
Roomba Pac-Man: Teaching Autonomous Robotics through Embodied Gaming

Brendan Dickinson, Chad Jenkins Advising
Department of Computer Science

Brown University
115 Waterman St.

Providence, RI, 02912-1910
bcd@cs.brown.edu

Abstract

We present an approach to teaching autonomous
robotics to upper-level undergraduates through the
medium of embodied games. As part of a develop-
ing course at Brown University, we have created the
Roomba Pac-Man task to introduce students to differ-
ent approaches to autonomous robot control in the con-
text of a specific task. Roomba Pac-Man has been de-
veloped using commodity hardware from which stu-
dents explore standard methods in robotics, namely sub-
sumption, localization, and path planning. Our develop-
ment of Roomba Pac-Man is founded upon grounding
robotics in a compelling and accessible application in a
non-contrived real-world environment in a manner than
can be reproduced, giving students a sense of owner-
ship.

Introduction
As the field of robotics advances, robotics education must
adapt to incorporate both technical developments that be-
come core topics and compelling new challenges of societal-
level interest. Undergraduate autonomous robotics curric-
ula have been adept at exposing students to relatively mod-
ern topics, such as behavior-based control (Arkin 1998) and
Monte Carlo Localization (Thrun, Burgard, & Fox 2005).
However, the impact of such coursework can be difficult to
conceptually translate beyond the academic setting. While
Lego Mindstorms and Pyro are excellent simplified plat-
forms for teaching, the artifacts created with them are not
directly applicable to real world applications. Such as setup
makes the teaching of robotics easier, it does not ground
robotics in the real-world for the students. On the other
end of the spectrum are platforms such as Pioneer robots,
which can be prohibitively expensive and are distant from
deployment in society. We believe that Roombas may fit
into a “sweet-spot” between educational platforms (Lego
Mindstorms, Pyro) and highly sophisticated and expensive
platforms (Pioneers). Our approach is to explore differ-
ent approaches to autonomous control with focus on a spe-
cific task that is compelling, reproducible with inexpensive
off-the-shelf hardware, and deployable in many environ-
ments. To this end, we have developed the Roomba Pac-

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Man task (RPM) as a central theme in the Brown course
CS148 (“Building Intelligent Robots”) for exploring topics
in reactive and deliberative robot control. Working from the
appeal of video games, RPM is an embodied version of the
classic 1980s arcade game Pac-Man. In RPM, a virtual Pac-
Man is replaced with a physically embodied iRobot Roomba
vacuum equipped with a webcam and on-board computing.
For two of the four projects in the course, the fifth floor
of Brown’s Computer Science building becomes a Pac-Man
world complete with fiducialized versions of: “food pellets,”
“ghosts,” and “power ups.” Demos of these projects con-
sist of student’s robotic clients competing for high scores
by vacuuming pellets and visiting power-ups within a fixed
amount of time. The other two projects focus on developing
understanding of methods to improve RPM performance (lo-
calization and path-planning). The first three projects cover
subsumption (Arkin 1998), localization (Thrun, Burgard, &
Fox 2005), and path planning (Choset et al. 2005) in the
context of RPM, allowing for normalized comparison and
appreciation for the relative strengths of the approaches. The
final project is culmination of what has been learned in class,
and offers the opportunity for innovative design.

RPM leverages Roombas as a cost-effective and deploy-
able solution for teaching Robotics on real robots. Follow-
ing the desire for reproducibility, students use the Player
robot server and Gazebo simulation platform (collectively
referred to as PSG) to develop control clients.

Roombas are used as the platform for the course because
they offer the student a chance to interact with a robot that
is actually used in the world. The Roombas provide a
platform that is easy to interact with (no proprietary soft-
ware/hardware). Via the PSG open-source project a wide
variety tools may be used to acquire sensory information,
and if something is not currently supported it can be reason-
ably added; this allows the student to attach virtually any
real world sensor to the Roomba. In short, the Roombas are
real robots, used in the real world, not some stripped down
educational robot, and certainly not a toy.

To summarize, the Roomba Pac-Man task offers a com-
pelling approach to teaching robotics because it is:

• applicable to the real world, allowing for straightforward
manipulation (vacuuming).

• easily reproducible.



• contains a compelling task that helps to motivate the stu-
dents beyond their own academic interest.

• reinforces various approaches to mobile robotics covered
in class.
In the following sections present our ongoing work devel-

oping robotics curriculum around Roomba Pac-Man. The
extensions to PSG to support RPM and the progression of
lab exercises and projects throughout the course are pre-
sented.

Course Structure
Brown’s CS 148 is geared toward undergraduates drawn
mainly from CS, but also Engineering and Cognitive Sci-
ences. All students are expected to have a minimum of
two semesters of programming experience. While there are
no required texts, recommended readings are drawn from
(Thrun, Burgard, & Fox 2005), (Martin 2001), (Choset et
al. 2005), and (Arkin 1998). The structure of Brown
CS148 consists of three introductory labs, three control
projects, and a final project all of which reinforce material
presented in lecture. Labs are simple projects designed to
give students an introduction to PSG and the Roomba hard-
ware. The labs progress through basic reactive obstacle
avoidance, blobfinding, object/fiducial seeking, and color
calibration with a physically simulated robot. These labs
are designed to be straightforward exercises (implementable
within a given lab period) that give the students a chance to
familiarize themselves with robotics.

The course projects are designed to explore reactive and
deliberative approaches to robot control in the context of
RPM. The first project, implementing a reactive subsump-
tion controller to compete in Roomba Pac-Man, integrates
all the topics covered previously in the labs. The next two
projects focus on localization and its use for deliberative
path planning. For the second project, students implement
Monte-Carlo Localization (MCL) for a simulated Pioneer
2AT in PSG. The third project involves writing a path plan-
ner to play RPM, again in simulation, using the estimates
from their MCL system from the second project. For final
projects, undergrads develop robot clients using their MCL
and planning systems developed in previous projects to com-
pete in a final competition.

The projects involve two main deliverables, in-class com-
petition/demonstration of the project and an electronic sub-
mission of the work (project write-up, source code, and
other materials). The in-class competition involve a demon-
stration of the students’ robot controllers and should show
understanding of the specific aspects of the project (state-
lessness in the subsumption project, localization estimates
for MCL for example). In the project write-ups students are
asked to scientifically present the results of their implemen-
tations. Specifically, project write-ups should address the
design choices relevant to individual projects and various
strengths and weaknesses.

RPM Platform
We aimed for RPM to be cheap, reproducible, and usable in
normal environments. For this purpose, the iRobot Roomba

Figure 1: An early version of Roomba Pac-Man.

was a logical choice, being a cost effective solution with
brand familiarity. Because of its popularity in society, stu-
dents immediately see it not as a toy, but a device with real-
world applicability. Each Roomba costs $150. Standard
Dell Dimension laptops, which cost $500 each, control an
individual Roomba. The Roombas are connected to the lap-
tops via a Robo Dynamics Roo Stick, which can be pur-
chased for $25 each. PSG has basic support for the Roomba
Serial Command Interface, which was extended to incor-
porate more of the Roomba’s features (e.g., IR, vacuum,
etc.). Finally, Logitech Communicate STX webcams were
mounted on the Roombas, costing about $30 each. Thus, for
under $700 one can procure, a functional, real world robot
with the ability to manipulate objects (e.g., vacuum). As a
result of the low cost of the set-up, there were nine Roombas
available to students. An early version of RPM is shown in
Figure 1.

While cheap, our infrastructure is far from optimal due to
the size and weight of the laptop and the sketchy nature of
webcams. The setup presented in figure 1 proved infeasi-
ble because of the dramatic change in the center of gravity
of the Roomba due to weight of the laptops. The laptops
could not lay flat, as they would have extended beyond the
radius of the Roomba. The final, non-optimal, solution was
to tether the Roombas to laptops that students carried. Other
efforts have explored better options such as Gumstix embed-
ded boards (Gerkey 2006) and MacMinis (Dodds 2006), but
were prohibitively expensive for our purposes. Tethering the
Roomba to the laptop via the Roo Sticks was chosen rather
than a Bluetooth or wireless connection because at the time
of procurement the Roo Sticks appeared to be cheaper and
easier for the students to implement. In reality, the tether-



ing was awkward, and Roo Sticks proved to be unreliable
(often melting after prolonged use). Bluetooth and wireless
options will be explored for the next iteration of RPM. These
problems aside, the platform is portable and flexible to the
specifics of the robot hardware. If one needs better compu-
tation, one can buy a more powerful computer. If one needs
better or different sensors, one can attach a suitable device
and use/write the Player interface.

PSG and its Modifications
Much of our framework relies on the PSG platform (Gerkey
et al. 2001). Player is a network server for robot control.
Player runs on-board a single robot and provides a clean in-
terface to the robot’s sensors and actuators over an IP net-
work. Gazebo is a 3D physics-based robot simulator suit-
able for smaller numbers of robots simulated at high fidelity.
The physics for Gazebo is provided by the Open Dynamics
Engine (ODE), which integrates physical dynamics for arbi-
trary kinematic structures through optimization.

PSG provides an infrastructure for developing robot con-
trollers. Students write controllers as client programs that
send control commands to and request information from a
robot through its Player server. Stage and Gazebo can sim-
ulate various types of robot platforms (i.e., hardware) and
populations. The same interface, provided by the Player
robot server, is used to control a robot in the real world or its
equivalent in a Stage/Gazebo simulation. Robot platforms
that are not currently supported in PSG can be developed
through implementing appropriate Player server interfaces
and devices in Stage or Gazebo.

Devices (e.g., a laser, a camera, or a complete robot) are
actual hardware in the real world or simulated hardware
that exists in a virtual environment maintained by Stage or
Gazebo. A robot server (e.g., Player) is the information in-
terface between the robot and any program that requests in-
formation from or sends commands to the robot. Regardless
of whether a device is real or simulated, the robot server
provides the same interface to the robot for client programs.
Thus, controllers developed on a simulated device will im-
mediately run the equivalent real robot device given PSG
support for the device.

Another advantage of Player as a robot server is its in-
dependence from a particular client-development language.
The interaction between Player and a client program is done
completely over a TCP/IP (or UDP/IP) network connection.
Thus, any language with libraries that supports Player func-
tionalities can be used to develop robot clients. The most
supported client language are C and C++. Many other lan-
guages are supported including Python, Java, and GNU Oc-
tave.

Several changes were made to the Player in the devel-
opment of RPM. The original Player Roomba support al-
lowed only for position control and reading the bump sen-
sor. The ability to read the other sensors on the Roomba
was added, this included: the six infrared sensors includ-
ing the IR-wall detector and the various buttons on top of
the Roomba. This ability was added by utilizing the Proxy
structure supplied by Player, adding only the ”glue” to map

Figure 2: Simulated world in Gazebo for Labs 1 and 2

the commands into the proxy functions. The ability to con-
trol more of the Roomba outputs besides just the wheel mo-
tors was also added. This included the ability to control the
color and brightness of the LEDs on the Roomba and to turn
on and off the vacuum through the gripper proxy.

Several other modifications to Player were made in rela-
tion to the camera. The ability to auto-detect camera param-
eters was implemented to enable the webcams to function
in Player. Modifications were also made to playercam, a
PSG utility that streams the camera frames to the screen and
overlays the blobfinder results in this image. This program
was modified to report a range of YUV values when the user
clicked and selected a rectangular region of interest in the
image. This change was a tremendous help for camera cal-
ibration, which allows for more readily preparing Roombas
to play in various lighting conditions. All of these changes
have been submitted to the PSG developers, and all of the
Roomba driver changes have been incorporated into the lat-
est build of Player.

Labs and Projects

The work of the course consisted of three labs completed
over the course of the first month of the semester. The four
projects are larger undertakings, for which the students were
given 3-4 weeks to work on.

Lab 1: Obstacle Avoidance

The first Lab is structured to acquaint students with the sub-
tleties involved in using the PSG robot interface and simu-
lation system. After a brief tutorial of libplayerc, the Player
C client library, they are given the task of writing a reac-
tive client for a simulated Pioneer 2AT to exit the enclosure
shown in Figure 2. Students write wandering and obstacle
avoidance routines using simulated SICK 2000 laser range
finder.



Lab 2: Object Seeking
In Lab 2, students extend their obstacle avoidance client to
perform an object seeking task. In this seeking task, the
robot is to look for and drive to fiducials recognizable from
blobfinding provided by CMVision (Bruce, Balch, & Veloso
2000). To accomplish this task, students use a simulated a
Sony VID30 video camera. Given a world, the goal for this
lab is to create a Player client containing a finite state ma-
chine that continually drives between two different fiducials
(Figure 2). Students also experiment with positioning the
light source to get a controlled sense of how lighting affects
vision sensing.

Lab 3 and Project 1: Color Calibration
and Reactive Roomba Pac-Man
Lab 3 serves a gateway into the first project, writing a sub-
sumption client for the Roomba Pac-Man task. Lab 3 ex-
tends Lab 2’s object seeking client to work with a physi-
cally embodied Roomba. Using the same Player proxies,
the client controls a Roomba endowed with touch/bump, IR,
and camera sensing. The camera sensing is accomplished
by attaching a web-cam to the Roomba and having the client
subscribe to the web-cam as a proxy. While the Lab 2 client
could theoretically perform on the Roomba without modi-
fication, there are issues caused by the uncontrolled nature
of the real world that must be addressed. Specifically, the
blobfinder must be calibrated to recognize fiducial colors
that vary under different lighting conditions, camera sensors,
camera viewpoints, etc.

In Project 1, students compete for high scores in a game
of Roomba Pac-Man on the fifth floor of Brown’s CS de-
partment using a reactive subsumptive control policy. Lab 3
prepares students for this project by having them implement
the following basic unprioritized functions:

• Fiducial attraction: same as in lab 2, except the sought
cylindrical “Power up” fiducial will be composed of two
colors, orange over green.(Figure 3(a))

• Fiducial avoidance: detect and avoid a green cylindrical
“Ghost” fiducial by turning away from it. (Figure 3(b))

• Pellet consumption: detect and drive over a pile of orange
colored “food pellets” on the floor. (Figure 3(c))

• Wander: wander around an environment to achieve “cov-
erage.”

• Wall avoidance: detect collisions with physical or virtual
walls and move to avoid these contacts.

Project 2: Monte-Carlo Localization
Project 2 involves implementing Monte-Carlo Localization
(MCL) with the goal of improving the performance of stu-
dent’s Project 1 by having a localization estimate. Students
are given the fifth floor of Brown’s Computer Science build-
ing as a Gazebo world file (Figure 4). This world file is a
recreation of the world in which the students will compete
in Deliberative Roomba Pac-Man in the final project. Fidu-
cials of the same color are distributed throughout the world
at known locations. Fiducials are used in the world so as

to allow the students to write their MCL using a blobfinder.
While a laser range finder may be more accurate and allow
for a less contrived world, the goal of the project is to pre-
pare the students for real-world implementations that will
not have lasers. The fiducials have the same color in order
to make it impossible to dead reckon off of a single fiducial
forcing the students to maintain a probability distribution of
hypothesises.

The goal for the student is to implement MCL on a sim-
ulated Pioneer 2AT using a blobfinder, bump/touch sensor,
ir sensor, and odometry. The fact that the project is imple-
mented in PSG makes it easier to deal with bugs and noise
from the real world. For one, the lighting in PSG is constant
and controllable. It is reasonable to ensure that the color
of the fiducials only occur on fiducials. Furthermore, test-
ing does not involve the set up of a lot of equipment, which
means that bugs can be found and fixed expeditiously. Fi-
nally, the successful completion of project 2 allows student
to concentrate their full attention to planning in project three.

Project 3: Path Planning for the Roomba Pac-Man
Project 3 uses the code developed in Projects 1 and 2 to
create an effective deliberative robot control policy for the
RPM task. The goal for this project is to create a control
policy that uses a model of the world from a known map and
state estimation to plan a path and execute it intelligently.
While we initially planned to have the students implement
this project in the real-world, students had a greater than
anticipated amount of difficultly implementing vision-based
MCL in Project 2. Thus we elected to allow the students to
do Project 3 in simulation.

For this project, the students’ clients deliberatively plan
and navigate paths in order to for the robot to maximize the
number of pellets eaten and power-ups visited while avoid-
ing ghosts in a simulated environment. The student’s clients
used the pose estimates given by localization from Project 2
towards path planning. Students then must develop a plan-
ning algorithm to deliberatively control their Roomba. Stu-
dents choose to implement a number of planning algorithms
including: Dijkstra’s algorithm (Cormen et al. 1990), wave-
front planning, and potential fields (Thrun, Burgard, & Fox
2005). The algorithm, however, must take in to account the
presence of ghosts and their random movements throughout
the world.

Final Projects and Future Work: Making Robotics
Relevant
CS148 concludes with final paper and project. The final
project is an independently designed competitive RPM con-
troller. Given what the students had learned over the course
of the semester, students are tasked with developing the best
controller possible for the Roomba Pac-Man task. Collec-
tively, student clients are evaluated in a tournament-style
RPM contest. The final paper is analysis of a fictional robot
that discusses its technological feasibility (in terms of per-
ception, decision making, motor control, and platform engi-
neering) and possible means to develop innovations for real-
izing the robot. Additionally, the paper should try to answer



(a)

(b)

(c)

Figure 3: Examples of the robot driving to a fiducial (a), avoiding a ghost (b), and driving to food (c)

the following question: “What is the point of robotics?”,
specifically constructing an argument about most pertinent
applications for robotics in society.

In future versions of CS148, we want to establish a
stronger connection between human and robot decision
making through embodied gaming. We are implementing
an off-board, wireless tele-operation client that will allow
a person to play RPM. Ideally, the tele-operator would ob-
serve only the perceptual features used by the robot (color
blobs, IR, bump, and odometry). Such tighter human-robot
interaction would help motivate the difficultly of developing
robot control policies, provide students a baseline for their
work, and make RPM even more fun.

Conclusion
On the whole, CS 148 was a success. In our observations
and conversations with students they were motivated by the

interesting task presented by RPM. Particularly successful
were the first and third projects. In the first project a number
of students wrote very effective reactive control policies for
the RPM task. Students were clearly motivated by the em-
bodied gaming aspect of the project. The open-ended nature
of the third project, path-planning, resulted in the implemen-
tation of a number of different algorithms, which prompted
interesting, well informed, class discussion about their rela-
tive strengths and weakness. However, there are a number of
things we would change for future iterations of the course.

First, as mentioned earlier, we will explore options other
than tethered connections between the Roomba and the lap-
top. This set-up was extremely awkward and made the
Robots feel less “robot-like.” Also, over the course of the
semester 9 Roo-Sticks burned out, thus making then Roo-
Sticks more expensive than initially thought. Another hard-
ware issue encountered was the lackluster performance from



Figure 4: Map of the fifth floor of the Brown CS department

the webcams. The cameras automatically adjusted their
white-balance, and, despite our best efforts, we were un-
able to disable this “functionality.” The result was that when
large amount of direct natural light was present the image
from the camera would be very washed out.

Finally, robotics, in some ways, is more difficult for stu-
dents than other disciplines of Computer Science, because,
unlike other disciplines, the student must interact with the
uncertainties of the real world. We found that some students
became frustrated with the RPM task due to the fact that the
sensors were not perfect.

We are currently debating whether the task as currently
designed may be too difficult for an introductory robotics
course given the fidelity of the sensors. While we found
that some students became frustrated and struggled with the
imperfect sensors, the success the course staff had imple-
menting the projects within a much more limited time frame
suggests that RPM should be within student’s capabilities.
The true problem may come down to properly motivating
the students and preparing them for the noise inherent in real
world sensors.

References
Arkin, R. C. 1998. Behavior-Based Robotics. Cambridge,
Massachusetts, USA: MIT Press.
Bruce, J.; Balch, T.; and Veloso, M. 2000. Fast and inex-
pensive color image segmentation for interactive robots. In
In Proceedings of the 2000 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, volume 3.
Choset, H.; Lynch, K. M.; Hutchinson, S.; Kantor, G.; Bur-
gard, W.; Kavraki, L. E.; and Thrun, S. 2005. Principles of
Robot Motion: Theory, Algorithms, and Implementations.
MIT Press.
Cormen, T.; Leiserson, C.; Rivest, R.; and Stein, C. 1990.
Introduction to Algorithms. MIT Press.
Dodds, Z. 2006. Informal conversation with Z. Dodds of
Harvey Mudd College.

Gerkey, B.; Vaughan, R.; Stoy, K.; Howard, A.; Sukhatme,
G.; and Mataric, M. 2001. Most valuable player: A
robot device server for distributed control. In Proceedings
of 2001 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 1226–1231.
Gerkey, B. 2006.
Martin, F. 2001. Robotic Explorations: A Hands-On Intro-
duction to Engineering. Prentice-Hall.
Thrun, S.; Burgard, W.; and Fox, D. 2005. Probabilistic
Robotics. MIT Press.


