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Abstract – This project is an attempt to evaluate the credibility limits 

from the pairwise sequence alignment of orthologous human and rodent 

gene sequence pairs through a modified implementation of 

BALSA(Bayesian algorithm for local sequence alignment), which includes 

centroid alignment, and hamming distance not in BALSA as well as 

sampling alignments which already were implemented by Webb (2001). 

The currently tested data set is a group of upstream DNA sequences of 

24 pairs of orthologous human and rodent genes.  
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I. INTRODUCTION 

 

Sequence alignment is a widely used fundamental concept in biological 

applications such as RNA and protein structure prediction and is actively 

studied. However, when we consider assessing uncertainty and 

confidence of a proposed alignment, it is very hard for us to have 

confidence in an optimized alignment in terms of probability; it usually 

has a very low probability. We introduce a centroid alignment which 

minimizes the distance from sampled alignments and a global credibility 

measure.  

    

This project adds a centroid alignment and credibility limit to the original 

BALSA. It was originally initiated in AM 282-2 (statistical inference in 

computational molecular biology) in the spring semester of 2007. In the 

spirit of that course, the primary goals of this project have been to 

identify and explore the credibility limits from the given data set.  
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The rest of the paper is structured as follows: section 2 will describe 

background knowledge: global sequence alignment, local sequence 

alignment, posterior distribution of the alignments, and Bayesian 

inference. Section 3 and 4 will describe Bayesian algorithms of the local 

and global sequence alignment as the main structure of the project. 

Section 5 will describe centroid alignments. Section 6 will describe 

credibility limits. Section 7 will describe performance results. The 

conclusion will follow.  

 

 

 

 

II. BACKGROUND KNOWLEDGE 

 

1. Global Sequence Alignment 

 

A global sequence alignment seeks to find the best alignment between 

two entire sequences. Needleman and Wunsch(Durbin 1999) designed the 

algorithm for the global sequence alignment. This is actually based on 

the dynamic programming. We have to consider  three parts of the 

procedures: initialization, recurrence, and backtrace, before developing 

the matrix. 

The three parts are as follows :  

 

 Initialization :  

      Matrix( i, 0) and Matrix( 0, j) are set to indel * i and    

      Indel * j : i = 0, …, n and j = 0, …, m. 

      n and m are the length of sequence 1 and sequence 2 respectively.  

      Indel means the cases of insertion and deletion. 

Recurrence :   

      Matrix( i, j) = max  
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       “Scoring” function is a positive integer number as  



       a reward in the case that the  character of sequence 1 and  thi
       the  character of sequence 2 are matched and any negative  thj
       integer number as a penalty in the case that the  character of  thi
       sequence 1 and the  character of sequence 2 are not matched.  thj
       “Indel” function (insertion and deletion) is a negative integer  

       number as a penalty in the case that the character of sequence  thi
       is matched with ‘ – ‘, which we call insertion or  character of  thj
       sequence 2 is matched with ‘ – ‘, which we call deletion.  

       We can fill in a maximum value among the above three directions    

       in each cell in the matrix using the recurrence procedure. We  

       maintain a pointer to this maximum value.  

 

Back trace :  

       The global optimal alignment can be found by following the  

       pointer defined in the recursive step.                          

 

 

2. Local Sequence Alignment 

 

Local sequence alignment tries to find the best alignment between two 

subsequences. Smith and Waterman(Durbin 1999) designed the algorithm 

for local sequence alignment. This is also based on the dynamic 

programming. When we compare it with global sequence alignment, the 

procedure is almost the same except in a few cases. We have to also 

consider three parts of the procedures: initialization, recurrence, and 

backtrace, before developing the matrix.  

The three parts are as follows :  

 

Initialization :  

    Matrix( i, 0) and Matrix( 0, j) are set to 0: i = 0, …, n and j = 0, …, m. 

    n and m are the length of sequence 1 and sequence 2 respectively.  

 

 

Recurrence : 

   



     Matrix( i, j) = max  
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      “Scoring” function is identical to that described for Needleman- 

     Wunch. 

 

Backtrace :  

     Backtrace is also the same as Needleman-Wunsch except for           

     Starting with the cell that has the maximum value                

 

3. Bayesian Inference 

 

When we think about the pairwise sequence alignment in terms of 

Bayesian analysis, we can consider that the observation data is the given 

sequence data, and the unknown parameter is the gap penalty. The 

posterior distribution which is made by a likelihood times the prior 

information probability allows us to get the joint probability. The 

posterior distribution of the gap penalty is solved using the conditional 

probability called the Bayes’ theorem. 

 

Mathematical notation of the posterior distribution is  
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A is the unknown parameter which indicates the gap penalty and B is the 

observed data which indicate the given sequence data. P( A ) is prior 

probability. 

 

 

 

 

III. BAYESIAN ALGORITHM OF LOCAL SEQUENCE ALIGNMENT 

 

BALSA actually returns the posterior probability matrix of the alignments 



whose cell includes the probability normalized by the total sample size. 

Firstly, I am going to describe the forward recursive algorithm to find the 

posterior probability of the alignment. Before describing the algorithm, I 

am going to define the notation and equations used in the posteriors. For 

a pair of sequences, the observed data are R  = {R …R } and R  = 

{R …R }. Let A be a matrix that characterizes an alignment whose (i, 

j)-entry is defined as : 
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It is called a sample matrix which has two natural conditions,  

and  in R and R . 
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θ ( 1r , 2r ) is defined as the joint distribution of a pair of aligned residues, 

θ ( 1r , 0) and θ ( 2r , 0), the marginal distributions. θ  denotes a set of 

matrices analogous to scoring matrices. Typical scoring matrices 

correspond to the logarithm of residue interactions: 

log = log21 , ji rr
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The equation of the posterior probability of θ  and Λ  (gap opening and 

extending penalty) given R and R  is as follows:  )1( )2(
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P(θ , ) = 1/N , where N is the number of the scoring matrix and gap 

penalty pairs in the chosen series. Uniform priors are employed. 
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Its equation is as follows:  

P( ) =  Λ,|, )2()1( θRR ∑
A

eoAPARRP )|(),|,( ,
)2()1( λλθ



                = 
∑

∑
−

−

'

)'()'()'(

)()()()2()1( ),|,(

A

AkAl
e

Ak
o

A

AkAl
e

Ak
o

ggg

gggARRP

λλ

λλθ
     2 

 

Λ  = ( oλ , eλ ) is a set of predefined gap odds ratios. 
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 Webb(2001) used the 5 following components to get the partial sum up 

to residues i and j in sequence 1 and sequence 2, respectively at each 

step of algorithm to get the sums in the numerator of equation 2: match, 

start, end alignment each in  and  insertion in sequence 1, deletion 

in sequence 1. The algorithm can be written as follows (Webb 2001): 
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A. A match at  and  can follow a match, insertion, deletion or 

new alignment from partial sums with indexes (i-1, j-1): 
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        Pm(i, j) = { Pm(i-1, j-1) + Pi(i-1, j-1) + Pd(i-1, j-1) + Pn(i-1, j-       

                  1)}Ψ ( , ) )1(
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B. An insertion in sequence 1 can follow partial sums with indexes (i-

1, j). If the last move was an insertion, then a gap is being 

extended, eλ . If the last move was a match, either continued or the 

beginning of a new alignment, a new gap is being introduced, oλ : 

Pi(i, j) = eλ Pi(i-1, j) + oλ {Pm(i-1, j) + Pn(i-1, j)} 

C. Accordingly, the same follows for a deletion: 

Pd(i, j) = eλ Pd(i, j-1) + oλ {Pm(i, j-1) + Pn(i, j-1)} 

D. Starting an alignment at and  is matching those two )1(
ir

)2(
jr



residues as if they are the first two residues in the sequences: 

Pn(i, j) = Ψ ( , ) )1(
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)2(
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E. The partial sum of ending  and  is the sum of all possible 

paths beginning anywhere prior to  and  and ending at  

and : 
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Pe(i, j) = Pm(i, j) + Pi(i, j) + Pd(i, j) + Pn(i, j) 

F. Finally, the partial sum of all alignments beginning at any point 

prior to  and  is the sum of all possible paths ending at any 

point prior to and including  and : 
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The initial conditions are: Pm(i, 0), Pi(i, 0), Pd(i, 0), Pn(i, 0) and Pe(i, 

0) =0  and Pm(0, j), Pi(0, j), Pd(0, j), Pn(0, j) and Pe(0, j) =0 

respectively. 

 Webb (2001) also used a similar method as the recursive algorithm 

above to get the sums of the denominator of equation 2. Initial 

conditions are the same. 

A. Nm(i, j) = Nm(i-1, j-1) + Ni(i-1, j-1) + Nd(i-1, j-1) + Nn(i-1, j-1) } 

B. Ni(i, j) = eλ Ni(i-1, j) + oλ {Nm(i-1, j) + Nn(i-1, j)} 

C. Nd(i, j) = eλ Nd(i, j-1) + oλ {Nm(i, j-1) + Nn(i, j-1)} 

D. Nn(i, j) = 1 

E. Ne(i, j) = Nm(i, j) + Ni(i, j) + Nd(i, j) + Nn(i, j) 
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Finally, the posterior probability for  scoring matrix and gap is as thi
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Secondly, Webb(2001) describes how to draw the representative sample 

of alignments using a sampling backtrace algorithm. The sampling 

algorithm is split into 3 steps:  

 

A. The parameters θ  and Λ  are sampled from the posterior 

distribution, above P( ). Λ,|, )2()1( θRR
B. An endpoint from backtrace is sampled from all the possible end 

points. Thus, endpoint(k, l) is chosen from Pe(i, j) : i = 1, … , I; j = 

1,…, J. The next move is sampled from 4 choices, matching, 

inserting, deleting or beginning the alignment at (k, l), according 

to the probabilities, Pm(k, l)/Pe(k, l), Pi(k, l)/Pe(k, l), Pd(k, l)/Pe(k, 

l), Pn(k, l)/Pe(k, l). 

C. Afterwards, each choice of the next point depends on the previous 

one: 

1) If the last choice was a “match”, Pm(k, l),  and  are 

matched, we add A = 1 in the above samples’ matrix and (k, 

l) becomes (k-1, l-1). We can take one of 4 choices, Pm(k, 

l)/Pe(k, l), Pi(k, l)/Pe(k, l), Pd(k, l)/Pe(k, l), Pn(k, l)/Pe(k, l), 

respectively. 
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2) If the last choice was an “insert”, a gap is inserted into 

sequence 1 and (k, l) becomes (k-1, l). An insert is preceded 

by a match, insert or begin alignment. The next choice is 

sampled from Pm(k, l)/[Pm(k, l) + Pi(k, l) + Pn(k, l)], Pi(k, l)/ 

[Pm(k, l) + Pi(k, l) + Pn(k, l)], Pn(k, l)/ [Pm(k, l) + Pi(k, l) + 

Pn(k, l)]. 

3) If the last choice was a “delete”, (k, l) becomes (k, l-1). The 

next choice is sampled from Pm(k, l)/[Pm(k, l) + Pd(k, l) + 

Pn(k, l)], Pd(k, l)/ [Pm(k, l) + Pd(k, l) + Pn(k, l)], Pn(k, l)/ 

[Pm(k, l) + Pd(k, l) + Pn(k, l)]. 

4) If the last choice was a “begin a new alignment”, we also add 



A = 1 in the above samples’ matrix, and the sample is 

completed. 

lk ,

 

 

 

 

IV. BAYESIAN ALGORITHM OF GLOBAL SEQUENCE ALIGNMENT 

 

The Bayesian algorithm of global sequence alignment also returns the 

posterior probability matrix whose cells contain the marginal probability 

of the alignment normalized by the total sample size. The only difference 

between the Bayesian algorithm of local and global sequence alignment is 

the initialization and formula of the recursive forward algorithm. I am 

going to describe the forward recursive algorithm to find the posterior 

probability. 

Liu (1999) used the 4 following components to get partial sum up to 

residues i and j in sequence 1 and sequence 2, respectively at each step 

of the algorithm:  match, alignment each in  and , insertion in 

sequence 1, deletion in sequence 1.  
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The algorithm can be written as follows:  

 

A. A match at  and  can follow a match from partial sums with 

indexes(i-1, j-1): 

)1(
ir

)2(
jr

       Pm(i, j) =  P(i-1, j-1)Ψ ( , ) )1(
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B. An insertion in sequence1 can follow partial sums with indexes(i-1, 

j). If the last move was an insertion, then a gap is being 

extended, eλ . If the last move was a match, a new gap is being 

introduced, oλ : 

       Pi(i, j) = { eλ Pi(i-1, j) + oλ {Pm(i-1, j)} Ψ ( , )1(
ir • ) 



C. Accordingly, the same follows for a deletion: 

       Pd(i, j) = [ eλ Pd(i, j-1) + oλ {Pm(i, j-1) + Pi(i, j-1)}] (• , ) Ψ )2(
jr

D. The partial sum of ending  and  is the sum of all possible 

paths beginning anywhere prior to  and  and ending at  

and : 
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Pe(i, j) = Pm(i, j) + Pi(i, j) + Pd(i, j)  

 

The initial conditions are: Pm(0,0) = 1, Pm(i, 0), Pi(i, 0), Pd(i, 0), and Pe(i, 

0) =0  and Pm(0, j), Pi(0, j), Pd(0, j), and Pe(0, j) =0 respectively. 

 

 

 

 

V. CENTROID ALIGNMENT 

 

We introduce the centroid alignment starting from the classic optimal 

alignment. When we think about it, an optimal alignment always tries to 

find the alignment which has the maximum score. It typically has a very 

small probability. We introduce the centroid alignment which is composed 

of the aligned pairs of nucleotides whose marginal probability is greater 

than 0.5 in the generated sample matrix. The centroid alignment is 

actually the alignment that minimizes the distance from all possible 

alignments in the given pairwise sequence alignment. We approximate 

the centroid by calculating the alignment which minimizes the distance 

from a representative sample of the alignments.     

The algorithm of the centroid alignment is simply as follows:  

 

A. Draw a representative sample of p, p=1000, alignments by sampling  

   directly from their posterior distributions in BALSA 

B. Make a matrix, of centroid alignment which is initialized by 0 cA

C. Record = 1 if and only if its probability of each pair is greater than    c
jiA ,



   0.5 from the samples matrix, , based on posterior probability  i.e.   jiA ,

   = 1, if > 0.5  (  is a samples matrix composed of       c
jiA , jiA , jiA ,

   probabilities which are obtained from sampling ) 

   The alignment of two sequences from  is called the “centroid             cA
   alignment “  

 

 

 

 

VI. THE DISTRIBUTION OF DISTANCES AND CREDIBILITY LIMITS 

 

We can measure the distance between all possible sequence alignments 

and the centorid alignment using the hamming distance. For example, we 

suppose that we have two binary based matrices of size (m n) whose 

cells are each composed of 1 if two residues from each sequence is 

aligned, otherwise, 0. Thus, we can measure the distance between two 

binary matrices by subtracting one matrix from another. We can use the 

hamming distance to do it. Mathematical expression is as follows: 

×

For Matrix A and B, 

Distance (A, B) =   ∑∑
= =

−
m
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n
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The algorithm of the hamming distance is simply as follows:  

 

A. Draw a representative sample of p, p=1000, alignments by 

sampling directly from their posterior distribution in BALSA 

B. Calculate the distances from the centroid alignment to each 

sample alignment based on the posterior probability 

C. Rank these alignments by their distance, = D( , ) from 

the centroid alignment  and  which is  sample 

distance  

iD iA cA

cA iD thi

D. Calculate distances based on  85, 90, and 95% from the rank 

list 



E. Evaluate credibility from the above limit distance 

 

 

 

 

VII. PERFORMANCE RESULTS 

 

I used a set of 24 human – rodent sequence pairs (Thompson, 2004) to 

access centroid alignment and credibility measures. This set of 

sequences represents 3-kb upstream regions from orthologous gene 

pairs. I used the last 1000 sequence pairs of those regions in the 24 

human – rodent sequence pairs. 

All sequence pairs are evaluated using BALSA with a sample size of 

1000 to attain the estimated alignment distributions from sampling, 

centroid alignment, and credibility intervals. I also used a scoring matrix 

of pam DNA and gap opening and extension penalties of -14 and -2 

respectively.  

 

1. CENTROID ALIGNMENTS 

 

The centroid alignment is actually the alignment that minimizes the 

distance from all possible alignment in the given pairwise sequence 

alignment. To display this alignment and the base pair alignment 

probabilities, I used a mesh and an “imagesc” function in Matlab. Figures 

1a, 1b, 1c, and 1d give example outputs of the alignment display for 

Bayesian local and global sequence alignment respectively a human-

rodent NM001927/NM010043.1. If the colors of each dot are close to red, 

the probability of the centroid alignment is close to 1. On the other hand, 

if the colors of each dot are close to blue, the probability of the centroid 

alignment is close to 0.   

 



 

(a) (b) 

 

                (c )                                   (d) 

Figure 1. Centroid alignments graphs for human – rodent NM_001927 vs 

NM_010043.1. (a) 3D graph (b) 2D graph for Bayesian local sequence alignment 

(c)3D graph (d) 2D graph for Bayesian global sequence alignment   

 

2. Credibility Limits 

 

Credibility Limits are generated by examining the distribution of the 

distances of the alignments in the posterior space of alignments from the 

centroid alignment. I used 85%, 90%, and 95% as credibility intervals. I 

represented those percentiles for the 24 human – rodent orthologous 

sequence pairs from the distribution of distances which is generated by 

examining the distances from the centroid alignment to each sample’s 

alignment. I used four methods for credibility limits measures: BALSA, 

Bayesian global sequence alignment, global optimal sequence alignment, 

and local optimal sequence alignment. I got those two optimal alignments 

using match=2, mismatch = -1, and indel = -2. I allowed them instead of 

the centroid alignment to get the credibility limits. Figure 2 is an example 

output of the human-rodent NM_001927/NM_010043.1. Table 2 

represents all credibility limit values of 85, 90, 95% in Bayesian Local 

Sequence Alignment. We got 495, 521, and 621 as average credibility 

limits for each 85,90, and 95%.                                                        

 



 

 

 

Figure 2. distribution of credibility limits of 85, 90, 95% for the centroid 

alignments using BALSA in human NM_001927 vs. rodent NM_010043.1 

 

human vs. rat 85% 90% 95% 

NM_001927 vs. NM_010043.1 505 533 574 

NM_001042 vs. NM_012751.1 481 504 541 



NM_002479 vs. NM_031189 862 869 878 

NM_002476 vs. NM010858 794 1046 1055 

NM_003281 vs. NM_017184 414 435 466 

NM_000257 vs. NM_080728.2 829 991 1089 

NM_002471.1 vs. NM_010856 457 515 566 

NM_001100 vs. NM_009606.2 604 647 1170 

NM_000747 vs. NM_009601 301 323 357 

NM_001885 vs. NM_012935 162 174 188 

NM_005205 vs. NM_009943 283 334 399 

NM_000258 vs. NM_010859.2 417 455 534 

NM_000432 vs. NM_001035252.1 433 497 667 

NM_005368 vs. NM_013593 481 523 590 

NM_000290 vs. NM_018870 492 546 595 

NM_005159 vs. NM_009604 483 539 629 

NM_000321 vs. NM_009029 381 421 489 

NM_003186 vs. NM_011526 465 495 542 

NM_000751 vs. NM_021600 358 405 465 

NM_006172.2vs. NM_012612 425 447 482 

NM_000109 vs. NM_007868 430 446 468 

NM_000080 vs. NM_009603 458 494 554 

NM_005159 vs. NM_009608 434 528 727 

NM_001824 vs. NM_007710 319 354 413 

Average Distance 469.5 521.7083 601.5833 

Table 2. Credibility limits of 85, 90, and 95% for the centroid alignments using 

BALSA in 24 human-rodent sequence pairs 

 

Figure3 is an example output of the human NM_001927 vs. rodent 

NM_010043.1. Table 3 represents all credibility limits value of 85, 90, 

95% in Bayesian global sequence alignment. We got 540, 585, and 653 as 

average credibility limits for each 85,90, and 95% 



  

 

 
Figure 3. distribution of credibility limits of 85, 90, 95% for the centroid 

alignment using BAGSA in human NM_001927 vs. rodent NM_010043.1 

 

human vs. rat 85% 90% 95% 

NM_001927 vs. NM_010043.1 570 595 630 

NM_001042 vs. NM_012751.1 552 580 619 

NM_002479 vs. NM_031189 680 718 788 

NM_002476 vs. NM010858 358 394 447 

NM_003281 vs. NM_017184 448 508 616 

NM_000257 vs. NM_080728.2 495 519 554 

NM_002471.1 vs. NM_010856 544 577 619 

NM_001100 vs. NM_009606.2 454 654 965 

NM_000747 vs. NM_009601 389 427 508 

NM_001885 vs. NM_012935 216 227 245 



NM_005205 vs. NM_009943 297 332 389 

NM_000258 vs. NM_010859.2 394 435 489 

NM_000432 vs. NM_001035252.1 806 870 952 

NM_005368 vs. NM_013593 1111 1120 1134 

NM_000290 vs. NM_018870 1179 1246 1328 

NM_005159 vs. NM_009604 481 511 563 

NM_000321 vs. NM_009029 386 422 484 

NM_003186 vs. NM_011526 761 814 907 

NM_000751 vs. NM_021600 443 463 502 

NM_006172.2 vs. NM_012612 486 516 555 

NM_000109 vs. NM_007868 499 515 538 

NM_000080 vs. NM_009603 401 449 490 

NM_005159 vs. NM_009608 504 597 760 

NM_001824 vs. NM_007710 520 556 604 

Average Distance 540.5833 585.2083 653.5833 

Table 3. Credibility limits of 85, 90, and 95% for the centroid alignments using 

BAGSA in 24 human-rodent sequence pairs 

 

Figure 4 is an example output of the human NM_001927 vs. rodent 

NM_010043.1. Table 4 represents all credibility limits value of 85, 90, 

95% in a global optimal alignment. We got 889, 933, and 997 as average 

credibility limits for each 85,90, and 95% 

 

 



 

Figure 4. distribution of the credibility limits of 85, 90, 95% for the global 

optimal alignment in human NM_001927 vs. rodent NM_010043.1 

 

human vs. rat 85% 90% 95% 

NM_001927 vs. NM_010043.1 806 825 851 

NM_001042 vs. NM_012751.1 1123 1135 1155 

NM_002479 vs. NM_031189 776 821 879 

NM_002476 vs. NM010858 820 852 901 

NM_003281 vs. NM_017184 634 686 832 

NM_000257 vs. NM_080728.2 820 850 901 

NM_002471.1 vs. NM_010856 1008 1036 1076 

NM_001100 vs. NM_009606.2 787 886 1150 

NM_000747 vs. NM_009601 621 754 861 

NM_001885 vs. NM_012935 321 331 347 

NM_005205 vs. NM_009943 305 346 407 

NM_000258 vs. NM_010859.2 575 606 674 

NM_000432 vs. M_001035252.1 1365 1417 1491 

NM_005368 vs. NM_013593 1655 1662 1674 

NM_000290 vs. NM_018870 1443 1520 1571 

NM_005159 vs. NM_009604 827 863 918 

NM_000321 vs. NM_009029 981 1044 1121 

NM_003186 vs. NM_011526 1329 1396 1432 

NM_000751 vs. NM_021600 991 1010 1032 

NM_006172.2 vs. NM_012612 695 721 758 

NM_000109 vs. NM_007868 820 836 855 



NM_000080 vs. NM_009603 771 790 827 

NM_005159 vs. NM_009608 835 952 1101 

NM_001824 vs. NM_007710 1049 1073 1117 

Average Distance 889.875 933.8333 997.1215 

Table 4. Credibility limits of 85, 90, and 95% for the global optimal alignments 

in 24 human-rodent sequence pairs 

 

Figure 5 is an example output of the human NM_001927 vs. rodent 

NM_010043.1. Table 5 represents all credibility limits value of 85, 90, 

95% in the local optimal alignment. We got 1112, 1135, and 1167 as 

average credibility limits for each 85,90, and 95% 

 

 

 

Figure 5. distribution of distances and credibility limits of 85, 90, 95% for the 

local optimal alignment in human NM_001927 vs. rodent NM_010043.1 

 

human vs. rat 85% 90% 95% 

NM_001927 vs. NM_010043.1 908 919 939 

NM_001042 vs. NM_012751.1 965 979 1003 



NM_002479 vs. NM_031189 927 1012 1054 

NM_002476vs. NM010858 1221 1385 1394 

NM_003281 vs. NM_017184 1751 1752 1757 

NM_000257 vs. NM_080728.2 1514 1527 1550 

NM_002471.1 vs. NM_010856 1148 1152 1158 

NM_001100 vs. NM_009606.2 1659 1664 1674 

NM_000747 vs. NM_009601 507 523 551 

NM_001885 vs. NM_012935 462 469 481 

NM_005205 vs. NM_009943 1321 1322 1328 

NM_000258 vs. NM_010859.2 1636 1639 1647 

NM_000432 vs. NM_001035252.1 1505 1514 1554 

NM_005368 vs. NM_013593 858 874 917 

NM_000290 vs. NM_018870 1260 1279 1307 

NM_005159 vs. NM_009604 1518 1528 1546 

NM_000321 vs. NM_009029 1073 1092 1117 

NM_003186 vs. NM_011526 921 945 971 

NM_000751 vs. NM_021600 797 821 882 

NM_006172.2 vs. NM_012612 789 811 842 

NM_000109 vs. NM_007868 673 688 706 

NM_000080 vs. NM_009603 870 893 937 

NM_005159 vs. NM_009608 732 793 1029 

NM_001824 vs. NM_007710 1679 1682 1686 

Mean Distance 1112.25 1135.958 1167.917 

Table 5. Credibility limits of 85, 90, and 95% for the local optimal alignments in 

24 human-rodent sequence pairs 

 

When we compare above the means of the credibility limits of the 4 

methods, we recognize that the centroid alignment has the best 

performance: credibility limits of centroid alignment using BALSA, 

centroid alignment using Bayesian Analysis of Global Sequence 

Alignment, the global optimal alignment, and the local optimal alignment. 

 

 

 

 



 

CONCLUSION 

 

We evaluated the credibility limits of pairwise sequence alignment using 

the centroid alignment given a procedure for drawing samples from the 

posterior distribution based on Bayesian local and global sequence 

alignments, and also evaluated the credibility limits of two sequence 

alignments using the global and local optimal sequence alignment given a 

procedure for extracting samples from the posterior distribution. They 

give us error limits for optimal alignments and reliable alignments from 

all possible alignments. When we compare four credibility limits of 85%, 

90%, and 95% using four methods, we concluded that the average 

credibility limits of BALSA are optimal. The reason why the credibility 

limits of those two optimal alignments are broader than the reliable 

alignments of Bayesian local and global sequence alignment is that the 

former are not minimum average distances; they are not average 

distance alignments from drawing samples alignments from the posterior 

distribution. The credibility limits measures allow us to make sure that 

we determine inconsistencies in subsequent procedures dependent of the 

pairwise alignment. Thus the credibility limits provide the useful 

information to the pairwise alignment with little cost.  
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APPENDIX 

 

BALSA source code changes 

 

I added the centroid alignment, credibility limits, and local optimal 

alignment code into the original BALSA code. I also created Bayesian 

global sequence alignment code modifying the BALSA, and I added global 

optimal alignment code into it. 

 

Centorid alignment results of 24 human-rodent orthologous gene pairs  

in Bayesian local sequence alignment     

 

1. human-rodent : NM_001927/NM_010043.1 

 

 

2. human-rodent : NM_001042/NM_012751.1 

 
3. human-rodent : NM_002479/NM_031189 



 

4. human-rodent : NM+002476/NM_010858 

 

5. human-rodent : NM_003281/NM_017184 

 

6. human-rodent : NM_000257/NM_080728.2 



 

7. human-rodent : NM_002471.1/NM_010856 

 

8. human-rodent : NM_001100/NM_009602.2 

 

9. human-rodent : NM_000747/NM_009601 



 
10. human-rodent : NM_001885/NM_012935 

 

11.  human-rodent :NM_005205/NM_009943 

 

12.  human-rodent : NM_000258/NM_010859.2 



 

13. human-rodent : NM_000432/NM_001035252.1 

 

14.  human-rodent : NM_005368/NM_013593 

 

15.  human-rodent : NM_000290/NM_018870 



 

16.  human-rodent : NM_005159/NM_009604 

 

17.  human-rodent : NM000321/NM_009029 

 

18.  human-rodent : NM_003186/NM_011526 



 

19.  human-rodent : NM_000751/NM_021600 

 

20.  human-rodent : NM_006172.2/NM_012612 

 

21.  human-rodent : NM_000109/NM_007868 



 

22. human-rodent : NM_000080/NM_009603 

 

23.  human-rodent : NM_005159/NM_009608 

 

24.  human-rodent : NM_001824/NM_007710 



 

  

Centroid alignment results of 24 human-rodent orthologous gene pairs  

in Bayesian global sequence alignment     

 

1. human-rodent : NM_001927/NM_010043.1 

 

 

2. human-rodent : NM_001042/NM_012751.1 

 
3. human-rodent : NM_002479/NM_031189 



 

4. human-rodent : NM+002476/NM_010858 

 
5. human-rodent : NM_003281/NM_017184 

 

6. human-rodent : NM_000257/NM_080728.2 



 

7. human-rodent : NM_002471.1/NM_010856 

 

8. human-rodent : NM_001100/NM_009602.2 

 

9. human-rodent : NM_000747/NM_009601 



 

10. human-rodent : NM_001885/NM_012935 

 

11.  human-rodent :NM_005205/NM_009943 

 

12. human-rodent : NM_000258/NM_010859.2 



 

13. human-rodent : NM_000432/NM_001035252.1 

 

14. human-rodent : NM_005368/NM_013593 

 

15.  human-rodent : NM_000290/NM_018870 



 

16.  human-rodent : NM_005159/NM_009604 

 

17.  human-rodent : NM000321/NM_009029 

 

18.  human-rodent : NM_003186/NM_011526 



 

19.  human-rodent : NM_000751/NM_021600 

 

20.  human-rodent : NM_006172.2/NM_012612 

 

21.  human-rodent : NM_000109/NM_007868 



 

22. human-rodent : NM_000080/NM_009603 

 

23.  human-rodent : NM_005159/NM_009608 

 

24.  human-rodent : NM_001824/NM_007710 



 

  

 


