
Dynamo: Dynamic Data-driven Character Control with Adjustable Balance
(vgsp 0007)

Pawel Wrotek
Brown University

Odest Chadwicke Jenkins∗

Brown University
Morgan McGuire
Williams College

Abstract

Dynamo (DYNAmic MOtion capture) is an approach to controlling
animating characters in a physically dynamic virtual world. Lever-
aging existing methods, characters are simultaneously physically
simulated and driven to perform kinematic motion (from mocap or
other sources). Continuous simulation allows characters to interact
more realistically in a more generic fashion than under methods that
switch between animations.

One contribution of Dynamo is the stable playback of motion cap-
ture in the presence of dynamic interactions and without excessive
gain tuning. This stability is achieved by promoting joint target
angles from the traditional parent-bone reference frame to the ref-
erence frame of the character as a whole. Control in this manner al-
lows a character to set and maintain poses in world space robust to
dynamic interactions and produce physically plausible transitions
between motions without explicit blending. To provide human-
plausible global motion, a weak spring at the character root tem-
pers our world-space model to account for external constraints that
should break balance. This root spring provides an adjustable pa-
rameter that allows characters to fall when significantly unbalanced
or struck with extreme force.

We demonstrate Dynamo through in-game simulations of char-
acters walking, running, jumping, and fighting on uneven ter-
rain while experiencing dynamic external forces. Using standard
physics and graphics engines, Dynamo performs control without
significant cost to game frame rate.

CR Categories:

Keywords: animation, physical simulation, motion capture, rag
doll

1 Introduction

The motion of characters for virtual worlds comes from many
sources. These include motion capture, manual keyframes, dy-
namic simulation (e.g., ‘rag doll’), and inverse kinematics. Appli-
cations like video games and robotics require creating new motions
on the fly by combining motions from these sources. For example, a
virtual boxer’s attacks are primarily driven by motion capture, how-
ever he must recoil or fall according to dynamic simulation when
he himself is hit. Creating a new motion in real-time by combin-
ing simultaneous motions from two different kinds of sources is a
hard problem. Even without dynamic simulation, blending two mo-
tion capture animations is often insufficient or overly limited due to

∗e-mail:cjenkins@cs.brown.edu

Figure 1: Screenshot from a video-game scenario: two dynamically
simulated Dynamo-controlled boxers fight on an uneven platform.
The boxers stagger under each other’s blows, appropriately place
their feet on the uneven surface, smoothly transition between mo-
tions including rising from falls, and can even be bludgeoned to
unconsciousness. The physical simulation and control computation
run in 0.001s per frame.

physically implausible artifacts in the resulting motion [Safonova
and Hodgins 2005].

Although rigid body physics has been incorporated into several
games and engines (e.g., Havoc, Ageia, Dismount), the role of
physical entities has often been limited to passive dynamics. In
other words, limp entities that exert no motor forces. Creating ac-
tive physical characters that impose force to achieve some objective
involves creating an autonomous controller. Several research efforts
[Hodgins et al. 1995; Wooten and Hodgins 2000; Faloutsos et al.
2001] have found that creating and coordinating such active con-
trollers is a non-trivial task due to the generation of desired motion
(i.e., trajectory formation) and tuning of motor gains (i.e., propor-
tional scaling of motor force to desired offset in pose).

We posit that these classic active control problems can be addressed
in part by revisiting the basic mechanisms for controlling physically
simulated characters. Through the proliferation of motion capture,
the creation and reuse of human-like motion has experienced in-
creased generalization and customization through recent methods
for motion graphs [Kovar and Gleicher 2004; Arikan et al. 2002],
biomechanical modeling [Liu et al. 2005] and switching between
mocap and simulation [Zordan et al. 2005; Mandel 2004]. How-
ever, these methods do not consider the physics of the environment
or severely limit physical interaction (e.g., instantaneous reactions).
Similar to [Zordan and Hodgins 2002], we believe a viable and
undervalued approach to active control combines the dynamics of
physical simulation with task-oriented desired motion produced via
motion capture or inverse kinematics. Specifically, desired motion
is used to produce motor forces to drive physical characters.

However, the problem of active motion control, translating desired
motion into motor forces, remains a difficult problem due to diffi-
culty in maintaining global constraints (e.g., balance) and the sen-
sitivity of motor gains. A motion control system suitable for games

should be able to support active characters capable of executing lo-
comotion, object manipulation, and recovery in highly dynamic sit-
uations. Despite having infinitely powerful motors, current control
methods have achieved this functionality up to the point of non-
locomotive behavior requiring heavy tuning of motor gain parame-
ters.

In this paper, we propose an approach to motion control suit-
able for interactive gaming through the world space expression of
desired character pose. We hypothesize that desired motion for
proportional-derivative servo (PD-servo), used in most active con-
trol animation applications, is better expressed in world space rather
than in parent space. A PD-servo generates motor forces that at-
tempt to minimize the angular error between the desired and cur-
rent configuration of each rotational degree of freedom of a char-
acter. Angular configuration of a joint has been traditionally de-
scribed with respect to the rotational axes based on the inboard (or
parent) body attached to a joint. However, this form of proprio-
ception, sensing of one’s own body, is a holdover from older me-
chanical sensing limitations in the form of angular potentiometers
and optical encoders. In contrast, our world space PD-servo can be
analogized to setting desired character pose based on accelerom-
eters at each rigid body. Motion control in this fashion generates
motor forces that minimizes the global orientation of each body. As
a result, our world space PD-servo provides stable motion control
without excessive tuning to find critical damping.

We propose a world space servo strategy and present results for ac-
tuating motion capture data on a physically simulated humanoid.
World space servoing allows for characters to balance in dynamic
environment without explicit center-of-mass consideration. This
servo mechanism is tempered by a root spring mechanism that can
be adjusted to allow for characters to avoid “super human” control
and fall in desired situations. We consider motions that demon-
strate motion control over various combinations of static balance,
dynamic balance, bipedal locomotion, object and inter-character in-
teraction. In particular, we focus on active character control for dy-
namically interactive situations. To this end, we have implemented
dynamical humanoids in our game engine at frame rates exceeding
real-time. We demonstrate these humanoids in a simple fighting
game and performing various motions, such as walking, jumping,
boxing, and gymnastics, on uneven terrain and subject to user inter-
action.

2 State of the Art and Related Work

We summarize the state of the art in producing physically plausible
character animation. Our coverage focuses on existing represen-
tations and methods for skeletal animation, motion capture, mo-
tion generalization, physical simulation, and applications in games
and film. Our proposed approach builds on this previous work to
yield an integrated means for realizing interactive control of physi-
cal characters.

2.1 Skeletal Kinematics

A skeleton is defined by tree ofbones, where pairs of bones are
connected by revolute joints. For a humanoid character, the root
is typically the pelvis and the leaves are fingers, toes, and skull.
The simulation skeleton (or kinematics) does not have to match the
actual anatomy of a human skeleton. Often each simulation bone is
a simplification of a number of real bones. For simulation purposes,
each bone is parameterized on its length and its orientation at the
joint with its parent. For a human model, the shoulder joint is thus
modeled as part of the humerus (upper arm) bone.

A frame is the configuration of a skeleton at a specific instant of
time. A configuration defines the desired orientation of each bone
in the skeleton. A motion is a sequence of frames over time.

During animation the skeleton can beskinnedby a 3D mesh to
make it appear as realistic figure. A simple skinning method is
to render each bone as a mesh of approximately the same length
with orientation given by that bone. This creates the appearance
of an action figure toy, where no matter how lifelike the mesh ap-
pears it will still move as a jointed rigid body. A more sophisticated
method is calledmatrix skinning(see [Lewis et al. 2000] for dis-
cussion). This method drapes a complete mesh over the skeleton
and at each vertex assigns a set of coefficients determining how
that vertex is influenced by nearby bones. As the bones animate the
vertices smoothly deform creating the illusion of a complex mus-
culature. One drawback of this approach is that vertices tend to
pinch at joints, especially under twisting. Skinning methods that
preserve apparent muscle volume at joints are an active area of re-
search. Note that with any skinning method the skeleton itself is
not rendered in this process, and some bones may actually extend
outside the visible 3D mesh.

2.2 Animation from Motion Capture

Motion capture is the process of estimating a set of frames that
describe the motion of a human performer. This process typically
through some inference of human configuration from sensor data,
such as video, reflective markers, and electromagnetic systems, at
discrete instances of time. Once captured, estimated motion can be
played back by interpolating across these discrete frames. Splines
are used to achieve smooth (C2) transitions and velocities through
the keyframes. Shoemake’s classic notes [1985] describe how to
perform this operation on orientations expressed as quaternions.

However, strict playback of motion capture in this fashion ignores
the general notions of physics from which is was generated. Similar
to a video, a captured motion is a static observation of the physics
that occurred over a specific interval of time. Several research ef-
forts have been geared towards generalizing captured motion such
that it can be reused for creating new motions. Motion editing
through spacetime constraints [Gleicher 1998] is one well stud-
ied method. Such optimization procedures can incorporate phys-
ical and biomechanical constraints such as in [Popović and Witkin
1999; Liu et al. 2005].

Complementary to optimization, motion graphs [Kovar et al. 2002;
Arikan et al. 2002] can be constructed by finding suitable transitions
between frames of different motions in a database. The suitability
of a transition is determined by a metric that specifies the perceptual
quality of blending between motions at two specific frames. This
metric could be cast as a spatio-temporal kernel whose transitive
relations allow for the estimation of motion clusters [Jenkins and
Mataríc 2004; Kovar and Gleicher 2004]. Motion clusters can be
generalized to form new motions through interpolation [Rose et al.
1998]. While such methods provide good kinematic control, inter-
active and physically dynamic character control with these methods
has remained elusive.

2.3 Active Dynamical Control and Motion Capture

Dynamical simulation involves modeling the dynamics of a phys-
ical system such the motion of objects in the system can be pre-
dicted. Assuming rigid objects, the physical state of a virtual world
can be stated as the position, orientation, and velocities of each
object and any constraints between objects, such as joints. If an
appropriate model of physics, a dynamical simulation will be able
to integrate physics over some specified interval of time to predict

the state of the world at end of the time interval. With the influx of
dynamics engines (e.g., the Open Dynamics Engine, Havoc, Mas-
sive), the level of physical realism has drastically improved in re-
cent years.

While physics can now be applied to virtual characters, the con-
trol of articulated characters that dynamically perform subject to
physics remains problematic. Often, physics in video games is lim-
ited to rigid objects (Valve’s Half-life2), inanimate entities (rag-
doll), or blobby characters (Chronic Logic’s Gish). Control of ar-
ticulated and humanoid characters has not quite materialized. Anal-
ogous to autonomous robotics, this circumstance can be attributed
to the uncertainty induced by physics and need for suitable artificial
intelligence to deal with this uncertainty.

In their groundbreaking work, Hodgins et al. [Hodgins et al. 1995;
Wooten and Hodgins 2000] have demonstrated that active control
of articulated structures can be achieved for a variety of dynamical
activities. Their examples spanned several athletic behaviors, in-
cluding running, cycling, diving, and gymnastics. Such functional-
ity, however, required an costly amount of effort to manually craft
controllers for a specific activity and tune controller motor gains.
The resulting controllers lacked scalability to new motor activities
and kinematic structures and were not overly robust to physical dis-
turbances. Given the difficulty in controller creation, later work
[Hodgins and Pollard 1997; Faloutsos et al. 2001] addressed scala-
bility issues of preexisting controllers, but defining and implement-
ing new controllers remained burdensome.

Moving away from manually crafted controllers, Zordan and Hod-
gins [Zordan and Hodgins 2002] used motion capture to define a
more general data-driven control method. In their method, a feed-
back control system was used drive a character to perform motion
capture data. Characters can be controlled to perform any desired
motion from a variety of sources, such as motion capture or inverse
kinematics, instead of from a programmer’s preconceptions. Al-
though this control approach offers greater scalability, the authors
reported difficulty selecting appropriate motor gains and limitations
to non-locomotive (statically balanced) activities. To achieve loco-
motive abilities, these authors have more recently proposed meth-
ods [Zordan et al. 2005; Mandel 2004] that primarily utilize mo-
tion capture and transition to and from dynamic simulation for brief
physical interactions.

Inspired by [Zordan and Hodgins 2002], we have aimed to remove
the burdens of motor gain tuning and move towards fully simulated
interactive characters. In our approach, we augment the basic PD-
servo mechanism to use world space desired poses and realize con-
trol over motions with locomotive properties to new environments
without burdensome gain tuning.

2.4 Games and Film

Games and movies contain sophisticated motions that appear to
integrate inverse kinematics, simulation, and motion capture ele-
ments. Examples include animation of on-the-fly created characters
in Spore (EA 2006), massive battle scenes in The Lord of the Rings
film (Weta using Massive), and boxers in Fight Night Round 3 (EA
2006).

However, with regard to general-purpose simulation, games and
movies represent the “state of the artist,” not the “state of the art.” In
film, good motion is often the combination of hours of offline simu-
lation and hand tweaking by experienced animators. For games, the
algorithms run in real-time but often rely heavily on precomputed
animation sequences1 and are designed to operate in constrained
situations that avoid difficult cases. In most games, full details are

1Sometimes precomputed exhaustively for all possible interactions!

never publicity disclosed, so we have no way of knowing how re-
producible or general these results are. We are motivated to make
the kinds of effects we see in high-budget games and film ‘real’ so
that they can be applied in more general situations and inform other
disciplines like robotics, where hand-tuning or situation-specific re-
sults are insufficient.

3 Dynamo

Characters are simulated as articulated rigid bodies with joint lim-
its. As with any other body in a physics simulation, they can collide
with themselves and with the environment. They experience exter-
nal forces like friction and gravity.

We drive these characters by computing motor forces for joint ser-
vos. The Dynamo control system comprises four basic ideas de-
tailed in this section:

1. Apply torques to match desiredworld-spacepose.

2. Maintain root orientation with a weak spring.

3. Simulate stunning by decreasing motor gains.

4. Motion blending emerges from continual simulation.

3.1 Working with World-Space Ball Joints

It is common practice to apply a proportional-derivative (PD) con-
troller to compute motor torques about each degree of freedom
based on the desired and actual angles and angular accelerations:

torque= k1(θdesired−θactual)+k2(θ̇desired− θ̇actual) (1)

In this equation,k1 andk2 are the user-specified gains on the sim-
ulated joint motor with respect to position and velocity (we denote
all user-specified constants ask-values to distinguish them from de-
rived quantities). Variableθ is only for exposition in this notation
section and does not appear again in the paper.

Equation 1 is directly applicable to parent-space hinge joints, which
are parameterized by a single joint angle that is easily measured.
Like previous work [Zordan and Hodgins 2002], we use PD con-
trollers, but must introduce a slightly richer notation to move be-
tween parent and world space and to generalize from hinge joints
to ball joints with three degrees of rotational freedom (of course,
1- and 2-axis joints remain expressible within this generalization).
For a given simulation step, we denote the known quantitiesat each
boneas:

Pd Desiredparent-spaceorientation (3×3 matrix) from mocap
Wd Desiredworld-spaceorientation (eq. 3)
Wa Actual world-space orientation from sim
ωd Desired world-space angular velocity (3-vector) (eq. 4)
ωa Actual world-space angular velocity from simulation

Our matrix multiplications assume column-vector matrices, where
a vertex to be transformed would appear on the right of the matrix.

From these variables, we solve for world-space torqueτ. Unless
otherwise specified, these variables refer to the current boneb; al-
ternately an additional subscript specifies the parent or root bone.

We operate on 3D orientation matrices instead of 1D angles, so it
is necessary to express the differences in equation 1 as a function
mapping two matrices to a 3-vector whose direction~v is the axis of
rotation between the reference frames and whose magnitude is the
rotation angleθ . We denote this difference

Figure 2: Examples of unbalanced and super-balanced characters. (Top) A character on a flat floor actuating mocap with an unpowered root
quickly falls over, even when starting from a balanced position. This occurance is due to the uncertainty induced by physical simulation.
(Bottom) The leftmost, green character with a meathook root remains upright, but implausibly balances with one foot on a crate. The
rightmost, orange character with a weak spring root yields the desired behavior.

∆(D,A) = θ~v, (2)

whereθ and~v are the axis and angle of the productD ∗A−1. Ap-
pendix A lists source code implementing this function.

3.2 Torques from Captured Motion

Characters apply torques to their bones to match target motion cap-
ture or key frame poses. Motion capture data typically is expressed
as a series of key poses. A pose contains a coordinate frame for
each bone relative to its parent. Without loss of generality, assume
that the target pose is exactly specified in the original data by a key
pose; poses between key poses are obtained by interpolation, e.g.,
spline interpolation of the frames expressed as quaternions [Shoe-
make 1985].

We first lift each bone’s target orientation frame from parent space
matrix Pd to world space matrixWd by recursively applying the
target frames:

Wd =

P b = root

Wa,root∗Pd parent= root

Wd,parent∗Pd otherwise

(3)

The actual orientation of all bones except the root are ignored by
this transformation. This is the key to the stability of Dynamo.
Previous methods compute a target relative to the current parent
reference frame, which propagates error down long linkages.

We define the desired world-space angular velocityϖ as the angular
velocity needed to reach the desired pose at some future time(t +δ)
given the desired pose at the current timet,

ωd =
1
δ

∆
(
Wd(t +δ),Wd(t)

)
. (4)

In our simulations, we choseδ to be the duration between mocap
keyframes. Note that we did not choose the instantaneous deriva-
tive of the current desired orientation as desired velocity. Because
games integrate state in discrete Euler time steps, it is necessary to
look at least one timestep into the future for velocity, since that is
when the effects of the applied torque will be observed.

Torque is computed differently at the root and non-root bones. For
non-root bones, the world-space torqueτ to apply to the bone servo
for the next simulation step is given by,

τb6=root = k1∆(Wd,Wa)+k2(ωd −ωa). (5)

This is a straightforward world-space, 3D variation on eq. 1. Gain
constants used in our experiment are described in Section 4. Be-
cause error is not propagated through the bone hierarchy, the con-
stants need not be tuned precisely. Additional consideration should
be given toward whether world space is defined absolute or ego-
centric coordinates. In absolute coordinates, the servo routine will
enforce the character’s pose such that the orientation of the root
aligns with motion capture. Absolute coordinates leads to issues
with super-balancing, described later. In contrast, an egocentric
world space (or “person coordinates”) leaves the root orientation
free to be commanded and adjusted as desired. Thus far we have
only described torques on servos for non-root bones. The following
section addresses the root, which is treated specially.

3.3 Weak Root Balance Spring

Were we to leave the root unpowered, the character would even-
tually fall over while playing back captured motion (see Figure 2.
Pure motion capture playback does produce balance for three rea-
sons. First, the simulated character differs from the actual human
who created the motion. Second, discrete simulation always ac-
cumulates error. Thus even a perfect model experiences imperfect
simulation. Third, dynamic constraints are not accounted for in the
mocap data, so even a slight slope to the floor will topple the char-
acter.

Today, most games directly drive the character’s root bone by ex-
plicitly setting its coordinate frame, which can be observed by the
character’s feet sliding along the ground when the root velocity does
not match the velocity implied by the animation. These explicit
controllers also preclude ballistic motion–to jump, the controller
must intentionally lift the character.

The lower row of characters in Figure 2 demonstrate the super-
balance problem. The characters in the first frame begin in an un-
balanced state with one foot on a crate. In this situation, the char-
acter should fall to the ground, which the unpowered root simulates
correctly. Because the strong root joint tolerates no deviation, it
produces balance in a physically implausible situation, as shown in
the last frame.

Figure 3: Sequences of parent-space (top, blue) and world-space (bottom, orange) characters adapting a cartwheel animation to an obstacle,
with mocap driving the characters behind in black. Both methods produce reasonable results, with better preservation of the mocap by the
world space method.

The ideal balance controller distributes over all bones the task of
shifting weight to maintain the character’s center of mass over its
support polygon on the ground. Doing so is a hard problem; sev-
eral techniques and tools have been demonstrated to produce good
results, but none are efficient enough for real-time interactive use
[Komura et al. 2004].

Dynamo uses a new technique that we call aweak root spring. Al-
though physically incorrect, it produces plausible balance phenom-
ena in many situations and is extremely efficient. The spring is a
powered joint connected to the universe, like the meathook. How-
ever, unlike the meathook, it avoids super-balance through torque
limits and can be broken when seriously imbalanced, producing re-
alistic falls.

Dynamo computes the torque at the root in several stages. We no-
tate the stages with primes indicate intermediate results as we build
towardsτroot. The first stage applies PD equation 5 to the root,

τ
′′
root = k1∆(Wd,root,Wa,root)+k2(ωd,root−ωa,root). (6)

Because balance should only apply torques perpendicular to grav-
ity, the second stage removes the component parallel to rotation
about the gravity force vector:FG,

τ
′
root = τ

′′
root−

FG
(
FG · τ ′′root

)
||FG||2

. (7)

The third stage enforces two torque limits to prevent super-balance.
The lower limit kL > 0 merely clamps the maximum torque to be
applied. When the higher limitkU > kL is also exceeded, however,
the root spring is considered broken an applies no torque. This
allows a significantly imbalanced character to fall. Thus the net
root spring torque applied is:

τroot = c

τ ′root ||τ ′root|| < kL

kL
τ ′root∣∣∣∣τ ′root

∣∣∣∣ ||τ ′root|| < kU

0 ||τ ′root|| ≥ kU .

, (8)

where c = 1 when the character is in contact with the environ-
ment and therefore able to exert contact forces to balance itself,

andc = kair < 1 otherwise. We classify a character as in contact
with the environment if and only if the rigid body simulation sys-
tem introduced a contact constraint with another object during the
previous time step.

The kair constant is the amount of “air control” the character can
exert. Choosingkair = 0 completely prevents the character from
balancing in the air, which is overly restrictive since it is possible
to self-induce angular acceleration without exerting contact forces
(falling cats and spinning ice skaters are good examples of this phe-
nomena.)

3.4 Reaction to Impacts and Motion Blending

Similar to [Zordan and Hodgins 2002], we simulate the stunned
response of the character to significant impacts by rapidly ramp-
ing down the servo gainsk1,k2 and then slowly raising them to
normal levels over several frames of animation. For very large im-
pacts, the gains ramp all the way to zero. This creates an unpowered
character–a rag doll–and simulates unconsciousness.

In some situations, powering down gains will imbalance the char-
acter. That in turn causes the root spring to break, which makes the
character fall over. Note that falling down causes impacts with the
ground. Those impacts cause more powering down, so even if the
initial impact was light the character may end up unconscious.

The idea of reducing gains to simulate a stunned character is not
novel. What is unique about Dynamo is that working in world space
makes the simulation sufficiently robust over a large range of servo
gains that animation remains stable as we move the gains far from
their hand-tuned optima.

As with stunning, Dynamo’s stability allows a very simple motion
blending strategy to produce effective results. To transition between
animations, we simply linearly interpolate the world space desired
poses. The control system then produces plausible transitions from
motor torques that incrementally attract towards the new pose. As-
suming reasonable gains, the character will not snap instantly to the
new pose due to constraints imposed by continual physical simula-
tion. Parent-space methods can achieve similar results if precisely
appropriate gains are found. Otherwise, the resulting motion is sub-
ject to lagging and wobbly oscillations.

4 Results

We implemented a test framework for the Dynamo control system
that simulates a video game environment. Rigid body physics are
provided by the Open Dynamics Engine (ODE; http://ode.org). The
G3D library (http://g3d-cpp.sf.net) is used for rendering and gen-
eral 3D support code. Tests were run on a single-core 3.5 GHz In-
tel Pentium 4 processor under Windows XP. Humanoid kinematics
and motion were provided through mocap data obtained from the
CMU Motion Capture Database, Credo Interactive’s MegaMocap
V2 package, and a custom animated “stand up” motion.

The result figures in this section are exerpts of our comprehensive
results video. Most of our result figures show simple scenes to make
the experiments clear; we can simulate significantly more complex
cases.

4.1 Performance

All results were computed in real-time. We clocked simulation at
120 Hz because the underlying ODE library uses static penetration-
based collision detection and misses fast-moving objects at larger
timesteps. A high simulation rate also allows finer differential con-
trol on the servos.

The entire simulation process is very efficient. ODE is highly op-
timized and Dynamo adds little overhead. This speed is impor-
tant for games where simulation is only allocated a fraction of the
CPU since it competes with audio, AI, graphics, and network code.
A typical game scene involving five articulated characters with 36
bones each, 50 other rigid bodies, and a 5000-polygon environment.
Simulation requires approximately 0.001 seconds per frame (3% of
the CPU) to process all rigid body collision detection, computation
of desired torques, and the full constrained solver inside ODE.

4.2 Gain Insensitivity

Our video results for cartwheel and obstacle navigation tasks il-
lustrate gain insensitivity for world space servoing. Shown left-
to-right in Figure 3, characters are playing straight motion capture
with no simulation (black), parent space servoing (blue), and world
space control using Dynamo (orange). Significant time was spent
finding the best servo gain constants for critical parent-space damp-
ing. The world space method is sufficiently insensitive that we ex-
perimented with both custom gains as well as direct usage of the
parent-space gains. Both sets of gains produced similar results for
world space servoing. Figure 3 compares parent-space and world-
space characters adapting to an obstacle. If our character is located
in a flat, featureless environment, Dynamo drives it to perform the
cartwheels just as the original motion indicates. However, if there
is an obstacle in the way our character now reacts accordingly and
realistically vaults over the obstacle. Parent space can reasonably
adapt in many cases, but produces a weaker motion that loses much
of the style from the mocap.

In the obstacle adapation task (Figure 4.3), however, world space
servoing demonstrated a clear improvement to parent space. The
character for this task was required to walk up a ramp, down stairs,
through a hanging crate, and finish with cartwheels over large
blocks in the walking path. During its navigation of the course,
the world-space character remains true to the motion capture ani-
mation, but the parent-space character has less stability and appears
to quiver and jiggle.

Dynamo’s robustness to gain variations is a strong result. Hand-
tuning gains for a character is a time consuming process, which

Figure 4: A pair of characters walking an obstacle course with
torques computed in world space (left, orange) and parent space
(right, blue). Our best attempts at critical damping parent space in-
curred wobble in the torso. World space servoing produced more
faithful motion across various damping parameters.

is substantially reduced by moving to world-space where the exact
constants are not so critical.

4.3 Balance and Adaptation

Because we use motion capture only as a guideline for actively con-
trolling our character, the character can dynamically interact with
its environment in plausible ways. A basic form of dynamic inter-
action is static balance. As illustrated earlier in Figure 2, a char-
acter actuating mocap for idly standing should remain balanced on
flat ground and fall in unbalanced states, such as with one foot on
a crate. Our weak root spring controller generates plausible control
in both cases.

Static balance and plausible falling were tested subject to interac-
tive applications of force. Figure 5 shows a Dynamo character re-

Figure 5: Sequence of an animated Dynamo character under the
influence of strong external forces; in this case, the user is dragging
the character about with the mouse.

acting plausibly to strong external forces and user-imposed con-
straints. We placed the character in an environment littered with
obstacles and then violently dragged it about with a mouse-driven
cursor. When pressed into the ground, the Dynamo character bends
at the knees and then stands upright when released. If knocked over
the character lies on the ground, but if put back on its feet it re-
gains balance. All objects react realistically when struck due to the
continuous underlying physical simulation.

Our humanoids were capable of performing tasks involving plausi-
ble dynamic balance, such as locomotion and jumping. Figure 4.3
shows our humanoid using a flat ground walking motion to traverse
uneven ground and walk through obstacles. Because the volume
of the capture subject is not an exact match to the humanoid ge-
ometry, locomotion often incurs premature foot contacts with the
ground. We account for this by applying a small upward force on a
foot with forward momentum that contacts the ground. In Figure ,
we show a Dynamo-controlled humanoid driven by a jumping mo-
tion. The character achieves flight off of the ground and is able to
stay upright upon landing. However, the character lags behind the
mocap due, which we attribute to overcoming gravity.

4.4 Impacts

In the absence of a task-driven artificial intelligence (AI) controller,
the simulation will attempt to continue playing motion capture even
after a character has lost balance. This produces a character lying

Figure 6: A Dynamo character (right, green) driven by motion cap-
ture (left, black) to perform ballistic jumping motion, hopping on
one leg, and leg crossovers. The Dynamo character is capable of
jumping off the ground and maintaining dynamic balance, though
not in complete synchrony with mocap due to gravity.

on the ground but attempting to walk or make other movements.
We claim that this is a desirable result from the simulation system–
it is what a robot would do, and is what a human would do given
extremely rigid instructions about matching motion capture. How-
ever, this is not a desirable behavior for a plausible intelligent being.

A simple AI on top of Dynamo can produce very plausible re-
sults when the character is knocked over but still conscious. For
the example we implemented, the AI detects when root spring has
been broken for more than an epsilon amount of time (0.5 seconds).
When broken, we systematically decrease the gains (by applying a
scale factor) to stun the character towards a rag doll state. If the
spring is restored, the gains are ramped back up. the root spring
is broken and the character is in contact with the ground. Figure 7
shows an additional result that combines the root spring and stun-
ning. This example shows three Dynamo characters repeatedly hit
with “beach ball” objects and finally impacted with a crate. Each
root controller maintains balance during the light impacts of the
beach balls. The heavier crate impact demonstrates the spectrum
of reactions Dynamo can produce, varying from maintaining up-
right balance, falling with continuing actuation, and falling to un-
consciousness.

4.5 In-Game Boxing Result

We have developed a demonstration boxing game that pits two au-
tonomous characters against each other. Each character constructs
a motion graph [Kovar et al. 2002] from an extended sequence of
punches and a standing up motion. A characters driven to per-
form various punching motion until stunned and knocked down by a
punch from the other character. Once down, the character takes de-
sired motion from the standing up motion and returns to the punch
part of the motion graph. Figure 8 shows a frame-by-frame com-
parison of Dynamo-driven boxing characters with mocap playback.

Figure 7: Effects of the weak root spring algorithm and AI. Eight frames of animation, spaced 0.1s apart showing four characters executing
mocap while being hit with light beach balls and heavy wood crates. In each frame, the characters in the row are using the following
algorithms from left to right: mocap with no simulation (black) as a baseline; meathook (green), weak root spring with stunning (orange);
and weak root spring with a simple AI controller for switching to ”unconsciousness.” They are buffeted by the balls but only knocked over by
the crate. Without an AI to change animations, the orange root spring character attempts to animate even after being knocked over, whereas
the final purple character with an AI lies still in rag-doll mode.

Our boxing demo is similar to the upper-body example used by Zor-
dan and Hodgins [Zordan and Hodgins 2002]. In our case, however,
our characters are driven to perform full-body motion and maintain
plausible foot contacts over uneven ground.

5 Limitations and Future Work

In its current form, Dynamo produces physically plausible control
of articulated virtual characters. Due to our focus on video games,
we have taken a few physical liberties in the control system that
could be addressed as future work. A natural future line of work
is to appropriately simulate the control limitations of real world
robotic and prosthetic systems. This emphasis attempts to bring
the real and virtual worlds closer together for leveraging their rela-
tive strengths. Virtual worlds with enhanced physics bring greater
realism and expression. Physical simulation and control platforms
allow for faster, more accurate, and broadly practical tools for de-
veloping control of real robotic and prosthetic systems. The success
and broad usage of the Player/Stage Project [Gerkey et al.] is a clear
example this benefit for mobile robotics.

Dynamo currently applies external motor forces without joint lim-
its and unrefined torque restrictions. Specifically, motor torques are
applied externally to bones individually to match a desired world
space orientation. These torques are limited only by the servo
spring and damping gains. A more realistic actuation model would
translate these external bone forces into torques about its inboard
joint with assurances about applying opposite and equal torques to
parent and child bodies.

The lack of joint and torque limits for the current Dynamo has its
strengths and weaknesses. Towards the positive, Dynamo charac-
ters are highly capable of physical task and are implicitly attracted
towards plausible poses demonstrated in the mocap data. In addi-
tion to violating reality, however, we do not have limits that prevent
the character from encountering implausible situations such as dis-
playing super-human abilities or becoming stuck in extreme poses
(Figure 9). However, exposure to extreme poses is a seldom occur-
rence, often due awkward physics solutions resulting from violent

user interactions (refer to Figure 5). We believe advances in physi-
cal simulation make these anomalous situations even more remote.

The root spring balance model is a compromise between simulat-
ing realistic phenomena and real-time execution. A true balance
model would completely replace the root spring with an AI-driven
or inverse kinematic system that balances the character in a realis-
tic manner. In addition, mocap performed by a human is typically
not directly applicable to a humanoid character. While our system
can plausibly balance, locomotion is particularly hampered by the
complexities of mapping mocap onto humanoids. Artifacts from
this mapping are often occur as dragging of the feet during loco-
motive motions. Unlike humans, our characters currently have no
sense of the environment and, thus, make no decisions about appro-
priate foot contacts. Our current reactive rules yield plausible loco-
motive behavior. However, the real core of the locomotion problem
lies within developing AI strategies to determine appropriate con-
tacts with the world. Developing realistic balance and locomotion
strategies for real-time computation is open research problem.

More generally, there is a distinction and synergy between high-
level AI and low-level servoing that should be maintained. An AI
system is concerned with decision making to achieve objectives.
This responsibility involves factors in the global world space and
setting the desired motion for low-level servo control. In this re-
spect, the AI should take as input the current state of the world and
output the desired global coordinate frame and bodycentric pose.
Once decision making is performed, our methods suggest that poses
in bodycentric coordinates should be used for driving low-level mo-
tor control.

6 Conclusion

We have presented Dynamo as an approach to controlling animat-
ing characters in a physically dynamic virtual world. Dynamo
controlled characters are driven to perform kinematic motion un-
der the continual influence of physical simulation. Using Dynamo,
we have achieved stable motion control control without excessive
gain tuning to find a specific critical damping. Our control system
provides gain insensitivity by representing desired poses in world

Figure 8: Demonstration of how Dynamo makes animations appear more realistic. The top and bottom rows each show four frames from a
boxing game. The top row shows a traditional pure mocap approach. Note the artifacts: feet floating, feet penetrating the ground, characters
inter-penetrating, and overall lack of a reaction to hits. The bottom row shows the same scene with Dynamo. Note that feet adapt to the
uneven ground by both raising and lowering as needed, and the characters react to one another’s blows.

Figure 9: Situations of local extrema in pose space. Attempting to
servo to a ready fighting posture, the character’s right arm is stuck
between its legs (right) and behind its back (left). These situations
are difficult to correct without without a higher-level AI or external
intervention.

space rather than the traditional parent-bone reference frame. The
strength of servoing in world space is tempered a weak spring at the
character root. This root spring provides an adjustable parameter
to react plausibly when balance should break. Dynamo-controlled
characters perform desired motion robust to dynamic interactions
with physically plausible transitions between motions without ex-
plicit blending. Our basic servoing system is a foundation to begin
emphasizing deeper issues in articulated character control, namely
artificial intelligence.

7 Acknowledgements

The authors wish to thank Daniel Byers, Graham Rosser, and Jean
Tsong for their assistance in game asset creation and movie edit-
ing. We thank the contributors to the Open Dynamics Engine and
G3D projects for providing freely-available open-source physics
and graphics engines. The data used in this project was obtained
in part from mocap.cs.cmu.edu. This database was created with
funding from NSF EIA-0196217.

References

ARIKAN , O., FORSYTH, D. A., AND O’BRIEN, J. F. 2002. Mo-
tion synthesis from annotations.ACM Transactions on Graphics
22, 3, 402–408.

FALOUTSOS, P., VAN DE PANNE, M., AND TERZOPOULOS, D.
2001. Composable controllers for physics-based character ani-
mation. InProceedings of ACM SIGGRAPH 2001, 251–260.

GERKEY, B., VAUGHAN , R. T., AND HOWARD, A. The
player/stage project: Tools for multi-robot and distributed sen-
sor systems.

GLEICHER, M. 1998. Retargetting motion to new characters. In
SIGGRAPH ’98: Proceedings of the 25th annual conference on
Computer graphics and interactive techniques, ACM Press, New
York, NY, USA, 33–42.

HODGINS, J. K.,AND POLLARD , N. S. 1997. Adapting simulated
behaviors for new characters. InSIGGRAPH ’97: Proceedings
of the 24th annual conference on Computer graphics and inter-
active techniques, ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, 153–162.

HODGINS, J. K., WOOTEN, W. L., BROGAN, D. C., AND
O’BRIEN, J. F. 1995. Animating human athletics. InSIG-
GRAPH ’95: Proceedings of the 22nd annual conference on
Computer graphics and interactive techniques, ACM Press, New
York, NY, USA, 71–78.

HSU, E., PULLI , K., AND POPOVIĆ, J. 2005. Style translation for
human motion.ACM Trans. Graph. 24, 3, 1082–1089.

JENKINS, O. C., AND MATARI Ć, M. J. 2004. Performance-
derived behavior vocabularies: Data-driven acqusition of skills
from motion. International Journal of Humanoid Robotics 1, 2
(Jun), 237–288.

KOMURA, T., LEUNG, H., AND KUFFNER, J. 2004. Animating re-
active motions for biped locomotion. InVRST ’04: Proceedings
of the ACM symposium on Virtual reality software and technol-
ogy, ACM Press, New York, NY, USA, 32–40.

KOVAR, L., AND GLEICHER, M. 2004. Automated extraction
and parameterization of motions in large data sets.ACM Trans.
Graph. 23, 3, 559–568.

KOVAR, L., GLEICHER, M., AND PIGHIN , F. 2002. Motion
graphs.ACM Transactions on Graphics 21, 3, 473–482.

LEWIS, J. P., CORDNER, M., AND FONG, N. 2000. Pose
space deformations: A unified approach to shape interpolation
and skeleton-driven deformation. InSiggraph 2000, Computer
Graphics Proceedings, ACM Press / ACM SIGGRAPH / Addi-
son Wesley Longman, K. Akeley, Ed.

L IU , C. K., HERTZMANN, A., AND POPOVIĆ, Z. 2005. Learning
physics-based motion style with nonlinear inverse optimization.
ACM Trans. Graph. 24, 3, 1071–1081.

MANDEL , M. 2004.Versatile and interactive virtual humans: Hy-
brid use of data-driven and dynamics-based motion synthesis.
PhD thesis, CMU.

POPOVIĆ, Z., AND WITKIN , A. P. 1999. Physically based mo-
tion transformation. InProceedings of SIGGRAPH 99, ACM
SIGGRAPH / Addison Wesley Longman, Los Angeles, Califor-
nia, Computer Graphics Proceedings, Annual Conference Series,
11–20.

ROSE, C., COHEN, M. F., AND BODENHEIMER, B. 1998. Verbs
and adverbs: Multidimensional motion interpolation.IEEE
Computer Graphics & Applications 18, 5 (Sep-Oct), 32–40.
ISSN 0272-1716.

SAFONOVA, A., AND HODGINS, J. K. 2005. Analyzing the
physical correctness of interpolated human motion. InSCA ’05:
Proceedings of the 2005 ACM SIGGRAPH/Eurographics sympo-
sium on Computer animation, ACM Press, New York, NY, USA,
171–180.

SHAPIRO, A., PIGHIN , F., AND FALOUTSOS, P. 2003. Hybrid
control for interactive character animation. InPacific Graphics,
455–461. short paper.

SHOEMAKE, K. 1985. Animating rotation with quaternion curves.
In SIGGRAPH ’85: Proceedings of the 12th annual conference
on Computer graphics and interactive techniques, ACM Press,
New York, NY, USA, 245–254.

WOOTEN, W. L., AND HODGINS, J. K. 2000. Simulating leaping,
tumbling, landing, and balancing humans. InIntl. Conference on
Robotics and Automation, 656–662.

ZORDAN, V. B., AND HODGINS, J. K. 2002. Motion capture-
driven simulations that hit and react. InProceedings of the ACM
SIGGRAPH symposium on Computer animation.

ZORDAN, V. B., MAJKOWSKA, A., CHIU , B., AND FAST, M.
2005. Dynamic response for motion capture animation.ACM
Trans. Graph. 24, 3, 697–701.

A Matrix to Axis-Angle

The following C++ source code implements the∆ function de-
scribed in eq. 2. It is based on source code is from the G3D
(http://g3d-cpp.sf.net) library and David Eberly’s defunct Magic
Software library.

Vector3 Delta(const Matrix3& D, const Matrix3& A) {

Vector3 axis;

float angle;

// For orthonormal matrices, A^-1 == A^T

(D * A.transpose()).toAxisAngle(axis, angle);

return axis * angle;

}

void Matrix3::toAxisAngle(Vector3& axis, float& angle) const {

float trace = elt[0][0] + elt[1][1] + elt[2][2];

float c = 0.5f * (trace - 1.0f), half;

angle = acos(c);

if (angle > 0.0) {

if (angle < PI) {

axis.x = elt[2][1] - elt[1][2];

axis.y = elt[0][2] - elt[2][0];

axis.z = elt[1][0] - elt[0][1];

axis.normalize();

} else if (elt[0][0] >= elt[1][1]) {

// r00 >= r11

if (elt[0][0] >= elt[2][2]) {

// r00 is maximum diagonal term

axis.x = 0.5f * sqrt(elt[0][0] - elt[1][1] -

elt[2][2] + 1.0f);

half = 0.5f / axis.x;

axis.y = half * elt[0][1];

axis.z = half * elt[0][2];

} else {

// r22 is maximum diagonal term

axis.z = 0.5f * sqrt(elt[2][2] - elt[0][0] -

elt[1][1] + 1.0f);

half = 0.5f / axis.z;

axis.x = half * elt[0][2];

axis.y = half * elt[1][2];

}

} else if (elt[1][1] >= elt[2][2) {

// r11 is maximum diagonal term

axis.y = 0.5f * sqrt(elt[1][1] -

elt[0][0] - elt[2][2] + 1.0f);

half = 0.5f / axis.y;

axis.x = half * elt[0][1];

axis.z = half * elt[1][2];

} else {

// r22 is maximum diagonal term

axis.z = 0.5f * sqrt(elt[2][2] -

elt[0][0] - elt[1][1] + 1.0);

half = 0.5f / axis.z;

axis.x = half * elt[0][2];

axis.y = half * elt[1][2];

}

} else {

// Zero angle

axis.x = 1.0f; axis.y = 0.0f; axis.z = 0.0f;

}

}

