
Abstract

Though the commercial application of multi-touch is
expanding rapidly, there exists tremendous opportunity for
innovation and influencing the development of interaction
techniques within this design space. We demonstrate a
technique for executing complex and precise adjustments
within the medium: rearrangeable “tokens” that exploit the
simultaneous interactions, modeless underpinnings, and
collaborative nature of the multi-touch environment. Users
perform a two-fingered “pinch” gesture directly on these
tokens to effect an adjustment in value, allowing for
considerable combination and creativity by the user. We
implement this technique in an application for image
manipulation and evaluate it in a preliminary user trial,
which demonstrates surprising discoverability and
versatility of our technique and, by extension, the medium
as a whole.

1 Background

Though the commercial application of multi-touch is
b e c o m i n g w i d e s p r e a d — a p p e a r i n g i n v a r i o u s
implementations and sizes on cell phones, tablet PCs,
surfaces, walls, and the nightly news—software
development for the multi-touch environment remains in its
infancy. There exists little standardization for the basic
concepts and objects, such as one finds in a more
traditional GUI—namely, the menus and pointers of the
ubiquitous WIMP-style interface (windows, icons, menus,
and pointers).

The number of multi-touch applications available
commercially on various devices measures in the tens of
thousands, but the functionality of these devices are narrow
and largely organizational: multitudes of mapping, photo
organizing, and game applications exist, but no real attempt
has been made to transition a complex, industry-standard
application, such as image manipulation or spreadsheets, to
the multi-touch environment. Likewise, no serious attempt
has been made to combine multi-touch with existing and
proven, productive interaction techniques, such as those
used with pen and keyboard. As a result, the benefits of
multi-touch to existing application problems remains
largely unexplored.

With this gap in mind, we focused on the question of what
an industry-standard, complex application would look like
in the multi-touch environment—and more importantly,
what advantages unique to the environment it could
exploit. Though we explored several complex applications,
such as 3-D modeling and architectural diagramming, we
gravitated towards image manipulation—a complex job
defined considerably by the WIMP interface. Destructive
tasks in image manipulation, such as the application of
filters and the adjustment of image properties, are largely
sequential, accomplished by a series of dialog boxes. The
user is constantly switching between dozens of tools, and
the user’s hand rarely leaves the mouse.

We identify these inherent inefficiencies as areas in which
image manipulation stands to potentially gain considerably
from the introduction of new techniques. The tasks
presented by image manipulation are numerous and
complex, but it is nonetheless an application so commonly-
used in industry as to have generated its own verb
(“Photoshopping”). As a fundamentally creative endeavor,
image manipulation is currently limited by a very narrow
interaction paradigm.

2 Related Work

We build on a broad base of prior hardware [Han 2006] and
software [Varcholik 2008] work in constructing a low-cost
environment for developing multi-touch techniques. From
this relatively consistent starting point, modest innovation
within the design space has been accomplished in a
relatively short timeframe. Techniques have been
developed for physics-based manipulation of rigid objects
[Microsoft 2008] and the deformation of fluid objects using
several fingers at once [Moscovich 2006].

Methods which provide more information than simple
contact location are also available. Frameworks regularly
infer the direction of a user based on the properties of a
contact [Microsoft 2008]. Various configurations and
technologies are capable of extrapolating the location
[Dohse et al. 2008] and even the owner [Dietz et al. 2001]
of the hand initiating the contact, allowing the surface to
distinguish between the contacts of different users.
Advanced surfaces encourage collaboration by assigning a
secondary device, like a laptop or a pen, to each contributor
[Wigdor et al. 2009].

SurfaceShop: Techniques for Complex
Adjustments in Multi-Touch Computing

E. J. Kalafarski
Department of Computer Science

Brown University

Building off of theories that more than one “mode” is
necessary for most modern interfaces [Buxton 1985],
further work attempted to translate states common to the
mouse into multi-touch, leading to the SimPress technique
[Benko 2007], in which the hover and click states are
simulated by “rocking” the finger back and forth on the
table, and the Take-Off technique, in which a “click” is not
triggered until the user’s finger leaves the surface.

Separately, the continuing development of the physics-
based desktop interface BumpTop [Agarawala et al. 2006]
illustrates the utility of interface elements that respond to
force and momentum in a manner that users are familiar
with in the real world. Common operations such as
stacking objects, putting them into piles, or throwing one
object at another are inherently familiar to the user but take
on new meaning when applied to operations of the
computer desktop, such as grouping objects semantically or
placing a file in a folder. We intend to build off of these
successes by leveraging the inherent physicality of multi-
touch to build intuitive associations for the user without
cluttering the interface.

3 Design

We targeted what we identified as deficiencies or
inefficiencies in current image manipulation applications.
Based on our own criteria, these needed to be issues that
were inherent to the WIMP paradigm itself, and not simply
problems that were correctable with alteration to the point-
and-click software. By nature, the mouse pointer is only at
a single point at a giving time, and can thus only target one
object or modify one value at once, short of premeditative
grouping or batching. Current WIMP interfaces thus have
a built-in serialization of operations, in which a user must
complete one incremental operation before he or she can
begin another. The combined effects of two operations can
only be seen by alternating between them. For that matter,
the windowing system of modern GUIs lead most
operations to affect one target at a time—generally, the
content of the window that currently has focus.

Our intent was then to 1) disassociate adjustment
operations from the serialized concept of dialog boxes, 2)
disassociate value-based properties from the concept of a
slider with a single point of contact, and 3) disassociate
functions from the stationary concept of a slider or input
box.

Along the same vein, we also targeted the collaborative
nature of multi-touch. In existing WIMP image
manipulation environments, one image or window
necessarily has focus at any given time. In a collaborative
environment, however, it is entirely feasible that two users

on opposite sides of the surface may be interested in using
different tools or adjusting different images without having
to wait for the other to finish with the image that currently
has “focus.” We sought the elimination of this modality.

To these ends, we developed the concept of a token, a
physical representation for a specific property of an image,
such as brightness, contrast, or a filter such as Sharpen.
The token has no geographic limitations, as a WIMP slider
fixed to a traditional dialog box does. Rather, these tokens
are rearrangeable to the liking of the user, allowing him to
create his own geographic associations. Further, we exploit
the new mobility of these properties to eliminate modality.
Instead of an image or window that has focus above the
others, a token at any given time affects the image closest
to it. A visual cue illustrates this proximity with a
nonintrusive line from the token to its closest image.

The property assigned to a token is adjusted by the user
performing a two-finger gesture on top of the token—the
distance between the user’s finger directly sets the absolute
value of the property. No other restrictions are placed on
the token: the token can be moved during adjustment,
stacked on top of other tokens, flicked to the other side of
the surface, etc. Tokens that are not currently needed can
be dropped into a radial menu until the user decided to drag
them out again. Our intent was to explore the possibilities
available to the user when the physical representation of
these properties could be arranged, organized, and used
simultaneously within the multi-touch design space.

4 Implementation

Figure 1: Storyboard envisioning multiple adjustments
simultaneously

4.1 In-house “Home Brew” Surface

From proven low-cost methods [Han 2005] we set about
constructing a multi-touch surface based on frustrated total
internal reflection (FTIR), a system using infrared light and
image processing. After extensive trial and error, we
arrived at a configuration sensitive to very modest contacts
on the surface, yet discriminating-enough to filter out and
ignore ambient light, marks left from previous contact
events, and artifacts created by the projector.

A 3/8”-thick piece of clear acrylic acts as our surface. The
edges of this sheet is polished clear to allow optical
transmittance: a series of 12 infrared LEDs placed at
intervals around the edges and pointed into the plane of the
sheet “edge-lights” the surface, creating the condition
called total internal reflection. A finger placed on the top
of the surface frustrates this internally-reflected light,

creating a bright spot on the underside of the acrylic that
can be captured by camera.

A sheet of grey Rosco laid above the acrylic provides a
screen for the necessary rear-projection creating the surface
image. This, however, prevents direct contact between
fingers and the acrylic; a layer of silicone poured and set
directly on the acrylic allows the internally-reflected light
to be frustrated with pressure instead of direct contact. A
translucent piece of fabric interface above this layer
prevents the Rosco from sticking to the silicone.

We use an inexpensive Microsoft LifeCam VX-6000 to
capture the image. Using a mirror to increase the distance
between the camera and the underside of the acrylic, even
the camera’s low field of vision was able to capture the
entire acrylic. What the camera sees is thus a black-and-
white image of the underside of the acrylic—totally dark
under most circumstances, except when a finger contact on
the opposite side of the acrylic frustrates the internally-
reflected light, creating a bright spot on the underside that
was seen by the camera.

Much was learned from this construction on the strengths
and weaknesses of FTIR, the same technology employed
by the Microsoft Surface. Contact recognizability was
likely to vary across the surface, especially in environments
with harsh lighting—it was thus generally undesirable to
fix interface elements in specific locations on the interface,
as it may, for some users, be in a “dead zone” specific to
their ambient conditions. Furthermore, given the
“pressure-sensitive” construction of the device, it was
uncomfortable for the user’s finger when required to
maintain contact with an element for more than several
seconds. This deficiency did not carry over to the
Microsoft Surface per se, but the unfortunate side effect
was an effective reminder not to force the user to “babysit”
a token or interface element when it was not necessary.

4.2 Bespoke Multi-Touch Framework

For development on our constructed surface, we employed
the Bespoke Multi-Touch Framework [Varcholik 2008], an
XNA-based framework authored by a Ph.D. candidate at
the University of Central Florida. The framework provides
low-level blob detection and processing of the captured
image, offering several classes to the developer containing
the blob characteristics.

With this framework, we began development of the
application using Microsoft’s XNA tool set—technologies
intended for rapid game development and management—
and were able to quickly implement an interface that
responded with elementary physics to contact events.
Image manipulations were implemented with XNA’s pixel
shaders, and a limited number of simultaneous adjustments
proved effective. This success belies the difficulty of
several crucial tasks: developing reliable physics for
elements of the interface; re-implementing traditional
image manipulations that would be non-destructive, as to
allow real-time combination with other effects; and the
development of a gesture-recognition framework and
accompanying gesture library. The necessity of this
underlying architecture forced us to explore other options.

4.3 Microsoft Surface and Microsoft Surface SDK

The availability of the Microsoft Surface, with its
accompanying software development kit, allowed us to
begin to focus instead on higher-level interaction issues.
The Windows Presentation Foundation “flavor” of the SDK
had several advantages built-in, including new and
traditional Windows controls and more-sophisticated
physics, allowing all objects to exhibit momentum,
deflection, etc. With this legwork provided, it took only
about two weeks to recreate five months of low-level
development on our home-brew option. Basic image
manipulation was accomplished powerfully and with very

Figure 2: Overhead (left) and side views of FTIR multi-
touch setup. Note the use of a mirror to shorten the
effective throw of the projector.

low-latency by exploiting pixel shaders executed on the
Surface’s GPU.

Despite the convenience of the SDK’s built-in controls and
physics, moderate extension of its capabilities was
required. WPF supports the detection of events directly on
interface elements, but our token concept required
recognition of a second contact within the neighborhood of
the token as well. The recognition of this second contact
necessitated the introduction of several “invisible”
interface elements on which contacts could be captured.
We look forward to the inclusion of robust abstract gesture
recognition and a larger gesture library, as has developed
throughout the pen computing community, in future
iterations of the Surface software.

4.4 Influences

We obviously exploit the insights of physics-based systems
such as BumpTop [Agarawala 2006] in our implementation
of WPF-based tokens and image canvases that react
intuitively to pushes, slides, and flicks. Though physics-
based desktops are not exclusively a multi-touch conceit,
the prominent role of proximity in the function of our
technique means we can build intuitively off of behavior
the user expects in the objects he manipulates. We very
simply exploit this property of which a user has a pre-
existing grasp—the distance between two objects.

We also leverage the Surface’s byte tag recognition
framework to implement an elementary airbrush mode,
controlled with a physical icon (phicon) that is placed on
the Surface. A phicon in the shape of an inkwell locally
affects the mode of its surrounding images; a contact on
any of the affected images, instead of the standard WPF
manipulations of translate, scale, etc., spreads paint on the
image with shape and pressure governed by the contact
finger. This concept of a function-specific phicon is
obviously inspired by previous work on the concept, such
as seminal work conducted at MIT [Ishii 1997], but with a
concept of strict localization added—the phicon explicitly
affects the mode of the elements in close proximity to it.

5 Evaluation

With particular interest in the usability of our techniques,
we performed a pilot user trial. 11 participants over a five-
day period (April 8 – April 12, 2009) were observed using
our application and responded to a verbal interview
afterwards.

Though all participants were Computer Science graduate
students, they represented a cross-section of several crucial
characteristics. Roughly half (6 out of 11) had experience
with Photoshop, GIMP, or comparable image manipulation
applications, while the rest did not. Just over half (7 out
11) had some experience with multi-touch devices (e.g., an
iPhone or a Blackberry Storm).

5.1 Trial design

Participants were presented with the SurfaceShop
environment with three open images and asked to complete
three tasks of increasing complexity:

• Adjust a single property (e.g., the brightness) of one of
the images

• Adjust two properties of an image simultaneously (e.g.,
the brightness and the contrast) and examine
combinations of the effects

Figure 4: Rearrangeable tokens implemented in
“SurfaceShop.” A user adjusts an attribute with a “pinch”
gesture on top of its token, the value governed by the
distance between his two fingers.

Figure 3: Microsoft Surface

• Apply a filter (e.g., blurring) to all three images as a
batch operation

Furthermore, they completed each of these tasks three
times, each in an environment presenting an interaction
style with varying degree of modification from a standard
WIMP interface. The first style mimicked a WIMP
interface as closely as possible, presenting the user with a
slider for each property or filter. The slider was
manipulated with a single finger dragging along it (as a
point-and-click slider would be), movable to the extent a
dialog box might be, and—as in modern programs such as
Photoshop and GIMP—the image with focus, or currently

“on top” of the others, was the image affected. As in
contemporary WIMP interfaces, users brought the focus to
a window with a single tap.

The second style added only the gesture element of our
concepts: although the mechanism for each filter remained
stationary, sliders were replaced with tokens whose values
were adjusted with our two finger technique. As before,
the image with focus was the one affected.

The third and final style was a full implementation of our
concepts. Tokens were fully movable and rearrangeable,
and were created by the user “tearing” them off a movable
radial menu. The adjustment of a token no longer affected
an image having focus, but rather the closest image.

The three interaction styles were presented in random order
to each participant. The behavior of each interaction style
was briefly described verbally to each participant, but no
visual demonstration was provided. Participants were
observed accomplishing the tasks in each of the three
interaction styles, and then asked which style they
preferred in regards to completing the tasks as a whole.
They were additionally asked to comment on which style
they found most intuitive, most precise, and most efficient
for batch operations.

We also solicited feedback on our elementary airbrush tool,
triggered by placing a physical icon (phicon) on the
Surface in proximity of the image to be airbrushed.

5.2 Observations

Six out of the 11 participants selected the rearrangeable
tokens as their preferred interaction style for accomplishing
the tasks, commonly citing the ease of selecting the target
image. (One user “liked the idea of taking a [token] and
moving it close to a picture” to perform an operation;
another enjoyed “doing it fast [by] just by moving stuff
around.”) Tellingly, of the three users who said they
preferred sliders instead, all gave the same reason: they
appreciated a visual cue as to the range of the available
values (“You could see the range explicitly”). One
mentioned, unprompted, that the addition of this visual cue
to the tokens would have aided him considerably. Two
participants selected no preference.

All users were successful at the individual tasks, though
they executed the adjustments in wildly varying ways. In
the adjustment of a property’s value, several users made
use of the index and middle finger to define a value, instead
of the more popular approach of using the index finger and
thumb. This was seen both during the adjustment of a
single property and the adjustment of more than one Figure 5: Details of interaction styles; from top: sliders,

stationary tokens, and rearrangeable tokens

property simultaneously. Other alternatives discovered
included:

• One user used his two index fingers for a single
adjustment operation, calling it “more exact” than using
two fingers from the same hand.

• Two users moved each token directly on top of the image
to be adjusted, instead of simply close to it.

• One user moved two tokens close to each other and used
a third finger to adjust their values simultaneously,
essentially linking their values together.

• One user determined that he did not need to physically
“slide” to the new value, but instead could jump to the
new value by tapping the token with his fingers held
rigidly at a predefined distance.

Likewise, users discovered a myriad of methods for
performing a batch operation on several images. Several
users went with the ostensibly “obvious” method of
moving a token close to all the images in succession,
performing the value adjustment each time. But other users
found a variety of successful alternatives:

• One user held the token stationary with her dominant
hand, using her non-dominant hand to instead move the
images into proximity of the token, one-by-one, to
perform the adjustment.

• One user set the token to the desired value and dragged it
as such, with both fingers, close to each image, affecting
all in rapid succession.

• Two users created additional copies of the required token,
one for each of the three images to be manipulated. The
first of these users tried to use six fingers to make the
three adjustments simultaneously, in an attempt to
synchronize the adjustment amounts.

• The second user creating three copies of this token was
able to use his two fingers held rigidly at a predefined
distance and tap on each token in rapid succession,
effecting the batch adjustment extremely quickly.

Eight out of 11 participants responded positively to using
the phicon to toggle a section of the application into
airbrush mode, expressing confidence in becoming “fluent
in it” given time and calling it “intuitive,” “super easy,” and
“a great idea.” Notably, seven of the 11 participants forgot
to move the phicon off the Surface when asked to resize the
image before continuing to paint (resulting in accidentally
painting on the image with their “resize” gesture), although
almost all expressed confidence in not repeating that
mistake once they “got used to it.” One user noted the
utility of simply tipping over the phicon to leave airbrush
mode, and one simply moved the phicon out of proximity
of the image in question.

5.3 Discussion

Although most users quickly singled out the most
traditional interaction style, the sliders, as the most
intuitive, they uniformly identified the reason for this as
their familiarity with the device. One user summed it up
thusly: “I've seen sliders before. They’re pretty standard.”
We infer that multi-touch interaction and gestures more
advanced than simply dragging around objects are likely to
encounter a learning curve similar to that of pen-based
gestures. (Surprisingly, three users called rearrangeable
tokens the most intuitive; all three identified themselves as
previous users of multi-touch devices such as iPhones.
According to one, “there’s something natural about this
movement of your fingers.”)

A majority of users felt that the interaction style with
physical sliders was the most precise, despite this style’s
complete lack of a numerical visual output. This reinforces
our inference that displaying the visible range of available
values was reassuring to users, creating a perceived
precision where none actually existed. It should be trivial
to add this same visible range to a token when a gesture is
being executed on top of it.

Perhaps most exciting were the recurring and varying
demonstrations of the versatility that our implementation
engendered from user to user. While the operation of each
function specifies certain interaction parameters—in the
case of value adjustment, the manipulation of two contacts
with at least one on top of a specific token—the flexibility
of the medium and our exploitation of it led to an
immensely interesting variety of techniques. Users were
able to show the author techniques and functionality in his
software that he had not previously envisioned.

Further along these lines, users began to infer functionality
where none existed yet. More than one user attempted to
perform batch operations to several images simultaneously
by moving the images into an overlapping cluster before
performing the adjustment nearby. (In the environment we
presented them with, this merely affected the image that
was truly closest to the token.) This not only suggests a
new functionality to us, but it is an implicit validation of
the concept of proximity as a selector. Users found the idea
of moving a tool towards an image to modify it intuitive
enough that they began to independently extend the
metaphor to other concepts such as batch operations.
Closeness of the manipulable objects on the Surface was
shown to be a powerful visual cue.

5.4 Conclusions

Though the results of this informal trial are largely
anecdotal, they are consistent enough that we can

confidently draw some basic conclusions about strengths
and weaknesses. Users indicated that our technique of
property adjustments disassociated from fixed form,
location, and serialized order was effective and efficient.
The solitary consistent complaint was the lack of visual
cues that traditional sliders afforded. Unobtrusive visual
cues at or surrounding the point of contact are likely to
substantially resolve this. (Indeed, additional visual cues
providing contact feedback have been added by Microsoft
to the recent release of the Surface SDK Service Pack 1.)

It is extraordinarily encouraging to see that not only were
users able to exploit the token scheme in different ways,
but that all methods were successful. A design space in
which the user is allowed to innovate with even simple
constructs and tools is exciting and arguably an asset to the
creativity of the user.

6 Moving Forward

Based on the conclusions above, there are some obvious
avenues for immediate incremental improvement. It will
be relatively trivial to combine the power of the
rearrangeable tokens with the perceived “precision”
advantage of the slider with the inclusion of logical but
non-intrusive visual cues. For a user performing an
adjustment with our two-finger gesture, a slider should
appear under and aligned with the gesture itself, to provide
the user with visual feedback and a representation of the
range of available values. This will address the vast
majority of user complaints without cluttering the interface
or diminishing from the utility of the gesture itself—the
user’s perception will be that of adjusting an abstract slider
of the user’s own creation and control.

Moving forward, we continue to develop intuitive gestures
for cropping and selection, as well as phicon functionality
for color selection and “spot healing” tools. There is much
merit to the consideration of a functional dichotomy
between phicons and gestures, as WIMP interfaces are
equate menu items and keyboard shortcuts. Gestures,
although perhaps limited in expressiveness, are immediate
and efficient for common or quick tasks that require little
customization, as are keyboard shortcuts. When more
precision and customization is needed, the user has the
option of reaching for the more powerful phicon, analogous
to accessing menus or toolbars for the appropriate
specialized dialog. A given function could be accessible
with both methods to different degrees: for example, a user
could hold his fingers in a “frame” gesture to effect quick
and rough cropping; for more precise cropping, a phicon
could toggle the image into cropping mode, allowing a
more detailed adjustment with the user’s fingertips.

Further support for collaboration is necessary. As more
robust gesture recognition becomes available, we envision
gestures that may be assignable to individual users, in order
to bring up a personalized menu or commonly-executed
personal function.

We believe our technique is by no means limited to image
manipulation. This trial is clearly a demonstration of a
single potential technique within a large and emerging
design space. Value adjustment and mode changes are not
unique to image manipulation, and we envision the
extensibility of this kind of value assignment to many other
applications.

Acknowledgements

The author wishes to give acknowledgement and thanks for
the advice, encouragement, and assistance of Andries van
Dam, Andrew Forsberg, and Robert Zeleznik. Special
praise is reserved for the help and hard work of Mark
Oribello. Thanks go to Paul Oka of Microsoft for early
discussions about multi-touch and photo manipulation.

References
Agarawala, Anand and Balakrishnan, Ravin. 2006. Keepin' it real: pushing the
desktop metaphor with physics, piles and the pen. In Proceedings of the SIGCHI
conference on Human Factors in computing systems. 1283–1292.

Benko, H, Wilson, AD, Baudisch, P. 2007. Precise Selection Techniques for Multi-
Touch Screens. US Patent App. 11/379,297.

Buxton, W. 1985. Issues and Techniques in Touch-Sensitive Tablet Input. In Proc.
ACM SIGGRAPH '85. 215-224.

Dietz, P, and Leigh, D. 2001. DiamondTouch: a multi-user touch technology. In
Proceedings of the 14th annual ACM symposium on User interface software and
technology. 219–226.

Dohse, K, Dohse, T, Still, J, Parkhurst, D. 2008. Enhancing Multi-user Interaction
with Multi-touch Tabletop Displays Using Hand Tracking. In 2008 First
International Conference on Advances in Computer-Human Interaction. 297–302.

Han, J. 2005. Low-cost multi-touch sensing through frustrated total internal
reflection. In Proceedings of the 18th annual ACM symposium on User interface
software and technology. 115–118.

Ishii, H, Ullmer, B. 1997. Tangible bits: towards seamless interfaces between people,
bits and atoms. In Proceedings of the SIGCHI conference on Human factors in
computing systems. 234–241.

Microsoft, Inc. 2008. Microsoft Surface SDK 1.0.

Microsoft, Inc. 2009. Microsoft Surface SDK SP1.

Moscovich, T. 2006. Multi-touch interaction. In CHI '06 extended abstracts on
Human factors in computing systems. 1775–1778.

Varcholik, P. 2008. Bespoke Multi-Touch Framework Version 4.2.

Wigdor, D, Jiang, H, Forlines, C, Borkin, M, Shen, C. 2009. The WeSpace: The
Design, Development, and Deployment of a Walk-Up and Share Multi-Surface
Visual Collaboration System. In Proceedings of the 27th international conference on
Human-Computer Interaction.

