparing optimal DAGs from different clades. However, the reverse is not true.
Often the maximum parsimony solution is given extremely low probability. For example, the
optimal DAG from Fig. 3 (a) has a very low probability. It is caused by the edge 50→ 32. The
node 32 has the set of parents [320,182,50] and this gives the most parsimony score. Removing
the edge 50→ 32 and reducing the set of parents to [320,182] worsens slightly the parsimony score
(by three points) but does greatly increase the likelihood. This is example shows on real data how
probabilistic model gives very low probability to an optimal parsimony solution as we theoretically
discussed in Section 2.3.

Before further examining the biological meaning of the derived maximum parsimony and max-
imum likelihood reconstructions we take a closer look at some of the properties of our simulated
annealing to verify the correctness of the approach and evaluate its robustness.

4.4 Independence of the Starting Location

A good way to evaluate the robustness of the simulated annealing techique is to examine the scores
it achieves starting from different initial conditions; for our problem, whether the optimal score
achieved depends on the initial directed acyclic graph the annealing started from. If we obtain
nearly identical optima regardless of the starting location we would feel more confident about the
robustness of our heuristic. To test this we used two subsets of nodes: those corresponding to
the duplication blocks labeled in [13] as clade chr10 and those labeled as clade chr16. For both
subsets we ran independent simulations, starting 100 times from randomly generated DAGs, 100
times from an empty graph, and 100 times from the derived minimum spanning tree (dMST).

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
550

600

650

700

750

800

850

900

950

1000

1050

Figure 4: The optimal scores for chr10
achieved starting from (1) empty (2) mst
(3) random DAGs

We generate random graphs by randomly picking a
number k from the interval (0, 3/2n), where n is the
number of vertices, and then randomly choose k edges
to add to an empty graph. If at a given step i, the inser-
tion of the edge ei introduces cycle, we discard this edge
and pick again. As diverse real world networks are found
to exibit some sort of scale-free properties [2] we also use
the preferential attachment model to generate another set
of random graphs.

As we use directed acyclic graph to represent ances-
tral relationships (and moreover the duplication distance
is asymetric d(x, y) 6= d(y, x)) the notion of minimum
spanning tree might be vague. To clarify, we construct
the dMST the following way. First, we find the MST for
undirected graph U having the same vertices and weights
on every edge the average of the two respective directed
edges, i.e w(ex,y) = d(x,y)+d(y,x)

2
. This is similar to the use of MST in deriving relationships be-
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tween retrotransposons [25, 24]. To obtain DAG, we impose directions on the edges of MST (U)
by looking into the minimum of d(x, y) and d(y, x)).

Figure 5: Results of 300 trials of simulated
annealing (SA) heuristic: number of local
optima returned by SA vs. objective scores.
Results are from search for the max parsi-
mony evolutionary history of clade ‘chr16’
from Fig. 3(a).

We summarize the optimal scores for the subrgraph
induced by clade chr10 found during 100 independent
trials from the three starting locations in Fig. 4. The three
distribtions are quite similar having very close means and
standard deviations: µempty = 692.31, σempty = 37.97,
µmst = 689.54, σmst = 35.79, µrandom = 697.29,
σrandom = 36.85. Moreover, when we look at the the
global optimum found for the three starting locations we
observe that they are nearly identical (optempty = 597,
optmst = 601, optrandom = 601). We obtained similar
results by performing the same experiment on nodes be-
longing to clade chr16.

The simulated annealing heuristic often terminated
in local optima. For a particular instance, the solutions
found by all 300 trials would include many globally sub-
optimal solutions. However, many of the locally opti-
mal solutions encountered were “close” to the score for
the best solution found. For example, the search for the
max parsimony evolutionary history given in Fig. 3(a)
resulted in a component whose objective score is 397; more than 1/6 of the total trials returned
solutions whose objective scores are no more than 407 and well over 1/2 of the total trials returned
solutions whose objective scores are no more than 437 (see Fig. 5).

4.5 Similiarity of Graphs with Near Optimal Scores

Another consideration is how similar the graphs that achieve near optimal scores are. We find that
our algorithm can return fairly different DAGs even if these DAGs have identical scores. In fact,

num edges frequency
55 100%
46 90%
69 80%
763 30-70%
281 20%
255 10%

Table 1: Edge frequency for the
300 optimal graphs.

for clade chr16 component, three DAGs with identical (and nearly
optimal) parsimony scores have been found. To quantify more pre-
cisely these observations, we compute the frequency of each edge
in the optimal DAGs for the entire set of 391 duplication blocks
reached by simulated annealing. There are 536 edges (see Table
1) which appear in no more than 20% of the resulting graphs and
these edges lead to fairly different topologies in the optimal DAGs.
However, there are also 101 edges which are present in at least
90% of the solution. Moreover, certain small structures are often
preserved. Considering again the example of the three different
DAGs from clade chr16 with identical scores, we find that the path
25→ 276→ 237→ 241→ 65 is preserved in all of them.

4.6 Clades

Jiang et al. [13] performed an initial analysis of the duplication blocks in D. They defined the
distance between two duplication blocks as the Hamming distance between the binary vectors
indicating the presence/absence of each duplicon. Note that this measure does not account for
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the order, orientation, or multiplicities of duplicons in each block. They defined 24 clades of
duplication blocks by performing hierarchical clustering on the Hamming distance matrix.

Clade

Figure 6: A connected component of the
maximum parsimony ancestry DAG con-
taining two clades: clade ‘M1’ is shown
in red and clade ’chr7 2’ is shown in
green. Node labels correspond to duplica-
tion block IDs. The blue edges represents
the inheritance network for non-core dupli-
con 6970.

We found a strong correspondence between clades
and connected subgraphs in our duplication ancestry
DAG. Four of the connected components with at least 4
nodes are comprised solely of duplication blocks belong-
ing to the same clade. For example, Figure 2(a) shows the
clade labeled ‘chr10.’ This clade corresponds to one con-
nected component in our ancestry DAG plus four single-
ton nodes. Other connected components contain multiple
clades, but the nodes of each clade often induce a con-
nected subgraph indicating that the nodes within a clade
are closely related. For example, the component in Fig-
ure 6 is comprised of clades ‘M1’ and ‘chr7 2,’ each of
which induces a connected subgraph (with the exception
of the two singleton nodes).

We quantify how “close” the duplication blocks in
a clade are on our ancestry DAG, according to the fol-
lowing metric. For a clade C, let DC be the set of
nodes belonging to that clade and let GC be the largest
connected component in the subgraph of our ancestry
DAG induced by DC . The relatedness metric is equal
to |GC |/|DC |. The mean over all 24 clades was 0.60, but
the value of the relatedness metric varied considerably
for different clades with clade ‘M2’ exhibiting the high-
est value (0.97) and clade ‘chr7 4’ exhibiting the lowest
value (0.17) owing to a high number of singleton nodes
in the clade.

The ancestry DAG not only defines groups of similar
duplication blocks, but also shows direct ancestral rela-

tions within each clade, which was not possible using the hierarchical clustering of [13]. For
example, for each clade, we can identify a seed block (or set of seed blocks) with no incoming
edges in the subgraph induced by the clade. For example, the seed block in clade ‘chr7 2’ is 405
and the seed block in clade ‘M1’ is 395 (Fig. 6). We posit that these seed blocks appeared in the
genome before the other members of their respective clades. Moreover, our analysis suggests that
duplication events corresponding to copying substrings of seed blocks accounted for much of the
subsequent construction of other members of their respective clades, indicating their importance
in the expansion and fixation of duplication blocks within a clade.

Furthermore, the ancestry DAG indicates the relationships between different clades (Fig. 6)).
For example, nodes in clade ‘chr7 2’ are all descended from node 399 in clade ‘M1,’ suggesting an
ancestral relationship between these two clades. Similarly, clade ‘M3 3‘ exhibits one seed block
(190) that is it self a child of block 413 in clade ‘M3 2.’ Thus‘M3 3’ is descended from ‘M3 2’ in
an optimal duplication scenario.
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4.7 Core Duplicons

Jiang et al. [13] defined “core duplicons” as being any duplicon that appears in at least 67% of the
duplication blocks of a given clade. They showed that core duplicons were enriched for genes and
transcripts.

Implicit in the ancestry DAG is information about inheritance networks for each duplicon.
For a given node Y ∈ D, let P(Y ) denote the set of parent nodes {Xi} such that (Xi, Y ) is an
edge in our DAG. For every (Y,P(Y )) pair, we can infer precisely which duplicons were copied
from each respective parent in the optimal scenario to generate Y . Therefore, we can annotate the
edges of our DAG with duplicons according to where each duplicon is passed from parent to child
throughout the DAG. The inheritance network for a duplicon is the subgraph of the ancestry DAG
induced on the edges on which that duplicon is passed from parent to child.

The inheritance networks for core duplicons corresponded to edges within subgraphs induced
by a particular clade, as expected. Interestingly, we found duplicons that had not been identified
by Jiang et al. as core duplicons but whose inheritance network included many edges within the
subgraph induced by a particular clade. Most notably, duplicon 6970 appeared on 36 of the 63
total edges in the subgraph induced by clade ‘M1’ (shown in blue in Fig. 6) and does not appear
on any other edge in the graph. By contrast, the maximum size of the inheritance network of a
core duplicon was only 17. We propose 6970 as a new core duplicon for this clade and suggest
that others like it should also be categorized as core duplicons.

4.8 Core Subsequences

A major advantage of computing duplication scenarios (and the associated feasible sets) in our du-
plication model is that we can compute the inheritance networks not only for single duplicons, but
also for substrings or subsequences of duplicons. We found inheritance networks for many con-
served subsequences that were nearly as prominent within particular clades as those for individual
core duplicons. For example, the subsequence [6968, 6967, 6925, 6963, 6962] of duplicons appears
on 23 of the edges in the subgraph induced on ‘M1’ clade nodes We also indicate the inheritance
networks for the subsequences [7039, 7036, 7037] (shown in red) and [9448, 9449] (shown in blue).
The prevalence of conserved subsequences indicates that not only are individual duplicons impor-
tant in the expansion and fixation of duplication blocks in a clade, but actually there are entire
subsequences of duplicons that are frequently copied intact between nodes in a particular clade.
This underscores the need to examine more than duplicon content when determining similarity
between duplication blocks.

5 Discussion
Our maximum parsimony and maximum likelihood reconstructions show some significant differ-
ences, both from each other and from the analysis of Jiang et al. [13]. It will be interesting to see
why certain maximum parsimony subgraphs have very low probability and what are the main rea-
sons for the differences between the two reconstructions. Moreover, studying the newly identified
core duplicons (not present in [13]) and core subsequences with respect to genes located nearby is
highly promising.

From the perspective of analyzing our simulated annealing heuristic further examination of
the effectiveness of the cooling schedule is warranted as is of the stability of the optimal graph. In
addition, applying this optimization technique to other problems that could be modeled with DAGs
has a great potential.
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From the perspective of modeling segmental duplications, incorporating other types of opera-
tions, such as deletions and inversions, as well as single nucleotide mutations, would provide us
with a more detailed picture. The phylogenetic problem where ancestral states (i.e. internal nodes
and seed blocks in the DAG) are unknown remains open. Finally, it would be enlightening to com-
pare the ancestral reconstructions of human segmental duplications to the segmental duplications
in closely related primates.
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