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Abstract
In this paper, we re-examine the RSSI measurement
model for location estimation and provide the first
detailed formulation of the probability distribution of
the position of a sensor node. We also show how to
use this probabilistic model to efficiently compute a
good estimation of the position of the sensor node by
sampling multiple readings from the beacons. The re-
sults of the simulation of our method in TOSSIM in-
dicate that it is competitive with previous approaches.

1 Introduction
Estimating the location of a roaming sensor is a fun-
damental task for most sensor networks applications.
For example, if a sensor network has been deployed
to provide protection against fire (in this case, sen-
sor nodes report a sudden increase in temperature),
we want to know the location of the sensor that trig-
gers an alert so that action can be taken accordingly.
Additionally, some routing protocols for sensor net-
works, such as geographical routing [15, 40], make
routing decisions based on the knowledge of the loca-
tions of the sensor nodes.

There are several proposed location estimation
protocols for sensor networks, see, e.g., [5, 7, 8, 11, 21,
22, 23, 24]. All these protocols use the same model,
where some nodes know their location (either because
they are fixed or by using GPS) and are called bea-
cons or anchor nodes, and some other nodes, called
sensor nodes, estimate their location using the in-
formation they receive from the beacons. This in-
formation consists of the beacons’ coordinates and of
features of the beacon signal, such as the received sig-
nal strength indicator (RSSI) or the time difference
of arrival (TDoA). Also, other protocols (e.g., [23])
are based on the capability of the nodes to sense the
angle from which a signal is received.

After performing a certain number of such mea-
surements for different beacons, the sensor node has
to combine all this information (for RSSI, this infor-
mation is the power of each individual signal and the
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coordinates of the corresponding transmitter) in or-
der to estimate its location. The location estimation
algorithm has the following requirements:

• The sensor node should avoid complex and time
consuming computations, which would deplete
its energy supply (typically a low-cost battery)
rapidly.

• The computations should take into considera-
tion the error in the measurements, which can
be large.

Several previous approaches use computationally de-
manding methods, such as convex optimization [8],
systems of complex equations [23], minimum mean
square error (MMSE) methods [6, 30], and Kalman
filters [31]. In these approaches, the measurement
model is not adequately analyzed and the error is as-
sumed to be small, which is not the case in most real
applications of sensor networks.

Other approaches, notably [16, 27, 33], estimate
the location of a node using the RSSI method (ana-
lyzed in [28]), which is the most realistic model for
sensor network communication. In [16], the authors
evaluate the ability of a sensor network to estimate
the location of sensor nodes. They assume that the
location of the sensor node is known and develop ar-
guments concerning the probability that the network
will detect this location. They use the RSSI error
model to analyze the problem of evaluating the abil-
ity of the sensor network to locate a sensor node.
However, they do not describe how their algorithms
can be implemented on a sensor node to estimate its
own location. Moreover, their method does not take
into account the basic parameters of the RSSI model
(standard deviation and path loss exponent) and thus
gives incorrect results.

In this paper, we formulate the correct probability
distribution of the position of a sensor node based on
one reading produced with the RSSI model. Due to
the errors implicit in the RSSI model, it is unrealistic
to try to compute a good estimation of the location
of the sensor node based only on a single measure-
ment (or even few measurements) from each beacon.
Such an approach would be so inaccurate to make the
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estimate practically worthless. Notwithstanding this
difficulty, we show that a reliable estimation of the
location can be achieved by processing a reasonably
small number of readings of the signals.

Especially for indoor positioning systems, this is
an assumption that has been extensively used. For
example, in [13, 14], the position estimation is based
on a location fingerprint t = [t1 t2 . . . tN ], where N
is the number of beacons and ti (i = 1, . . . , N) is
the mean value of the received signal strength over a
certain time window. Also, in [3, 9, 19, 38], experi-
ments with various sample sizes are presented where
the samples are used to compute certain features of
the signal strength such as the standard deviation and
the path loss exponent. Finally, in [12], simulations
are presented that use various number of samples,
where it is stated that there is a need for more than
50 samples to filter out the errors in the probability
distribution.

We show that using only the mean of the mea-
surements is not a correct procedure, due to the log-
normal distribution of the distance from the beacon
(see Theorem 4.1). Instead of using directly the mean
value, we use another value that is adequate accord-
ing to the specific underlying probability distribution
of the distance. The number of samples that are used
vary from 20 to 300 and obviously the accuracy of the
computed location grows with the number of sam-
ples. Finally, once the sampling has been performed,
we show how to seek the minimum of a function that
approximates the actual location with small compu-
tational effort.

1.1 Our Contributions

The main contributions of this paper are as follows:

• We evaluate the probability that a sensor node
lies within a certain region, given that the power
received from the beacons is modeled with RSSI.
To the best of our knowledge, this is the first
detailed formulation of the probability distri-
bution of the position of a sensor node. We
show that unlike the normal distribution of the
received power, the probability distribution of
the actual position is lognormal. Thus, we give
evidence to the role of the parameters σ and n
in the probability distribution of the actual dis-
tance, where σ is the standard deviation of the
normal variable that models the power received
by the sensor and n is a parameter, called path
loss exponent, that depends on the transmis-
sion medium. In previous approaches [16], the
probability distributions used did not exhibit
dependency on these two variables.

• We present a method for estimating the loca-

tion of a node from multiple sample power read-
ings from the beacons. Our method computes
the expected value of the received power and
combines it with the mean and the standard
deviation of the sample readings using a steep-
est descent approach [34]. We show that our
method is simple and efficient and provides a
good estimation of the position. Note that us-
ing multiple sample readings is necessary for a
reliable location estimation. Indeed, the prob-
ability distribution of the location for a single
sample implies that the domain within which
the sensor lies with high probability has large
area.

• We describe an implementation of our location
estimation algorithm that is suitable for execu-
tion on standard sensor hardware and we ana-
lyze the results of an extensive simulation of the
execution of the algorithm in TOSSIM [10, 17].
The results of the simulation show that our
method has accuracy that is comparable to or
better than that of previous methods.

1.2 Organization of the paper

The rest of this paper is organized as follows. In
Section 2, we present the definition of the problem
and an analysis of the RSSI model adopted in sen-
sor networks. Section 3 focuses on the probability
distributions of the relative error, the actual distance
and the position. We give results that define the cor-
rect probability distributions of the position of a sen-
sor node due to power measurements. In Section 4,
we describe the main method that uses sampling to
compute an estimate of the position, based on proba-
bilistic facts developed in the preceding sections and
give a time-efficient minimization-based method for
estimating the actual location. Theorem 4.1 is the
main result of this section indicating a way to com-
pute a good estimation of the actual distance given
a certain number of samples (which is different than
a simple mean and takes into consideration the log-
normal distribution). Finally, in Section 5, we give
extensive simulation results using the TOSSIM simu-
lator [10, 17] for sensor networks and we also present
a comparison (in terms of localization error) of our
results with other methods. We conclude in Section 6.

2 Preliminaries
Suppose are given a region of the plane with k beacon
nodes b1, b2, . . . , bk (nodes of known location). The
coordinates of the beacons are (xi, yi) for i = 1, . . . , k.
The beacons transmit information about their loca-
tion with a signal of normalized intensity to a sensor
node s that does not know its location. Based on
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the locations of the beacons and the estimated dis-
tances from the beacons (computed from the received
signals), the sensor computes its actual location. In
the absence of distance estimation errors, the prob-
lem could be easily solved by using three beacons.
We would have to solve a system of three circles
equations and determine their common intersection
point. However, errors occur and the distance esti-
mations made by the sensor nodes are not accurate.
Thus, even in the unlikely case that the estimated
distances yield a single solution to the system of the
circles equations, we cannot conclude that the inter-
section point is the actual location of the sensor node.

Among the several models proposed for estimat-
ing the distance between a beacon and a sensor node,
the most realistic and commonly used one is the re-
ceived signal strength indicator model (RSSI) [28]. In
this model, the beacon broadcasts signal to all sensors
and the sensors can estimate the distance between
them and the beacons on the basis of the strength of
the signals they receive.

Let bi be a beacon located at (xi, yi) and s a sensor
node located at (x, y). We define the relative error
ǫi pertaining to bi as follows. Suppose that s reads
a distance r̂i, while the actual distance is ri. The
relative error is

ǫi =
r̂i

ri
− 1 ∈ [−1, +∞) (1)

The commonly accepted transmission model [28] ex-
presses the received power pi (in dBm) as

pi = p0 + 10n log

(

ri

r0

)

(2)

where p0 is the received power in dBm at a reference
distance r0 and n is the path loss exponent which is a
constant depending on the transmission medium (in-
doors, outdoors) and ranges typically from 2 to 4. In
some environments, such as buildings, stadiums and
other indoor environments, the path loss exponent
can reach values in the range of 4 to 6. On the other
hand, a waveguide type of propagation may occur in
tunnels, where the path loss exponent drops below 2.

We recall that if the received power in mW at a
point k is Pk, and Pk′ is the received power at some
reference point k′ (again in mW), then the received
power pk in dBm at point k is defined as

pk = 10 log

(

Pk

Pk′

)

The measured power, however, differs from that
given equation (2); due to channel fading (variation of

the received signal power caused by changes in trans-
mission medium or path), the measured power is

p̂i = pi + x (3)

The random variable x represents the medium-scale
channel fading and is typically modelled as Gaussian
zero-mean with variance σ2 (in dBm). Typically, σ
is as low as 4 and as high as 12 (this implies that the
error may be large). Inserting p̂i and r̂i into (2), we
get

p̂i = p0 + 10n log

(

r̂i

r0

)

(4)

where now the measured power p̂i in dBm relates to
the measured distance r̂i by the sensor. By combining
the above equations, we get that the relation between
the measured distance and the actual distance is

r̂i = ri10
x

10n (5)

which gives
ǫi = 10

x
10n − 1 (6)

3 Probability Distributions
As mentioned before, the random variable x is as-
sumed to be Gaussian zero-mean, i.e.,

Px(x) =
1

σ
√

2π
e−

x2

2σ2 (7)

By equation (6), we have that x = 10n log(ǫ + 1). It
is well known [36], that, given the probability density
function f(v) of a variable v, the probability density
function of a variable u, related to v by v = g(u) is

f(g(u))
∣

∣

∣

dg(u)
du

∣

∣

∣
. Therefore, we have that the proba-

bility distribution of the relative error is log-normal:

Pǫ(ǫ) = Px(10n log(ǫ + 1))
dx

dǫ

=
10n

ln(10)

1

ǫ + 1

1

σ
√

2π
e−

(10n log(ǫ+1))2

2σ2 (8)

To compute now the probability density function Pri(ri)
of the actual distance ri, we must use (1) and get

Pri(ri) = Pǫ

(

r̂i

ri
− 1

)

r̂i

r2
i

=
10n

σ
√

2π ln(10)

1

ri
e−

(10n log(r̂i/ri))
2

2σ2 (9)

Note that the maximum of this function clearly de-
pends on both n and σ. Based on the above distri-
butions, we can prove the following theorem for the
probability distribution of the position (the details
are omitted due to space limitations).
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Theorem 3.1 Let bi be a beacon node located at (xi, yi)
sending information to a sensor node under the RSSI
model with standard deviation σ and path loss expo-
nent n. Let r̂i be the measured distance from beacon
node bi at the sensor node. We have that the proba-
bility density function of the actual position (x, y) of
the sensor node is given by

P
(i)
X,Y (x, y) =

10ne−

 

10n log

 

r̂i√
(x−xi)

2+(y−yi)
2

!!2

2σ2

2πσ
√

2π ln(10)((x − xi)2 + (y − yi)2)

.
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(a) The probability density function of the
relative error ǫ for σ = 1, 2, 4, 11 and mea-
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Figure 1: Probability distributions of the measured
distance and the relative error.

In Figures 1(a), 1(b) we plot the probability den-
sity functions of the relative error ǫ and the actual
distance ri, as computed above. We point out that
the maximum of Pǫ(ǫ) is achieved when ǫ < 0, which

implies ri > r̂i. However, the maximum of Pri(ri) is
achieved when ri < r̂i. This is due to the term r̂i

r2
i
,

appearing in (9). Also, note that, as σ increases, the
peak of Pri(ri) moves towards the beacon.

3.1 Intuition

In Figure 1(b) we see that the peak of the probability
distribution of the actual distance is always between 0
and r̂i, as can be formally proved. At first sight this is
counterintuitive. However, we must reflect that the
Gaussian zero-mean x is a power in dBm, yielding
the result. Since x is normally distributed, we would
expect that the points r̂i ±α would have equal prob-
ability density. This would however be the case if, for
example r̂i = ri + x. In our case, r̂i = ri10

x
10n .

The plot of the probability density function de-
fined in Theorem 3.1 is shown in Figure 2(a) where
the base of the cylinder represents the circle formed
by the measured radius r̂i with respect to the certain
beacon bi. We can see that not only the value but
also the location of the maximum of the probability
distribution changes for various values of the stan-
dard deviation σ. Actually, for σ = 2 (Figure2(a)),
the maximum is larger (and closer to the beacon cir-
cle) than the maximum of the distribution of σ = 5
(Figure 2(b)), where the error is larger. To simplify
the notation, we set

Φbi(x, y) = P
(i)
X,Y (x, y)

to denote the probability distribution due to beacon
bi. Note that

∫ +∞
−∞

∫ +∞
−∞ Φbi(x, y)dxdy = 1. Suppose

now we have two beacons. We want to compute the
corresponding probability distribution. Suppose that
the plane is subdivided by a uniform grid into cells
{(i, j) : i, j ∈ Z}, of sufficiently small size d. The
probability Pr(x ∈ (i, j)) is very closely approximated
by Φb1,b2(pij)d

2, where pij ∈ (i, j) (for example pij is
the point at the center of (i, j)) and Φb1,b2(.) is the
density function.

If r̂1 and r̂2 are the measured radii, then with pij

we associate the relative errors ǫ1(i, j) and ǫ2(i, j).
Within this approximation, pairs of relative errors
form a countable set

Er̂1,r̂2 = {ǫ1(i, j), ǫ2(i, j) : i, j ∈ Z}

and with (i, j) we associate the probability

Pr(ǫ1(i, j), ǫ2(i, j)) = Φb1,b2(pij)d
2

Since the measurements are independent

Pr(ǫ1(i, j), ǫ2(i, j)) = Pr(ǫ1(i, j)) Pr(ǫ2(i, j))
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(a) Density function for one beacon and σ = 2.

The circle is centered at (10,8) and r̂ = 2.

(b) Plot of the density function for the beacon

of Figure 2(a) and σ = 5.

Figure 2: Probability density functions of the posi-
tion. Note that there is a great level of uncertainty
as to which the location of the node is. In both dia-
grams, the circle is centered at (10, 8).

Since Pr(ǫk(i, j)) = Φbk
(pij) (k = 1, 2), it follows that

Φb1b2(pij) is proportional to Φb1(pij)Φb2(pij), so that

Φb1b2(pij) =
Φb1(pij)Φb2(pij)

∑

s,t Φb1(pst)Φb2(pst)

We extend the argument to a finite set of beacons
B = {b1, . . . , bk}. If we then let d → 0, we transition

(a) Plot of the density function for two bea-
cons.

(b) Plot of the density function for three bea-
cons

Figure 3: Probability distributions of the position for
more than one beacon.

to the continuous case and obtain the following result.

Theorem 3.2 Let B = {b1, b2, . . . , bk} be a set of
beacon nodes that send information to a sensor node
under the RSSI model with standard deviation σ and
path loss exponent n. If the measured distance from
beacon node bi at the sensor node is r̂i (i = 1, . . . , k),
then the probability density function (due to all the
beacons in B) of the actual position (x, y) of the sen-
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sor node is given by

Φ(B)(x, y) =

∏k
i=1 Φbi(x, y)

∫ +∞
−∞

∫ +∞
−∞

(

∏k
i=1 Φbi(x, y)

)

dydx

where Φbi(x, y) is the probability distribution due to
beacon bi, as defined in Theorem 3.1.

Plot of this density function for multiple beacons
is shown in Figure 3(a,b). Note that even with 3 bea-
cons there is great uncertainty about where the point
lies. Additionally, if we use only one measurement,
we may end up with a density function having more
than one maximum. Moreover, the computation of
this function on a sensor node is a very difficult task
since there is no simple analytical expression for the
maximum of the probability distribution computed in
Theorem 3.2. Also, there is no analytical expression
for the integrals needed to compute the probability
for a certain region (so that we can integrate around
the maximum of the probability distribution) and the
computation of the integrals based on iterative meth-
ods are very demanding tasks to be executed on a
sensor node. The path loss exponent in all plots is
n = 2. We can also see that not only the value but
also the location of the maximum of the probability
distribution changes for various values of the stan-
dard deviation σ.

4 Samples of Measurements
In the previous sections we have examined the prob-
ability distribution of the sensor’s position based on
a single measurement. This setting however, can
give rise to unacceptable errors for the values of σ
(σ = 4, 6, 8) reported in the literature [28]. A conse-
quence of this situation is that we may be unable to
define a disk containing the sensor’s location with an
acceptable degree γ of confidence (say, γ > 0.9). Ad-
ditionally, if our practice is based on only one read-
ing, there is no way for the sensor to estimate the
standard deviation σ (this is actually the standard
deviation of the Gaussian random variable x intro-
duced in Section 2) of each beacon. This parameter
σ—conveniently assumed to be known in Section 2—
has to be estimated in practice since it is needed in
the computations (see below).

To overcome these difficulties, we show in this
section how we can obtain a good estimate of the
location of the sensor node based on small number
of readings. Especially for indoor positioning sys-
tems, this is an assumption that has been extensively
used. For example, in [13, 14], the position estimation
is based on a location fingerprint t = [t1 t2 . . . tN ],
where N is the number of beacons and ti (i = 1, . . . , N)

is the mean value of the received signal strength from
the i-th beacon over a certain time window. Note
that ti denotes the measured power p̂i that appears
in Equation 4. Hence the ”measured power” location
fingerprint t can easily be transformed to a location
fingerprint r of ”measured radii” by using Equation
4, since the reference values p0 and d0 are known.
The number of samples that are used vary from 40 to
300 and obviously this number affects the accuracy of
the computed location. Also, in [3, 9, 19, 38], exper-
iments with various sample sizes are presented where
the samples are used to compute certain features of
the signal strength such as the standard deviation
and the path loss exponent.

Suppose now that we use a sample of k read-
ings from beacon bi. We have a sequence of radii
r̂i1, r̂i2, . . . , r̂ik. Let r̄i, s̄i denote the unbiased esti-
mators of the value E[r̂i] and of the standard devi-
ation

√

Var(r̂i) of the underlying distribution of the
measured radii r̂i (i = 1, . . . , 3) respectively. Then, it
is known [36] that

r̄i =

∑k
j=1 r̂ij

k
(10)

and

s̄i
2 =

∑k
j=1(r̂ij − r̄i)

2

k − 1
(11)

How can we relate these statistical values to the stan-
dard deviation σi of each beacon (the standard devi-
ation appearing in Equation 5)? First we compute
the mean E[r̂i] and the variance Var[r̂i] of the sample
radii for beacon bi. By Equation 5 we have

r̂i = ri10
x

10n ⇒ E[r̂i] = rie
cσ2

i
2 (12)

where c = ln2(10)
100n2 . Additionally,

Var[r̂i] = r2
i Var

[

10
x

10n

]

= r2
i (ecσ2

i − 1)ecσ2
i (13)

Note that we used the fact that the expected value
and the variance of a lognormal distribution are eσ2/2+µ

and (eσ2+µ−1)eσ2+µ, respectively, where µ and σ are
the mean and the standard deviation of the related
normal distribution. We recall that ri is the actual
distance of the sensor node from the beacon and for
the Gaussian random variable x, it is µ = 0. Also
note that

E[r̂i] ≥ ri (14)

which indicates that the average of the readings is
larger than the actual distance (this in turn implies
that the circles defined by the beacons are expected
to intersect in 6 points). Suppose now we receive
signal from three beacons b1, b2, b3 (we can assume
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that b1 is located at (0,0), b2 is located at (b, 0) and
b3 is located at (c, d)). If the sensor node is located
at point (x, y), then (x, y) is a solution of the system
of equations:

x2 + y2 = r2
1 (15)

(x − b)2 + y2 = r2
2 (16)

(x − c)2 + (y − d)2 = r2
3 (17)

By assuming now (this assumption will introduce the
error of the described method) that the statistical val-
ues r̄i and s̄i computed by the sensor can substitute
the theoretical ones we have the equations

r̄i = ri

√

ecσ2
i ⇒ r̄i

2 = r2
i ecσ2

i

and

s̄i = ri

√

(ecσ2
i − 1)ecσ2

i ⇒ s̄i
2 = r2

i (ecσ2
i − 1)ecσ2

i

From these, we get an estimation σ̄i
2 of σ2

i :

σ̄i
2 =

1

c
ln

[

1 +

(

s̄i

r̄i

)2
]

(18)

Finally, note that the estimate for the distance r2
i can

be made by using

r2
i =

r̄i
2

ecσ̄i
2 =

r̄i
2

1 +
(

s̄i

r̄i

)2 =
r̄i

4

r̄i
2 + s̄i

2
(19)

Hence we have the following result that relates esti-
mates of the actual distance and the standard devi-
ation with reference to a beacon bi with features of
the lognormal distribution:

Theorem 4.1 Suppose a sensor node reads k dis-
tance samples r̂i1, r̂i2, . . . , r̂ik from a beacon bi that is
modelled with the RSSI of path loss exponent n and
standard deviation σ. If r̄i is the sample mean and
s̄i is the sample standard deviation then we have the
following:

1. The estimate of the square of the actual distance
r2
i of the sensor node from beacon bi is given by

r̄i
4

r̄i
2+s̄i

2 .

2. The estimate of the square of the standard de-

viation σ2
i is given by 1

c ln

[

1 +
(

s̄i

r̄i

)2
]

, where

c = ln2(10)
100n2 .

�

Note that the above theorem indicates that the
quality of estimation of the actual distance is heavily
dependent on the estimation of the distribution of the
measured radii.

4.1 Minimization-Based Estimation

In this section we develop a method for location esti-
mation based on several samples. This method does
not involve any complex calculations (such as square
roots) which is very important to consider when we
develop algorithms to be executed on sensor nodes,
due to sensor’s modest computing power. As we saw
above, after completing sampling procedure, we de-
rive estimates for r2

1 , r
2
2 , r

2
3 , given by Equation 19.

Our aim is to formulate an objective function whose
minimum will yield a good approximation of the sen-
sor’s location.

Figure 4: This is the plot of the function f and its
tangent plane T at the point (10, 10, f(10, 10)) for
x1 = y1 = 0, x2 = 3, y2 = 0, x3 = 1, y3 = 4, r1 =
1, r2 = 2, r3 = 4. The vectors (directions) v, w, q

are depicted. Vectors w and q belong to the same
vertical plane. Point A is the initial point and point
B is the new point. Two vertical planes are depicted,
T (tangent plane) and P .

This function should satisfy two conditions:

• It should be convex.

• Its derivatives should not include roots.

Suppose we have 3 beacons located at (x1, y1), (x2, y2),
(x3, y3). Let f(x, y) be the function

f(x, y) = ((x − x1)
2 + (y − y1)

2 − r2
1)

2

+ ((x − x2)
2 + (y − y2)

2 − r2
2)

2

+ ((x − x3)
2 + (y − y3)

2 − r2
3)

2

Note that if all 3 circles intersect at the same point
(x0, y0), this function has minimum 0 at (x0, y0). Un-
fortunately, minimizing that function is not an easy
task, if we are restricted on the available primitives.
Hence we are going to use methods that are based on
the gradient of the function. The good feature about
such methods is that we can get to a point very close
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to the minimum in a small number of computation-
ally simple iterations. Indeed, let

α(x, y) =
∂f(x, y)

∂x
=

= 4(x − x1)((x − x1)
2 + (y − y1)

2 − r2
1)

+ 4(x − x2)((x − x2)
2 + (y − y2)

2 − r2
2)

+ 4(x − x3)((x − x3)
2 + (y − y3)

2 − r2
3)

(20)

and

β(x, y) =
∂f(x, y)

∂y
=

= 4(y − y1)((x − x1)
2 + (y − y1)

2 − r2
1)

+ 4(y − y2)((x − x2)
2 + (y − y2)

2 − r2
2)

+ 4(y − y3)((x − x3)
2 + (y − y3)

2 − r2
3)

(21)

be the partial derivatives of f . Note that the above
expressions are easily computable on a sensor node.
The function z = f(x, y) describes a convex solid sur-
face with obvious definitions of “interior” and “exte-
rior”. Initially, we make a guess for our point (this is
required by all steepest descent methods [34]). Sup-
pose, for uniformity, we choose as our initial point
(x0, y0) the centroid of the beacon triangle. We com-
pute the vector v which is orthogonal to the tangent
plane T and pointing toward the exterior. Hence

v =
[

α(x0, y0) β(x0, y0) −1
]T

Let now P be the vertical plane containing v

applied to (x0, y0, f(x0, y0)). Since P is a vertical
plane, any normal vector w of P will have a zero z-
component. Additionally, w is orthogonal to v and
therefore may be chosen as

w =
[

−β(x0, y0) α(x0, y0) 0
]T

We seek the vector q pointing towards the mini-
mum of the function. Such vector belongs to P and
is orthogonal to v (q is orthogonal both to v and w

(see Figure 4)), i.e.,

q =
[

α(x0, y0) β(x0, y0) α2(x0, y0) + β2(x0, y0)
]T

Now we compute the intersection point (x′
0, y

′
0) of

the line passing by (x0, y0, f(x0, y0)) which is collinear
with the direction q and the xy-plane. The paramet-
ric equation of this line is

(x, y, z) = (x0 + tqx, y0 + tqy, f(x0, y0) + tqz)

for all t ∈ R.

Then we have that the new point (x′
0, y

′
0) is given

by

x′
0 = x0 −

f(x0, y0)α(x0, y0)

α2(x0, y0) + β2(x0, y0)

y′
0 = y0 −

f(x0, y0)β(x0, y0)

α2(x0, y0) + β2(x0, y0)
(22)

program LOCALIZE

1: read r̂1j , r̂2j , ˆr3j for j = 1, . . . , k from the three bea-
cons;

2: compute r̄i =
Pk

j=1 ˆrij

k
(i = 1, 2, 3);

3: compute s̄i
2 =

Pk
j=1( ˆrij−r̄i)

2

k−1
(i = 1, 2, 3);

4: r2
i ←

r̄i
4

r̄i
2+s̄i

2 (i = 1, 2, 3);

5: choose an initial point (x0, y0);
6: repeat

7: (x, y)← (x0, y0);

8: x′

0 ← x0 −
f(x0,y0)α(x0,y0)

α2(x0,y0)+β2(x0,y0)
;

9: y′

0 ← y0 −
f(x0,y0)β(x0,y0)

α2(x0,y0)+β2(x0,y0)
;

10: (x0, y0)← (x′

0, y
′

0);
11: until (α(x′

0, y
′

0)α(x, y) < 0 | β(x′

0, y
′

0)β(x, y) < 0)
12: λ← 1000−m/100 ; (m is the dimension of the grid)
13: repeat

14: (X, Y )← (x, y);
15: (x′, y′)← (x− λα(x, y), y − λβ(x, y));
16: (x, y)← (x′, y′);
17: until (α(x′, y′)α(X, Y ) < 0 | β(x′, y′)β(X, Y ) < 0)
18: return (X, Y ) as the final estimation;

Figure 5: The pseudocode of the program to be ex-
ecuted on the sensor node. Note that the computa-
tions do not involve any complex operations, such as
square roots, which decreases the computational ef-
fort on the sensor node and is also power efficient.
The main computational work of this programs lies
in gathering and processing the samples.

The relation between all these vectors can be seen
in Figure 4. The described process gives a new point
(x′

0, y
′
0). This point is expectedly closer to the point

that corresponds to the minimum of f as we follow
the direction of the gradient as long as the products
α(x0, y0)α(x′

0, y
′
0) > 0 and β(x0, y0)β(x′

0, y
′
0) > 0.

When this condition no longer holds, we have ”over-
shot”; to remedy, we backtrack to the previous point
referred here as (x, y) and apply a typical steepest
descent method with very small rate λ. We therefore
compute our new point (x′, y′) by setting

(x′, y′) = (x − λα(x, y), y − λβ(x, y)) (23)

We continue this process until the gradients α(x, y),
β(x, y) change sign. At that point we stop and we re-
port the final point as our estimation. Here we should
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emphasize the fact that it is very important to take
samples of adequate size. Taking samples implies a
better behavior for function f , meaning that there
would be only one minimum and therefore the algo-
rithm will quickly converge to the minimum.

(a)

(b)

Figure 6: This is the path followed by the given pro-
gram. The radii of the depicted circles are computed
after the sampling using Equation 19. The first point
of the path (bottom left in (a) and bottom right in
(b)) is the centroid of the beacon triangle. Finally,
the procedure stops after 6 iterations in (a) and 5
iterations in (b). The last two points of the paths
are computed with the second repeat loop (steepest
descent method). Note that the actual point (lightly
shaded point) is very close to the final point of the
paths.

As far as the value of the variable λ is concerned,
this variable is chosen to be small enough and in-
versely proportional to the size of the grid since these
features of λ force the second repeat loop of the algo-

rithm to converge quickly. This has been observed in
the experiments. For the experiments, the value of λ
is equal to 1000−m/100.

In Figure 5 we give a short program for execution
at the sensor node for location estimation. Note that
this program only involves elementary primitives.

Illustrations of two executions of this program are
given in Figure 6.

4.2 Complexity and Limitations

As far as the time complexity of the algorithm is con-
cerned, the most expensive part is the sampling pro-
cedure and the computation of the estimates r̄i

2 and
s̄i

2. These steps take time O(k), so the running time
of the algorithm is proportional to the number of sam-
ples. There is an obvious trade-off between accuracy
and power consumption.

Also, the computation executed on the sensor nodes
depends on the time the gradient methods take to
converge, which is generally small for a well-behaved
function. For the other parts of the algorithm there
are closed formulas, so we can assume that they take
time O(1). We can also easily see that the exact num-
ber of multiplications needed by the presented pro-
gram is (7k + 8) + 10n1 + 4n2, where is k is the size
of the sample, n1 is the number of iterations of the
first repeat loop and n2 is the number of iterations of
the second repeat loop. Finally, the size of the code
of the program (ROM) written in NesC [10] is 47K
whereas the amount of memory (RAM) needed to ex-
ecute this program in TOSSIM [17] (see Section 5) is
637K.

As far as the complexity of the closed formulas
computation is concerned it is realistic to assume that
the specified operations can be executed on a sensor
node (essentially floating point operations). For ex-
ample, there are micro-controllers, such as the AT-
MMega128L [2] (using a Harvard architecture with
three 16-bit indirect memory access registers, accessed
directly or using a constant offset) and MSP430 [35],
which have very rich instruction sets (they support
a wide range of of arithmetic instructions and many
addressing modes). Finally, a hardware multiplier al-
lows floating-point arithmetic to be carried out [20].

5 Simulation Results
In this section we present extensive simulation re-
sults of our method. We have used TOSSIM [10, 17],
a simulator of the TinyOS operating system for sen-
sor networks. We executed our simulations in a
square of area m × m cells, where m = 50, 100, 200.
The 3 beacons are placed in positions that form a
well conditioned triangle (well-conditioning is syn-
onymous with the fact that the function f(x, y) has a

9



Table 1: Simulation in TOSSIM for a 50×50 square:
Execution time, average number of iterations of the
program (n1, n2), localization error (d) and ratio d

m
for various samples sizes over 1000 runs.

k time n1 n2 d d/m
(ms)

20 0.140 4.045 1.081 5.018 0.1003
40 0.230 4.226 1.061 3.774 0.0745
60 0.340 4.419 1.072 3.042 0.0608
80 0.450 4.592 1.051 2.554 0.0510

100 0.570 4.697 1.082 2.300 0.0460
120 0.650 4.781 1.056 2.181 0.0436
140 0.761 4.854 1.048 2.040 0.0408
160 0.901 4.825 1.056 1.890 0.0378
180 1.021 4.984 1.047 1.818 0.0363
200 1.111 4.953 1.055 1.766 0.0353
220 1.221 4.983 1.058 1.665 0.0333
240 1.331 4.990 1.056 1.574 0.0314
260 1.432 4.960 1.062 1.566 0.0313
280 1.532 4.991 1.066 1.533 0.0306
300 1.682 5.052 1.056 1.310 0.0262

single global minimum). Namely, the first beacon is
placed at (0, 0), the second beacon is placed at (m, 0)
and the third beacon is placed at (m/2, 3m/4). The
standard deviations of the three beacons σ1, σ2, σ3

are set to 4 and the path loss exponent n is set to 2.
We also recall that we set the variable λ that appears
in Equation 23 equal to 1000−

m
100 , where m is the di-

mension of the grid. Finally the measured distance is
computed using Equation 5. We count the execution
time of the algorithm implemented in NesC [10] (that
runs in TinyOS) and the average number of iterations
of the repeat loops over 1000 runs. We also show the
mean of the distance d between the actual point and
the computed point. We use the ratio d

m as a measure
of the quality of the solution of the algorithm. Note
that this metric was proposed in [37]. All the results
for different number of samples and different sizes of
grids are shown in Tables 1 (m = 50), 2 (m = 100),
3 (m = 200) (in Tables 1,2,3, k is the number of
the samples, the time is counted in milliseconds (we
count the exact time that the simulated processor in
TOSSIM takes to execute this program), n1 is the
number of iterations of the first repeat loop, n2 is the
number of iterations of the second repeat loop and d
is the mean of the distance between the actual point
and the computed point).

The simulation results with TOSSIM (Tables 1,2,3)
show that the sensor node can execute the algorithm
in a small amount of time. This time is proportional
to the number of samples we use each time which in-
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(a) Histogram for the distance from the actual
position for k = 50.
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(b) Histogram for the distance from the actual
position for k = 100.

Figure 7: Histograms for 1000 runs. Note that the
mean distance from the actual position decreases as
we increase the size of the sample.

dicates that the sampling procedure dominates the
execution time on the sensor node. Only up to 6 iter-
ations (n1+n2) are enough to compute an estimation
of the actual point and the quality of the estimation is
dependent on the number of the samples. Addition-
ally, note that for various grid sizes, the algorithm
has a uniform behavior, since the ratio d

m is similar
for different sizes of the grid. Also, in all cases, the
solution we get is better for larger sizes of samples.

We also show the probability distribution of the
distance of the computed point from the actual point
derived for 1000 runs (Figures 7,8) and for m = 50.
We can see the plot of the distribution of the error
of the estimation (which we define as the distance of
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(a) Histogram for the distance from the actual
position for k = 200.
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(b) Histogram for the distance from the actual
position for k = 300.

Figure 8: Histograms for 1000 runs. Note that the
mean distance from the actual position decreases as
we increase the size of the sample.

the computed point from the actual point) for various
sample sizes (k = 50, 100, 200, 300). It is clear that as
the sample size increases we get an increasingly bet-
ter approximation of the actual location. The mean
of the error for these measurements is no more than
3.16 (this is achieved for k = 50 (Figure 7(a))) and
it goes down to 1.31 for k = 300 (Figure 8(b)). Also,
it is interesting that the distribution of the error (for
a much larger number of runs) seems to follow a log-
normal distribution (Figure 9).

Finally, we give a table (Table 4) that compares
existing work on location estimation algorithms. We
see that our method is competitive with previous
work. We present the average localization error d,
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(a) Histogram for the distance from the actual
position for k = 50.
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position for k = 300.

Figure 9: Histograms for 50000 runs. Note that the
resulting probability distribution appears to be log-
normal.

the area A of the field where the experiments are ex-
ecuted and the ratio d√

A
. We use as a comparison

measure the quantity d√
A

, which for our algorithm is

bounded by 0.1 (this is what we get for the smallest
number of samples k = 20). However, for a number
of samples k = 300 we can get even smaller values
(for example for k = 300 and for an area 1000× 1000
we get d√

A
= 0.026). From Table 4, we see that our

method gives always better or as good results as the
results obtained by the existing methods. Also, if we
slightly increase the number of the samples we use, we
get very good results and the ratio drops substantially
(for example for k = 60 we get a ratio d√

A
= 0.06).
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Table 2: Simulation in TOSSIM for a 100 × 100
square: Execution time, average number of iterations
of the program (n1, n2), localization error (d) and ra-
tio d

m for various samples sizes over 1000 runs.

k time n1 n2 d d/m
(ms)

20 0.130 3.670 1.142 9.986 0.0986
40 0.240 3.817 1.046 7.634 0.0763
60 0.360 3.884 1.010 6.760 0.0676
80 0.470 3.910 1.010 6.140 0.0614

100 0.570 3.950 1.008 5.740 0.0574
120 0.691 3.960 1.006 5.352 0.0535
140 0.801 3.969 1.002 5.310 0.0531
160 0.921 3.975 1.002 5.002 0.0500
180 1.001 3.985 1.000 4.802 0.0480
200 1.131 3.984 1.001 4.689 0.0468
220 1.221 3.933 1.058 4.680 0.0468
240 1.362 3.983 1.000 4.503 0.0450
260 1.462 3.994 1.000 4.454 0.0445
280 1.592 3.994 1.000 4.441 0.0444
300 1.692 3.996 1.001 4.360 0.0436

Table 3: Simulation in TOSSIM for a 200 × 200
square: Execution time, average number of iterations
of the program (n1, n2), localization error (d) and ra-
tio d

m for various samples sizes over 1000 runs.

k time n1 n2 d d/m
(ms)

20 0.120 3.640 2.736 19.977 0.0998
40 0.240 3.820 2.323 14.957 0.0747
60 0.360 3.878 2.219 13.093 0.0654
80 0.450 3.909 2.120 11.575 0.0568

100 0.560 3.938 2.075 10.821 0.0541
120 0.670 3.953 2.006 10.030 0.0501
140 0.791 3.955 2.029 9.317 0.0460
160 0.911 3.960 2.024 8.979 0.0440
180 1.001 3.977 1.946 8.564 0.0420
200 1.111 3.983 1.946 8.383 0.0410
220 1.201 3.984 1.999 8.347 0.0410
240 1.361 3.983 1.963 7.998 0.0399
260 1.462 3.994 1.937 7.894 0.0394
280 1.582 3.994 1.921 7.852 0.0392
300 1.712 3.996 1.919 7.774 0.0387

Note that the previous methods use sometimes more
than three beacon nodes (see for example [25]) where
O(m) beacons are placed around the area of localiza-
tion for an m×m grid, whereas we use only 3 beacon
nodes.

Table 4: Comparison of existing work in location es-
timation based on RSSI. In each row, we display the
bibliographic reference and the respective average lo-
calization error (d), the size of the area of the exper-
iments A and finally the ratio d√

A
.

reference d area A d/
√

A
(m) (m2)

[3] 3 22.5 × 45.5 0.090
[29] 3 16 × 40 0.118
[4] 4 35 × 40 0.107
[26] 7.62 13.71× 32 0.360
[1] 3 500 0.130
[27] 6 60 × 60 0.100
[5] 1.83 10 × 10 0.183
[32] 0.8 6 × 6 0.130
[18] 13 18751 0.094
[39] 10 26 × 49 0.280
20 samples 5.018 50 × 50 ≃ 0.1
60 samples 3.042 50 × 50 ≃ 0.06

6 Conclusions and Future Work
In this paper, we have analyzed the most commonly
used measurement model for location estimation in
sensor networks. Given a normal distribution for the
error in dBm, we show how to derive the correct prob-
ability distribution for the position of the sensor node.
The computation of the probability distribution is
based only on one measurement. We verify that if we
try to estimate the unknown position based only on
this probability distribution, the resulting error may
be unacceptably large.

We have therefore presented a theoretical anal-
ysis of sampling the measurements for location es-
timation. By computing statistics on the gathered
samples by only three beacons, we can produce a so-
lution based on a minimization method. We propose
a simple algorithm that can easily be executed on the
sensor node; its complexity, for a constant number of
beacons, is proportional to the size of the sample. It
is evident that there are a lot of trade-offs in location
estimation in sensor networks. If more accuracy is de-
sired, one has to deploy more beacons or to use more
samples. This has an impact on the energy consump-
tion of the sensor. The energy-optimal case is the
case where only 3 beacons are deployed and make an
estimation of the actual point based on the probabil-
ity distribution computed by taking into considera-
tion only one measurement. This, however, gives un-
acceptable errors. Additionally, executing computa-
tions with the computed probability function is unre-
alistic, since it involves extremely complex formulas.
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Hence were we to depend on few measurements, off-
line computations have to be made to provide the sen-
sor with the necessary data; this immediately raises a
storage problem, since the storage capacity of a sen-
sor node is limited. On the other hand, one can use
more samples, an approach that, however, increases
energy consumption.

As future work, we envision an extended study of
these trade-offs and the implementation of the pro-
posed algorithm on real motes. Additionally, we can
certainly extend the analysis to more than three bea-
cons and evaluate the corresponding improvements.
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