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Chapter 1

Clustering Analysis

1.1 Introduction

Previous studies have demonstrated that enhancer motifs have signature distri-

butions relative to splice signals (need reference). These distributions are in-

formative in several regions across an exon. Exonic Splicing Enhancers (ESEs)

tend to be over represented in exons and under represented in introns and both

of these properties are useful in their identification. The non-random distribu-

tion of short functional DNA sequence elements in genomes is both a way to

identify cis-elements, and a way to detect synergistic and antagonistic relation-

ship between individual cis-elements when they co-occur. Our proposed method

assumes that sequences important to splicing will have a signature distribution

around splice sites. One could imagine that enhancers will occur with increasing

frequency and silencers with decreasing frequency as the distance to the splice

site decreases. Some enhancers may be specific to the three prime splice sites

(3’ss) or five prime splice sites (5’ss) whereas others may be specific to exons or

introns. We propose a method of detecting functional elements based on their

skewed distributions relative to splice sites.
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Figure 1.1: Evaluating Annotation Options for Orthologous Exon Dataset A) Length dis-
tribution of exons inferred from EST/genomic alignments (left panel) or known genes (right
panel) at various confidence levels (red = 1 transcript evidence, blue = 2, green = 3-15, black -
15+). B) 235,500 3’ splice scores for EST exons (grey histogram) and 23,500 randomly chosen
AG dinucleotides within 200 nucleotides of annotated splice sites (teal histogram). C) Suc-
cess rate of recovering human exon regions in chromosome 11 using reciprocal best blast hit
strategy in eleven different vertebrates. D) Summary of resultant orthologous exon datasets.

1.2 Materials and Methods

1.2.1 Orthologous Exon Database Identification

Critical to the identification of these motifs and determination of conservatio-

nis is the possession of a reliable set of exon annotations and with orthologs

in multiple species. This type of annotation is often performed by some com-

bination of ab initio gene prediction and transcript support (Hsu, Kent et. al

2006). Gene prediction programs use splice sites and sequence composition to

determine exon-intron junctions. However, this approach selectively filters splic-

ing substrates with poor splice sites or unusual sequence composition from the

database, thereby creating an undesirable bias.

An exon/intron dataset was made from dbEST Hg17 alignments stored at

the UCSC ftp site (Karolchik, Hinrichs et. al. 2004). Relative to normal length

distribution of human-curated genes (Figure 1.1A, right) EST defined genes are
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enriched for short aligned blocks (Figure 1.1A, left). As these short blocks are

greatly reduced with increased transcript evidence, they are likely alignment ar-

tifacts. To test this 235493 EST genomic alignment blocks bounded by an AG

at the 5’ end (i.e. the most conserved part of the 3’ss) were score for agreement

to the 3’ss motif using a first order Markov model. Figure 1.1B shows two dis-

tinct populations in the slate blue histogram: a high scoring peak (roughly 90

percents of all counts) and a broad low scoring tail (10 percents). Sampling ran-

dom AG positions within these alignment regions and scoring them for splice site

strength result in a similar broad distribution. This suggests that 10 percents of

these EST genomic alignments describe exon models within splice sites so weak

as to be indistinguishable from background - probably due to the result of mis-

alignment. To counter this, we required three ESTs to define an exon and also

included the alignment coordinates of known gene transcripts in the annotation.

These genomic coordinates have been translated across species with the

UCSC program liftover which parses the output of the multiple alignment tool

blastz and returns orthologous coordinates. Orthologs are identified by the re-

ciprocal best hit strategy where the highest scoring match to a human exon in

a second species is deemed the ortholog if its best match in the reverse direc-

tion is the original human exon. Preliminary analysis was performed matching

exon from chromosome 11 using a range of identity thresholds to the genomes

of eleven vertebrates. This analysis demonstrates that the probability of identi-

fying a vertebrate ortholog is roughly proportional to its phylogenetic distance

from human. Noticeable exceptions occur with scaffold based assemblies which

are more likely to result in punctuated assemblies that perform poorly in align-

ments optimized for large syntenic blocks.
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1.2.2 Clustering Procedure

Any distribution pattern (profile) from a collection of hexamers is represented

by a feature vector. Therefore this collection of patterns can be represented

by a finite subset X = {~x1, ~x2, . . . , ~xn} of the feature space. For comparing

two profiles ~x1 and ~x2, we use the euclidean distance, d(~x1, ~x2), which is simply

defined as

d(~x1, ~x2) = ||~x1 − ~x2|| ≡

√√√√ d∑
i=1

(x1
i − x2

i )2, (1.1)

where d is the dimension of the feature space.

To group profiles with similar distribution pattern, we employ DIvisive

ANAlysis (diana) (Kaufman and Rousseeuw 1990), a top-down divisive method

that has performed well in other contexts (Datta and Datta 2003; Ding and

Lawrence 2005). To determine the correct number of clusters, we use the CH

index (Calinski and Harabasz 1974).

Counting Profiles

Each hexamer (word) has a feature vector corresponding to its occurences in

positions relative to splice sites. Each of the vector has precisely 602 values

which describes the occurences of the word being observed at a particular lo-

cation. Furthermore, we divive these 602 positions into three distinct regions

(Figure 1.2).

If a word is observed, its corresponding position in the feature vector will

be updated. This procedure is straightforward and is applied to every sequence

in the exon database describe above. To avoid over counting words with sim-

ple repeat, a simple forwarding strategy is implemented such that if a word is

observed in position x, the same word cannot be observed again in any of the

5



Figure 1.2: Three separate regions of the feature vector.

Figure 1.3: A simple example of how the counting and forwarding procedures are performed.
Given an exon database, the counting procedure is performed on each sequence in the database.
The results are shown for each word observed in the sequence and their positions are recorded.
If the same word within the forwarding window is observed, a count of zero will be assigned.
After scanning through every sequence in the database, each word will receive a feature vector
highlights the number of occurences of each position.

x+5 positions. This process is illustrated in Figure 1.3. After scanning through

the entire database, each feature vector highlights the number of occurences of

each word relative to splice sites.

Normalizing Profiles

Given a feature vector ~x, we normalize ~x such that ∀x ∈ ~x, x′ = x−µ
σ , where µ

and σ are the mean and standard deviation of ~x.
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Figure 1.4: Euclidean distance distributions of two sets of feature vectors: the blue his-
torgram is for the real database and the blue histogram with black border is for the shuffle
database. A cut-off threshold is chosen by using the largest euclidean distance from the shuffle
database.

Filtering Profiles

To improve the resolution of the clustering results, we remove feature vectors

which are likely to be obtained by chance alone. In the previous section, all

4096 feature vectors are created by applying the counting procedure on the

exon database (real database) described in Section 1.2.1. Here, the same count-

ing procedure is performed but on a randomly shuffled exon database (ran-

dom database) generated by the Altschul-Erikson dinucleotide shuffle program

(Altschul and Erikson 1985). This results in exactly 8192 feature vectors; 4096

from the real database and 4096 from the random database. Then the euclidean

distance calculation (Eq 1.1) is performed on each of the feature vectors with its

mean value to determine how much the distribution pattern deviates from uni-

formity. Two euclidean distance distributions are plotted in histogram format

(Figure 1.4). To determine words of interests (words that exhibit the significant

deviation from uniformity), a threshold t is chosen by using the largest euclidean

distance from the shuffle database. This threshold is very stringent and only

leaves us with 194 words. Therefore we relax the threshold by 10 percents (by

allowing 10 percents of potential false positive) so that trelax = 914 which leaves

us with 905 words.
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Figure 1.5: A masking and collapsing strategy around splice sites regions. 7 positions around
each the splice site regions are either masked (removing) or collapsed (taking the maximum
count within the 7 positions).

Masking and Collapsing Splice Sites

The exon database is prepared by aligning alignment blocks bounded by an AG

around the splice sites (ie. the most conserved part of the splice sites) (Figure

1.5). Due to this reason, hexamers which contain AG at various starting points

will have peaks around the splice sites regions in their distribution patterns.

This can potentially cause our clustering method to put these slight variations

into multiple clusters. To resolve this, we tried two approaches: 1) masking

by removing a window of 7 positions around each of the the splice site regions

and 2) collapsing each of the splice site regions into one position by taking the

position with the maximum count within the window.

1.2.3 DIvisive ANAlysis Clustering

DIvisive ANAlysis (diana) is a hierarchical clustering technique in which it con-

structs the hierarchy in the inverse order. Initially, there is one large cluster

consisting n profiles, where n is the number of words and SELEX profiles. At

each subsequent step, the largest available cluster is split into two clusters until

finally all clusters, comprise of single profile.

If considered all possible fusions of two profiles in the agglomerative method,

there are n(n−1)
2 combinations. In the divisive method there are 2n−1 − 1 pos-
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siblities. This number is considerably larger than that in the case of the ag-

glomerative method. To avoid considering all possible fusions, the algorithm

proceeds as follow:

1. Find a profile that has the highest average dissimilarity to all other profiles

and initiate it as a new cluster - called splitter group

2. For each profile i outside the splitter group

3. CalculateDi = [average d(i, j) for j /∈ Rsplitter group]−[average d(i, j) for j ∈

Rsplitter group]

4. Find a profile h for which the difference Dh is the largest. If Dh is positive,

then h is, over average close to the splitter group.

5. Repeat Step 2 and 3 until all differences Dh are negative. The dataset is

then split into two clusters

6. Select the cluster with the largest diameter. The diameter of a cluster is

the largest dissimilarity between any two of its profiles. Then divide the

cluster, repeat Step 1 to 4

7. Repeat Step 5 untill clusters contain only a single profile

1.2.4 Validity Indices

There are no completely satisfactory methods for determining the number of

classifications for any type of cluster analysis (Everitt 1979, 1980; Hartigan 1985;

Bock 1985). We have investigated multiple validity indices proposed in the lit-

erature: Calisnki-Harabasz (CH) index (Calinski and Harabasz 1974), Simply

Structure index (SSI), Dunn index (DI), and the Davies-Bouldin (DB) index.

From multiple trials of evaluations and human observations, CH index returns

the most promising clustering structure produced by Diana algorithm. CH in-

dex has also been assessed as the best in a comprehensive study (Milligan and

Cooper 1985). Therefore we employ CH index to be the validity index used in
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this study. CH index is a quantity describing the degree of inter-cluster sep-

aration and intra-cluster homogeneity. Clearly a good clustering result should

minimize the dispersion within clusters and maximize separation between clus-

ters. For a given divisive level on the clustering tree from Diana, CH index is

calculated as

CH(K) = [B(K)/(K − 1)]/[W (K)/(N −K)], (1.2)

where K is the number of clusters, N is the total number of feature vectors,

W (K) is the within-cluster sum of squares, and B(K) is the between-cluster

sum of squares. The within- and between-cluster sum of squares can be written,

respetively, as

W (K) =
K∑
j=1

∑
~xi∈Cj

||~xi − ~mj ||2

B(K) =
K∑
j=1

||~mj − ~m||2

where ~m is the cluster center of the entire dataset. The cluster centers re-

quired for the sum of squares are computed by simply calculating the mean

values of all the profiles in a cluster.

1.3 Results

From previous section, CH index is a quantity describing the degree of inter-

cluster separation and intra-cluster homogeneity. CH index calculation is per-

formed over a range of different numbers of clusters (2 < k < 100) and the

results are shown in Figure 1.6.

Since there isn’t yet a satisfactory way to determine the optimal k, we chose

an arbitrary k by manually judge the best local maxima of the CH index scores.
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Figure 1.6: Over different number of clusters k CH index is computed by calculating the ratio
between inter-cluster separation and intra-cluster homogeneity explained in Eq 1.2. We reason
the optimal k is at which the CH index is maximized. Clearly from the CH index distribution
shown in this figure it is an increasing function as the number of clusters increases. Other
approaches will be introduced such that the CH index is more informative.

For clustering results done using the collapsing strategy, we found that k = 18

might be one of the most representative clusters (Figure 1.6). The clustering re-

sults are shown in circular dendrogram along with the corresponding frequency

distribution patterns of each cluster and the pictograms that represent all words

in the same cluster (Figure 1.7.

Beside from collapsing the splice site regions, we have also attempted to

cluster words by masking the splice site regions. The CH scores and clustering

results of the masking version is shown in Figure??.
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Figure 1.7: Circular dendogram display of the clustering results. Feature vectors are nor-
malized and collapsed as described in the clustering procedure section. For each cluster box,
the top figure is the pictogram that represents all the words in the same cluster. These words
are first aligned by using clustalw with standard option and not allowing gap. The aligned
sequences are then used to generate the pictogram logo. The bottom figure is the average
frequency distribution pattern of all the words in the same cluster. NOTE: The image is miss-
ing connectors that connect each cluster box to their corresponding leaves in the dendogram.
Because generating the image requires huge effort of manual work, I’ve decided to include a
simpler image for illustrations and suggestions before getting the final version completed. For
a full version of the clustering results, see Appendix A.
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Chapter 2

SELEX

2.1 Introduction

The underlying assumption of our computational approach to finding signals is

that signals that splicing factors recognize will have a non-uniform distribution

relative to splice sites. Computationally predicted enhancers certainly have non-

uniform distribution relative to splice sites but as they are frequently identified

by their enrichment in exons. Despite the fact that many of the RESCUE-ESE

were validated experimentally, it is important to demonstrate the importance

of distribution via an independent method.

2.2 Materials and Methods

The binding specificity can be determined by the Systematic Evolution of Lig-

ands by Exponential Enrichment (SELEX) experiments for several RNA binding

proteins (Table 2.1). The output of a SELEX experiment is typically 10 to 40

sequences (SELEX sequences) that have been identified via iterative selection

protocol as high affinity binding sites for the factor. From these SELEX se-

quences, motifs are derived using a Gibbs sampling strategy (Thompson and

Lawrence 2003). To determine the length of these motifs for different RNA

13



binding proteins, we examine the maximum a posteriori probability (MAP) of

the alignment given by Gibbs sampling. The MAP value is measured relative

to an empty of null alignment, by taking the difference between the log of the

probability of the alignment and the log of the probability of an empty align-

ment. We reason the motif is the most informative with length at which the

MAP value is the highest.

Table 2.1: Binding specifications of known splicing factors
Name Function Reference

SRp40 ESE (Tacke, Chen et. al. 1997)
Tra2 ESE (Tacke, Tohyama et. al. 1998)

ASF/SF2 ESE,ISS,5’ss (Tacke and Manley 1995)
SC35 ESE (Tacke and Manley 1995)

SRp20 ESE (Cavaloc, Bourgeois et. al. 1999)
9g8 ESE (Cavaloc, Bourgeois et. al. 1999)

hnRNP L ISE,ISS (Hui, Hung et. al. 1994)
hnRNP C ISE,PPT (Gorlach, Burd et. al. 1994)

hnRNP A1 ESS,ISE (Singh, Valcarcel et. al. 1995)

These motifs are then searched for matches in the exon database using the

patser program (Hertz and Stormo 1999). From patser, each window of the

sequences in the exon database will receive a matching score. We select a min-

imum matching score (threshold) for each motif so that for those windows that

receive less than the threshold will not be reported by patser. Then we perform

the counting procedure on these final matching windows according to their posi-

tions relative to splice sites. Applying patser with various threshold constraints

leads to different distribution patterns. Because we are interested in the genomic

distribution of these RNA binding proteins, we reason the optimal threshold to

be the threshold in which it results the most skewed distribution pattern (most

deviated from uniformity). Therefore, from a range of thresholds, we calcu-

late the manhattan distance (Eq 2.1) region by region (1.2) of the distribution

pattern, ~x with its mean value, µ.
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Figure 2.1: Manhattan distance is calculation from the 9G8 feature vector and its mean
value.

d(~x, µ) =
∑
x∈~x

||x− µ||, (2.1)

Our first intuition was that the threshold in which d(~x, µ) is the highest

should result the most skewed distribution pattern. However, decreasing thresh-

old leads to the increase of the skew and the magnitude of the frequency of the

distribution patterns, which also results in greater manhattan distance from the

mean. Therefore, calculating Eq 2.1 is not informative as it is always an increas-

ing function as the threshold decreases (ie. larger threshold is always preffered)

(Figure 2.1). We have also tried to normalized ~x; however, the calculation tends

to prefer lower threshold (Figure 2.2. Note that because of all SELEX motifs

exhibit similar results from the Manhattan distance calculation, we only use the

9G8 SELEX motif for illustration.

Another approach to finding the optimal threshold is by sampling equal

amounts of counts on the distribution patterns resulted from different thresh-

olds. This is a sampling with replacement strategy to ensure that each distribu-

tion pattern of interests has the exact same mean value. Given a fix number of

counts c, a random number generator picks a position according to the proba-

15



Figure 2.2: Manhattan distance is calculation from the normalized feature vector and its
mean value.

bility of observing a match of the motif in that position, then the feature vector

for the sampled distribution is updated accordingly. The same manhattan dis-

tance described above is calculated. Again, we are interested in the highest

manhattan distance as it is an indication of a most skewed distribution pattern.

However, the results turn out to be an decreasing function. In other words, this

approach tends to favor the distribution patterns resulted from low thresholds

(See Figure 2.3 blue plotted line).

Our last approach is by shuffling the motif column-by-column. Given the po-

sition weight matrix (PWM) of the motif, we shuffle the nucleotides correspond

to each of the column of the PWM. We then ran patser on the shuffled PWM

and follow by the manhattan distance calculation. The reason of trying this

approach is that we expect more uniform distribution from the shuffled PWM,

for which we can combine it with the sampled distribution to derive the optimal

threshold. However, the result tends to also favor low thresholds (See Figure

2.3 red plotted line). Also, one problem can be quickly noticed is that it’s very

likely to randomly assign a duplet of AG in the motif. Due to the way how we

prepare our exon database (Section 1.2.1) by aligning the most conserved part

16



Figure 2.3: Manhattan distance is calculated on two sets of analysis. One by sampling equal
amounts of counts on the distribution pattern results from different threshold (Blue). The
other is by shuffling the motif column-by-column. Notice that the motif shuffling strategy
produces a higher Manhattan distance across all thresholds represent that it is likely to ran-
domly shuffle the motif and replace a dinucleotides of AG side-by-side. Due to the way how
we align our exon database, the dinucleotides of AG will produce a peak around the splice
sites region, which leads to higher Manhattan distance.

of the splicing juntions, any motif with a duplet of AG will most likely produce

a spike around the splice juntions. This will, in fact, increase the manhattan

distance of the overall distribution pattern (See Figure 2.3).

Because the problem of picking an optimal threshold is still an ongoing work,

we have decided to use -6 as the threshold for all the distribution patterns

showed in the Results section. This threshold is selected mainly from human

observations and prior knowledge. However, as it can be easily noticed from

Table 2.2 and Table 2.3 in the Results section, some of the SELEX motifs

and distribution patterns are not optimized at the given fixed threshold. For

example, hnRNP L should be further relaxed such that the frequency of the

distribution pattern is higher. Therefore, it is crucial that we can use prior

knowledge in the binding affinity of these proteins to determine the optimal

threshold for each of them.
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2.3 Results

2.3.1 U2AF and hnRNP C recognize the splice sites

U2AF is composed of a 65kd and 35kd subunit that plays an early role in

3’ss recognition (Ruskin, Zamore 1988). As depicted in Figure ?? U2AD65

recognizes the polyprymidine tract (PPT) - a short stretch of C’s and U’s located

just upstream of the 3’ss. Although less is known about hnRNP C, this factor

has been implicated as an intronic enhancer that also recognizes the 3’ss end

of the intron (Swanson and Dreyfuss 1988). The distribution of the binding

sites for these factors is consistent with their known function. Both U2AF and

hnRNP C binding sites are heavily biased towards the 3’ end of the intron (See

Figure ??).

2.3.2 SR proteins predominantly binds in the exon

SR proteins are splicing activators that often function at exonic locations. Ex-

amining the genomic distribution of these sequences confirm this notion that

splicing elements that are bound by SR proteins are typically located in exons

(Figure ??). In addition to an exonic bias the distribution tends to be greater

when it is closer to the splice site than in the internal portion of the exon.

2.3.3 hnRNP proteins predominantly bind in the intron

hnRNPs are generally regarded as non-specific RNA binding proteins. The

genomic distribution of hnRNPs is slightly biased towards introns in most cases.

PTB has been cited in a wide variety of inhibitory roles in both introns and exons

in splicing. Also, hnRNP A1 has been found to modulate splicing in both exons

and introns. hnRNP L has been demonstrated to function only in introns by

binding CA repeats (Hui, Hung 2005).
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Table 2.2: Distribution patterns for known splicing elements. The most left
columns (splicing element) is the known SELEX results in interests. The middle
column (Motif) is the motif generated by Gibbs sampler using published SELEX
data. The most right column (Genomic Distribution) is the patser matches
against the exon database using a fixed threshold described above.

Splicing Elements Motif Genomic Distribution

ASF

SC35

U2AF

hnRNP A1
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Table 2.3: Distribution patterns for known splicing elements. The most left
columns (splicing element) is the known SELEX results in interests. The middle
column (Motif) is the motif generated by Gibbs sampler using published SELEX
data. The most right column (Genomic Distribution) is the patser matches
against the exon database using a fixed threshold described above.

Splicing Elements Motif Genomic Distribution

hnRNP C

hnRNP L

9G8

PTB
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Chapter 3

Cooperativity

To explore the repetitive nature of local RNA structure, we extended our ap-

proach by capturing the double occurences of each hexamer in the exon database

described above. From the same exon sequence, a word is doubly occured if and

only if an aleady observed word wi at position pk is observed again at an-

other position pl such that pl 6= pk and pl is outside of the forwarding window

from pk. Let c(wi) be the total number of occurences of word wi in the exon

database, t be the total number of all possible windows of hexamers from the

exom database, and k be the number of exon sequences that contain at least one

wi, the probability of observing word wi in the database is Pr(wi) = c(wi)/t

and the conditional probability of observing the second or more wi given the

first occurence of wi is Pr(wi|wi) = (c(wi)− k)/twi
where twi

is the total num-

ber of all possible windows of hexamers from the every exon database sequence

that contains at least one wi.

3.1 Results

The histogram of Pr(wi) and Pr(wi|wi) for all hexamers are shown in Figure

3.1 and 3.2 respectively. The histogram of the log ratio of the above-mentionned

probabilities are also shown in Figure 3.3.
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Figure 3.1: Histogram (100 bins) of the probability of observing at least one word in the
exon database is shown. The calculation of the Pr(wi) is done region by region and each of
the histogram represents an analysis from an unique region. The top figure represents the
first region; the middle represents the second region; and the last figure represents the third
region.

In addition to the analysis explained above, we compared the log ratio of the

probabilities with the skewness (deviation from uniformity) of the distribution

patterns of words. Similarily, the frequency distribution pattern profile is gener-

ated region by region using the counting procedure described in the Clustering

section, and the manhattan distance is calculated from each of the patterns with

its mean value. A scatter plot of the analysis is shown in Figure ??.
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Figure 3.2: Histogram (100 bins) of the conditional probability of observing the second
or more occurences of a word given the first occurence in the exon database is shown. The
calculation of the Pr(wi|wi) is done region by region and each of the histogram represents an
analysis from an unique region.

Figure 3.3: Histogram (100 bins) of the log ratio of Pr(wi) and Pr(wi|wi) is shown.
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Chapter 4

Cross-Species Analysis

In addition to clustering words between within a species, the distribution of

each hexamer was compared in different species. This analysis was performed

on species that have a clear ortholog to the human. Using these ortholog tables

with each of the 4096 hexamers, the human distribution pattern was compared

to the pattern observed in mouse, rat, fish, chicken, cow, and dog. To eliminate

bias of various sample sizes, the exon database of each species are first sampled

to the equal amount of sequences according to their orthologous coordinates to

human. Then, the same counting procedures are performed on these databases

region by region. To measure the difference in patterns from two species, we use

Manhattan distance. That is, we calculate Manhattan distance from the feature

vector of a word observed in human with the feature vector of the same word

observed in another species. We are interested in the comparison in which it

results the highest Manhattan distance. For full set of analysis between each

species to human, see Appendix B.

Between fish and human there appears to be a huge chance in the impor-

tance of two simple repeats: GTGTGT and CACACA. The former peaks is

enriched in the vicinity of the 3’ss and the later is enriched in the vicinity of the

5’ss. The sequence suggests a secondary structure element that spans either the

exon or the intron in fish genes but not in human genes. An examination of the
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distribution of these elements suggests that span the introns of fish genes. Fold-

ing the pre-mRNA suggests a mechanism that brings the 3’ss and 5’ss in close

proximity - perhaps facilitating the correct splice site pairing across the intron.

The relative distribution of the two words is consistent with the dependency

that would be expected between the two arms of an RNA hairpin. Introns that

contain a CACACA element in the 5ss intronic region (region 3) are 2.5 fold

more likely to contain a GTGTGT element across the intron in region 1 of the

next exon.
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Chapter 5

Appendix A

5.1 Clustering results from collapsed feature vec-

tors

This section shows the clustering results done using the collapsing strategy

(explained in Clustering section). Because determining the optimal k for diana

algorithm is still an ongoing work, we have chosen k = 18 based on some local

maxima of the CH index scores. Each figure in this section contains of four

plots. The up right plot shows the frequency distribution patterns of all words

belong to the cluster. The up left plot shows the frequency distribution patterns

of all words belong to the cluster with the exception that the y-axis is scaled

to 3x10−3. Scaling to y-axis enables us to have a better resolution of the

pattern outside of the splicing regions. The bottom right plot shows the average

frequency distribution patterns of all the words in the cluster. This is done

by taking the average of all the frequency distribution patterns, position by

positions. The bottom right plot shows the same average frequency distribution,

but the y-axis is scaled to 3x10−3.
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Figure 5.1: Collapsing Clustering Results: Cluster 1
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Figure 5.2: Collapsing Clustering Results: Cluster 2
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Figure 5.3: Collapsing Clustering Results: Cluster 3
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Figure 5.4: Collapsing Clustering Results: Cluster 4
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Figure 5.5: Collapsing Clustering Results: Cluster 5
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Figure 5.6: Collapsing Clustering Results: Cluster 6
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Figure 5.7: Collapsing Clustering Results: Cluster 7
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Figure 5.8: Collapsing Clustering Results: Cluster 8
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Figure 5.9: Collapsing Clustering Results: Cluster 9
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Figure 5.10: Collapsing Clustering Results: Cluster 10
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Figure 5.11: Collapsing Clustering Results: Cluster 11
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Figure 5.12: Collapsing Clustering Results: Cluster 12
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Figure 5.13: Collapsing Clustering Results: Cluster 13
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Figure 5.14: Collapsing Clustering Results: Cluster 14
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Figure 5.15: Collapsing Clustering Results: Cluster 15
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Figure 5.16: Collapsing Clustering Results: Cluster 16
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Figure 5.17: Collapsing Clustering Results: Cluster 17

43



−200 0 200 400
0

0.5

1

1.5

2

2.5
x 10

−3

−200 0 200 400
0

0.5

1

1.5

2

2.5

3
x 10

−3

0 200 400 600
0

0.5

1

1.5

2

2.5
x 10

−3

0 200 400 600
0

0.5

1

1.5

2

2.5

3
x 10

−3

Figure 5.18: Collapsing Clustering Results: Cluster 18
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Chapter 6

Appendix B

6.1 Human and fish cross species analysis

6.2 Human and cow cross species analysis
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Table 6.1: Cross species analysis for region 1 (position -200 to 0) between human
and fish. The most left column represents the top 5 words with highest Man-
hattan distance. The middle column shows the the actual Manhattan distance
for the corresponding word between two species. The most right columns shows
the genomic distribution plot. The x-axis represents the genomic positions and
the y-axis represents the frequency of occurences. The green plot is the fish
distribution and the blue plot is the human distribution.

Word Manhattan Distance Genomic Distribution

tgtgtg 0.04228

gtgtgt 0.04147

ccccag 0.03802

cccagg 0.03735

tgtgtt 0.03571
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Table 6.2: Cross species analysis for region 2 (position 0 to 200) between human
and fish. The most left column represents the top 5 words with highest Man-
hattan distance. The middle column shows the the actual Manhattan distance
for the corresponding word between two species. The most right columns shows
the genomic distribution plot. The x-axis represents the genomic positions and
the y-axis represents the frequency of occurences. The green plot is the fish
distribution and the blue plot is the human distribution.

Word Manhattan Distance Genomic Distribution

ctggag 0.007448

tctgga 0.007309

ccctgg 0.006860

cagaga 0.006843

gaggag 0.006414

47



Table 6.3: Cross species analysis for region 3 (position 200 to 400) between
human and fish. The most left column represents the top 5 words with highest
Manhattan distance. The middle column shows the the actual Manhattan dis-
tance for the corresponding word between two species. The most right columns
shows the genomic distribution plot. The x-axis represents the genomic posi-
tions and the y-axis represents the frequency of occurences. The green plot is
the fish distribution and the blue plot is the human distribution.

Word Manhattan Distance Genomic Distribution

acacac 0.2155

cacaca 0.2096

gtgtgt 0.2060

tttatt 0.2010

tgtgtg 0.1927
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Table 6.4: Cross species analysis for region 1 (position -200 to 0) between human
and cow. The most left column represents the top 5 words with highest Man-
hattan distance. The middle column shows the the actual Manhattan distance
for the corresponding word between two species. The most right columns shows
the genomic distribution plot. The x-axis represents the genomic positions and
the y-axis represents the frequency of occurences. The green plot is the cow
distribution and the blue plot is the human distribution.

Word Manhattan Distance Genomic Distribution

aaaaaa 0.06025

attttt 0.04994

tatttt 0.04981

ttattt 0.04102

ttttct 0.03770
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Table 6.5: Cross species analysis for region 2 (position 0 to 200) between human
and cow. The most left column represents the top 5 words with highest Man-
hattan distance. The middle column shows the the actual Manhattan distance
for the corresponding word between two species. The most right columns shows
the genomic distribution plot. The x-axis represents the genomic positions and
the y-axis represents the frequency of occurences. The green plot is the cow
distribution and the blue plot is the human distribution.

Word Manhattan Distance Genomic Distribution

ctgcag 0.026112410417473

gccccc 0.0257323505230477

gaggag 0.0254071069816399

ctggcc 0.0251540567525089

ctggag 0.0249829392841099
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Table 6.6: Cross species analysis for region 3 (position to 200) between human
and cow. The most left column represents the top 5 words with highest Man-
hattan distance. The middle column shows the the actual Manhattan distance
for the corresponding word between two species. The most right columns shows
the genomic distribution plot. The x-axis represents the genomic positions and
the y-axis represents the frequency of occurences. The green plot is the cow
distribution and the blue plot is the human distribution.

Word Manhattan Distance Genomic Distribution

tttttt 0.0609502772042235

tatttt 0.0458773112735974

tttttg 0.0453199185779619

attttt 0.0422775351635401

gggggc 0.0412430629486314
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