
Strong Polynomiality

of
Resource Constraint Propagation

Luc Mercier
mercier@cs.brown.edu

Research Comp Report
November 2005

Advisor: Pascal Van Hentenryck
pvh@cs.brown.edu

Comitee: Eli Upfal, Meinolf Sellman
{eli, sello}@cs.brown.edu

Brown University

Strong Polynomiality of Resource Constraint Propagation

Abstract

Constraint-based schedulers have been widely successful to tackle complex,
disjunctive and cumulative, scheduling applications by combining tree search
and constraint propagation. The constraint-propagation step is a fixpoint al-
gorithm that applies pruning operators to tighten the release and due dates of
activities using precedence or resource constraints. A variety of pruning opera-
tors for resource constraints have been proposed: they are based on edge finding
or energetic reasoning and handle a single resource.

Complexity results in this area are only available for a single application
of these pruning operators, which is problematic for at least two reasons. On
the one hand, the operators are not idempotent so a single application is rarely
sufficient. On the other hand, the operators are not used in isolation but interact
with each other. Existing results thus provide a very partial picture of the
complexity of propagating resource constraints in constraint-based scheduling.

This paper aims at addressing these limitations. It studies, for the first
time, the complexity of applying pruning operators for resource constraints to
a fixpoint. In particular, it shows that (1) the fixpoint of the edge finder for
both release and due dates can be reached in strongly polynomial time for dis-
junctive scheduling; (2) the fixpoint can be reached in strongly polynomial time
for updating the release dates or the due dates but not both for the cumula-
tive scheduling; (3) the fixpoint of “reasonable” energetic operators cannot be
reached in strongly polynomial time, even for disjunctive scheduling and even
when only the release dates or the due dates are considered.

2

Strong Polynomiality of Resource Constraint Propagation

1 Introduction

Constraint-based schedulers (e.g., [AB93, BLPN01, CL94, LP94, MS96]) are widely
successful in tackling complex, disjunctive or cumulative, scheduling problems in
manufacturing, transportation, supply-chain management, and the steel industry.
These problems often consist of minimizing the completion time of a set of jobs,
each job being a sequence of tasks linked by precedence constraints. Each task has
a processing time and may require some units of one or more resources. Disjunctive
resources have a capacity one and two tasks requiring the same disjunctive resource
cannot overlap in time. Cumulative resources have a finite capacity C and the total
demand for a cumulative resource at any time t cannot exceed C.

Constraint-based schedulers approach the solving of complex scheduling problems
by iterating two main steps until a feasible or optimal solution is found:

1. a constraint propagation step that tightens the release and the due dates of
each activity;

2. a (nondeterministic) branching step that adds new precedence constraints or
assigns a starting date to some activity.

This paper focus on the constraint propagation step that tightens the release
and the due dates of each activity. It features a propagation algorithm that applies
pruning operators until a fixpoint is reached, i.e., until no further tightenings of the
release and due dates is possible. The pruning operators typically focus on a single
resource in isolation and are generally based on edge finding or energetic reasoning.
Moreover, because even the one-resource problems are NP-complete in presence of
release and due dates, these pruning operators apply tightening rules exploiting
necessary conditions for feasibility. Informally speaking, the edge finder identifies
pairs (Ω, i) such that task i must complete after (resp. start before) all tasks in the
set Ω in a feasible schedule, and updates the earliest release date (resp. the latest
due date) of i accordingly. An energetic algorithm considers an interval [t1, t2] and a
task i, approximates the energy consumed in [t1, t2] by other tasks, and determines
whether task i must end (resp. start) after t2 (resp. before t1), in which case its
release date (resp. its due date) is updated accordingly.

Complexity results in constraint-based scheduling have focused on a single ap-
plication of these pruning operators. In particular, for disjunctive scheduling, a
single application of the edge finder for the release dates (resp. the due dates) takes
O(n log n) in the worst case, where n is the number of tasks [CP94, VBv04], while
it takes O(n3) time for the cumulative scheduling [MVH05, NA96]. For energetic
pruning, the situation is a bit more complex since the complexity depends on the en-
ergy function. For instance, the partially elastic pruning operator runs in O(n2 log n)
time in the worst case [BLPN01]. Unfortunately, these pruning operators are never
used in isolation and hence these analyses only present a very partial picture of

3

Strong Polynomiality of Resource Constraint Propagation

their computational complexity. Moreover, this limitation is further exacerbated by
the fact that these pruning operators are not idempotent: applying them multiple
times may tighten the releases and due dates further. As a consequence, available
analyses leave a significant gap in our understanding of these pruning operators and
do not provide a sound basis for algorithmic comparison. In fact, based on existing
complexity results, it is tempting to conclude that edge-finding algorithms for cu-
mulative scheduling are dominated by energetic pruning, since they produce weaker
tightenings at a similar or higher cost.

This paper addresses this limitation and studies, for the first time, the complexity
of propagation algorithms for disjunctive and cumulative resources. It contains three
main results that may be summarized as follows:

• For disjunctive resources, the fixpoint of the edge finder for both release and
due dates can be reached in strongly polynomial time.

• For the cumulative resources, the fixpoint can be reached in strongly polyno-
mial time for updating the release dates or the due dates but not both.

• The fixpoint of “reasonable” energetic operators cannot be reached in strongly
polynomial time, even for disjunctive scheduling and even when only the release
dates or the due dates are considered.

These results offer a fundamentally different picture of the computational complexity
of these pruning operators. In particular, they identify fundamental differences in
efficiency when these operators are iterated in fixpoint algorithms. The proofs also
indicate some “flaws” in existing definitions of energetic operators; they also suggest
some directions in order to address their pathologic behaviors fixpoint computations,
especially for cumulative scheduling.

The rest of the paper is organized as follows. Section 2 reviews the technical
background behind this paper. Section 3 introduces the concept of propagation
patterns to formalize constraint propagation algorithms, which may differ in the
order they apply the pruning operators. Section 4 proves some fundamental results
on propagation patterns. In particular, it shows that one can essentially focus on
a specific class of propagation patterns to derive the complexity results. Section 5
presents the complexity results for disjunctive resources, while Section 6 presents
those for cumulative results. Section 7 concludes the paper and presents the open
issues. The proofs not given in the paper are in the appendices.

2 Background

This section reviews the main concepts used in the paper. It covers one-resource
problems typically arising in constraint-based schedulers, the concept of a pruning
operator, the edge finder, and energetic reasoning. Only the concepts relevant to

4

Strong Polynomiality of Resource Constraint Propagation

this paper are presented and readers may consult [BLPN01, Bru95] for excellent
references on this topic. Note that some of our definitions are more abstract on
order to make the proofs more generic.

2.1 One-Resource Problems

This section defines the one-resource problems tackled by pruning operator based on
edge finding and energetic reasoning.

Definition 1 (Cumulative Resource Problems) A cumulative resource prob-
lem (CRP) is a tuple (C, T, p, c, r, d) where

• C ∈ N
∗ is the capacity of the resource;

• T is a set of |T | = n tasks;

• pi ∈ N (i ∈ T) is the processing time of task i;

• ci ∈ N (i ∈ T) is the capacity requirement of task i;

• ri ∈ Z (i ∈ T) is the release date of task i;

• di ∈ Z (i ∈ T) is the due date of task i.

A solution to a CRP P = (C, T, p, c, r, d) is an assignment of starting dates si ∈ Z

to each task i ∈ T such that

∀i ∈ T : ri ≤ si ≤ si + pi ≤ di

and
∀t :

∑
i ∈ T

si ≤ t < si + pi

ci ≤ C.

The set of solutions to a CRP P is denoted by sol(P).

In the following, we use the terms solution and schedule interchangeably. Disjunctive
resource problems, that have a single unit of capacity at all times, play an important
role in practice.

Definition 2 (Disjunctive Resource Problems) A disjunctive resource prob-
lem (DRP) is a cumulative resource problem in which C = 1 and ∀i ∈ T, ci = 1.

Although they only consider a single resource and are generally parts of more complex
problems, CRPs and DRPs are already NP-complete. Note also the integrality of the
starting dates in these problems, which is both natural in practice and fundamental
for the results of this paper.

5

Strong Polynomiality of Resource Constraint Propagation

2.2 Problem Tightenings and Pruning Operators

The fundamental operation of constraint-based schedulers consists of tightening the
release and the due dates of the tasks without removing any solution. It is convenient
to formalize this process using the concept of problem tightening.

Definition 3 (Problem Tightening) Let P be a CRP (C, T, p, c, r, d). A CRP
P ′ = (C, T, p, c, r′, d′) is a tightening of P, denoted by P ′ ⊆ P, if it satisfies the
following two conditions:

(soundness) sol(P) = sol(P ′);

(contractance) ∀i ∈ T, r′i ≥ ri ∧ d′i ≤ di.

The intuition here is that a problem tightening reduces the search space, i.e., the
set of possible values for the starting dates, without removing any solution. Ideally
one would like to obtain the strongest possible tightening but this cannot be solved
in polynomial time (unless P = NP), since the CRP (resp. DRP) is NP-complete.
This is precisely the reason why several pruning operators have been proposed: these
operators achieve different tightenings at different computation costs. It is the objec-
tive of this paper to offer a better understanding of their computational complexity.

Definition 4 (Pruning Operator) A pruning operator ψ is a function which,
given a CRP P, returns a tightening of P and is monotone,1i.e.,

∀P1,P2, P1 ⊆ P2 =⇒ ψ(P1) ⊆ ψ(P2).

A pruning operator ψ is idempotent if ψ ◦ ψ = ψ.

Most papers focus exclusively on tightening the release dates, since the treatment is
symmetric for due dates. The next definition captures this formally.

Definition 5 Let ψ be a pruning operator and R be the time-reversal function
R : (C, T, p, c, r, d)
→ (C, T, p, c,−d,−r). The function ψR = R◦ψ◦R is a pruning
operator called the symmetric version of ψ.

All the operators discussed in this paper deal with release dates or due dates but
not both. We use the suffixes -R and -D for naming operators focusing on release
and due dates respectively.

1Strictly speaking, pruning operator needs not be monotone, although this is natural. Mono-
tonicity is important for several results in this paper and all the pruning operators considered here
are monotone.

6

Strong Polynomiality of Resource Constraint Propagation

2.3 Notations

Since problem tightenings only affect the release and due dates of the tasks, we abuse
notations and denote CRPs (and DRPs) by pairs (r, d) assuming that the remaining
data, i.e., the tuple (C, T, p, c), is fixed. We define the energy ei of a task i ∈ T as
ei = cipi. We also lift the above concepts to sets of tasks, i.e.,

rΩ = minj∈Ω rj

dΩ = maxj∈Ω dj

pΩ =
∑

j∈Ω pj

eΩ =
∑

j∈Ω ej

where Ω is a set of tasks. By convention, r∅ = ∞, d∅ = −∞, p∅ = 0, and e∅ = 0. We
also use P∅ to denote a canonical infeasible problem, e.g., a problem with ri = +∞
and di = −∞ for each task i. Note that any pruning operator ψ satisfy ψ(P∅) = P∅.

2.4 Edge Finding

Edge-finding operators are a cornerstone of constraint-based schedulers. We start
by specifying the disjunctive case, whose intuition is easier to convey.

Definition 6 (Disjunctive Edge Finder (Release Dates)) Let P = (r, d) be
a DRP. The edge finder EF-R for P returns P∅ if

∃ Ω ⊆ T : rΩ + pΩ > dΩ.

Otherwise, it returns the DRP P ′ = (LB, d) such that

LBi = max(ri, LBi)

and
LBi = max

Ω ⊆ T
i /∈ Ω
α(Ω, i)

max
Θ ⊆ Ω

rΘ + pΘ

where
α(Ω, i) ⇐⇒ (

dΩ − rΩ∪{i} < pΩ∪{i}
)
.

Its intuition underlying the edge finder can be described informally as follows. First,
if there exists a set Ω ⊆ T such that

rΩ + pΩ > dΩ

then the tasks in Ω cannot be scheduled in the interval [rΩ, dΩ(and hence the DRP
has no solution. Second, the general case considers pairs (Ω, i) where Ω is a set of

7

Strong Polynomiality of Resource Constraint Propagation

tasks and i is a specific task. The condition

α(Ω, i)

holds when there is not enough time between rΩ∪{i} and dΩ to process all the tasks
in Ω ∪ {i}. As a consequence, task i must start after the completion of all tasks of
Ω in all solutions. The expression

max
Θ ⊆ Ω

rΘ + pΘ

provides a lower bound on the completion time of the tasks in Ω and thus a new
candidate release date for task i. More generally, the candidate release date LBi of
task i is obtained by computing this lower bound for all subsets Ω satisfying α(Ω, i).

The edge finder is a pruning operator [CP94] and it can be computed in O(n log n)
time [CP94, VBv04]. (A similar result also holds for due dates using Definition 5.)
Unfortunately, the edge finder is not idempotent and it must be iterated until no
more updates take place. It is precisely the goal of this paper to analyze how many
iterations are necessary to reach such a state.

Nuijten [NA96] generalized the edge finder to the cumulative case.

Definition 7 (Cumulative Edge Finder (Release Dates)) Let P = (r, d) be
a CRP. The edge finder EF-R for P returns P∅ if

∃ Ω ⊆ T : eΩ > C(dΩ − rΩ) ∨ ∃i ∈ T : ri + pi > di.

Otherwise, it returns the CRP P ′ = (LB, d) such that

LBi = max(ri, LBi)

and

LBi = max
Ω ⊆ T
i /∈ Ω
α(Ω, i)

max
Θ ⊆ Ω

rest(Θ, ci) > 0

rΘ +
⌈

1
ci

rest(Θ, ci)
⌉

where ⎧⎨
⎩

α(Ω, i) ⇐⇒ (
C(dΩ − rΩ∪{i}) < eΩ∪{i}

)
.

rest(Θ, ci) =
{

eΘ − (C − ci)(dΘ − rΘ) if Θ �= ∅;
0 otherwise.

Here is the intuition underlying the cumulative edge finder. The basic idea is to
reason about the so-called energy of a task, i.e., the product pi × ci of the processing
time and the capacity requirement of task i. The cumulative edge finder detects
infeasibility if

∃ Ω ⊆ T : eΩ > C(dΩ − rΩ),

8

Strong Polynomiality of Resource Constraint Propagation

i.e., if there is a subset of tasks Ω whose energy is greater than the capacity of the
resource in the interval [rΩ, dΩ(. It also detects infeasibility if there is a task i such
that ri + pi > di.

The general case for the cumulative edge finder is similar in spirit to the dis-
junctive case, but it reasons about energies instead of processing times which mostly
complicates the lower bound computation. The generalization of condition α to the
cumulative case is natural: It considers a set of tasks Ω and a task i and it holds if

eΩ∪{i} > C(dΩ − rΩ∪{i}),

i.e., if the energy requires by Ω∪{i} is greater than the capacity in interval [rΩ∪{i}, dΩ(.
However, the conclusion that can be inferred when α(Ω, i) holds is weaker in the

cumulative case. Indeed, task i does not necessarily start after all tasks in Ω; we
can only infer than task i must end after dΩ. The computation of the lower bound
on ri is thus quite different from the disjunctive case and deserves some additional
explanation.

The lower bound is computed by reasoning, once again, about energies. We know
that task i is necessarily running from si to dΩ in each solution s, taking ci capacity
units from the resource. To determine a lower bound on si, the edge finder considers
each set Θ ⊆ Ω, which requires an energy eΘ in interval [rΘ, dΘ(. The edge finder
first removes from eΘ the energy that can be scheduled in [rΘ, dΘ(without interfering
with task i, i.e.,

(C − ci)(dΘ − rΘ).

This leaves in a slice of capacity ci to schedule task i and the remaining energy

rest(Θ, ci) = eΘ − (C − ci)(dΘ − rΘ).

If the remaining energy is smaller or equal to zero, the tasks in Θ do not constraint
task i and no new release date results. Otherwise, a lower bound on the release date
of tasks i is obtained by determining how much of the slice of capacity ci is taken
by the remaining energy starting from rΘ, giving

rΘ +
⌈

1
ci

rest(Θ, ci)
⌉

.

The fastest correct algorithm for the cumulative edge finder runs in O(n2 |{ci, i ∈ T}|)
[MVH05]. Note that,once again, the cumulative edge-finder is not idempotent.

2.5 Energy-Based Operators

A variety of elegant and interesting pruning operators for cumulative resource prob-
lem are based on energetic reasoning. Given a task i, these operators rely on a lower
bound of the energy consumed in an interval [t1, t2] by the tasks in T \ {i} in all

9

Strong Polynomiality of Resource Constraint Propagation

feasible schedules. Once such a lower bound is available, the energetic operators
determine whether task i must finish after time t2 (resp. start before time t1) and
update its release date (resp. due date) accordingly.

Several lower bounds for disjunctive and cumulative resources have been proposed
and achieve different tradeoffs in quality and computational complexity. Our result
apply generically to all “reasonable” energetic operators, a concept defined below.
To formalize energetic operators, we first specify the resource consumption of a task
i in an interval [t1, t2] for a specific schedule s.

Definition 8 (Resource Consumption) Let P = (r, d) be a CRP, i be a task,
and s be a schedule of P. The resource consumption of task i over [t1, t2] in s is

X(s, i, t1, t2) = ci

(
min(t2, si + pi) − max(t1, si)

)
.

In the definition, the expression

min(t2, si + pi) − max(t1, si)

represents the processing time of task i spent within the interval [t1, t2]. This defi-
nition can be lifted to sets of tasks, i.e.,

X(s,Ω, t1, t2) =
∑
i∈Ω

X(s, i, t1, t2).

Note that a schedule s satisfies the cumulative resource constraint if and only if

∀t1 ≤ t2 : X(s, T, t1, t2) ≤ C(t2 − t1).

The next definition, energy functions, is fundamental in energic reasoning. An energy
function receives a CRP P, a task i, and an interval [t1, t2] as inputs, and returns
a lower bound on the resource consumption of task i in [t1, t2] for all the feasible
schedules of P.

Definition 9 (Energy Function) Let P be a CRP. An energy function for P is
a function W : T × Z × Z → N satisfying

∀s ∈ sol(P),∀i ∈ T,∀t1 ≤ t2 : W (i, t1, t2) ≤ X(s, i, t1, t2).

Informally speaking, an energy function provides a lower bound of the resource con-
sumption of a task in an interval for all feasible schedules of a CRP simultaneously.
Once again, this concept can be lifted to sets of tasks, i.e.,

W (Ω, t1, t2) =
∑
i∈Ω

W (i, t1, t2).

10

Strong Polynomiality of Resource Constraint Propagation

Our results apply generically to all “reasonable” energy function. Informally speak-
ing, an energy function W (i, t1, t2) is reasonable if it returns ei when task i must
execute in [t1, t2].

Definition 10 (Reasonable Energy Function) Consider the energy function

WP lain(i, t1, t2) =

{
ei if ri ≥ t1 and di ≤ t2

0 otherwise

for a CRP P. An energy function W for P is reasonable if

∀i ∈ T,∀t1 ≤ t2 : W (i, t1, t2) ≥ WP lain(i, t1, t2).

As mentioned earlier, a variety of energy functions are available: they include WFE

(Fully Elastic), WPE (Partially Elastic) and WSh (Left-Shift-Right-Shift). Moreover,
as shown in [BLPN01], they satisfy

WSh ≥ WPE ≥ WFE ≥ WP lain.

We are now in a position to specify the pruning operator associated with an energy
function.

Definition 11 (Energetic Pruning for Release Dates) Let P = (r, d) be a
CRP and W be an energy function. The energetic operator W-R for P returns P∅
if

∃ t1 ≤ t2 : W (T, t1, t2) > C(t2 − t1) ∨ ∃i ∈ T : ri + pi > di.

Otherwise, it returns the CRP P ′ = (ELB, d) such that

ELBi = max(ri, ELBi)

and

ELBi = max
t1 < t2

Δ(i, t1, t2) > 0

t2 +
⌈

1
ci

Δ(i, t1, t2)
⌉
− pi

with
Δ

(
i, t1, t2

)
= W

(
T \ {i} , t1, t2

)
+ cip

+
i (t1) − C(t2 − t1)

and
p+

i (t1) = max(0, pi − max(0, t1 − ri))

Let us go over the definition to convey the intuition of energetic operators. The
condition

Δ
(
i, t1, t2

)
> 0

11

Strong Polynomiality of Resource Constraint Propagation

holds whenever task i must finish after time t2. It is expressed in terms of the energy
of the tasks T \ {i} in [t1, t2], i.e.,

W
(
T \ {i} , t1, t2

)
and the energy that task i must spend after t1, i.e.,

cip
+
i (t1).

In this last expression, p+
i (t1) represents a lower bound on the processing time of

task i after t1. If

W
(
T \ {i} , t1, t2

)
+ cip

+
i (t1) > C(t2 − t1)

there is not enough energy to schedule task i before t2, so i must necessarily finish
after. Moreover, Δ(i, t1, t2) represents the energy of task i that must be spent after
t2. A lower bound on the earliest finishing date of task i is thus given by

t2 +
⌈

1
ci

Δ(i, t1, t2)
⌉

and a lower bound on its release date is obtained by subtracting its processing time:

t2 +
⌈

1
ci

Δ(i, t1, t2)
⌉
− pi.

The energetic operator W -R applies this reasoning for all tasks and all intervals
[t1, t2]. A symmetric operator W-D can be defined for due dates. These operators
are not idempotent in general.

Note that the stronger the energy function, the stronger the condition, and the
stronger the lower bound on the release dates. As a consequence, we have

WSh-R(P) ⊆ WPE-R(P) ⊆ WFE-R(P).

There are however some interesting open computational issues for energetic opera-
tors. Indeed, although WPE-R(P) can be computed in polynomial time, no poly-
nomial algorithm is known for WSh-R(P). Also interesting is the fact that the
fixpoint of operator WPE-R is included in the fixpoint of EF-R. Since WPE-R(P)
can be computed in O(n2 log |{ci, i ∈ T}|), it is tempting to conclude that WPE-R(P)
should always be prefered to EF-R(P). One of the corollaries of this paper is that
this conclusion should be revised, because the fact that one iteration of WPE-R is
faster than one of EF-R does not imply that the fixpoint of WPE-R can be computed
faster than the fixpoint of EF-R.

12

Strong Polynomiality of Resource Constraint Propagation

3 Propagation Algorithms and Propagation Patterns

The main goal of this paper is to study the computational complexity of applying a
set of pruning operators

{ψ1, . . . , ψk}
to a fixpoint, i.e., until the tightenings produce a CRP P satisfying

P = ψ1(P) ∧ . . . ∧ P = ψk(P).

Since the pruning operators are monotone and since the release and due dates are
integers, the resulting fixpoint is independent of the application order and is reached
in finite time. When k > 1, many strategies can be applied to reach the fixpoint, but
they may not be equivalent from a complexity standpoint. Consider, for instance,
the case of k = 2 and the operators EF-R and EF-D. One strategy to reach the
fixpoint consists of applying EF-R, then EF-D, and to iterate this process until an
iteration does not tighten the release or the due dates. Another strategy applies
EF-R to a fixpoint, then EF-D to a fixpoint, and iterates the process until a global
fixpoint is reached. A third strategy would apply EF-R to a fixpoint, then EF-D
once, and iterate the process. Are these strategies equivalent from a computational
standpoint? If not, which one should be preferred?

This section addresses this issue through the concept of propagation patterns
which specify the strategy to apply in order to reach the fixpoint of a set of opera-
tors. Propagation patterns are expressed in terms of pruning operators, sequential
composition, and the Kleen fixpoint operator.2 For instance, (EF-R)� denotes the
fixpoint of EF-R, (EF-R · EF-D)� the pattern that applies EF-R and EF-D in se-
quence until a fixpoint is reached, and ((EF-R)� · (EF-D)�)� the pattern that applies
(EF-R)� and (EF-D)� in sequence until a fixpoint is reached. We now formalize these
concepts.

Definition 12 (Propagation and Fixpoint Patterns) Let Ψ = {ψ1, . . . , ψk}
be a set of pruning operators. A propagation pattern is a string over the alphabet
Ψ∪{(, ·,),� } that contains at least one occurrence of ψi (1 ≤ i ≤ k) and is derived
from the grammar

〈pattern〉 ::= ψi | (〈pattern〉)� | 〈pattern〉 · 〈pattern〉
A fixpoint pattern is a pattern of the form (F)�, where F is a propagation patterns.

The semantics of propagation and fixpoint patterns is given by algorithm Propagate
which returns the sequence of CRPs produced by applying the pruning operators.
(In the algorithm, S1 :: S2 denotes the concatenation of two sequences S1 and S2).
The algorithm is defined inductively on the structure of propogation patterns. The

2Constraint programming systems and constraint-based schedulers may also introduce some ran-
domization in the propagation algorithms. There is no difficulty in generalizing the results presented
here to address this additional functionality.

13

Strong Polynomiality of Resource Constraint Propagation

basic case of pruning operators is shown in Lines 2–3; it returns a sequence of one
CRP obtained by applying an operator ψ on P. Lines 4–6 define the sequential
composition of patterns F1 and F2. The output sequence is the concatenation of the
sequence 〈P1, . . . ,Pq〉 obtained by applying F1 on P with the sequence resulting from
the application of F2 on Pq. Finally, lines 7–12 implement the fixpoint of pattern
F1. Line 8 applies F1 on P to obtain the sequence 〈P1, . . . ,Pq〉. If Pq = P, the
algorithm has reached a fixpoint and it returns the sequence 〈P1, . . . ,Pq〉. Otherwise,
the algorithm applies the pattern F1 recursively on Pq and returns the concatenation
of the first and subsequent applications of F1.

Function Propagate(P, F)

Precondition: P is a CRP and F is a fixpoint pattern over {ψ1, . . . , ψk}.
Output: A sequence 〈P1, . . . ,PQ〉 of CRPs.
Postcondition: sol(PQ) = sol(P) and ψi(PQ) = PQ (1 ≤ i ≤ k).
match F with1

case ψ2

return 〈ψ(P)〉3

case F1 · F24

let 〈P1, . . . ,Pq〉 = Propagate(P,F1) in5

return 〈P1, . . . ,Pq〉::Propagate(Pq,F2)6

case (F1)�7

let 〈P1, . . . ,Pq〉 = Propagate(P,F1) in8

if Pq = P then9

return 〈P1, . . . ,Pq〉10

else11

return 〈P1, . . . ,Pq〉::Propagate(Pq,F1)12

In practice, only the last CRP of the sequence is of interest. However, represent-
ing the sequence explicitly is important for the complexity proofs. Indeed, the results
in this paper are all concerned with bounding the length of the output sequence of
Propagate for different patterns and pruning operators. We now define the com-
plexity measures used in this paper. These measures capture strong polynomiality
without the need to refer to models of computation such as arithmetic machines.

Definition 13 (Complexity of Propagation Patterns) The complexity of a
polynomial pattern F is the function CF : N×N → N defined as follows: CF (n, h) is
the maximal length of the sequence returned by Propagate(F,P) for a CRP (resp.
DRP) P with at most n tasks and whose release and due dates satisfy

∀i ∈ T, ri ≥ −h ∧ di ≤ h.

14

Strong Polynomiality of Resource Constraint Propagation

Our main interest in this paper is to determine whether the complexity of a propa-
gation pattern depends on the horizon h. This justifies the next definition.

Definition 14 (Strong Polynomiality of Propagation Patterns) A propa-
gation pattern F is polynomial if its complexity function CF (n, h) is bounded by a
polynomial in n and log h. It is horizon-independent if CF (n, h) is bounded by a
function of n. Finally, a propagation pattern F is strongly polynomial if CF (n, h)
is bounded by a polynomial in n.

Observe that the complexity of a propagation pattern is independent from the com-
plexity of its pruning operators. This is intentional since they are independent: our
results do not depend on the actual implementations of the pruning operators, whose
complexity is sometimes open. However, it is easy to derive the overall complexity of
the propagation from the definition. In particular, if a propagation pattern F over
Ψ = {ψ1, . . . , ψk} is strongly polynomial and each pruning operator ψi is strongly
polynomial (i.e., its runtime is bounded by a polynomial in n on an arithmetic ma-
chine), the propagation of F is guaranteed to be strongly polynomial. Similarly, if
each operator is polynomial (i.e., its runtime is bounded by a polynomial in n and
log h) and that the pattern is polynomial, then the propagation process runs in poly-
nomial time. On the other hand, if F is not strongly polynomial, then it makes little
sense to improve the complexity of the pruning operators, since the propagation of
F will not be strongly polynomial. Note also that the (disjunctive and cumulative)
edge finders and the partial elastic energetic operator are strongly polynomial.

4 Fundamental Properties of Propagation Patterns

This section studies the properties of propagation patterns. Its main result is to
show that, when the goal is to prove strong polynomiality, the complexity analysis
can focus on a simple class of propagation patterns that are, in some sense, “opti-
mal”. The section also proves that the number of “useless” applications of pruning
operators is essentially amortized by their “useful” counterparts, i.e., the applica-
tions tightening the release or due dates. Our first result is part of the folklore of
constraint programming and constraint-based scheduling.

Theorem 1 Let F1 and F2 be two fixpoint patterns over Ψ = {ψ1, . . . , ψk} and P be
a CRP. Then, last(Propagate(P, F1)) = last(Propagate(P, F2)), where last(S)
denotes the last element of a non-empty sequence.

Proof See appendix A. �

Our next theorem identifies a specific class of fixpoint patterns with strong computa-
tional properties. More precisely, it shows that the propagation pattern (ψ1 · . . . · ψp)

�

returns sequences that are at most p times longer than the sequences returned by
any other propagation pattern over {ψ1, . . . , ψp}.

15

Strong Polynomiality of Resource Constraint Propagation

Theorem 2 Let F be a fixpoint pattern over {ψ1, . . . , ψp} and consider the pattern
O = (ψ1 · . . . · ψp)

�. If CF (n, h) is O(f(n, h)), then CO(n, h) is O(f(n, h)) too.

Proof Consider the sequence 〈P0,P1, . . . ,Pq〉, where P0 = P and 〈P1, . . . ,Pq〉 is
the sequence returned by Propagate(P, F). Define

POj = (ψp ◦ · · · ◦ ψ1)
j (P).

We first prove by induction that ∀j : POj ⊆ Pj . This holds for j = 0. Assume now
that POj ⊆ Pj. There exists i ∈ {1, . . . , p} such that Pj+1 = ψi(Pj). Since

POj+1 = (ψp ◦ · · · ◦ ψi+1) ◦ ψi ◦ (ψi−1 ◦ · · · ◦ ψ1) (POj)

and since the operators are contractant and monotone, it follows that POj+1 ⊆ Pj+1.
Assume now that Propagate(P, O) returns a sequence P ′ of length Q and sup-

pose that Q > pq. Denote by P ′
pq the element in position pq in P ′. By definition

of O, we have that P ′
pq = POq ⊆ Pq. Moreover, by Theorem 1, Pq ⊆ P ′

Q. Since
P ′

Q ⊆ P ′
pq, we have Pq ⊆ P ′

pq and thus Pq = P ′
pq. Hence, Propagate(P, O) returns

a sequence of length at most p(q + 1), since an additional iteration with p operator
applications detects that the fixpoint has been reached. �

Theorem 2 allows us to restrict attention to a single pattern when proving that the
propagation of a set of pruning operators is not strongly polynomial. Indeed, if
(ψ1 · . . . · ψp)

� is not strongly polynomial, no other propagation pattern will be. The
proof also shows that a specific polynomial pattern can speed up the naive pattern
by a factor p at most. Note also that a common propagation pattern is((

. . . ((ψ1)� · (ψ2)�)� . . . · (ψp−1)�
)� · (ψp)�

)�

which is thought to eliminate many useless operator applications after a fixpoint is
reached. Theorem 2 suggests that it may be better to apply the “naive” pattern
(ψ1 . . . ψp)

� which may avoid many iterations with little pruning.
The next result links the tightenings of the release and due dates using the time

reversal function from Definition 5.

Theorem 3 Let F be a pattern and let FR be its time-symmetric version, i.e., the
pattern obtained from F by replacing each ψ in F by its time-symmetric version R◦ψ◦
R. Consider a CRP P and let 〈P1, . . . , PQ〉 = Propagate(P, F) and 〈P ′

1, . . . , P
′
Q′〉 =

Propagate(R(P), FR). We have

Q = Q′ ∧ ∀ 0 ≤ q ≤ Q : P ′
q = R(Pq).

Proof (Sketch) By induction on the language of propagation patterns. �

16

Strong Polynomiality of Resource Constraint Propagation

Corollary 1 A pattern F and its time-symmetric version FR have the same com-
plexity.

Proof Direct consequence of Theorem 3. �

The next theorem is important: it shows that the number of operator applications
is bounded by a linear function in the number of “useful” applications, i.e., those
applications that actually update the release or the due dates of tasks. This theorem
will be instrumental in showing that, in some cases, all patterns over a given set of
operators are equivalent from a complexity standpoint.

Theorem 4 Let F be a propagation pattern. There exist 2 constants a and b satis-
fying 0 < a ≤ 1 and b ≥ 1 such that, for any CRP P0, we have∣∣{0 ≤ q < Q

∣∣ Pq+1 �= Pq

}∣∣ ≥ aQ − b

where
〈P1, . . . , PQ〉 = Propagate(P0, F).

Proof The proof is by induction on the structure of the propagation pattern and is
given in Appendix B. �

Observe that the proof of Theorem 4 does not guarantee that the choices of (a, b) are
tight. It would be interesting to obtain such tight bounds since this would provide
a basis for comparing patterns with similar numbers of “useful” calls.

Corollary 2 If F is a propagation pattern, CF (n, h) is O(nh).

Proof Let 〈P1, . . . ,PQ〉 = Propagate(P0, F). By monotonicy, every pruning oper-
ator in F satisfies ψ(P∅) = P∅. Hence, since the release and due dates are all in
[−h, h], the number of integer q such that Pq+1 �= Pq is less than 2nh. By Theorem
4, there exists 0 < a ≤ 1 and b such that 2nh > aQ − b. Thus Q is O(nh). �

5 Disjunctive Scheduling

We now return to resource propagation algorithms and first consider the case of
disjunctive scheduling. We show that fixpoint patterns over EF-R and EF-D are
strongly polynomial and that energetic operator are not.

Our first result bounds the number of useful applications of EF-R.

17

Strong Polynomiality of Resource Constraint Propagation

Theorem 5 Let Ψ be a set of pruning operators containing EF-R such that any
other operator in Ψ do not modify release dates, i.e.,

∀ ψ ∈ Ψ \ {EF-R} ,∀ P = (r, d) : ∃ d′ ∈ Z
n : ψ(P) = (r, d′).

Let F be a propagation pattern on Ψ, P0 be a DRP, and

〈P1, . . . ,PQ〉 = Propagate(P0, F).

Denote by
〈ψ0, . . . , ψQ−1〉

the sequence of pruning operators applied to produce 〈P1, . . . ,PQ〉, i.e.,

ψq(Pq) = Pq+1.

We have that ∣∣∣{0 ≤ q < Q | ψq = EF-R ∧ Pq+1 �= Pq }
∣∣∣ ≤ n3.

Proof (Sketch) The full proof is in Appendix D.3 It consists of identifying the
reasons for an update at a given step. There are two such reasons that are non-
exclusive:

1. either a pair (Ω, i) now satisfies α(Ω, i), which was not the case before;

2. or the release date of a task j has been increased, changing the release date of
a task i satisfying α(Ω, i) for a set Ω with j ∈ Ω.

The first reason can occur at most n2 times, since the discovery of a new pair
(Ω, i) implies that Ω precedes task i in all feasible schedules and the precedence
graph cannot have more than n2 arcs.

The second reason considers only subsequences of updates involving operator
EF-R, since other operators cannot tighten the release dates. We show that the
lengths of these subsequences are bounded by n − 1 because the updates take place
by increasing order of the due dates. The result follows. �

We are now in position to show the strong polynomiality of the edge-finder propa-
gation for disjunctive scheduling.

Corollary 3 (The Disjunctive Edge Finder is Strongly Polynomial) Let F
be a propagation pattern over {EF-R, EF-D}. Then CF (n, h) is O(n3) for DRPs.

3The proof uses a lemma which is also valid for cumuative scheduling, so that the appendices
present the cumulative results first.

18

Strong Polynomiality of Resource Constraint Propagation

Proof Let P0 be a DRP and

〈P1, . . . ,PQ〉 = Propagate(P0, F).

Define A = {0 ≤ q < Q | Pq+1 �= Pq } and partition A into AR = A ∩R and AD =
A \ R, where R is the set of (EF-R) applications. By Theorem 5, |AR| ≤ n3 and
by Theorems 5 and 3, |AD| ≤ n3. Hence |A| ≤ 2n3. By Theorem 4, the length Q is
O(|A|) and thus Q is O(n3). �

Corollary 3 is a significant improvement over prior work. Indeed, it was generally
believed that the edge-finder fixpoint is pseudo-polynomial and can take up to O(nh)
applications of the edge-finder operators. Corollary 3 shows that the edge-finder fix-
point is strongly polynomial and thus horizon-independent. Corollary 3 can also be
extended to the complexity of maintaining the edge-finder fixpoint in a branch of a
search tree, since the number of precedence constraints in such a branch is bounded
by n2. As a consequence, the constraint propagation in jobshop scheduling algo-
rithms, which combine the edge-finder fixpoint with nondeterministic choices adding
precedence constraints in an acyclic manner, is strongly polynomial along a branch
of the search tree. It is an open issue to determine if the O(n3) bound in Corrolary 3
is tight. We conjecture that it is not, because of the inherent structure of precedence
constraints.

Our next result shows that, contrary to edge-finding algorithms, the fixpoint of
a single energetic pruning operator is not strongly polynomial.

Theorem 6 If W is a reasonable energy function, then pattern (W -R)� is not
horizon-independent for DRPs.

Proof Let p ∈ N and consider the following instance P0:

task r d p

a 0 2p + 2 p + 1
b p p + 1 1

Define Pq recursively as
Pq+1 = W -R(Pq) (q ∈ N)

and denote by Pq the DRP (rq, dq) and by W q the energy function W applied to Pq.
We show that, for all q ≤ p + 1,

rq
a = q rq

b = p

dq
a = 2p + 2 dq

b = p + 1.

First note that (sa = p + 1, sb = p) is a feasible schedule. Hence no infeasibility can
be detected and

rq
b = p

19

Strong Polynomiality of Resource Constraint Propagation

Moreover, since (W -R) does not modify the due dates,

dq
a = 2p + 1 ∧ dq

b = p + 1.

It remains to show rq
a = q.

The proof is by induction. Clearly the equalities hold for q = 0. Now assume that
it holds for a given q ≤ p. As T \ {a} = {b}, we only need to consider W q(b, t1, t2).
If t2 ≤ p or if t1 ≥ p + 1, then X(s, b, t1, t2) = 0 in any feasible schedule s and

W q(b, t1, t2) = 0.

If t1 ≤ p and t2 ≥ p + 1, then

W q
P lain(b, t1, t2) = 1.

Since
W q

P lain(b, t1, t2) ≤ W q(b, t1, t2) ≤ eb = 1,

W q(b, t1, t2) = 1. Hence, since W is a reasonable energy function, we have

W q(b, t1, t2) =

{
1 if t1 ≤ p and t2 ≥ p + 1
0 otherwise.

which implies that

max
t1 < t2

Δq(i, t1, t2) > 0

(
t2 +

⌈
1
ci

Δq(i, t1, t2)
⌉
− pi

)
= q + 1.

The length of the sequence returned Propagate(P, (W -R)�) is thus at least p+1. As
a consequence, we have exhibited a family of DRPs with 2 tasks where the number
of applications of the pruning operators is not bounded by any function of n. �

Corollary 4 If W is a reasonable energy function, then the pattern (W -D)� is not
horizon-independent for DRPs.

6 Cumulative Scheduling

We now consider the cumulative case, which is known to be harder than the dis-
junctive in practice. Obviously, by Theorem 6, the energetic fixpoints are pseudo-
polynomial. It remains to consider the edge-finding fixpoints. Our first result is
positive and shows that (EF-R)� and (EF-D)� are strongly polynomial.

Theorem 7 The complexity of the propagation patterns (EF-R)� and (EF-D)� is
O(n).

20

Strong Polynomiality of Resource Constraint Propagation

Proof (Sketch) The full proof for (EF-R)� is in Appendix C. The proof shows that,
at iteration q of the fixpoint, there are at least q + 1 tasks whose release date have
reached their final value. As a consequence, the fixpoint must be reached at iteration
n − 1.

The first step in the proof identifies why a release date can be updated at iteration
q + 1. As in the disjunctive case, there are two (non-exclusive) reasons:

1. either the release date of a task j with an earlier due date has been modified at
iteration q, which may induce an update to task i when the condition α(Ω, i)
holds for a set Ω including j;

2. or the release of tasks i was already updated at iteration q but that update
used a set Ωq whose due date is smaller than the due date of the set Ωq+1 used
at iteration q + 1.

As due dates are not modified during this process, it is natural to partition T in
subsets of tasks with the same due dates and to order these subsets (Tk)k=1,...,K by
increasing due dates. The second step then proves by induction that, at iteration k,
all tasks of T1 ∪ . . . ∪ Tk+1 have reached their final state. �

Unfortunately, the propagation pattern (EF-R · EF-D)� is not polynomial and suffers
from a ping-pong effect between the release and the due dates.

Theorem 8 The pattern (EF-R · EF-D)� is not horizon-independent for CRPs.

Proof Let p ≥ 3. Consider the following CRP

task r d p c

toLeft -2p p 2p + 1 1
toRight -p 2p 2p + 1 1
middle -2 +2 1 1

leftA -2p 0 p - 1 1
leftB -2p 0 p - 1 1

rightA 0 2p p - 1 1
rightB 0 2p p - 1 1
igniter -2p 0 1 1

where the resource has capacity 2. For 0 ≤ q ≤ p− 2, all release dates and due dates
of P2q are those of P0 except

r2q
toRight = q − p d2q

toLeft = p − q.

As a consequence, the length of Propagate(P, (EF-R · EF-D)�) is greater or equal
to 2(p − 2) so the pattern is not polynomial. �

21

Strong Polynomiality of Resource Constraint Propagation

Here is an intuitive explanation of this propagation. Without task igniter, the
instance is invariant under time symmetry. The addition of igniter breaks this
balance and induces the edge finder to modify the release date of toRight. This
leads to a series of updates without ’energy loss’ because of the symmetry between
toLeft and toRight, thus making this propagation self-sustained.

Note that this is a very robust counter-example. For example, reasonable ener-
getic operators behave as the edge-finder on this instance. Moreover, we have tried
several variants of these operators, not defined in this paper, which also suffered
from this ping-pong effect. Thus, it is reasonable to consider this instance as a good
benchmark for future pruning operators. A fast convergence on this instance would
provide hope that the considered pattern is polynomial.

Corollary 5 No fixpoint pattern over {EF-R, EF-D} is horizon-independent for
CRPs.

Proof Direct consequence of Theorems 8 and 2. �

7 Conclusion and Open Questions

The complexity analysis of edge finding and energetic operators has focused on a
single application of these operators. Such analyses are problematic, since these op-
erators typically interact in the fixpoint computation of constraint-based schedulers
and are not idempotent so that a single application does not make much sense. As a
consequence, available analyses leave a significant gap in our understanding of these
pruning operators and do not provide a sound basis for algorithmic comparison.

This paper addressed this limitation and studied the complexity of propagation
algorithms for disjunctive and cumulative resources. It contains three main results
that may be summarized as follows:

• For disjunctive resources, the fixpoint of the edge finder for both release and
due dates can be reached in strongly polynomial time.

• For the cumulative resources, the fixpoint can be reached in strongly polyno-
mial time for updating the release dates or the due dates but not both.

• The fixpoint of “reasonable” energetic operators cannot be reached in strongly
polynomial time, even for disjunctive scheduling and even when only the release
dates or the due dates are considered.

In addition, the paper presented a generic propagation algorithm with two funda-
mental properties:

1. it is guaranteed to be strongly polynomial if such an algorithm exists;

22

Strong Polynomiality of Resource Constraint Propagation

2. an optimal constraint propagation algorithm can never be much more efficient
than the generic algorithm.

This research also opens a variety of open issues.

• Is the complexity bound in Theorem 5 tight? We conjecture that it is not,
because of the underlying structure of precedence constraints.

• Are the “not first/not last” algorithms for disjunctive scheduling strongly poly-
nomial? These algorithms [BLPN01, TL00, Vil04] are often used with edge
finders and exploit different properties.

• Can the limitation of energetic operator be remedied? Energetic operators are
good at finding pairs (t2, i) such that i must ends after date t2, but they badly
exploit this information. Using a variant of the rest function found in the
edge finder would address this limitation, but the complexity of the resulting
operators should be analyzed.

• What is the complexity of patterns such as (WSh-R · EF-R)� combining ener-
getic reasoning and edge finding?

• More generally, does there exist stronger pruning operators that do not suf-
fer from the inherent computational limitations of edge finding and energetic
pruning operators in the cumulative case?

References

[AB93] A. Aggoun and N. Beldiceanu. Extending CHIP To Solve Complex
Scheduling and Packing Problems. Journal of Mathematical and Com-
puter Modelling, 17(7):57–73, 1993.

[BLPN01] P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-Based Scheduling.
Kluwer Academic Publishers, 2001.

[Bru95] Scheduling algorithms. Springer, Berlin, 1995.

[CL94] Y. Caseau and F. Laburthe. Improving CLP Scheduling with Task In-
tervals. In Proceedings of the 11th International Conference on Logic
Programming (ICLP’94), pages 369–383, Santa Margherita Ligure, Italy,
1994.

[CP94] J. Carlier and E. Pinson. Adjustment of Heads and Tails for the Jobshop
Problem. European Journal of Operational Research, 78:146–161, 1994.

23

Strong Polynomiality of Resource Constraint Propagation

[LP94] C. Le Pape. Implementation of Resource Constraints in ILOG SCHED-
ULE: A Library for the Development of Constraint-Based Scheduling
Systems. Intelligent Systems Engineering, 3(2):55–66, 1994.

[MS96] D. Martin and P. Shmoys. A Time-based Approach to the Job-Shop
Problem. In Proc. of 5th International Conference on Integer Program-
ming and Combinatorial Optimization (IPCO’96), Vancouver, Canada,
1996. Springer Verlag.

[MVH05] L. Mercier and P. Van Hentenryck. Edge-finding for cumulative schedul-
ing. Submitted to publication, 2005.

[NA96] W. Nuijten and E. Aarts. A Computational Study of Constraint Satis-
faction for Multiple capacitated Job-Shop Scheduling. European Journal
of Operations Research, 90:269–284, 1996.

[TL00] P. Torres and P. Lopez. On not-first/not-last conditions in disjunctive
scheduling. European Journal of Operational Research, 127(2):332–343,
2000.

[VBv04] P. Vilim, R. Barták, and O. Čepek. Unary Resource Constraint with Op-
tional Activities. In Principles and Practice of Constraint Programming
- CP 2004: 10th International Conference, 2004.

[Vil04] Petr Vilim. O(n log n) Filtering Algorithms for Unary Resource Con-
straint. In Proceedings of the First International Conference on the Inte-
gration of AI and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems (CP-AI-OR’04), pages 319–334, Nice,
2004.

24

Strong Polynomiality of Resource Constraint Propagation

Appendices

A Proof of Theorem 1

Theorem 1 Let F1 and F2 be two fixpoint patterns over Ψ = {ψ1, . . . , ψk} and P be
a CRP. Then, last(Propagate(P, F1)) = last(Propagate(P, F2)), where last(S)
denotes the last element of a non-empty sequence.

Proof Let
〈P1

1 , . . . ,P1
Q1

〉 = Propagate(P, (F1)�)

and
〈P2

1 , . . . ,P2
Q2

〉 = Propagate(P, (F2)�)

and define P1
0 = P2

0 = P. By definition of a fixpoint, we have ψ(P1
Q1

) = P1
Q1

and
ψ(P2

Q2
) = P2

Q2
for each pruning operator ψ in Ψ. By contractance of the operators,

we also have
P1

0 ⊇ · · · ⊇ P1
Q1

and
P2

0 ⊇ · · · ⊇ P2
Q2

.

Assume now that P1
Q1

⊆ P2
Q2

does not hold and define

S =
{
0 ≤ q ≤ Q2

∣∣ P1
Q1

⊆ P2
q

}
.

S is not empty since P1
Q1

⊆ P1
0 = P2

0 . Now define q = maxS. Since P1
Q1

⊆ P2
Q2

does
not hold, it follows that q < Q2. As a consequence, there exists ψ ∈ Ψ such that
P2

q+1 = ψ
(
P2

q

)
. By monotonicity of ψ, it follows that ψ

(
P1

Q1

)
⊆ ψ

(
P2

q

)
= P2

q+1.

Since ψ(P1
Q1

) = P1
Q1

, q+1 ∈ S, which contradicts the hypothesis. Hence P1
Q1

⊆ P2
Q2

.
The result follows from the other inclusion whose proof is similar. �

B Proof of Theorem 4

Theorem 4 Let F be a propagation pattern. There exist 2 constants a and b satis-
fying 0 < a ≤ 1 and b ≥ 1 such that, for any CRP P0, we have∣∣{0 ≤ q < Q

∣∣ Pq+1 �= Pq

}∣∣ ≥ aQ − b

where
〈P1, . . . , PQ〉 = Propagate(P0, F).

25

Strong Polynomiality of Resource Constraint Propagation

Proof The proof is by induction on the structure of the propagation pattern. The
theorem holds for patterns of the form ψ with a = 1 and b = 1.

Consider now the sequential composition F1 ·F2 and assume that F1 and F2 verify
the theorem with (a1, b1) and (a2, b2) respectively. The sequence

〈P1, . . . ,PQ1 ,PQ1+1, . . . ,PQ2〉

returned by Propagate(P0, F1 ·F2) is obtained by applying Propagate(P0, F1) giving

〈P1, . . . ,PQ1〉

and by applying Propagate(PQ1 , F2) to obtain

〈PQ1+1, . . . ,PQ2〉.

By induction hypothesis, we have

|{0 ≤ q < Q1 | Pq+1 �= Pq }| ≥ a1Q1 − b1

|{Q1 ≤ q < Q2 | Pq+1 �= Pq }| ≥ a2(Q2 − Q1) − b2

It follows that

|{0 ≤ q < Q2 | Pq+1 �= Pq }| ≥ a1Q1 + a2(Q2 − Q1) − (b1 + b2)

and the theorem holds by choosing a = min(a1, a2) and b = b1 + b2.
Finally, consider the fixpoint operator (F)� and assume that F verifies the the-

orem with (a, b). Let

〈P1, . . . ,PQ1 , . . . ,PQk−1
, . . . ,PQk

〉

be the sequence returned by Propagate(P0, (F)�) where

〈PQi+1, . . . ,PQi+1〉

is the sequence returned by Propagate(PQi , (F)�). Define

Ai = {Qi ≤ q < Qi+1 | Pq+1 �= Pq }

and
A =

⋃
i

Ai.

Because Line 12 in Algorithm Propagate is only executed when the test in line 9
fails, it follows that

∀i ≤ k − 2, |Ai| ≥ 1 and |Ak−1| = 0.

26

Strong Polynomiality of Resource Constraint Propagation

We first prove that ∑
i≤k−2

|Ai| ≥ a

2b
Qk−1.

Consider i ≤ k − 2 and assume that Qi+1 − Qi > 2b
a . Since

|Ai| ≥ a(Qi+1 − Qi) − b,

we have |Ai|
Qi+1 − Qi

≥ a − b

Qi+1 − Qi
> a − a

2
=

a

2
.

Consider i ≤ k − 2 and assume that Qi+1 − Qi ≤ 2b
a . Since |Ai| ≥ 1, we have

|Ai|
Qi+1 − Qi

≥ 1
Qi+1 − Qi

≥ a

2b

Since b ≥ 1, the two cases lead to∑
i≤k−2

|Ai| ≥ a

2b
Qk−1.

It remains to study the last application of F . Since Ak−1 = 0, it follows by induction
that 0 ≥ a(Qk − Qk−1) − b. Thus Qk − Qk−1 ≤ b

a and it follows that

|A| ≥ a

2b
(Qk − (Qk − Qk−1)) ≥ a

2b
Qk − a

2b
· b

a
=

a

2b
Qk − 1

2
.

As a consequence, the pattern (F)� verifies the theorem with a� = a
2b , b

� = 1. �

C Proof of Theorem 7

The proof of Theorem 7 requires several lemmas and some additional notations.
Given a CRP P = (r, d), our goal is to study the sequence (rq)q∈N defined by

(EF-R)q(P) = (rq, d) .

We use the following notations with capture the relevant conditions and formulas
for position q in the sequence.

rq
Ω = min

{
rq
j | j ∈ Ω

}
,

αq(Ω, i) ⇐⇒
(
C(dΩ − rq

Ω∪{i}) < eΩ∪{i}
)

,

restq(Ω, c) =

{
0 if Ω = ∅
eΩ − (C − c)(dΩ − rq

Ω) otherwise.

The next definition captures the concept of maximal valid pair for a task i, i.e., the
pair (Ω,Θ) used to update the release date of task i at some iteration (if any).

27

Strong Polynomiality of Resource Constraint Propagation

Definition 15 (Valid Pair) Let i ∈ T . A pair (Ω,Θ) is i-valid at iteration q if[
i /∈ Ω

] ∧ [
αq(Ω, i)

] ∧ [
Θ ⊆ Ω

] ∧ [
restq(Θ, ci) > 0

]
.

A i-valid pair (Ω,Θ) at iteration q is maximal if it satisfies

rq+1
i = rq

Θ +
⌈

1
ci

restq(Θ, ci)
⌉

.

The next lemma captures an important property of the edge finder. It specializes
Proposition 7 in [MVH05] whose proof is long and technical, and not reproduced
here.

Lemma 1 Let P = (r, d) be a CRP, and (r′, d) be (EF-R)(P). Then, for all i ∈ T ,
for all Ω such that α(Ω, i), for all Θ ⊆ T such that dΘ ≤ dΩ

rest(Θ, ci) > 0 =⇒ r′i ≥ rΘ +
⌈

1
ci

rest(Θ, ci)
⌉

.

The next lemma specifies the two conditions under which a release date can be
updated. These conditions were mentioned in the proof sketch but are formalized
here.

Lemma 2 Let i ∈ T and q ∈ N be such that rq+2
i > rq+1

i . Suppose that Pq+2 �= P∅.
Then at least one of the following statements is true:

1. For all maximal i-valid pair (Ω+,Θ+) at iteration q + 1, there exists a task
j ∈ Ω+ such that rq+1

j > rq
j ;

2. rq+1
i > rq

i and there exists a maximal i-valid pair (Ω,Θ) at iteration q such
that for all maximal i-valid pair (Ω+,Θ+) at iteration q + 1, dΩ+ > dΩ.

Proof As rq+2
i > rq+1

i , there exists a maximal i-valid pair at iteration q + 1. Each
such pair (Ω+,Θ+) verifies⎧⎪⎪⎪⎨

⎪⎪⎪⎩
αq+1(Ω+, i)
dΘ+ ≤ dΩ+

restq+1(Θ+, ci) > 0

rq+2
i = rq+1

Θ+ +
⌈

1
ci

restq+1(Θ+, ci)
⌉

First observe that di > dΩ+ . Otherwise, since αq+1(Ω+, i) holds,

eΩ+∪{i} > C
(
dΩ+∪{i} − rΩ+∪{i}

)
28

Strong Polynomiality of Resource Constraint Propagation

and Pq+2 = P∅ which contradicts the lemma hypothesis.
Assume now that Statement (1) does not hold. That implies the existence of a

maximal i-valid pair (Ω+,Θ+) at q + 1 satisfying

∀j ∈ Ω+ : rq+1
j = rq

j .

Since Θ+ ⊆ Ω+, we have

restq(Θ+, ci) > 0 (1)

rq
Θ+ +

⌈
1
ci

restq(Θ+, ci)
⌉

= rq+1
Θ+ +

⌈
1
ci

restq+1(Θ+, ci)
⌉

(2)

As a consequence, by definition of the edge-finding operator, the fact that rq+1
i <

rq+2
i means that the precondition αq(Ω+, i) did not hold at iteration q. Thus

C
(
dΩ − rq+1

Ω+∪{i}
)

< eΩ+∪{i} because αq+1(Ω+, i)

C
(
dΩ − rq

Ω+∪{i}
)

≥ eΩ+∪{i} because ¬αq(Ω+, i)

rq+1
Ω+∪{i} > rq

Ω+∪{i} by transitivity

min
(
rq+1
i , rq+1

Ω+

)
> min

(
rq
i , rq

Ω+

)
by definition.

But, since rq+1
Ω+ = rq

Ω+ , the minimum of the right-hand side is reached by rq
i and we

have that
rq+1
i > rq

i .

It remains to show the second part of statement 2 in the lemma. Consider a maximal
i-valid pair (Ω,Θ) at iteration q and assume that dΩ ≥ dΩ+ . Since (Ω+,Θ+) was
valid at iteration q + 1, dΘ+ ≤ dΩ+ and thus dΘ+ ≤ dΩ. Since αq(Ω, i) holds, it
follows from Lemma 1 that

rq+1
i ≥ rq

Θ+ +
⌈

1
ci

restq(Θ+, ci)
⌉

By inequality (1) and equation (2), this implies rq+1
i = rq+2

i , which contradicts the
hypothesis. �

Lemma 2 demonstrates that the due dates impose a natural ordering of the tasks
(Statement 2). This observation is the foundation of the remaining part of the proof.
The key idea is to partition the tasks by due dates

D1 < . . . < DK

and to show that the tasks in Tk with due date Dk reach their final release dates
at iteration k − 1. More precisely, we define D = {di | i ∈ T }, K = |D|, and
D = {D1, . . . ,DK} withD1 < · · · < DK . We also partition T into

T =
⊎

1≤k≤K

Tk

29

Strong Polynomiality of Resource Constraint Propagation

where
Tk = {i ∈ T | di = Dk } .

Finally, we define
T k =

⊎
1≤l≤k

Tl.

Our next lemma bounds the iteration when a release date reaches its final value.
Intuitively, in the proof, ϕ(k) denotes the earliest iteration at which a task with due
date Dk or earlier reaches its final release date.

Lemma 3 With the above notations, let P be a CRP such that PK �= P∅ and define

ϕ(k) = min
{

q ∈ N

∣∣∣ ∀r ∈ N, ∀i ∈ T k, rq+r
i = rq

i

}
.

Then, for all 0 ≤ k ≤ K − 1, we have ϕ(k + 1) ≤ k.

Proof The proof is by induction with a stronger induction hypothesis. We show
that, for all 0 ≤ k ≤ K − 1, we have

(Ak) ϕ(k + 1) ≤ k;

(Bk) For i ∈ T such that rk+1
i > rk

i , for each maximal i-valid pair (Ω,Θ) at k,
dΩ ≥ Dk+1.

For the base case k = 0, we have ϕ(1) = 0, because the release dates of tasks of
T1 cannot be improved without discovering a contradiction. Moreover, for any valid
pair (Ω,Θ), Ω is not empty and thus dΩ ≥ D1 since D1 = min {di | i ∈ T}.

Consider now the inductive case and assume that (Ak) and (Bk) hold for a given
k. We first show that (Bk+1) holds. Consider i ∈ T such that rk+2

i > rk+1
i and

suppose there exists a maximal i-valid pair (Ω+,Θ+) at k+1 such that dΩ+ ≤ Dk+1.
By Lemma 2, two cases must be considered.

1. Assume first that Statement (1) of Lemma 2 holds. Then, there exists j ∈ Ω+

such that rk+1
j > rk

j . Since j ∈ Ω+, dj ≤ dΩ+ ≤ Dk+1 and hence j ∈ T k+1

which contradicts (Ak).

2. Assume now that statement (2) of Lemma 2 holds. Let (Ω+,Θ+) and (Ω,Θ)
be the maximal i-valid pairs chosen at iterations k + 1 and k, according to
statement (2). By (Bk), dΩ ≥ Dk+1 and, by Lemma 2, dΩ+ > dΩ. It follows
that dΩ+ > Dk+1, which contradicts the hypothesis.

This ends the proof of (Bk+1).
It remains to prove (Ak+1). Let i ∈ T k+2. Then, as no contradiction is discovered,

any update of the release date of i can only be made by valid pairs (Ω,Θ) such that

30

Strong Polynomiality of Resource Constraint Propagation

dΩ < di. Hence dΩ ≤ Dk+1. As a consequence, by Property (Bk+1), such an update
cannot occur at iteration k + 1 and

∀i ∈ T k+2 : rk+2
i = rk+1

i .

As tasks of T \ T k+2 have no influence on the updates of release dates of tasks
of T k+2, the release dates of the tasks in T k+2 have reached their final values at
iteration k + 1. It follows that ϕ(k + 2) ≤ k + 1, proving (Ak+1). �

Theorem 7 The complexity of the propagation patterns (EF-R)� and (EF-D)� is
O(n).

Proof Let φ(P) be defined as folows:

φ(P) = min
{
q ∈ N

∣∣ rq+1 = rq
}

.

By Lemma 3, φ(P) = ϕ(K). Since K ≤ n, all release dates have reached their
final values at iteration n. Since the sequence returned by Propagate (P, (EF-R)�)
has length φ(P) + 1, the complexity of (EF-R)� is O(n). A similar result holds for
(EF-D)� by Corollary 1. �

D Proof of Theorem 5

A key difference with the disjunctive and cumulative edge finders is that the fact
that, in the disjunctive case, the function EF-R (resp. EF-D) only depends on the
due dates (resp. release dates) in the condition α and not the actual expression of
the lower bound. This difference prevents the ping-pong effect exhibited in Theorem
8 from occurring in disjunctive scheduling, since it relies on iterative updates for a
specific pair (Ω, i). The proof described below formalizes this insight.

Our first lemma in this section provides an alternative, but equivalent, definition
of the edge finder in the disjunctive case. The new definition is motivated by the
difficulty of manipulating condition α in the edge finder. Indeed, it is not necessarily
the case that α(Ω1 ∪Ω2, i) holds when α(Ω1, i) and α(Ω2, i) hold, which complicates
the proof. The new formulation removes this issue.

31

Strong Polynomiality of Resource Constraint Propagation

Lemma 4 Let P = (r, d) be a DRP. Let Γ− : T → 2T be defined by

Γ−(i) =
⋃

i /∈ Ω ⊆ T
α(Ω, i)

Ω.

Let LBU : T → Z be the function defined by

LBUi = max
Θ⊆Γ−(i)

rΘ + pΘ.

We have that LBU = LB.

Proof The inequality LB ≤ LBU is immediate and we show that LBU ≤ LB.
Consider a task i ∈ T . If LBUi = −∞, then Γ−(i) = ∅ and LBi = −∞. Assume
now LBUi > −∞, in which case there exists Θ ⊆ Γ−(i) such that LBUi = rΘ + pΘ.

Let j ∈ Θ be a task such that dΘ = dj . Since j ∈ Γ−(i), there exists Ω ⊆ T
which contains j and satisfies α(Ω, i). Since all tasks of Ω are in Γ−(i), we have that
LBUi ≥ rΩ + pΩ. Moreover, dΘ ≤ dΩ, since j ∈ Ω and dj = dΩ. Now consider two
cases:

case rΘ ≥ rΩ∪{i}. Let Ω′ = Θ ∪ Ω. We have

rΩ′∪{i} = rΩ∪{i} because rΘ ≥ rΩ∪{i}
dΩ′ = dΩ because dΘ ≤ dΩ

pΩ′ ≥ pΩ because Ω ⊆ Ω′

Hence, since α(Ω, i) holds, rΩ∪{i}+pΩ∪{i} > dΩ which implies rΩ′∪{i}+pΩ′∪{i} >
dΩ′ and thus α(Ω′, i) holds.

case rΘ < rΩ∪{i}. In that case, rΘ∪{i} = rΘ. Thus

rΘ∪{i} + pΘ = rΘ + pΘ because rΘ∪{i} = rΘ

≥ rΩ + pΩ because LBUi ≥ rΩ + pΩ

> dΩ − pi because α(Ω, i) and rΩ ≥ rΩ∪{i}
> dΘ − pi because dΘ ≤ dΩ

Thus α(Θ, i) holds.

In both cases, Θ is included in a set (either Ω′ or itself) which satisfies property
α(., i). Thus LBi ≥ LBUi and the result follows. �

The rest of the proof analyzes the sequence of DRPs

(Pq)q=0,...,Q.

32

Strong Polynomiality of Resource Constraint Propagation

It considers the set of iterations A ⊆ {0, . . . , Q − 1} satisfying

∀q ∈ A : Pq+1 = (EF-R)(Pq)

and such that ∀q /∈ A, there exists an operator ψ which does not modify release
dates and such that Pq+1 = ψ(Pq). We also define the sequence

(
Γ−

q

)
q=0,...,Q

as

Γ−
q (i) =

⋃
Ω ⊆ T
αq(Ω, i)
i /∈ Ω

Ω.

Lemma 5 With the notations above,
(
Γ−

q

)
is non-decreasing.

Proof Recall that αq(Ω, i) ⇐⇒ dq
Ω − rq

Ω∪{i} < pΩ∪{i}. Since processing times are
constant, release dates are non-decreasing, and due dates are non-increasing, the fact
that αq(Ω, i) holds implies that, for all r > q, αr(Ω, i) holds too. �

Our final lemma bounds the number of iterations which update release dates without
discovering new conditions of the form α(Ω, i).

Lemma 6 With the notations above, let q1 < q2 be such that Γ−
q1

= Γ−
q2

. Define

QA =
{
q ∈ {q1, . . . , q2 − 1}

∣∣∣ (q ∈ A) ∧ (Pq+1 �= Pq)
}

We have |QA| ≤ n − 1.

Proof Consider the sequence 〈P ′
0, . . . ,P ′

|QA|〉 defined as

P ′
0 = Pq1

P ′
q+1 = (EF-R)(P ′

q)

where P ′
i = (r′i, d′i). In other words,(P ′

i

)
i∈0..|QA|

is the sequence obtained by keeping only operator EF-R and removing all other
operators that do not affect release dates. Define the function f to establish the
correspondence between the DRPs Pq and P ′

f(q) as follows:

f(q) = |A ∩ {q1, . . . , q − 1}| .
We first prove by induction that

∀q1 ≤ q ≤ q2 : rq = r′f(q).

33

Strong Polynomiality of Resource Constraint Propagation

Intuitively, this means that only operator EF-R has an impact on the release dates
and the other operators can be ignored. This holds for q = q1 by definition of (P ′

q).
Suppose that it holds for a given q (q1 ≤ q < q2). If q /∈ A, then rq+1 = rq and
f(q + 1) = f(q), since the pruning operator applied at q does not change release
dates. And . Hence rq+1 = r′f(q+1). Suppose now that q ∈ A. Since rq = r′f(q) and
dq ≤ d′f(q), α′f(q)(Ω, i) ⇒ αq(Ω, i) for every pair (Ω, i). Hence, Γ′−

f(q) ⊆ Γ−
q = Γ−

q1
.

Since Γ′− is non-decreasing, Γ′−
f(q) = Γ′−

0 . By applying Lemma 4, once on the sequence
(P), and once on the sequence (P ′), we obtain

rq+1
i = max

Θ ⊆ Γ−
q (i)

(
rq
Θ + pΘ

)
= max

Θ ⊆ Γ−
q1

(i)

(
rq
Θ + pΘ

)

r
′f(q+1)
i = max

Θ ⊆ Γ′−
f(q)(i)

(
r
′f(q)
Θ + pΘ

)
= max

Θ ⊆ Γ′−
0 (i)

(
r′0Θ + pΘ

)

and thus rq+1
i = r

′f(q+1)
i . This ends the proof of the relationships between (P) and

(P ′).
Finally, by Lemma 3, the sequence (P ′) reaches its fixpoint in at most n − 1

iterations. Translated back to the sequence (P), this implies that

|{q ∈ {q1, . . . , q2 − 1} | (q ∈ A) ∧ (Pq+1 �= Pq)}| ≤ n − 1. �

Theorem 5 Let Ψ be a set of pruning operators containing EF-R such that any
other operator in Ψ do not modify release dates, i.e.,

∀ ψ ∈ Ψ \ {EF-R} ,∀ P = (r, d) : ∃ d′ ∈ Z
n : ψ(P) = (r, d′).

Let F be a propagation pattern on Ψ, P0 be a DRP, and

〈P1, . . . ,PQ〉 = Propagate(P0, F).

Denote by
〈ψ0, . . . , ψQ−1〉

the sequence of pruning operators applied to produce 〈P1, . . . ,PQ〉, i.e.,

ψq(Pq) = Pq+1.

We have that ∣∣∣{0 ≤ q < Q | ψq = EF-R ∧ Pq+1 �= Pq }
∣∣∣ ≤ n3.

Proof Let (Qh)h≥0 be the increasing sequences of integers such that Γ−
Qh

�= Γ−
Qh−1.

Since Γ− is non decreasing (as stated by Lemma 5) and since, for each task i, no

34

Strong Polynomiality of Resource Constraint Propagation

more than n− 1 tasks can belong to Γ−(i), the number of such integers (Qh) is less
or equal to n2. Moreover, on the interval Qh, . . . , Qh+1 − 1, Lemma 6 shows that
there are no more than n − 1 iterations where EF-R is applied and modify at least
one release date. It follows that∣∣∣{0 ≤ q < Q | ψq = EF-R ∧ Pq+1 �= Pq }

∣∣∣ ≤ n3. �

35

Appendix

The following paper is given in appendix
as it is cited in the report and is not yet published.
It is independent from the report, but reading it

can provide a better understanding of the edge-finder.

Edge Finding for Cumulative Scheduling

Luc Mercier and Pascal Van Hentenryck

Brown University, Box 1910, Providence, RI 02912

Email: {mercier,pvh}@cs.brown.edu

May 27, 2005

Abstract

Edge-finding algorithms for cumulative scheduling are at the core of
commercial constraint-based schedulers. This paper shows that Nuijten’s
edge finder for cumulative scheduling, and its derivatives, are incomplete
and use an invalid dominance rule. The paper then presents a new edge-
finding algorithm for cumulative resources which runs in time O(n2k),
where n is the number of tasks and k the number of different capacity re-
quirements of the tasks. The new algorithm is organized in two phases and
first uses dynamic programming to precompute the innermost maximiza-
tion in the edge-finder specification. Finally, this paper also proposes the
first extended edge-finding algorithm that runs in time O(n2k), improving
the running time of available algorithms.

1 Introduction

Edge finding [CP94] is a fundamental pruning technique for disjunctive and
cumulative scheduling1 and is an integral part of commercial constraint-based
schedulers. Informally speaking, an edge finder considers one resource at a time,
identifies pairs (Ω, i) such that task i cannot precede (resp. follow) any task from
Ω in all feasible schedules, and updates the earliest starting date (resp. latest
finishing date) of task i accordingly. An edge-finding algorithm is a procedure
that performs all such deductions.

Edge finding is well-understood for unary resources, i.e., resources with ca-
pacity one. Indeed, there exist efficient algorithms running in time O(n log n)
or O(n2), where n is the number of tasks on the resource [CP94, Nui94, Vil04].
Edge finding is more challenging for cumulative resources whose capacity is a
natural number C ≥ 1 and whose tasks may require several capacity units.
Nuijten [Nui94] (see also [NA96, BLPN01]) proposed an edge-finding algorithm
running in time O(n2k), where k ≤ n is the number of distinct capacity require-
ments of the tasks. This algorithm was later refined to run in O(n2) [BLPN01].

This paper shows that Nuijten’s algorithm, and its refinement, are incom-
plete and do not perform all the edge-finding updates. The mistake comes from
the use of an incorrect dominance rule which holds for unary resources but does
not carry over to the cumulative case. The paper also presents a new, two-phase,
edge finder for cumulative resources that runs in O(n2k). The first phase is a

1This paper considers only non-preemptive problems, where tasks cannot be interrupted.

1

dynamic programming algorithm that precomputes the potential edge-finding
updates. The second phase uses the precomputation to apply the actual up-
dates. Moreover, similar ideas can be used to derive an O(n2k) for the extended
edge-finding rule, improving the running time of the best available algorithms.
The contributions of this paper can thus be summarized as follows:

1. This paper shows that Nuijten’s algorithm and its derivatives are incom-
plete with respect to the edge-finding rule;

2. This paper presents a complete edge-finding algorithm that runs in time
O(n2k);

3. This paper presents a complete extended edge-finding algorithm running
in time O(n2k), improving the complexity of the best-known algorithm.

The rest of this paper is organized as follows. Section 2 specifies the problem
and the notations used in the paper. Section 3 proves that Nuijten’s algorithm
is incomplete. Sections 4, 5, and 6 are the core of the paper: they present
the dominance properties used for cumulative edge finding and the edge-finding
algorithm itself. Section 7 presents the extended edge-finding algorithm, and
Section 8 concludes the paper.

2 Problem Definition and Notations

Definition 1 (Cumulative Resource Problems) A cumulative resource
problem (CRP) is specified by a cumulative resource of capacity C and a set
of tasks T . Each task t ∈ T is specified by its release date rt, its deadline dt,
its processing time pt, and its capacity requirement ct, all of which being natural
numbers. A solution to a CRP P is a schedule that assigns a starting date st

to each task t so that

∀t ∈ T : rt ≤ st ≤ st + pt ≤ dt

and
∀i :

∑

t ∈ T
st ≤ i < st + pt

ct ≤ C.

The set of solutions to a CRP P is denoted by sol(P). Finally, Sc denotes the
set {ct | t ∈ T } of all capacity requirements, n denotes |T |, N = {1, . . . , n}, k
denotes |Sc|, and et = ctpt denotes the energy of a task t.

In the following, we abuse notations and assume an underlying CRP with its
resource and tasks specified as in Definition 1. We also lift the concepts of
release dates, due dates, and energies to sets of tasks, i.e.,

rΩ = min
j∈Ω

rj

dΩ = max
j∈Ω

dj

eΩ =
∑

j∈Ω

ej

2

where Ω is a set of tasks. By convention, when Ω is the empty set, rΩ = ∞,
dΩ = −∞ and eΩ = 0.
The CRP is NP-complete and constraint-based schedulers typically use a relax-
ation of feasibility to prune the search space.

Definition 2 (E-Feasibility) A CRP is E-feasible if

∀Ω ⊆ T : C(dΩ − rΩ) ≥ eΩ.

Obviously, feasibility of a CRP implies E-feasibility. A critical aspect of
constraint-based schedulers is to reduce the possible starting and finishing dates
that appear in solutions. The edge-finding rule is one of the fundamental tech-
niques to reduce these dates in disjunctive and cumulative scheduling. This
paper restricts attention to starting dates only (the handling of finishing dates
is similar), in which case the key idea underlying the edge-finding rule can be
summarized as follows. Consider a set of tasks Ω and a task i ∈ T \ Ω. If the
condition

C(dΩ − rΩ∪{i}) < eΩ∪{i}

holds, then there exists no schedule in which task i precedes any operation in
Ω. As a consequence, in any feasible schedule, the starting date si must satisfy

si ≥ rΘ +

⌈
1

ci

rest(Θ, ci)

⌉

for all Θ ⊆ Ω satisfying
rest(Θ, ci) > 0

where

rest(Θ, ci) =

{
eΘ − (C − ci)(dΘ − rΘ) if Θ 6= ∅;
0 otherwise.

Informally speaking, rest(Θ, ci) is the energy of eΩ that cannot be accommo-
dated by a cumulative resource of capacity C − ci in the interval [rΘ, dΘ). The
proofs of these results can be found in [BLPN01]. We are now ready to specify
the edge-finding algorithm.

Specification 1 (Edge Finding) The edge-finding algorithm receives as in-
put an E-feasible CRP. It produces as output a vector

〈
LB2(1), . . . , LB2(n)

〉

where
LB2(i) = max(ri, LB2(i))

and

LB2(i) = max
Ω ⊆ T
i /∈ Ω
α(Ω, i)

max
Θ ⊆ Ω

rest(Θ, ci) > 0

rΘ +

⌈
1

ci

rest(Θ, ci)

⌉

with
α(Ω, i) ⇐⇒

(
C(dΩ − rΩ∪{i}) < eΩ∪{i}

)
.

3

3 Incompleteness of Nuijten’s Algorithm

We now consider algorithm CalcLB (Figure 4.9 in [Nui94]; see also [BLPN01]),
which is is reproduced in Algorithm 1 for simplicity.2 Nuijten claims that Cal-

cLB computes LB2(i) for all i ∈ T , which is incorrect. Consider the following
instance on a resource of capacity 4:

task r d p c
a 0 69 4 1
b 1 2 1 4
c 0 3 1 2
d 0 3 1 2
e 2 3 1 1

Consider the pair (Ω, Θ) where Ω = T \{a} and Θ = {b}. The condition α(Ω, a)
holds because eΩ∪{a} = 13 and C(dΩ − rΩ∪{a}) = 4 × 3 = 12. Moreover, we
have Θ ⊆ Ω and rest(Θ, ca) = 1 which implies

LB2(a) ≥ rΘ +
1

ca

rest(Θ, ca) = 2.

Algorithm CalcLB does not perform this deduction because it never consid-
ers the pair (Ω, Θ). Instead, CalcLB considers the pair (Ω, Ω). But since
rest(Ω, ca) = 0, no update takes place. The problem with CalcLB is apparent
in line 7 which maintains l as the maximum due date of Ω. This maximal value
is then used to compute (incorrectly) the rest in line 9, performing no update
on the relevant gj and thus no update on the release date of task a (in lines 19
and 22).

It is easy to understand why Nuijten made this mistake. The algorithm
CalcLB for cumulative scheduling is derived from a similar algorithm for dis-
junctive scheduling (resources have capacity 1). In disjunctive scheduling, C−ci

is always zero and rest(Θ, ci) does not depend on dΘ. It is thus always beneficial
for a given rΘ to add more tasks when computing the inner maximization. This
is not the case in cumulative scheduling, where this dominance relation does
not hold as the instance above indicates. We now prove formally that CalcLB

does not compute LB2(a) by tracing the algorithm.

Theorem 1 Algorithm CalcLB does not compute LB2(i) (i ∈ T).

Proof Consider the following instance on a resource of capacity 4:

task r d p c

a 0 69 4 1
b 1 2 1 4
c 0 3 1 2
d 0 3 1 2
e 2 3 1 1

We showed earlier that LB2(a) ≥ 2 by considering the pair (Ω, Θ) where Ω = T \
{a} and Θ = {b}. Algorithm CalcLB considers only three due dates {2, 3, 69} and
performs the following processing.

2In CalcLB, lct(t) corresponds to dt, est(t) to rt, a(t) to et, sz(t) to c(t), and LBest(t)

to LB2(t). Our notations are consistent with [BLPN01].

4

Algorithm 1 CalcLB

Require: X is an array of tasks sorted by non-decreasing release dates;
Require: Y is an array of tasks sorted by non-decreasing due dates;
1: for y ← 1 to n do
2: if y = n ∨ dY [y] 6= dY [y+1] then
3: E ← 0; l← −∞; for all c ∈ Sc do gc ← −∞; endfor
4: for i← n downto 1 do
5: if dX[i] ≤ dY [y] then
6: E ← E + eX[i];
7: if dX[i] > l then l ← dX[i]; endif
8: for all c ∈ Sc do
9: rest← E − (l − rX[i])(C − c);

10: if rest/c > 0 then gc ← max(gc, rX[i] + drest/ce);
11: end for
12: end if
13: for all c ∈ Sc do G[i][c]← gc; endfor
14: end for
15: H ← −∞;
16: for x← 1 to n do
17: if dX[x] > dY [y] then
18: if E + eX[x] > (dY [y] − rX[x])× C then
19: LB[x]← max(LB[x], G[x][cX[x]]);
20: end if
21: if H + (eX[x]/C) > dY [y] then
22: LB[x]← max(LB[x], G[1][cX[x]]);
23: end if
24: else
25: H ← max(H, rX[x] + E/C);
26: E ← E − eX[x];
27: end if
28: end for
29: end if
30: end for

dΩ = 69. All tasks have due dates not greater than 69, and the test dX[x] > dY [y]

always fails in line 17. No bound is improved.

dΩ = 3. The only task satisfying dX[x] > dY [y] (i.e., di > dΩ) is a, so only LB2(a) can
be updated. Since the tasks are considered by decreasing release dates starting
with e, l is updated to 3 immediately and never decreases. As a consequence,
rest is never positive and all values G[t][c] are equal to −∞ at the end of the
first inner loop. No update can take place in the second inner loop.

dΩ = 2. The only task with a due date not greater than 2 is b. Since α({b} , i) does
not hold for any task i 6= b, no bound is improved.

This shows that algorithm CalcLB does not improve any bound on this instance,
contradicting the claim that CalcLB is an edge-finding algorithm. �

Note that the proof shows an even stronger result: sa will not be updated even
by iterating CalcLB, since a fixpoint is reached after the first iteration.

5

The result directly propagates to the O(n2) algorithm NBLP (algorithm
8, section 3.3.3 in [BLPN01]). Indeed, NBLP refines the first inner loop of
CalcLB and suffers from the same defect. (The same instance exhibits the
mistake).3

It is also unlikely that the structure of CalcLB can be salvaged. Indeed,
this would require the correct computation of all the G values in time O(nk),
which seems to be intrinsically two-dimensional. The algorithm proposed in this
paper remedies this problem by removing the first inner loop and using dynamic
programming to precompute the inner maximizations in the LB2(i) definitions.
The dynamic programming algorithm exploits some new dominance rules, which
are also used to simplify the second inner loop.

4 Dominance Properties

Before presenting the algorithm, it is important to review the dominance prop-
erties used by the algorithms.

4.1 Dominance Property for E-Feasibility

Testing E-feasibility only relies on a single dominance property based on the
concept of task intervals [CL94].

Definition 3 (Task Intervals) Let L, U ∈ T . The task interval ΩU
L is the set

of tasks
ΩU

L = {k ∈ T | rk ≥ rL ∧ dk ≤ dU } .

Note that it is not always the case that dΩU
L

= dU and rΩU
L

= rL. Indeed,

the tasks L and U are not necessarily included in ΩU
L . Algorithms for testing

E-feasibility only need to consider task intervals.

Proposition 1 E-feasibility testing only needs to consider task intervals.

Proof Consider a set Ω such that C(dΩ − rΩ) < eΩ and a set ΩU
L such that rL =

rΩ ∧ dU = dΩ. Since Ω ⊆ ΩU
L , C(dΩU

L
− rΩU

L
) < eΩU

L
. �.

4.2 Dominance Properties for Edge Finding

Edge-finding algorithms heavily rely on dominance properties in order to reduce
the pairs (Ω, Θ) to consider when updating a task i. This section reviews the
dominance properties used in our algorithm. Some of them are well-known,
others are new. The first three properties reduce the sets Ω that must be
considered in the pairs (Ω, Θ) for a task i. The last two reduce the sets Θ to
consider. In the following, we restrict attention to E-feasible CRPs only.

Definition 4 (Valid Pair) A pair (Ω, Θ) is valid wrt task i if

i /∈ Ω ∧ α(Ω, i) ∧ Θ ⊆ Ω ∧ rest(Θ, ci) > 0.

3We will discuss NBLP again, once we have presented a correct edge-finding algorithm for
cumulative resources.

6

Definition 5 (Maximal Pair) A pair (Ω, Θ) is maximal wrt task i if it is
valid and satisfies

LB2(i) = rΘ +

⌈
1

ci

rest(Θ, ci)

⌉
.

Proposition 2 The computation of LB2(i) for an E-feasible CRP only needs
to consider pairs of the form (ΩU

L , Θ) (L, U ∈ T).

Proof Consider a maximal pair (Ω, Θ) and a set ΩU
L such that rL = rΩ ∧ dU = dΩ.

Since Ω ⊆ ΩU
L and the inner maximization in LB2(i) only involves Θ, it suffices to

prove that (ΩU
L , Θ) is valid. Since α(Ω, i) holds and the CRP is E-feasible, i /∈ ΩU

L .
Moreover, by definition of ΩU

L and since Ω ⊆ ΩU
L , α(ΩU

L , i) holds and the pair (ΩU
L , Θ)

is valid and maximal. �

The following dominance property relates the pairs with task i.

Proposition 3 The computation of LB2(i) for an E-feasible CRP may restrict
attention to pairs (ΩU

L , Θ) where dU = dΩU
L

< di.

Proof Consider a maximal pair (ΩU
L , Θ). There exists a task U ′ ∈ ΩU

L such that

dU′ = dΩU
L

. Since ΩU
L = ΩU′

L , the pair (ΩU′

L , Θ) is also maximal. Assume now that

dU′ ≥ di and let Ω′ = ΩU′

L ∪ {i}. Since dΩ′ = dU′ and α(ΩU′

L , i) holds, it follows that
C (dΩ′ − rΩ′) < eΩ′ , which contradicts E-feasibility. �

Proposition 3 allows us to remove the constraint i /∈ Ω from LB2(i), since it is
implied by dU < di. The following dominance property is new and imposes a
restriction on the tasks L used to define the sets ΩU

L for LB2(i).

Proposition 4 The computation of LB2(i) for an E-feasible CRP only needs
to consider pairs (ΩU

L , Θ) where dΩU
L

= dU < di and rL = rΩU
L
∪{i}.

Proof Consider a maximal pair (ΩU
L , Θ) such that dU < di and let L′ ∈ T be a

task such that rL′ = min(ri, rΩU
L

). Since ΩU
L ⊆ ΩU

L′ and the inner maximization only

depends on Θ, it suffices to show that ΩU
L′ is valid. Since dU < di, i /∈ ΩU

L′ . Moreover,
since rΩU

L
∪{i} = rΩU

L′
∪{i} and ΩU

L ⊆ ΩU
L′ , α(ΩU

L′ , i) holds and the result follows. �

The following proposition summarizes the first three dominance properties.

Proposition 5 For a E-feasible CRP, LB2(i) may be computed as

LB2(i) = max
L, U ∈ T
α(ΩU

L , i)
dU = dΩU

L
< di

rL = rΩU
L
∪{i}

max
Θ ⊆ ΩU

L

rest(Θ, ci) > 0

rΘ +

⌈
1

ci

rest(Θ, ci)

⌉

The next two dominance properties concern the choice of Θ. The first one is
the counterpart of Proposition 2 for Θ.

Proposition 6 The computation of LB2(i) for an E-feasible instance only
needs to consider pairs (ΩU

L , Ωu
l) (rL ≤ rl ≤ du ≤ dU) satisfying rl = rΩu

l

and du = dΩu
l
.

7

Proof Consider a maximal pair (ΩU
L , Θ) and a set Ωu

l ⊆ ΩU
L such that rl = rΘ ∧ du =

dΘ. It follows that Θ ⊆ Ωu
l , rΘ = rΩu

l
, and rest(Θ, ci) ≤ rest(Ωu

l , ci). Hence, (ΩU
L , Ωu

l)
is maximal for task i. �

The above dominance properties restrict the set of pairs to consider in computing
LB2(i). The next property is of a fundamentally different nature: it increases
the set of pairs (Ω, Θ) to consider by relaxing the constraint rl ≥ rL (and thus
Θ ⊆ Ω). This dominance relation, which generalizes Theorem 4.13 in [Nui94],
enables us to amortize the precomputation of inner maximizations of LB2(i)
(i ∈ T) effectively and to simplify the second inner loop of CalcLB.

Proposition 7 Consider the function LB′
2 defined as

LB′
2(i) = max

L, U ∈ T
α(ΩU

L , i)
dU = dΩU

L
< di

rL = rΩU
L
∪{i}

max
l, u ∈ T
rΩu

l
= rl

dΩu
l

= du ≤ dU

rest(Ωu
l , ci) > 0

rl +

⌈
1

ci

rest(Ωu
l , ci)

⌉

For any E-feasible CRP, LB2(i) = LB′
2(i), where LB′

2(i) = max(ri, LB′
2(i)).

Proof By Proposition 5 and Proposition 6, LB2(i) can be rewritten as

LB2(i) = max
L, U ∈ T
α(ΩU

L , i)
dU = dΩU

L
< di

rL = rΩU
L
∪{i}

max
l, u ∈ T
rΩu

l
= rl

dΩu
l

= du ≤ dU

rl ≥ rL

rest(Ωu
l , ci) > 0

rl +

‰
1

ci

rest(Ωu
l , ci)

ı

It follows that LB2(i) ≤ LB′
2(i). Moreover, by definition of LB2(i) and LB′

2(i), it is
sufficient to consider the case where LB′

2(i) > ri and to show that LB2(i) ≥ LB′
2(i).

Consider L, U, l, u ∈ T satisfying

8
>>>>>>><
>>>>>>>:

rL = rΩU
L
∪{i}

α(ΩU
L , i)

rΩu
l

= rl

dΩu
l

= du ≤ dU = dΩU
L

< di

rest(Ωu
l , ci) > 0

LB′
2(i) = rl +

l
1
ci

rest(Ωu
l , ci)

m

If rl ≥ rL, then LB2(i) ≥ LB′
2(i). Otherwise, partition Ωu

l in Θ ∪ Ωu
L where

Θ = Ωu
l \ Ωu

L. The rest of the proof proceeds by a case analysis. Informally speaking,
in the first case, the set Θ has enough energy to cover C(rL − rl) and the computation
of LB2(i) for (ΩU

l , Ωu
l) is at least as good as the computation of LB′

2(i) on (ΩU
L , Ωu

l).
In the second case, Θ does not cover C(rL − rl) and LB2(i) on (ΩU

L , Ωu
L) is at least as

good as LB′
2(i).

Assumption 1: Consider the case

rl +
1

ci

rest(Ωu
l , ci) > rL +

1

ci

rest(Ωu
L, ci). (1)

8

We first rewrite the left-hand side of (1). By definition of rest, we have

cirl + rest(Ωu
l , ci) = cirl + eΩu

l
− (C − ci)(du − rl) (2)

since dΩu
l

= du, and rΩu
l

= rl. We now handle the right-hand side of (1) and show
that

rest(Ωu
L, ci) ≥ eΩu

L
− (C − ci)(du − rL). (3)

If Ωu
L 6= ∅, rest(Ωu

L, ci) = eΩu
L
− (C − ci)(dΩu

L
− rΩu

L
) and the result follows since

dΩu
L
≤ du and rΩu

L
≥ rL. If Ωu

L = ∅, rest(Ωu
L, ci) = 0 by definition and eΩu

L
= 0. To

show (3), we must prove that du > rL. The inequality (1) then becomes

cirl + eΩu
l
− (C − ci)(du − rl) > cirL.

By E-feasibility of Ωu
l , C(du − rl) ≥ eΩu

l
. These two last inequalities show that

cirl + ci(du − rl) > cirL.

and thus du > rL, establishing (3). We now show that

eΘ > C(rL − rl).

Rewriting (1) using (2) and (3) gives

cirl + eΩu
l
− (C − ci)(du − rl) > cirL + eΩu

L
− (C − ci)(du − rL)

eΩu
l
− eΩu

L
− Cdu + Cdu > (C − ci)(rL − rl) + ci(rL − rl)

eΘ > C(rL − rl).

Finally, it remains to show that α(ΩU
l , i) holds. Since Θ ∩ Ωu

L = ∅, Θ ⊆ Ωu
l , and

du ≤ dU , we have that Θ ∩ ΩU
L = ∅ and Θ ∪ ΩU

L ⊆ ΩU
l . Hence,

eΩU
l

= eΘ + eΩU
L

eΩU
l

> C(rL − rl) + eΩU
L

and thus
Crl + eΩU

l
> CrL + eΩU

L
.

Since α(ΩU
l , i) holds, we have

C(dΩU
L
− rΩU

L
∪{i}) < eΩU

L
∪{i}

C(dU − rL) < eΩU
L
∪{i} since U = dΩU

L
& rL = rΩU

L
∪{i}

C(dU − rL) < eΩU
L

+ ei since dU < di

C(dU − rl) < eΩU
l

+ ei since Crl + eΩU
l

> CrL + eΩU
L

.

Since dU ≥ dΩU
l

and rl ≤ rΩU
l
∪{i}, it follows that

C(dΩU
l
− rΩU

l
∪{i}) < eΩU

l
∪{i}

and α(ΩU
l , i) holds. As a consequence,

LB2(i) ≥ rl +
1

ci

rest(Ωu
l , ci)

and the result LB2(i) ≥ LB′
2(u) follows from the properties of ceil.

Assumption 2: Consider the case

rl +
1

ci

rest(Ωu
l , ci) ≤ rL +

1

ci

rest(Ωu
L, ci).

If rest(Ωu
L, ci) ≤ 0, it follows directly that rl + 1

ci
rest(Ωu

l , ci) ≤ rL and thus that

LB′
2(i) ≤ rL. But this contradicts our hypothesis LB′

2(i) > ri ≥ rL. Hence
rest(Ωu

L, ci) > 0 and, since Ωu
L ⊆ ΩU

L ,

LB2(i) ≥ rL +

‰
1

ci

rest(Ωu
L, ci)

ı
≥ LB′

2(i). �

9

Algorithm 2 E-FEASIBILITY

Require: X is an array of tasks sorted by non-decreasing release dates;
Require: Y is an array of tasks sorted by non-decreasing due dates;
Ensure: returns true iff the instance is E-feasible;
1: for y ← 1 to n do
2: D ← dY [y]

3: e← 0
4: for x← n downto 1 do
5: if dX[x] ≤ D then
6: e← e + eX[x]

7: if C · (D − rX[x]) < e then
8: return false;
9: end if

10: end if
11: end for
12: end for
13: return true;

5 Testing E-Feasibility

This section presents the standard algorithm for testing E-feasibility [Nui94].
The algorithm only considers task intervals and uses two arrays of tasks: an
array X where the tasks are sorted by non-decreasing release dates and an array
Y where the tasks are sorted by non-decreasing due dates. Because several tasks
may have the same release dates or the same due dates, the algorithm works in
fact with pseudo task intervals expressed in terms of the indices of the tasks in
the arrays. More precisely, the pseudo task intervals are defined as

Ω̃y
x =

{
X [j] | x ≤ j ≤ n & dX[j] ≤ dY [y]

}

Note that Ω̃y
x ⊆ Ω

Y [y]
X[x] and Ω̃y

x = Ω
Y [y]
X[x]when x = 1 or rX[x] > rX[x−1]. The

key insight underlying the algorithm is to amortize the energy computation by
using an inner-loop on the release dates, iterating down from the largest release
date to the smallest release date. The algorithm is depicted in Algorithm 2 and
its correctness follows from Proposition 1.

6 The Edge-Finding Algorithm

A simple use of the dominance relations leads to an O(n5) edge finder by ex-
ploring all tuples (i, L, U, l, u). However, the inner maximization of

rΘ +

⌈
1

ci

rest(Θ, ci)

⌉
.

does not depend on Ω, except for the fact that Θ ⊆ Ω or, more precisely, its
relaxation du ≤ dU due to Proposition 7. As a consequence, the loops on l and
u may be outside the loops on L and U , reducing the runtime complexity. The
new edge-finding algorithm is thus organized in two phases. The first phase
uses dynamic programming to precompute the inner maximizations, while the

10

second phase computes the updates using the precomputed results. We start
by presenting the precomputation.

6.1 The Precomputation

The precomputation performs the inner maximization in LB′
2, i.e.,

max
l, u ∈ T
du ≤ dU

rest(Ωu
l , c) > 0

rΩu
l

+

⌈
1

c
rest(Ωu

l , c)

⌉

for all c ∈ Sc and U ∈ T . Once again, in practice, the algorithm works with
pseudo task intervals and computes the values R[c, y] defined as

R[c, y] = max
l, u ∈ T

du ≤ dY [y]

rest(Ωu
l , c) > 0

rΩu
l

+

⌈
1

c
rest(Ωu

l , c)

⌉
.

To obtain R[c, y], the algorithm computes the values

RT [c, x, y] = max
x ≤ x′ & y′ ≤ y

rest(Ω̃y′

x′ , c) > 0

rx′ +

⌈
1

c
rest(Ω̃y′

x′ , c)

⌉
.

and we have that R[c, y] = RT [c, x, y]. The RT values can be computed by the
following recurrence relation.

Proposition 8 Let RT [c, x, 0] = −∞ (x ∈ N) and RT [c, n + 1, y] = −∞
(y ∈ N). For 2 ≤ x ≤ n + 1 and 0 ≤ y ≤ n− 1, we have

RT [c, x− 1, y + 1] = max

RT [c, x, y + 1]
RT [c, x− 1, y]

rX[x−1] +
⌈

1
c
f

(
rest(Ω̃y+1

x−1, c)
)⌉

where f is defined by f(x) = x if x > 0 and −∞ otherwise.

Proof The base cases correspond to empty sets and are valid. For the inductive case,
consider x∗ and y∗ (x ≤ x∗ & y∗ ≤ y) such that

RT [c, x − 1, y + 1] = rx∗ +

‰
1

c
rest(eΩy∗

x∗ , c)

ı
.

Either x∗ > x − 1 or y∗ < y or x∗ = x − 1 ∧ y∗ = y + 1. In the first two cases,
RT [c, x − 1, y + 1] is correct by induction. The third case is correct by definition of
RT . �

Algorithm 3 depicts a dynamic programming algorithm to compute the R values
using the recurrence relation above. The algorithm, for a given c, computes the
columns RT [c, n, y], . . . , RT [c, 1, y] in O(n2) time and O(n) space. It dynam-
ically computes the energy of task intervals instead of using an O(n2) array,
which is the purpose of lines 8-9.

11

Algorithm 3 CalcR: Precomputation of the Bounds Updates in O(n2k) time

Require: X array of task sorted by non-decreasing release date
Require: Y array of task sorted by non-decreasing due date
Ensure: R[c, y] is computed according to its specification
1: for all c ∈ Sc do
2: for all y ∈ T do
3: E[y]← 0;
4: R[c, y]← −∞;
5: end for
6: for x← n downto 1 do
7: for y ← 1 to n do
8: if dX[x] ≤ dY [y] then
9: E[y]← E[y] + eX[x];

10: end if
11: a← R[c, y];
12: b← R[c, y − 1];
13: rest← E[y]− (C − c)(dY[y]

− rX[x]);

14: c← if rest > 0 then rX[x] + 1
c
dreste else −∞;

15: R[c, y]← max(a, b, c);
16: end for
17: end for
18: end for

Theorem 2 Algorithm 3 is correct for E-feasible CRPs.

Proof Direct consequence of Proposition 8. �

6.2 The Edge Finding Algorithm

Once the precomputation is available, an O(n3) algorithm can be easily derived
(see Algorithm 4). The key idea is to iterate over all Ls and Us in the definition
of LB′

2, using the values R[c, U] to update the bounds. The algorithm is a direct

implementation of LB′
2, with lines 7-12 computing the energy E[x] of Ω̃

Y [y]
X[x].

Theorem 3 Algorithm 4 is correct for E-feasible CRPs.

Proof Direct consequence of Theorem 2 and Proposition 7. �

Algorithm CalcEFI can be improved by using an idea already present in
CalcLB. Observe that line 17 in CalcEFI does not depend on x: only the
condition in line 15 does. Hence the update in line 17 can be applied if there
exists an x satisfying the condition in line 15 (provided that the condition in
line 16 also holds) and we do not need to know x explicitly. As a consequence,
the loop on x can be removed and replaced by an incremental computation of
the condition in line 15 as the loop on i proceeds. More precisely, the idea of
algorithm CalcEF, depicted in Algorithm 5, is to maintain the part of the
condition which does not depend on i, i.e.,

ECF = max
x≤i

(E[x]− C(dY [y] − rX[x]))

at each iteration of the loop.

12

Algorithm 4 CalcEFI: An Edge-Finder in O(n3) Time and O(nk) Space

Require: X array of task sorted by non-increasing release date
Require: Y array of task sorted by non-decreasing due date

Ensure: LB[i] = LB2(X [i]) (1 ≤ i ≤ n)
1: R← CalcR();
2: for x← 1 to n do
3: LB[x]← rX[x]

4: end for
5: for y ← 1 to n− 1 do
6: E ← 0;
7: for x← n downto 1 do
8: if dX[x] ≤ dY [y] then
9: E ← E + eX[x];

10: end if
11: E[x]← E;
12: end for
13: for x← 1 to n do
14: for i← x to n do
15: if E[x] + eX[i] > C(dY [y] − rX[x]) then
16: if dX[i] > dY [y] then
17: LB[i]← max(LB[i], R[cX[i], y])
18: end if
19: end if
20: end for
21: end for
22: end for

Theorem 4 Algorithm 5 is correct for E-feasible CRPs.

Proof Consequence of Theorem 3 and the fact that CalcEF maintains the invariant

ECF = max
x≤i

(E[x] − C(dY [y] − rX[x]))

after line 15. �

6.3 Discussion

It is interesting to mention a couple of properties of CalcEF. The bottleneck
of the algorithm is the computation of the R values which takes O(n2k) time.
However, in practice, there is no need to precompute the entire array, since many
values R[c, y] may not be needed by the algorithm. A lazy implementation,
which computes R[c, y] on demand, runs in time O(n2 + ∆n2), where ∆ is the
number of distinct capacities required by the set of tasks whose bounds are
updated. Worst-case improvements to the algorithm however require a way to
compute the R values more efficiently.

The reader may also wonder if the “refinement” of NBLP over CalcLB

would transpose to CalcEF. It appears however that NBLP uses another in-
correct dominance rule in the computation of the first inner loop of algorithm
CalcLB. Indeed, NBLP only considers those Θ that maximize CrΘ+eΘ, which

13

Algorithm 5 CalcEF: An Edge-Finder in O(n2k) Time and O(nk) Space

Require: X array of task sorted by non-increasing release date
Require: Y array of task sorted by non-decreasing due date

Ensure: LB[i] = LB2(X [i]) (1 ≤ i ≤ n)
1: R← CalcR();
2: for x← 1 to n do
3: LB[x]← rX[x]

4: end for
5: for y ← 1 to n do
6: E ← 0;
7: for x← n downto 1 do
8: if dX[x] ≤ dY [y] then
9: E ← E + eX[x];

10: end if
11: E[x]← E;
12: end for
13: CEF ← −∞;
14: for i← 1 to n do
15: CEF ← max(CEF, E[i] − C(dY [y] − rX[i]));
16: if CEF + eX[i] > 0 then
17: if dX[i] > dY [y] then
18: LB[i]← max(LB[i], R[cX[i], y])
19: end if
20: end if
21: end for
22: end for

is not valid. As a consequence, there exist instances for which CalcLB returns
the correct lower bounds, but not NBLP. Consider the following instance with
a resource of capacity 2 and tasks with capacity requirements equal to one.

task r d p
a 0 69 51
b 1 5 4
c 4 6 2

NBLP does not make any update, although LB2(a) = 2. Indeed, when dY [c] = 6
is considered, the release date da should be improved with respect to the set
Ω = Θ = {b, c}. Instead of that, only Ω = {b, c} , Θ = {c} is considered, due to
the test of line 9 as Cr{b,c} + e{b,c} = 8 is smaller than Cr{c} + e{c} = 10.

7 Extended Edge Finding

This section considers the extended edge-finding rule from [Nui94]. Nuijten
gives an O(n3k) algorithm for the extended edge finger and reference [BLPN01]
claims the existence of an O(n3) algorithm but does not give the algorithm. This
section proposes an extended edge-finding algorithm that runs O(n2k) time and
O(nk) space.

14

7.1 The Extended Edge-Finding Rule

Consider a set Ω ⊆ T and a task i ∈ T \Ω such that ri ≤ rΩ ≤ ri +pi. This new
condition is interesting, since no tasks in Ω can be scheduled in [ri, rΩ). Under
these conditions, Nuijten [Nui94] shows that if

C(dΩ − rΩ) < eΩ + (ri + pi − rΩ)ci

then any feasible schedule satisfies

si ≥ rΘ +

⌈
1

ci

rest(Θ, ci)

⌉

for all Θ ⊆ Ω satisfying
rest(Θ, ci) > 0.

The preconditions can be specified by the property β(Ω, i) defined as

β(Ω, i) ⇐⇒

{
ri ≤ rΩ ≤ ri + pi

C(dΩ − rΩ) < eΩ + (ri + pi − rΩ)ci

The following proposition justifies why this rule is called the extended edge-
finder.

Proposition 9 ri ≤ rΩ ≤ ri + pi ∧ α(Ω, i) =⇒ β(Ω, i).

Proof Since ri ≤ rΩ, we have

C(dΩ − rΩ∪{i}) = C(dΩ − rΩ) + C(rΩ − ri).

Since i /∈ Ω, eΩ∪{i} = eΩ + pici and, since α(Ω, i) holds,

C(dΩ − rΩ) + C(rΩ − ri) < eΩ + pici.

Since C ≥ ci,
C(dΩ − rΩ) + ci(rΩ − ri) < eΩ + pici

and the result follows. �

We now specify the extended edge-finder algorithm.

Specification 2 (Extended Edge-Finder) An extended edge-finder is an al-
gorithm which, given an E-feasible CRP, computes a vector

〈
LB4(1), . . . , LB4(n)

〉

where
LB4(i) = max(ri, LB2(i), LB3(i))

and

LB3(i) = max
Ω ⊆ T
i /∈ Ω
β(Ω, i)

max
Θ ⊆ Ω

rest(Θ, ci) > 0

rΘ +

⌈
1

ci

rest(Θ, ci)

⌉

15

7.2 Dominance Properties

In general, the dominance properties of the extended edge finder are similar in
nature to those of the standard edge finder. In the following, we focus on the
differences and define valid pairs as before, except that the condition α(Ω, i) is
replaced by β(Ω, i). The first proposition simplifies the definition of β(Ω, i).

Proposition 10 For any E-feasible CRP,

β(Ω, i) ⇐⇒

{
ri ≤ rΩ

C(dΩ − rΩ) < eΩ + (ri + pi − rΩ)ci

Proof We only need to show that the right-hand side implies the left-hand side. If
rΩ > ri +pi, then eΩ +(ri +pi −rΩ)ci ≤ eΩ. Thus C(dΩ−rΩ) < eΩ, which contradicts
E-feasibility. �

The following proposition restricts the sets of pairs (Ω, Θ) to consider. These
are the same as in the standard case, except that rL = rΩU

L
because of the

nature of the extended rule.

Proposition 11 The computation of LB3(i) for an E-feasible CRP only needs
to consider pairs of the form (ΩU

L , Ωu
l) such that rL = rΩU

L
, dU = dΩU

L
, du =

dΩu
l
≤ dU < di and rl = rΩu

l
≥ rL.

Proof Similar to the proofs of Propositions 2, 3, and 4. �

The following proposition is the counterpart of Proposition 7. It refers both to
the standard and extended edge finders.

Proposition 12 Let LB′
3 be defined by

LB′
3(i) = max

L, U ∈ T
β(ΩU

L , i)
dU < di

rL = rΩU
L

dU = dΩU
L

max
l, u ∈ T
rl = rΩu

l

du = dΩu
l
≤ dU

rest(Ωu
l , ci) > 0

rl +

⌈
1

ci

rest(Ωu
l , ci)

⌉

Then, for any E-feasible CRP, LB′
3(i) ≤ max(ri, LB3(i), LB2(i)).

Proof The previous propositions claim that

LB2(i) = max
L, U ∈ T
dU < di

rL = rΩU
L

dU = dΩU
L

β(ΩU
L , i)

max
l, u ∈ T

du = dΩu
l
≤ dU

rl = rΩu
l
≥ rL

rest(Ωu
l , ci) > 0

rl +

‰
1

ci

rest(Ωu
l , ci)

ı

It follows that LB3(i) ≤ LB′
3(i). Moreover, it is sufficient to consider the case where

LB′
3(i) > ri and to show that max(LB2(i), LB3) ≥ LB′

3(i). Suppose that LB′
3(i) > ri.

16

Let L, U, l, u ∈ T satisfying:
8
>>>>>>>>>><
>>>>>>>>>>:

rL = rΩU
L

dΩU
L

= dU < di

β(ΩU
L , i)

rΩu
l

= rl

du = dΩu
l
≤ dU

rest(Ωu
l , ci) > 0

LB′
3(i) = rl +

l
1
ci

rest(Ωu
l , ci)

m

If rl ≥ rL, (ΩU
L , Ωu

l) is a maximal valid pair and LB3(i) ≥ LB′
3(i). Now suppose that

rl < rL. As in Proposition 7, partition Ωu
l in Θ ∪ Ωu

L, with Θ = Ωu
l \ Ωu

L.

Assumption 1: Assume first that

rl +
1

ci

rest(Ωu
l , ci) > rL +

1

ci

rest(Ωu
L, ci)

which implies eΘ > C(rL − rl). Now we have two cases.

case rl ≥ ri. We show that LB3(i) ≥ LB′
3(i). Since rl = rΩu

l
, du ≤ dU , and rl < rL,

eΩU
l

+ ci(ri + pi − rΩU
l

) ≥ eΩU
l

+ ci(ri + pi − rL).

Since Θ ∩ ΩU
L = ∅, eΩU

l
= eΘ + eΩU

L
and

eΩU
l

+ ci(ri + pi − rΩU
l

) ≥ eΘ + eΩU
L

+ ci(ri + pi − rL).

Since β(ΩU
L , i) holds and rL = rΩU

L
, we have

eΩU
l

+ ci(ri + pi − rΩU
l

) > C(dU − rL) + eΘ

which implies by eΘ > C(rL − rl) that

eΩU
l

+ ci(ri + pi − rΩU
l

) > C(dU − rL) + C(rL − rl).

Since rl = rΩu
l

and du ≤ dU , we have rl = rΩU
l

and thus

eΩU
l

+ ci(ri + pi − rΩU
l

) > C(dU − rΩU
l

)

which implies β(ΩU
l , i).

case rl < ri. We show that LB2(i) ≥ LB′
3(i). Since eΩU

l
= eΘ + eΩU

L
,

eΩU
l

+ ei = eΘ + eΩU
L

+ ei

and, since eΘ > C(rL − rl), β(ΩU
L , i) holds, and ei = pici, we have

eΩU
l

+ ei > C(rL − rl) + C(dU − rL) − ci(ri + pi − rL) + pici

eΩU
l

+ ei > C(dU − rl) + ci(rL − ri)

eΩU
l

+ ei > C(dU − rl)

which implies α(ΩU
l , i).

Assumption 2: It remains to consider the case

rl +
1

ci

rest(Ωu
l , ci) ≤ rL +

1

ci

rest(Ωu
L, ci),

which is similar to the same case in Proposition 7. �

Corollary 1 For any E-feasible CRP, we have

LB4(i) = max(ri, LB′
2(i), LB′

3(i))

17

Algorithm 6 CalcEEFI: An Extended Edge-Finder in O(n3) Time.

Require: X array of task sorted by non-increasing release date
Require: Y array of task sorted by non-decreasing due date

Ensure: LB[i] = LB4(X [i]) (1 ≤ i ≤ n)
1: CalcEF();
2: for y ← 1 to n− 1 do
3: E ← 0;
4: for x← n downto 1 do
5: if dX[x] ≤ dY [y] then
6: E ← E + eX[x];
7: end if
8: E[x]← E;
9: end for

10: for x← 1 to n do
11: for i← 1 to x do
12: if E[x] + cX[i](rX[i] + pX[i] − rX[x]) > C(dY [y] − rX[x]) then
13: if dX[i] > dY [y] then
14: LB[i]← max(LB[i], R[cX[i], y])
15: end if
16: end if
17: end for
18: end for
19: end for

7.3 The Extended Edge-Finding Algorithm

The extended edge-finding algorithm uses the same precomputation as the stan-
dard procedure, since the only change is the condition β(Ω, i) which replaces
α(Ω, i). Moreover, it is possible to derive an O(n3) algorithm CalcEEFI, which
is essentially similar to CalcEFI. The only changes are the initialization of the
LB values in line 1 by CalcEF, the loop on i that now goes from 1 to x and,
of course, the condition β(Ω, i). CalcEEFI is shown in Algorithm 6.

Theorem 5 Algorithm 6 is correct for E-feasible CRPs.

Proof Direct consequence of Theorem 2 and Proposition 12. �

The optimization to move from O(n3) to O(n2k) is slightly more complex for
the extended edge finder. Once again, observe that line 14 in CalcEEFI does
not depend on x: only the condition in line 12 does. Moreover, the condition
can be rewritten as

(C − cX[i])rX[x] + E[x]− CdY [y] > −(cX[i](rX[i] + pX[i])).

It does not matter which x satisfies this test, only that there exists such a value.
As a consequence, the algorithm precomputes the expression

CEEF [c, i] = max
x≥i

((C − c)rX[x] + E[x]− CdY [y]).

Observe that these expressions are precomputed for all capacities, since we do
not know in advance the capacities of the tasks the test will be applied to.

18

Algorithm 7 CalcEEF: An Extended Edge-Finder in O(n2k) Time.

Require: X array of task sorted by non-increasing release date
Require: Y array of task sorted by non-decreasing due date

Ensure: LB[i] = LB4(X [i]) (1 ≤ i ≤ n)
1: CalcEF();
2: for y ← 1 to n− 1 do
3: E ← 0;
4: for x← n downto 1 do
5: if dX[x] ≤ dY [y] then
6: E ← E + eX[x];
7: end if
8: E[x]← E;
9: end for

10: for x← 1 to n− 1 do
11: if rX[x] = rX[x+1] then
12: E[x + 1]← E[x];
13: end if
14: end for
15: for all c ∈ Sc do
16: CEEF [c, n + 1]←∞;
17: end for
18: for x← n downto 1 do
19: for all c ∈ Sc do
20: CEEF [c, x]← max(CEEF [c, x + 1], (C − c)rX[x] + E[x]− CdY [y]);
21: end for
22: end for
23: for i← 1 to n do
24: if CEEF [cX[i], i] + cX[i](rX[i] + pX[i]) > 0 then
25: if dX[i] > dY [y] then
26: LB[i]← max(LB[i], R[cX[i], y])
27: end if
28: end if
29: end for
30: end for

Hence it necessary to compute them prior to the loop instead of incrementally
as in CalcEF. The resulting edge finder CalcEEF is shown in Algorithm 7.

Observe lines 10-13 which establish the correspondence between Ω̃y
x and Ω

Y [y]
X[x]

by ensuring that
E[x] = max{ E[j] | rX[j] = rX[x]}.

These lines are not necessary in CalcEF since its loops scan array X from 1
to n contrary to the loop in lines 18-20.

Theorem 6 Algorithm 5 is correct for E-feasible CRPs.

Proof Consequence of Theorem 5 and the correctness of the CEEF [c, x] values which
satisfy the specification

CEEF [c, i] = max
x≥i

((C − c)rX[x] + E[x] − CdY [y]). �

19

8 Conclusion

This paper reconsidered edge-finding algorithms for cumulative scheduling.
These algorithms are at the core of constraint-based schedulers and update the
earliest starting dates and latest finishing dates of tasks that must be scheduled
after or before a set of other tasks. The paper made three contributions. First,
it indicated that Nuijten’s algorithm, and its derivatives, are incomplete because
they use an invalid dominance rule inherited from disjunctive scheduling. Sec-
ond, the paper presented a novel edge-finding algorithm for cumulative resources
which runs in time O(n2k), where n is the number of tasks and k the number of
different capacity requirements of the tasks. The key design decision is to orga-
nize the algorithm in two phases: The first phase uses dynamic programming to
precompute the innermost maximization in the edge-finder specification, while
the second phase performs the updates based on the precomputation. Finally,
the paper proposed the first extended edge-finding algorithms that run in time
O(n2k), improving on the running time of existing algorithms.

References

[BLPN01] P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-Based Schedul-
ing. Kluwer Academic Publishers, 2001.

[CL94] Y. Caseau and F. Laburthe. Improving CLP Scheduling with Task
Intervals. In Proceedings of the 11th International Conference on
Logic Programming (ICLP’94), pages 369–383, Santa Margherita
Ligure, Italy, 1994.

[CP94] J. Carlier and E. Pinson. Adjustment of Heads and Tails for the Job-
shop Problem. European Journal of Operational Research, 78:146–
161, 1994.

[NA96] W. Nuijten and E. Aarts. A Computational Study of Constraint
Satisfaction for Multiple Capacitated Job Shop Scheduling. European
Journal of Operational Research, 90(2):269–284, 1996.

[Nui94] W. Nuijten. Time and Resource Constrained Scheduling: A Con-
straint Satisfaction Approach. PhD thesis, Eindhoven University of
Technology, 1994.

[Vil04] Petr Vilim. O(n log n) Filtering Algorithms for Unary Resource Con-
straint. In Proceedings of the First International Conference on the
Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems (CP-AI-OR’04), pages 319–
334, Nice, 2004.

20

