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Abstract—Neural decoding of motor control of hand and arm
movements in primates is a challenging task that requires devel-
oping statistical models that explain how the recorded neural
population activity relates to motor behavior. Until recently,
much of the work in this area has focused on learning linear
models of decoding for low-dimensional motor control, such
as 2D control of a computer cursor. Capturing a richer set
of motor behaviors such as hand and arm posture during
object grasping and manipulation tasks introduces much higher
dimensional representations of motor control. Understanding the
underlying degrees of freedom in complex kinematics that are
explained by the neural activity is a central question. One way
of learning these “effective” degrees of freedom has been to
employ dimensionality reduction techniques, such as Principal
Component Analysis, to find a linear kinematic subspace that
accounts for the observed motor behavior, separate from the
observed neural activity. The orthonormal basis vectors that
span this subspace are then considered as the underlying latent
variables, or “motor primitives” that describe behavior. These
motor primitives are not guaranteed to be optimally correlated
with the observed neural activity however. In this paper we devise
an objective function and optimize it to learn a linear subspace of
the motor activity that tries to maximize the correlation between
the latent variables of this subspace and the neural activity, while
still explaining the motor behavior with reasonable fidelity.

I. INTRODUCTION

The decoding of neural signals for complex kinematic con-
trol is a key problem that scientists and engineers face when
devising new neural interface systems and prosthetic devices
to help people with paralysis physically interact with their
environment. Until recently much of the work has focused
on decoding of neural population spiking activity from pri-
mary motor cortex for two-dimensional kinematic control [1].
These decoding methods often assume a linear relationship
between neural firing rates and intended movement which may
correspond to the position or velocity of a computer cursor.
Our work focuses on accurately decoding a high dimensional
representation of hand and arm posture using neural activity
from a limited number of cells from the primary motor cortex.
Two key questions arise in this problem. First we would like
to know how the neural signals relate to intended posture (the
encoding problem). Second we would like to enable a feasible
engineering approach to building neural decoding systems that
are reliable and require minimal training data.

To address these problems, previous research has examined
low-dimensional linear representations of various forms. For
example, Wu et al [2] used principal component analysis
(PCA) to reduce the dimensionality of neural firing rate data
and then modeled a linear relationship between the lower-
dimensional PCA space and hand kinematics. This PCA
representation removed redundant degrees of freedom in the
population firing rates and thus enabled the training of the
decoding algorithm with less data. Previous researchers have
also explored low-dimensional representations of the kine-
matic state with the goal of uncovering motor ”primitives”
that are related to neural firing activity [3][4][5][6].

In both of these approaches, previous work has looked at
either firing activity or kinematics separately. We argue that a
better approach seeks low dimensional models that take both
into account simultaneously. Seeking a PCA representation
of the kinematics alone may represent irrelevant degrees of
freedom not accounted for by the neural activity. Instead we
explicitly seek the low dimensional model of the behavior
that is good for decoding. We achieve this by introducing a
modified optimization objective that reflects both constraints.

II. PREVIOUS WORK

Dimensionality reduction methods have been used exten-
sively in studies of motor behavior. Typically, PCA is applied
in the space of postures, represented in terms of positions [5]
or joint angles [6]. These studies have been supported by
others that have looked at the independence relationships
between fingers of the hand. Previous studies have shown that
the independence in the fingers of the hand is limited due to
mechanical coupling and active neuromusculur control [7], and
that the effective degrees-of-freedom is much fewer than the
theoretically available degrees-of-freedom [8]. In fact, [9][4]
showed that due to the correlations between finger joints in the
hand, that applying PCA on the joint angle space of the hand
produced two to three principal components that accounted
for most of the variance in the hand posture. Such analysis
provides insights into variability of posture.

More recently, PCA has been used on dynamic movement
data. Technically this is achieved by constructing time series
of fixed length; the simplest way consists of taking contiguous



sub-sequences of frames, at regularly spaced points in time. A
subspace in such a space represents both spatial and temporal
properties of the underlying signal. For example, in [2] PCA
was applied on the neural data (stacked history of firing rates).
The coefficients of the resulting expansion were used as the
input to Kalman filter, decoding hand position and velocity in
a variety of two-dimensional tasks.

In a recent work [3] closely related to our paper, time series
subject to dimensionality reduction are sequences of hand
velocity estimates. The goal is to model the distribution of
spiking activity for a set of cells as a function of the underlying
movement. After the principal components are learned, a log-
linear preferred direction tuning model is fit in the principal
subspace.

In much of the work mentioned above, there are two related
data streams: neural activity represented by firing rates, and
the corresponding motor behavior represented by the measured
kinematics. However, dimensionality reduction is carried out
on one of the spaces (either neural or kinematic), without
explicit regard to the underlying goals of decoding/encoding
the other space. The role of PCA in these cases was limited to
reducing the dimension for computational expediency, decor-
relating the kinematic data, and potentially reducing noise.

In contrast, the idea of directly optimizing a lower-
dimensional representation to account for the relationship be-
tween two spaces has been proposed in other fields. Canonical
Correlation Analysis (CCA) is a well known example that
learns a pair of linear subspaces that maximize the correlation
between projections of the data sets onto these subspaces.
Partial Least Squares (PLS) extends CCA by trying to balance
the criterion of maximizing correlation between the projections
and maximizing the variance in the two data-sets that is
explained by the learned subspaces. In other work [10] linear
subspaces for two spaces are learned with the objective to
optimize a mapping from one space to the other.

Our work combines the experimental framework of [3] and
the idea of coupled subspace learning from [10].

III. KINEMATIC DATA

The kinematic data consists of temporally changing joint
angle measurements from all of the segments in the hand
and arm of two rhesus macaque monkeys. Optical motion
capture technology was used to capture the posture of the hand
and arm segments in 3D space. To do this 12 optical motion
capture cameras were used to triangulate the position of 4mm
reflective optical markers that were placed on each segment
of the hand and arm, starting at the shoulder and extending
to the fingers of the hand. The recorded 3D positions of the
segments at each time frame in the recordings was then fit
in a least squares fashion to a kinematic model of the hand
and arm. The fit kinematic model was then used to determine
Euler angle measurements for the rotation of each segment
relative to its parent. The proximal and distal interphalangeal
(PIP and DIP) joints of the fingers as well as the elbow joint
were constrained to be one degree-of-freedom (DoF) hinge
joints, the metacarpophalangeal (MCP) joints as well as the

palm were constrained to be 2-DoF joints, and the shoulder
was represented as a 3-DoF ball-and-socket joint. To remove
singularities present in the Euler representation of the shoulder,
and maintain consistent representation for segment rotations,
we converted the Euler angles to exponential map and twist
representation. The kinematic data that was collected consisted
of motion capture recordings of hand and arm activity in
reaching and grasping tasks performed by two monkeys. The
data was collected over four sessions on separate days, each
session consisting of six to nine trials, where each trial was
comprised of twenty to thirty reach and grasp tasks of various
objects that were presented to the monkeys.

A. Exponential Map and Twist Representation

Euler angle representations of 3-DoF rotations suffer from
a commonly known issue in the graphics community known
as gimbal lock. To overcome this limitation we converted the
computed Euler angles of the fit kinematic model to a three
element vector exponential map and twist representation [11].
An example of the conversion in rotational representation can
be given for the shoulder joint. The 3-DoF rotation of the
shoulder joint can be separated into a twist about the major
axis of the upper arm segment in its canonical position (hand
stretched out to the side) and a swing of the upper arm. In order
to ensure that the swing component of the rotation doesn’t
have a rotational component about the twist axis we need to
choose a rotational axis for the swing that is orthogonal to the
vector pointing in the canonical direction of the upper arm.
This means that the exponential map rotation vector for the
swing component has to lie on a plane perpendicular to major
axis of the upper arm in its canonical pose. Since the canonical
pose of the upper arm is stretched out to the side, choosing
the plane to be the sagittal plane ensures separate twist and
swing components, and prevents the singularity that occurs at
±π. The singularity that occurs when the twist angle is ±π
is prevented due to the physical constraint of positioning the
arm passed the upper torso. The three element exponential
map/twist vector can be constructed as follows,

e = [e1, e2, e3] (1)

where v = [e1, e2] is the swing component and e3 is a 1-
DoF Euler angle twist angle. The compact exponential map
representation for the rotation angle and unit axis of rotation
for the swing are θ = |v| and v̂ = v

|v| respectively. To compute
the rotational axis for the swing component, v̂, as well as θ
and e3, we first applied the previously computed Euler angle
rotations, from the fit of the kinematic model to the observed
markers, to a 3× 3 matrix P, representing a coordinate frame
that was oriented along the major axis of the segment in its
canonical pose. This resulted in a new coordinate matrix P′

aligned to new pose of the segment defined by the Euler
angles. The coordinate matrices can be written as,

P = [lT ,uT ,nT ] (2)



(a) PCA subspace. (b) Optimal learned subspace.

Fig. 1. (a) The first three principal components of posture for a single recorded session. The middle column shows mean posture. Left and right columns
show the posture at the two extremes of the data projected onto the principal component direction. (b) First three basis vectors spanning optimal learned
subspace.

where l, u, v, are unit vectors pointing along the major axis,
and the two orthogonal directions respectively. Similarly,

P′ = [l′T ,u′T ,n′T ] (3)

The unit rotational axis for the twist component was then
computed as follows,

v̂ = l× l′ (4)

The magnitude of rotation becomes,

θ = arccos (l · l′) (5)

To find the twist rotation angle, e3, we first align l and l′ by
applying a rotation of −θ about v̂ to P′ and then compute the
inner product between u and u′ as follows,

e3 = arccos (u · u′) (6)

The three element exponential map/twist representation of
all the other 2-DoF hardyspicer joints in the arm and hand
were computed in a similar way. The rotational axis for the
twist vector was always chosen to be aligned with the major
axis of each segment in its canonical pose and the plane
of the rotational axis for the twist component was always
chosen to be orthogonal to the major axis. For each of the
1-DoF hinge joints a single variable was used to represent
the extension/flexion angle of the joint. This resulted in a
representation of the kinematic pose consisting of 32 degrees-
of-freedom.

IV. DIMENSIONALITY REDUCTION - PCA

A key insight in neural decoding of motor control is to
remove redundant representations of data in either the motor
activity or neural activity. Redundant representation makes the
decoding task more computationally expensive and provides

no extra information to help us learn the decoding model.
Therefore we want to only use the “effective” degrees of
freedom present in the data. The standard method for removing
the redundant degrees of freedom in a data set is by em-
ploying a dimensionality reduction technique such as Principal
Component Analysis (PCA). PCA makes use of the first and
second order statistics (ie. mean and covariance) of the data to
compute a set of orthonormal principal components, or basis
vectors, such that the projection of the data onto the basis
vectors are maximally uncorrelated. The projections of the data
onto the basis vectors can be thought of as random variables.
The original data is then a linearly weighted combination of
these random variables. If the joint distribution of the random
variables is Gaussian then the random variables are statistically
independent. Dimensionality reduction can be applied to either
the neural firing rates or the motor activity or both. When
applying PCA, or other dimensionality reduction methods, to
a data set of recorded motor activity these random variables
can be thought of as motor “primitives”. This paper focuses
on applying dimensionality reduction techniques on the motor
activity.

As a first step towards learning the motor primitives Prin-
cipal Component Analysis was applied to the space of hand
and arm postures represented by 60 percent of the recorded
kinematic data. PCA was applied to each of the four recorded
reaching and grasping sessions separately. The percent vari-
ance plot as a function of the number of principal components
(basis vectors) is shown in Fig. 2.

From Fig. 2 constructing a basis consisting of the first six
eigenvectors (principal components) can explain roughly 90
percent of the variance in the hand and arm posture, and
yet provide a much lower dimensional representation of the
kinematic space than the full 32-DoF space. This suggests that
there is a great deal of correlation between the 32-DoF. These



# of Basis Vectors

%
 V

ar
ia

nc
e

0.5

0.6

0.7

0.8

0.9

1.0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

Fig. 2. Percent variance covered in the kinematic data as a function of
the number of principal components (basis vectors). Basis vectors ordered in
decreasing order of eignenvalues. Solid blue line indicates mean values and
the shaded region covers the range of values over the four recorded sessions.
The red dots indicate percent cumulative variance accounted for by the learned
subspace U for the four sessions.

correlations between the angular degrees-of-freedom in the
hand and arm introduce unnecessary redundancy in the repre-
sentation of hand and arm posture and the redundant degrees-
of-freedom can be removed without loss of information. Of
course in reducing the kinematic posture representation from
32-DoF to 6-DoF we are balancing between capturing the
effective degrees of freedom in the kinematics and providing
a much sparser representation for hand and arm posture. The
first three of these six principal components for the training
data in one of the four recorded kinematic sessions is shown
in Fig. 1a.

From Fig. 1a we see that the first basis vector accounts for
most of the variance found in the joints of the hand, whereas
basis vectors two and three account for the variance found
in the forearm rotation and elbow angle respectively. Though
applying a dimensionality reduction method, such as PCA,
to the data set of recorded motor activity gives some insight
into the underlying motor primitives that might be controlled
by the motor cortex there is little to justify that these basis
vectors are the motor primitives that the brain codes for. This
is because such methods do not take into account correlation
of the projection coefficients (ie. random variables) with neural
activity. Rather, what we want is to incorporate the knowledge
of neural activity into learning a set of basis vectors such that
the projected kinematic data onto these basis vectors can be
explained by the observed neural firing rates.

V. NEURALLY COUPLED SUBSPACE LEARNING

Given recordings of the neural firing rates of a population
of motor cortical neurons and the relative orientations of all
the segments in the hand and arm, the goal is to learn a
low-dimensional latent space representation of the hand and
arm posture. Projection of the kinematic data onto these basis
vectors provides a set of random variables representing the

contribution of each basis vector on the hand and arm posture.
We suggest that decoding these few random variables as
opposed to the full set of 32 degrees-of-freedom will provide
for more efficient decoding algorithms, require less data to
train the decoding model, and still maintain good hand and
arm posture reconstruction accuracy.

We will term the space of measured segment orientations
for all the segments in the hand and arm the full kinematic
space. The segment orientations are defined at each recorded
time instant as 3 element exponential map and twist vector
rotations about the joint of each segment’s parent. The skeletal
hierarchy originates at the shoulder and extends to the tips of
the fingers observing the physiological linkages at the joints
where parent and child segments meet. The measured rotations
at a joint are relative to the parent segment’s orientation, and
the shoulder segment orientation is measured at the shoulder
joint relative to the global coordinate system.

Given the full kinematic space representation of the hand
and arm posture at each time instant we propose that there is
a linear subspace representation of the full kinematic space
that captures the important degrees of freedom present in
the full kinematic space such that the recorded neural firing
rates are linearly correlated with the variables lying in the
subspace. The d-dimensional full kinematic space can be
represented as a matrix X = [x1, . . . ,xN ] where N is
the number of observations, and at each time instant t we
observe the kinematics xt = [xt

i=1, . . . , x
t
i=d]

T . Given the full
kinematic space X the task is to learn a p-dimensional linear
subspace U spanned by a set of orthonormal basis vectors,
U = [u1, . . . ,up]. The basis U has dimensionality d×p such
that p < rank(X) <= d. The p latent variables at time t,
ct = [ctj=1, . . . , c

t
j=p]

T , are computed by projection of xt onto
the subspace defined by U. This can be written as C = UT X,
where C = [c1, . . . , cN ].

Given the subspace U we assume that we can learn a
linear decoding model relating the neural population firing
rates Z to the latent variables C. Given the history of
firing rates of a population of k neurons in the past h
time instances we construct the firing rate history matrix as
Z = [z(1)T

0 , . . . , z(1)T
h , . . . , z(k)

T
0 , . . . , z(k)

T
h ]T , where each

row vector z(i)j = [zi
t=0−h+j , . . . , z

i
t=N−h+j ]. The linear

decoding model relating the neural firing rates to the latent
variables in the kinematic subspace can then be written as,

UTX = FZ (7)

where F is the p × kh matrix of linear filter coefficients,
the linear least squares solution of which can be derived by
applying the Moore-Penrose pseudo-inverse of Z denoted as
Z†,

F = UTXZ† (8)

Given this linear decoding model we want to learn U
such that the error between the actual latent variables C =
UT X and their linear prediction C̃ = FZ is minimized.
In other words we want to find a subspace U such that



‖ (C − C̃) ‖22= 0. This gives the following function for
minimizing the decoding error,

arg min
U
‖ (UTX− FZ) ‖22 (9)

where ‖ · ‖2 is the 2-norm. The solution for U given in eqn. 9
will not necessarily be optimal in terms of reconstruction
accuracy of the full kinematic space – that is the subspace
U might not span the relative degrees of freedom present
in the kinematic data . Another way to see this is that the
approximation of the full kinematic state we get by projecting
the kinematic data from the full space to the subspace and then
embedding back into the original space, by way of UUT X,
might not give an accurate estimate of X since p < rank(X).
In order to enforce good reconstruction of the full kinematic
space we introduce the following equation for minimizing the
reconstruction error,

arg min
U
‖ (X−UUTX) ‖22 (10)

Combining the terms from eqns. 9 & 10 we aim to minimize
the following objective function,

ζ = arg min
U

(1−α) ‖ (X−UUTX) ‖22 +α ‖ (UTX−FZ) ‖22
(11)

where the constant parameter α controls the relative weight
placed on the reconstruction and decoding error terms. If α =
0 then the objective in eqn. 11 reduces to performing PCA on
X. In order to minimize eqn. 11 in terms of U we employ a
recursive linear optimization algorithm shown below.

input : PCA basis U0, kinematics X, firing rates Z, and α.
output: learned basis U.

begin1

U←− U02

repeat3

learn new set of linear decoding coefficients based on new U.4

F←− UTXZ†
5

learn a new set of basis vectors U that minimize the objective6

function.
[U, ζ]←− BFGS(X,Z,U,F,α)7

make sure U is orthonormal.8

U←− orth(U)9

until change in the objective function value ζ < threshold10

end11

Algorithm 1: Linear Optimization

To begin the algorithm we initialize the linear subspace U
to be equal to the first p principal components U0 computed
on the kinematics X. The linear optimization algorithm es-
sentially rotates this set of orthonormal basis vectors in order
to maximize eqn. 11. In each iteration the algorithm switches
back and forth between computing the linear decoding coeffi-
cients F given the current estimate for the subspace U using
eqn. 8, and computing a new set of basis vectors U given the
linear decoding coefficients F by minimizing the objective
function in eqn. 11. We minimized the objective function by
using the well know quasi-Newton algorithm, BFGS [12].
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Fig. 3. RMSE of the Euclidean distance between measured and estimated
positions for the 18 joints. Error bars signify one standard deviation from the
mean across the 4 sessions.

VI. EXPERIMENTAL SETUP

We tested our approach on kinematic and neural data sets
collected from two rhesus macaques across multiple days. The
monkeys were trained to perform reaching and grasping of 6-
7 different types of objects that were held in front of them.
Each session included 6-7 different trials, each consisting of
20-30 grasps of one particular object. The objects included
a cylindrical pipe, triangular prism, disk, bar, small and large
ball, and a pencil. For each monkey we recorded two sessions,
each one on a different day. The kinematic data was captured
using marker-based motion capture technology at a sampling
rate of 240Hz.

Simultaneous recording of the neural population spike ac-
tivity was made during the sessions via a 100-electrode array
implanted in the arm/hand area of primate MI cortex. The
number of cells that were classified as good units, based on
high signal to noise ratio, changed for each session but were
in the order of 30-150 cells. The kinematic data was then sub-
sampled every 10 frames (41.66ms). The neural firing rates
were smoothed using a Butterworth filter and a sliding 100ms
window was used to sub-sample the neural firing rates centered
every 41.66ms.

VII. EXPERIMENTAL RESULTS

Principal component analysis was conducted on the training
data (first 60% of recorded frames) in each of the four recorded
session separately. The kinematic data X consisted of the 32
exponential map/twist DoF (d = 32) found in the hand and
arm. The first six principal components (p = 6), ranked in
order of decreasing eigenvalues, where kept for the initial
estimates of the linear subspace U0, for each session.

We learned a more optimal basis U for each of the four ses-
sions, using the optimization framework we developed earlier.
In order to optimize for the best value for the reconstruction
error weighting parameter α we ran the optimization algorithm
for values of α = [0, 1], and found the optimal value to be
α ≈ 0.6.

When α = 0.6 the first three of the six basis vectors for the
optimal learned subspace U over one of the four sessions is
shown in Fig. 1b. For the same data set, the plots of the first



three optimal basis vectors show that they capture much more
elbow and shoulder movement than the principal components
shown in Fig. 1a. This suggests that the linear decoder is much
better at decoding the shoulder and elbow rotations than the
joints of the hand; possibly because there is more information
in the recorded neural data relating to the DoF’s in the arm
than the hand. The amount of total variance in hand and arm
posture explained by the learned subspace for the four sessions
is shown as red dots in Fig. 2. From this we can see that the
total variance explained by the learned subspace is less that the
PCA subspace for all four sessions. This is interesting because
we show that we can decode better in a subspace that captures
much less variance in the hand and arm posture.

To have a better understanding of estimation accuracy in
decoding in the two subspaces we compare the decoding ac-
curacy in terms of reconstruction results of the joint positions
in 3D Euclidean space shown in Fig. 3.

In order to compute the statistical significance between
decoding in the (1) PCA subspace vs. (2) the learned subspace
U we used the following method. Given that the error between
measured and decoded joint positions in Euclidean space at
time i is e(1)i for case (1) and e(2)i for case (2), we are interested
in the error difference d

(2)−(1)
i . We found that the average

portion of time that the decoding in the learned subspace did
better than in the PCA subspace was 57.72 per cent, for 18
joints. The average improvement in error was 2.66 mm.

Given the random variable d(2)−(1) for each of the joints,
and assuming a Gaussian distribution, we propose the null
hypothesis that d(2)−(1) is normally distributed with mean
zero, and test against the null hypothesis that the mean is
not zero. For a significance level of 0.01, the results of
the student t-test showed a rejection of the null hypothesis
for the 18 joints, with an average confidence interval of
[−2.930 − 2.383] mm.

VIII. CONCLUSIONS AND DISCUSSION

We have presented an optimization algorithm which takes
into account neural motor control activity to learn an optimized
subspace for linear decoding of kinematic postures of the hand
and arm. We showed that learning a linear decoding model
relating the neural firing rates and the projection of hand and
arm postures into the learned subspace, as opposed to the PCA
subspace, produced statistically significant improvements in
posture estimates. The main contribution of this work has been
to devise an algorithm that learns a set of motor “primitives”
that linearly relate to the neural motor control activity.

As future work we are interested in learning jointly opti-
mized subspaces for both the kinematic and neural data, by
applying algorithms such as Canonical Correlation Analysis
(CCA) and Dynamic Coupled Component Analysis [10]. The
goal is to find a pair of subspaces that maximally correlate the
kinematics and neural activity and provide more accurate and
efficient decoding algorithms.

We are also looking into relaxing some of the assumptions
we have made about our current model. Currently we are as-
suming that the distribution of the projection of the kinematic

data onto the subspace is jointly Gaussian, which would result
in independent principal components. Since the joint distribu-
tion is not exactly Gaussian this independence assumption is
violated. For this reason we will investigate using Independent
Component Analysis (ICA) as an initialization method for our
current algorithm, instead of PCA, and adding a sparseness
prior on the components in our objective function. The idea
behind the sparseness prior is to find a set of components that
are maximally non-Gaussian, and therefore independent, due
to the central limit theorem.

Finally, we are interested in evaluating decoding accuracy
for non-linear extensions to the current method by either using
non-linear dimensionality reduction techniques to learn a new
mapping between kinematic spaces, or by employing non-
linear decoding methods such as the extended Kalman filter.
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