
Technical Aspects of Roomba Pac-Man

Mark Moseley
Department of Computer Science

Brown University
115 Waterman St.

Providence, RI, 02912-1910
mmoseley@cs.brown.edu

Abstract—
Robotics can be seen as a field of computer science
still in its infancy. In recent years there has been
a tremendous explosion in innovation, both in hard-
ware and software. The dynamic nature of robotics as
well as the necessity for physical hardware presents
a unique challenge for those wishing to educate the
next generation of roboticists. This paper presents
the technical aspects of Brown University’s Computer
Science Robotics course. The goal is to describe our
design choices and the overall software development
necessary to establish the course structure.

I. INTRODUCTION

Robotics is a rapidly growing field in academia and it
is just beginning to gain a foothold in the commercial
marketplace. While this growth and innovation is exciting
it creates a problem for college-level educators. A robotics
course needs physical robots and sensors for the students.
The options for robotic platforms are very limited and often
consist of significant trade-offs between price, performance,
and availability. Additionally, its very common in robotics
to get bogged down in developing the low level interface
and drivers specific to the devices on the robot. However, in
teaching robotics, the low level control should be abstracted
away. Frequently, this is accomplished by closed-source
middle-ware custom designed for the specific platform. Thus,
a new API must be learned for different robotic platforms
and changing or adding sensors is limited if not impossible.

There is one option available to avoid all the issues
surrounding physical robots, simulation. However, simula-
tion environments remove several key aspects of robotics.
Most importantly, simulation removes the error and noise of
physical sensors and the unpredictability inherent in the real
world. Also, designing course material purely in simulation
removes a great deal of the excitement and motivation for
students.

This paper presents from a technical point-of-view our
attempt at Brown University to overcome these challenges
while providing interesting and motivating course material
and projects. Quite a bit of development was necessary to es-
tablish a robust, intuitive, and extendible client environment
for students. Support code for assignments was developed to
allow students to concentrate on roboticsts and all projects
were implemented to ensure that projects were appropriately
difficult and to identify potential pit falls.

The course presents students with an accessible robotic
platform and course material on par with that being used in
robotics today. The course material and projects are designed
around creating an autonomous robot to play a real world
version of Pac-Man. While this may initially sound like
a simple task, it is actually very complicated addressing
numerous aspects of robotics. Furthermore, motivating and
keeping student’s interested is a common problem across
education. The game-oriented approach of Pac-Man provides
the motivation and excitement of competition to drive stu-
dents.

The heart of the approach is the use of the Open Source
Software (OSS) Player/Stage/Gazebo (PSG). PSG provides
the dual purpose of serving as the middle-ware between the
programmer and the physical robot hardware and providing
the ability for 3D physics-based simulation. The open source
nature of PSG gives the added advantage of being able to
modify and make additions to the code. In development of
this course the open source nature was taken full advantage
of, as enhancements were made to numerous aspects of PSG.
These enhancements have been submitted to the developers
of PSG, some have already been incorporated into the
project, while others should be in the near future.

Another critical aspect of the course is the robotics
platform and sensors. The platform utilized is the iRobot
Roomba vacuum. The Roomba is well suited for a robotics
course. It is arguably both the most successful and accessible
mobile robot ever developed. Furthermore, the Roomba is
relatively cheap enabling a higher robot to student ratio
and has an interface for external control. The sensors and
processing on the Roomba are somewhat limited, but this
is addressed through the addition of a web camera and a
laptop. The laptop serves as the brain for the robot, hosting
the PSG software and providing the means to connect the
web camera.

Setup and installation of the hardware was an important
aspect of development. In the interest of accessibility and
ease of install across the multiple laptops used for the class,
an Ubuntu Linux install script has been developed that cre-
ates the exact environment used for this class (including PSG
modifications). Not only does the script automate the install
process but it serves to enumerate the required libraries
and install steps for use with other operating systems. This
environment was also ported to Mac OS X which widens

Fig. 1. An early version of Roomba Pac-Man platform.

future possibilities for course development.
Overall the combination of PSG, the Roomba vacuum,

and a web camera provides both robotic simulation and a
mobile, programmable robot with abstracted device control
and rich sensory input for relatively cheap. This structure
enables the course to focus on critical and current robotic
concept through both simulation and the real world.

II. APPROACH

A. Player/Stage/Gazebo

The course revolves around using the PSG software and
the Roomba platform. PSG is used because it eases devel-
opment and re-usability of code in robotics. The same code
can be used for numerous types of robots and developers
do not need to learn a new API every time a change in the
physical hardware occurs or even between total switches in
robotic platform. Player/Stage/Gazebo is actually composed
of three separate programs. Player is an open source robot
control interface, while Stage and Gazebo are simulation
environments.

Player acts as middle-ware between hardware and the
controller to abstract away manufacturer/model specific code.
The current library of supported platforms and accessories is
quite extensive. Essentially, Player presents generic devices
to the controller, such as laser, position control, camera,
etc. . These devices may exist either in the real world or
simulation. The effect of this is that code is not tailored and
dependent on the underlying hardware. The same code will
run with different physical robots and sensors as long as the
same generic devices are present. A simulation environment
such as Stage or Gazebo can even be substituted in without
requiring a change in code.

Fig. 2. A screen shot of the Gazebo simulation of the real world Roomba
Pac-Man environment.

Player itself acts as a server between the robot and any
program that sends commands or requests sensory informa-
tion. Communication between a client and Player occurs over
a TCP/IP network connection. The benefit of this approach
is that a client is not tied to the development language of
Player. In fact any language that uses TCP sockets can be
used. Player itself supplies client-libraries for connecting to
a player server in C, C++, Java, Tcl, and Python. However,
the open source community has developed numerous other
libraries including LISP, Ruby, Scheme, and more.

In the course structure which will be discussed later,
simulation in Gazebo plays a key role. Gazebo is a high fi-
delity 3D physics-based simulation, allowing for a reasonable
representation of the real world. Gazebo utilizes the Open
Dynamics Engine (ODE) library for integrating physical
dynamics and arbitrary kinematic structures. Furthermore,
the sensors simulated by Gazebo are modeled after real
devices which helps their behavior to match more closely
with that exhibited in the real world.

1) Modifications: It was necessary to make several modi-
fications to Player to enable full functionality between Player
running on a laptop, the Roomba, and a web camera. The
Roomba support in Player only enabled position control and
the bump sensor. This functionality was extended to include
support for the IR sensors, touch sensors, and control of the
vacuum and LEDs. Other additions made throughout Player
included bug fixes associated with the original Roomba
support, modifications to the Video 4 Linux driver in Player,
finishing support for the gripper proxy, and modifications to
several of the utilities supplied with player.

2) Install and Setup: The configuration and installation
process for PSG can be quite extensive. The majority of the
difficulty arises from Gazebo and its dependency on several
libraries and OpenGL support. To aid in this process an
Ubuntu install script was developed. The script automates ev-
erything except for installing the video card drivers to enable
hardware-accelerated OpenGL support (software support is
added by the script). PSG was also ported to Mac OS X,
which not only increases the accessibility of the software,

but opens new possibilities for future controllers.

B. Course Structure

1) Labs: The course consisted of guided discussions
along with a series of labs and projects. The first three labs
were aimed at getting students acquainted and comfortable
with PSG, the Roomba, and the various sensors at their
disposal. Lab 1 is an introduction to PSG, simulation, and
simple reactive control . Lab 2 provides the first exposure to
the use of a camera and object seeking as students must use
a camera in Gazebo to navigate between two bright colored
fiducials. Finally, Lab 3 serves as the introduction to the
Roomba by extending Lab 2 to a physically embodied robot.
Due to PSG’s nature, the Lab 2 code will run and control
the Roomba. However, students are quickly exposed to the
discrepancies between simulated and real world sensors and
the unpredictability of the real world.

2) Project 1: Subsumption: Lab 3 serves as the lead in
for the first project. Project 1 consists of creating a purely
reactive Roomba Pac-Man client that follows a Subsumption
architecture. Clients must detect collisions with physical
and virtual walls, avoid ghost Fiducials (green cylinders),
attract to power-up fiducials (orange-green cylinders), collect
food (orange beads), and wander when none of the previous
objectives are available

3) Project 2: Monte-Carlo Localization: The goal of the
second project is to implement Monte-Carlo Localization in
simulation. The environment provided is a re-creation of
the real world environment that Roomba Pac-Man will be
conducted in. The world model includes the floor plan as
well as a series of colored fiducials that will be placed in
the same locations in the real world to aid in localization.
The fiducials are necessary as we do not have laser range
finders available for the Roombas, just web cameras. The
goal of this project is for students to demonstrate the ability
to localize using some combination of the bump sensor, laser
range finder, and camera.

4) Project 3: Deliberative Roomba Pac-Man: Project 3
consists of creating a deliberative control policy for the
Roomba Pac-Man task in simulation. This project utilizes
the code developed in the first two projects, along with the
development of a planning algorithm that must take into con-
sidering dynamic events such as avoiding ghosts. Students
must overcome problems in perception and concentrate on
robustness and accurate planning in order to maximize their
score.

5) Final Project and Future Work: The final project
serves a culmination of the previous projects. Students must
combine everything they have learned and done in the class
to create a competitive Roomba Pac-Man controller. The
project is relatively open-ended with a strong emphasis on
the students using what they have learned in the course as
well as incorporating novel ideas into their design.

III. IMPLEMENTATION

A. Hardware
The aim for the course is an accessible and cheap robotics

platform. It is often the case in robotics that price and
accessibility are inversely proportional to performance, func-
tionality and robustness. Fortunately, the iRobot Roomba
platform combined with a standard laptop running Ubuntu
Linux, PSG, and a web camera provides the ideal solu-
tion to this common problem. The Roomba as a well-
established consumer product provides the robustness de-
sired of a robotics platform along with a price-point aimed
at the average consumer. While the Roomba has limited
processing and sensory inputs, coupling the Roomba with a
standard web camera and Dell Dimension laptop enables the
desired functionality while keeping costs low. The Logitech
Communicate STX web camera was chosen as the web
camera because it is supported in Linux, runs at 640X480
at 30 frames per second, and it is available at several local
electronics stores. The final standardized system consists of a
Roomba at $150, a standard Dell Dimension laptop at $500,
a Roo-Stick for connecting the Roomba to the Laptop at $25,
and a Logitech Communicate STX web camera at $30. The
final cost of the entire system falls under $700.

B. Extensions to PSG
1) Camera Proxy: One of the goals in developing the

course was to be able to use standard off-the-shelf web
cameras with Player. Luckily, Linux drivers providing the
standardized Video4Linux API exist for nearly all currently
available web cameras including the Logitech Communicate
STX. Player’s camera proxy retrieves frames from the cam-
era utilizing the libfg frame grabber library. Libfg is basically
a C-based wrapper around the Video4Linux API to enable
high-level access to video devices.

According to Player’s documentation, only one camera
had been tested and proven to work with the camera proxy,
but any Video4Linux camera ”should” work. Unfortunately,
this turned out to not be the case, as five different cameras
with Linux drivers were tested and failed to work with Player.
In all cases Player returned the error that it was unable to
read frames from the video device. Player also required that
several of the camera parameters, such as color depth, screen
size, color-space, etc. be specified for the device by the
client. While many cameras have support for different sets
of parameters it is frequently the case that only a subset of
the available parameters are supported. For several of the
cameras tested the available parameters were not known,
which made configuration and testing quite difficult.

It was decided that there were two possible sources of the
problem. The first, could be a problem with the libfg library
being used by Player. The second source could be in the
parameter specification. It could be the case that the proper
parameters were never found, or that there were parameters
that had to be set that Player did not allow the client to
configure.

In order to test the first hypothesize the latest version of
libfg was retrieved. The latest libfg is significantly different

than that contained in Player. Libfg comes bundled with a
small program called Camview which simply opens the video
device and performs live streaming. Camview with the latest
libfg was able to successfully stream all the Video4Linux
web cameras tested. Unfortunately, the libfg within Player
was too tightly integrated to be able to extract and test
with Camview. Instead, the new libfg was integrated into the
camera proxy in Player and all five cameras were retested.
With the new libfg one of the five cameras worked, the Lego
USB Camera. However, the Logitech Communicate STX still
failed to work.

Documentation in Player on the camera proxy stated that
it would be great if someone could figure out how to
auto detect the camera parameters rather than require their
specification. It was noticed that the libfg Camview utility
did not require parameter specification. Through analyzing
the source of Camview, the method for auto-detecting camera
parameters was discovered and this was incorporated into
Player. In the new behavior of the camera proxy, user spec-
ified parameters are optional and treated as overrides. The
benefit of this approach is that those parameters that Player
did not allow a user to specify are now guaranteed to be
correct. Furthermore, the user does not have to worry about
configuring camera parameters unless they have very specific
requirements of the device, such as limited dimensions or
frame rate.

The auto-detection of camera parameters was implemented
on top of the new libfg integration, so the benefit of auto-
detection on the original camera proxy is not known. With
auto-detection and the new libfg library all Video4Linux
cameras tested worked with Player. These changes have since
been discussed with developers of Player Stage Gazebo and
a patch file has been submitted which should be incorporated
into the project in the near future.

2) Roomba Driver: Initially, Player came with support
only for position control and reading the bump sensor values.
However, the Roomba has several other inputs and outputs
available. The structure of Player makes it relatively simple
to add new devices to a robot. The robot driver simply
has to register and define the desired interface and update
the structure appropriately. Player was extended to enable
the ability to read the six infrared sensors present on the
robot through the IR proxy. The infrared sensors include
the IR-Wall detector, a side regular wall detector, and four
downward facing floor detectors. An opaque proxy was also
added to allow button presses to be retrieved as well as LED
colors to be set.

Finally, a gripper proxy was added to turn the vacuum
on and off. The gripper proxy is primarily developed for
robotic arms in three dimensional space. However, there is no
”vacuum proxy” within Player and it was felt that the gripper
proxy provided the most intuitive match for the vacuum. The
gripper development proved to be the most difficult aspect
of the Roomba development. The gripper proxy was only
partially implemented in Player and was not in a functional
form. The developmental version of PSG had the complete
implementation. However, being developmental, it contained

Fig. 3. A demonstration of playercam performing blobfinding with a
fiducial and ’food’.

numerous other issues and could not be compiled. Therefore,
work was undertaken to port the developmental gripper proxy
code into the version of Player being used for the course.
Gazebo also needed to be modified to reflect the gripper
proxy changes. The Roomba vacuum only has two states, on
and off, which are mapped to the gripper proxy open and
close commands.

Similar to the camera proxy changes, a patch file was
created for the Roomba driver in Player and submitted
to the PSG developers. These changes have already been
incorporated into the PSG source code. They are available
in the development version of Player and should be in the
next official release.

3) Player Utilities: Player comes with several utilities to
monitor sensors and control Robots. Changes were made to
several of these utilities. PlayerJoy and PlayerV both required
changes to enable control of the recently implemented grip-
per proxy. Playerjoy allows joystick-based tele-operation of a
Robot and mappings were added to enable a Playstation-style
controller to open and close the gripper proxy through the
”X” button. Playerv a program that allows both tele-operation
as well as real-time viewing of sensory information was also
modified to allow open and close control of the gripper proxy.

The most substantial utility changes involved modifica-
tions to the playercam utility. Playercam streams the frames
from the camera proxy and overlays the blobfinder results
(a color segmentation proxy) in the stream. The blobfinder
uses the popular CMVision color segmentation library. The
blobfinder performs color segmentation by reading color
thresholds from a user-defined colors.txt file. This file spec-
ifies YUV ranges and the color that pixels within that range
should be segmented into. Playercam’s initial behavior was
to return an RGB value of the pixel corresponding to the
location a user clicked in the image. Multiple clicks would
then need to be converted by hand into YUV to determine
a reasonable threshold. Playercam’s behavior was modified
to allow the user to select a region of interest in the image
and report the range of YUV values for that region. There
are several ways to convert from RGB to YUV. Initially, the
conversion algorithm used was not the same as that being
done within the blobfinder and this created discrepancies
in segmentation. The conversion was then changed to the

approximation used by the blobfinder which yielded much
better results. This change was extremely helpful for cam-
era calibration as proper ranges for segmentation could be
determined quickly.

4) Bug Fixes: Also, during initial testing of Player and
the Roomba two bugs were discovered. The first was a
timeout that would occasionally occur. Extensive testing
revealed that the timeout resulted from a bug in the Roomba
communication code. An initial workaround was developed
by limiting the length of the timeout and conducting a
full restart of the communications. Player developers were
made aware of the issue and several weeks later returned
a simpler and cleaner fix, which was opening the Roomba
serial device without the O SYNC flag. The O SYNC flag
guarantees that multiple writes to a file are completed in a
synchronized fashion. However, in the case of the Roomba
and the serial device, commands are being streamed at a
high rate which presumably caused synchronization issues.
However, the developers stated they were unsure as to exactly
why this fixed the problem.

The second bug involved boot up and shutdown sequences.
During boot up, a series of commands are sent to turn on
the Roomba, then activate the motors, and finally activate the
sensors. However, these commands were sent too quickly
and the motor activation packet was lost. This bug was
solved by adding a small millisecond delay between boot up
commands. The problem with the shutdown sequence was
easily fixed, Player did not send the command to physically
turn off the robot when Player was shutdown. Instead, the
user would have to remove the Roomba’s battery to shut it
off.

C. Installation and Setup

Configuration and installation of PSG can be a rather
challenging and time-consuming process made all the worse
when multiple installations must be conducted The difficult
installation also decreases the accessibility of PSG to stu-
dents who may want to enable development on personal
machines. To this end, it was decided to create an install
script for the Ubuntu Linux platform. While the script
automates the process it also provides a clear list of what
libraries, packages, and steps must be executed in order to
duplicate the environment used for the class.

Player itself requires a rather limited number of libraries.
However, added functionality can be obtained through sev-
eral optional libraries. Conversely, Gazebo requires quite a
few libraries and packages, with no optional packages. The
required libraries and packages, are the mesa OpenGL de-
velopment libraries, ODE compiled from source, the gtk+2.0
development library for the PSG GUIs, several image li-
braries, gcc and g++, x11, xml, glib, gdal, and python.
Optional libraries include the computer vision libraries, libcv
and libxmu, the science library gsl, libgeos, fire wire camera
support from libavc1394-dev, and the boost development
libraries. The complete list of libraries and the installation
process can be found in the install script included in the
appendix.

It is also highly recommended that proper video card
drivers are installed to enable hardware-based graphics ac-
celeration Video card driver installation requires modifying
and recompiling the kernel and the installation process can
vary greatly between different manufacturers and models.
Therefore, it could not be included in the install script.

The install script also applies patches for player and
gazebo to incorporate all the changes that were made for the
course.12 This includes the camera proxy, Roomba driver,
and player utilities changes. Though the install script was
developed in Ubuntu, it utilizes apt-get for all the library in-
stallation. Apt-get is a relatively universal library installation
utility throughout Linux, which means that the install script
will work on other variants of Linux besides Ubuntu as long
as appropriate libraries have been compiled and registered
with apt-get for that version of Linux.

PSG was also ported to Mac OS X. The reasons for this
are two-fold. First, the dual core Macbook laptop proved to
be by far the most powerful laptop available to course staff.
Second, having OS X ability for the PSG structure opens up
new avenues for future hardware for the course, such as Mac
Minis.

1) Mac OS X Installation: The port to OS X proved
a very difficult task Gazebo, while Player was substan-
tially simpler. All the required libraries were installed using
the fink installer, which behaves similar to apt-get in a
Linux environment. However, significant issues arose with
OpenGL when attempting to install Gazebo. Macs do not
have the OpenGL extensions (glx.h). While the Mesa Open-
GL libraries do provide the OpenGL extensions, it proved
extremely difficult to set up the environments and paths
such that the default OpenGL libraries on the Mac would
be ignored in favor of the Mesa libraries. There also turned
out to be a discrepancy between several of the OpenGL API
function calls in the types of the variables being passed in. It
turns out that the Mac version of the Mesa OpenGL libraries
implement several API calls with integers instead of the
GLint type that Gazebo expects. Fortunately, the GLint and
integer types are really the same and it was possible to just
change the variable types in the Gazebo source. The complete
Mac OS X installation has completely functional Gazebo
code that runs extremely fast. Player is also functional,
however it is lacking camera support. The camera proxy in
PSG only provides drivers for video4Linux enabled cameras
and Linux firewire cameras. No code exists for reading in
frames from a camera in Mac OSX which uses a completely
different API.

D. Support Code

Several classes were developed as support code for the
projects.3. The first class developed was a fake bumper
proxy. For the simulation based projects, the sensors avail-
able should match those present on the physical Roomba
platform. Unfortunately, Gazebo does not currently have

1http://cs.brown.edu/people/mmoseley/cs148/player.patch
2http://cs.brown.edu/people/mmoseley/cs148/gazebo.patch
3http://cs.brown.edu/people/mmoseley/cs148/supportCode.tgz

Fig. 4. An example of a particle filter output using the draw world class.
A green square is the robot’s true location and light blue is the value
determined by localization.

support for bump sensors and the changes and modifications
to add bumpers to the simulation would have been quite
extensive. Therefore, a fake bumper proxy class was created
with the same interface as the bumper proxy in Player. The
fake bumper actually utilizes Player’s laser proxy. Three laser
readings are checked, straight ahead, left at 45 degrees, and
right at 45 degrees. If any of the three readings fall below
.5 meters then the appropriate bumper values are set to true.

Another support class developed is the truth proxy class.
Earlier version of Player contained a device called a truth
proxy. This proxy worked only in simulation and returned
the true coordinates of the robot within the simulated en-
vironment. The proxy goes against the nature and structure
of Player and thus, it was removed. However, when testing
core concepts in simulation, such as localization, being able
to compare estimated location to true location is an essential
debugging tool.

The removal of the truth proxy from Player was justified,
and it was determined that it should not be reintroduced into
the Player source. Instead, an external truth proxy class was
developed that connects directly to the Gazebo simulation
engine to retrieve the truth information for the robot. Gazebo
provides an interface library for retrieving truth information
about objects in the world which made the process relatively
simple. The current incarnation of the truth proxy returns
the two dimensional (x,y) and orientation (theta) of the robot
and exposes the same interface to the client as Player-based
proxies do.

The final support class developed is a DrawWorld class.
The goal of this code is to provide students with a simple
means of representing and accessing a map of the world
within their code as well as providing a simple method for
visualization. Player does contain a map proxy that can read
in a map and create an occupancy grid. However, it does not
have a method for discerning fiducials within the map and

it cannot be easily integrated with a client-designed Monte-
Carlo Localization, only Player’s built in MCL proxy.

The draw world class allows clients to load a map of
the world that exists in png image format. Simple functions
are supplied for retrieving the image dimensions, setting and
retrieving pixel values in the image and saving the image out
into several image formats. These processes are necessary
for the deliberative controller projects. Localization and path
planning require some internal map of the world including
walls and obstacles. Another function is also included in the
class to aid in debugging and visualization of the particle
filters for the deliberative projects. the function takes a vector
of x,y points as input and draws red X’s at those locations
in the image. The purpose of all this image and visualization
support code is to enable students to concentrate on the core
robotics problems. In the case of localization, the draw world
class also provides a bit of direction on how to approach and
debug a complex problem that can seem overwhelming to
students new to robotics.

E. Implementation of Labs and Projects

All of the course labs and projects were also implemented
well ahead of the class and are available for future iterations
of the class in a CVS repository. While this was an arduous
task in the limited time available it turned out to be a great
benefit. The foremost reason for course staff implementation
of the projects was to enable the staff to be able to easily
answer student questions and provide help as student’s imple-
mented the projects. It turns out that this indeed provided the
expected benefits. The source code was frequently used for
reference when presented with questions, and it was utilized
in the classroom to provide demos of expected results.

The implementation of the labs and projects also had the
unexpected benefit of identifying potential pit falls. One
prime example discovered are the set and replace rules
that exist in Player. In Player every devices streams its
sensory information to Player at some rate. Player queues
the messages, interprets them one at a time, and then queues
the messages for transmission over TCP/IP to the client. By
default, it is up to the client to read the messages off the
queue. If the client does not read the messages fast enough,
the queue becomes backed up and the messages retrieved
are no longer up to date. Furthermore, the queue runs out of
space for new messages and the new sensory information is
dropped. This default behavior can have devastating effects
on a controller if students do not take precautions to prevent
it. However, the set and replace rules provided by Player
allow for this default behavior to be changed. The set rule
changes the read behavior conducted by the client so that
instead of just retrieving the latest sensory information, all
messages are retrieved from the queue with one read. The
replace rule builds upon this by making it so that messages
from the same device are replaced in the queue. In other
words, the client will always receive the most up-to-date
sensor information.

Implementing the projects also revealed several potential
difficulties in conducting vision based localization. One of

(a)

(b)

Fig. 5. An example of learned behavior by the robot. In this sequence of images, the robot has been taught to drive back and forth between fiducials

the most significant revolved around the coordinate space
that Player returns odometry values in. Odometry values
are returned in reference to the coordinate space in which
the robot started from. Understanding how to transform
the odometric coordinate system into that of particles in a
localization particle filter proved a difficult task for the course
staff. To help students avoid this problem, the problem was
brought up by staff in class discussion and several possible
solutions were presented.

Finally, it was discovered that vision based localization can
suffer greatly from issues such as occlusion, two fiducials
appearing as one, and approaching a fiducial so closely that
the top and bottom are no longer seen. All these cases can
lead to severe errors in estimation of bearing and distance to
the fiducials. Solutions for these problems were developed by
the staff during the course of implementation. Then, through
the discussion oriented structure of the class these potential
issues were brought up by the staff and both students and
staff presented possible solutions.

F. Mixed initiative Q-learning from Demonstration

Work has also begun on developing a mixed-initiative
machine learning control structure for the Roomba Pacman
task. The underlying idea is that rather than have a roboticist
sit down and program a control policy, a human will be able
to tele-operate the robot to perform the desired task and have
the robot learn the behavior. So far, we have developed an
application within the PSG framework. The robot acts as the
student, and watches as a teacher, either human-controlled
or a traditionally programmed controller perform the task.

While running, the user can switch between learning mode,
where the teacher demonstrates and the client learns, and
autonomous mode, where the robot exhibits the behavior it
has learned. If the client is unsure about what actions to
take within a state, the user can simply return control to the
teacher to demonstrate the desired behavior.

The underlying learning method utilized is QLearning
where the robot basically learns state action mappings. Our
QLearning uses the work from (Szepesvari and W.D. Smart
2004). To update each value in the QTable we apply the
following Q Function Q[S][A] = Q[S][A] + α(r(S) +
max(Q[S][A′]) where S is the current state, A is the action
executed, r(s) is the reward given to the ”student” for being
within a certain state, andα is the learning rate. At every
iteration the value give for a state-ation pair is updated by
multipling the reward and the Q-value of the best action one
can take from a given state by the learning rate. Intuitively,
the robot is determining what the benefit is for the state it is
in and what benefit is achieved from all the actions that can
be taken from the state.

To demonstrate its learned behavior the student determines
its current state. It then retrieves the possible actions for
that state from the Qlearning table and probabilistically
determines which action to take. This probabilistic approach
takes into account the randomness that may be inherent in
the decision making of the teacher.

Attention has been paid to creating a very robust and
extensible code structure. The number of states and actions
used can easily be modified, and the table representing the
learned behavior can be saved and loaded. Furthermore, the

table representing learned behavior has been designed so that
it will work with whatever dimensionality of state and action
space desired. The table is also template-based allowing
changes to the internal representing of a table entry.

This is a very different approach to control policy pro-
gramming in robotics. It is our hope that the QLearning-
based demonstration learning we have begun may become
part of the curriculum for future iterations of the course.

IV. DISCUSSION

Overall the course went very well. Feedback from students
was encouraged throughout the course and it is evident that
many students found the course interesting and motivating.
The combination of simulation and real world gave students
a well rounded look at robotics and aided in prototyping and
testing. The development of this course has also resulted
in a very solid and well structured codebase that is easily
reproducible and modifiable. Furthermore, thanks to PSG,
the structure developed is easily expandable to new and
different platforms as robotics continues to innovate and
grow.

PSG itself has also received enhancements that have
already begun to be incorporated into the official source to
benefit roboticists throughout the world. Roombas in PSG
now have full support for reading of all their sensors and
control of the vacuum. PSG also now works with a much
wider range of web cameras and color segmentation is a
much less tedious process.

Unfortunately, despite efforts to prevent students from
getting bogged down in hardware, configuration and general
non-robotics issues, it still inevitably happened. Common
problems involved improper use of Player, and crashes in
Gazebo due to zooming out too far or running for too long.
Most of these problems can be significantly reduced in future
years just by enumerating these problems and their solutions
to future students.

There were also significant problems with vision in the
real world. Cameras are extremely sensitive to changes in
light. The effect is so significant that due to the windows
present in the Roomba Pac-Man area it was not possible
to run during the day. Even at night, careful attention had
to be paid to fiducial placement so that significant shadows
were avoided. Another problem with lighting is that the
Logitech cameras contain hardware-based automatic white
balancing. This means that the camera would auto adjust
the brightness when the overall brightness of the image
changed, making similar colors appear significantly different.
Unfortunately, the automatic white balance is hardware-
based and no immediate solution exists to fix the problem.
Instead, it must be compensated for by relaxing the color
segmentation thresholds.

Other vision problems were also present due to the specific
environment chosen for Pac-Man. Glass reflections often
resulted in phantom objects being seen. There are also several
railings present that as far as the Roomba is concerned act
as walls. However, fiducials are seen by the cameras through
the railings, resulting in significant localization issues. There

are only two apparent options for fixing these problems in
the future. Either conducting Roomba Pac-Man in a different
environment, or making modifications to the environment
such as placing sheets over the railings and on windows.

Another major issue with the hardware involved the con-
nection between the Roomba and the laptop. The Roomba’s
default connection is serial, so a special device called a
Roo-Stick was purchased that converts the serial connection
to USB for connection to the laptops. However, these con-
nectors have significant heating issues and are quite fragile.
Through the course of the semester, nine of the Roo-Sticks
stopped functioning from what appears to be overheating
issues. Some of the sticks were clearly left connected for
too long. However, other brand new sticks overheated in
under 30 minutes. In the future, alternatives to the Roo-Stick
should be explored in depth or discussion should be opened
with RoboDynamics, the manufacturer of the Roo-Stick, to
resolve the problem.

Also, the Roomba sensors are not quite as accurate as
desired. Odometry returned from the Roomba is extremely
noisy and can vary greatly between different Roombas. Also,
the infrared wall detector present on the Roomba can easily
be completely blocked by sensors or devices placed on the
Roomba. During demos the Roombas would frequently drive
right past infrared walls, not because the student’s failed to
detect them, but because the signal failed to be perceived by
the sensor. Unfortunately, there are no obvious solutions to
these problems at this time.

V. FUTURE IMPROVEMENTS

There are quite a few possibilities for future improvements
to the course structure, the hardware, and PSG. Major
concentration should be paid to solving the difficulties of
vision based localization in the real world. One possible
solution would be to increase the number of fiducials and
their colors. However, careful consideration needs to be paid
to ensure that new fiducials do not result in the possibility
of merging or occlusion which create their own problems
with localization. Also, two many different colored fiducials
could simplify the problem too much. For instance, if every
fiducial was uniquely colored, then localization is trivial as
students could just dead reckon off the fiducial they see.

Another possible solution, rather than increase the number
of fiducials is to add a second camera. Primitively, a second
camera can be used to simply double the field of view of
the camera, allowing it to see more fiducials at one time.
However, a second camera also allows for the possibility
of stereo vision. While stereo vision would be too difficult
for students to be expected to implement, PSG does contain
a stereo vision proxy that may perform all the necessary
computation. More research should be done into the PSG
implementation of stereo vision. Two cameras do have the
drawback of increased computation. Several students had
complaints about performance of the laptops, so a second
camera may have too much of a negative impact on perfor-
mance.

Finally, a less awkward hardware solution would be nice
to have in the future. Currently, the laptops are too large to be
adequately mounted on the Roomba, a smaller more compact
controller capable of running PSG would be ideal. Possible
choices are the Gumstix micro-controller or the Mac Mini.
Both these approaches would require some form of power
solution, and the battery of the Roomba will most likely not
be strong enough to support a Mac Mini. PSG on the Mac
OS X also cannot currently read from a web camera. A mac
camera driver would need to be developed and incorporated
into the camera proxy in Player.

It is also our hope that the work begun in Qlearning mixed
initiative demonstration learning may be incorporated into
the class in the future. Demonstration learning would provide
students with an alternate view on how to approach program-
ming in robotics. We feel that demonstration learning has alot
of potential and may become an integral part of robotics in
the future.

VI. CONCLUSION

Overall, the robotics course was very successful. A sig-
nificant robust and re-producible robotics platform and code
base has been developed. The Player Stage Gazebo Roomba
driver, camera proxy, and utilities have also been enhanced.
Some of these changes have already been incorporated into
the project, and the rest should be added in the near future.
Thus, the effort and work put into development of this course
will reach far beyond the confines of Brown University and
hopefully benefit people throughout the world. Finally and
most importantly, students seemed to enjoy the course and
gain a very good understanding of robotics.

APPENDIX

#!/bin/bash

Install script for psg on ubuntu 6.0.6

Set all necessary environment variables
echo "export PKG_CONFIG_PATH=${HOME}/local/lib/pkgconfig:$PKG_CONFIG_PATH" >> \

˜/.bashrc
echo "export PYTHONPATH=\

/usr/lib/python2.4/site-packages:/usr/local/lib/python2.4/site-packages:\
${HOME}/local/lib/python2.4/site-packages:$PYTHONPATH" >> ˜/.bashrc

echo "export PATH=${HOME}/local/bin:$PATH" >> ˜/.bashrc
echo "export CPATH=/usr/local/include:${HOME}/local/include:$CPATH" >> ˜/.bashrc
echo "export LIBRARY_PATH=${HOME}/local/lib:$LIBRARY_PATH" >> ˜/.bashrc
echo "export LD_LIBRARY_PATH=${HOME}/local/lib:$LD_LIBRARY_PATH" >> ˜/.bashrc

source ˜/.bashrc
mkdir psg
cd psg

Required installs
#=================================

#The usual development libraries
sudo apt-get -y install gcc g++ make

#GTK
sudo apt-get -y install libgtk2.0-dev

GUI and graphics libraries

Mesa and Open GL
sudo apt-get -y install libglu1-mesa-dev
sudo apt-get -y install mesa-common-dev libglut3-dev

Some more GUI stuff
sudo apt-get -y install libxml2-dev libx11-dev libltdl3-dev

sudo apt-get -y install libglib2.0-dev libgdal-dev gdal-bin
#Gdal image stuff
sudo apt-get -y install libpq-dev libungif4-dev libhdf4g-dev \

cfitsio-dev libjasper-dev libtiff4-dev \
libxerces27-dev netcdfg-dev

#Python libraries
sudo apt-get -y install python2.4-dev
sudo apt-get -y install python-wxgtk2.6 python-wxtools wx2.6-i18n

#ODE Library (special flag needed, so no package)

wget http://archive.ubuntu.com/ubuntu/pool/universe/o/ode/ode_0.5.orig.tar.gz
tar -xvzf ode_0.5.orig.tar.gz
cd ode-0.5
echo "OPCODE_DIRECTORY=${HOME}/psg/ode-0.5/OPCODE" >> config/user-settings
make configure
make ode-lib
cp -r include/ode/ ../../local/include/
cp lib/libode.a ../../local/lib/
chmod -R 777 ../../local/include/ode/
chmod 777 ../../local/lib/libode.a

cd ..

Python/Java binding library
sudo apt-get -y install swig

#=================================

Optional stuff for additional psg libraries
#==

Computer vision libraries
sudo apt-get -y install libcv-dev

sudo apt-get -y install libxmu-dev

Advanced science libaries
sudo apt-get -y install libgsl0-dev

Geo drivers
sudo apt-get -y install libgeos-dev

#1394 camera drivers
sudo apt-get -y install libavc1394-dev

#boost drivers (faster c algorithms)
sudo apt-get -y install libboost-dev
sudo apt-get -y install libboost-signals-dev
sudo apt-get -y install libboost-thread-dev

sudo apt-get -y install lib3ds-dev

sudo apt-get -y install proj

#===

Player and Gazebo Installation
==

cd ˜/psg

download player
wget http://superb-east.dl.sourceforge.net/sourceforge/playerstage/player-2.0.2.tar.bz2
chmod 775 player*

unzip/untar player
bunzip2 player-2.0.2.tar.bz2
tar -xvf player-2.0.2.tar

download the cs148 patch
wget http://cs.brown.edu/people/bcd/patch.patch

#apply the patch file
patch -p0 <patch.patch

#download gazebo
wget http://superb-east.dl.sourceforge.net/sourceforge/playerstage/gazebo-0.6.0.tar.gz
tar -xvzf gazebo-0.6.0.tar.gz

download the cs148 patch
wget http://cs.brown.edu/people/bcd/gazebo.patch

patch -p0 <gazebo.patch

Configure player
cd player-2.0.2
./configure --prefix="${HOME}"/local --disable-p2os

Install player
make install

Configure gazebo
cd ˜/psg/gazebo-0.6.0
./configure --prefix="${HOME}"/local

#Install gazebo
make install

cd ˜/psg/

==

