Distributed Obstruction-Free Transactional
Memory

Cheng Zheng
Department of Computer Science

Brown University

Submitted in partial fulfillment of the requirements for the Degree of Master of Science
in the Department of Computer Science at Brown Univeristy

E\Kw\,ﬁ @ LX‘V D{ L\ MOEESOR 2T e 02

Signature (Pro. Maurice Hel}lihy, lProjc-:ct Advisor) Date

-

Distributed Obstruction-free Transactional Memory

Cheng Zheng

Abstract

A distributed transactional memory is a system that supports shared-objects in a distributed computing
environment, and keeps atomic updates in the shared data objects by supporting transaction. This paper
describes our experience on the implementation of distributed obstruction-free transactional memory as
part of Aleph toolkits, a distributed shared object system implemented in Java [1]. We use an Optimistic
algorithm to handle object access contention between transactions, and achieve “Obstruction-Free” object
access in a distributed computing environment.

1. Introduction

In distributed computing, there are two computing model, one is data-shipping and another is control-
shipping. Distributed shared memory (DSM) systems, whether page-based or object-based, implement a
data-shipping model, in which the bits representing the object are moved among client caches on demand.
By contrast, remote method invocation (RMI) systems implement a control-shipping model for objects.
Calls to an object’s methods are transformed to messages forwarded to a remote site that holds the object.
A distributed transaction manager is needed in distributed computing to keep data consistence. In control-
shipping systems, a transaction from start to commit or abort could span multiple distributed systems. The
transaction manager needs to coordinate the execution of transaction among these distributed systems; this
can be very complex and error prone. In data-shipping systems, a transaction from start to commit or abort
is confined in a single system while the data accessed could reside at different distributed systems, and
shipped to the system that is running the transaction. The transaction manager becomes much simpler than
the one in “control-shipping” systems; it only needs to control the execution of transaction in a single
system.

In this paper, we are going to discuss the implementation of distributed obstruction-free transactional
memory in Aleph toolkits [1]. The Aleph toolkit is a collection of Java packages intended to support the
construction of customized distributed share objects. Aleph supports both data-shipping and control-
shipping systems. We are building a distributed transaction manager as part of Aleph toolkits, this
transaction manager can manage transactions running on distributed shared memory systems that is based
on data-shipping model. This transaction manager uses an optimistic algorithm to handle object access
contention. By using this distributed obstruction-free transactional memory, we can use Aleph toolkit to
build other distributed transaction applications.

2. The Aleph Toolkit

Aleph toolkit is a collection of java packages that implements a platform-independent distributed shared
object system. A distributed program runs on a number of logical processor, called Processing Elements
(PEs). Each PE is a Java Virtual Machine, with its own address space. Aleph provides the ability to start
threads on remote processors, and to communicate either by shared objects (with transparent
synchronization and caching), or by message passing. In this paper, we use shared object to build our
distributed transaction manager. Structuring a distributed system as a toolkit allows programmers to “mix
and match™ different implementation of run-time system components without the need to restructure the
application each time. In Aleph, there are several managers to handle different tasks of distributed system:
A directory manager is used to locate an object and keep cached copies of data object synchronized; A
transaction manger is used to coordinate the execution of transactions that guarantee an atomic change to
data object; A event manager is used to monitor events occurrence and disseminate events to interested

PEs: A communication manager is used to pass messages between PEs. In Aleph, any one of these
managers can have different implementation, e.g. there are three directory managers (home, arrow and
hybrid) in Aleph toolkit now. We are building an optimistic transaction manager. Programmers can select
the managers that are best fitted to their requirements.

In Aleph, PEs can share data structures called global objects, defined by GloblObject interface. A global
object is a container for a regular Java object; we can encapsulate a regular Java object inside a global
object to make it accessible to other PEs, as showed in the following example:

In this case, Account is defined as a class, all objects shared by PEs must implement java.io.serializable:

public class Account implements serializable, TMCloneable{
Public int value;

The main method for Account class simply encapsulates the Account in a GlobalObject as following:

GlobalObject saving = new GlobalObject(new Account(iniBalance));
GlobalObject checking = new GlobalObject(new Account{iniBalance));

This object is passed as an argument to the constructor for the user’s threads:
public UserThread(GlobalObject saving, GlobalObject checking) {
The user thread accesses the Account within a transaction by opening the global object in “write” mode:

Account save = (Account) saving.open(transaction, “w’);
Account check = (Account) checking.open(transaction, “w”);

As above example, a PE uses the open method of GlobalObject to open an object at required mode, the
open method in turn submits the global object open request to the directory manager, the directory manager
then locates the global object, and ship the object back to the PE. We use home directory manager for this
implementation.

In home directory [2], each global object is associated with a fixed PE, termed that object’s “home”. The
home keeps track of the number, status and location of all cached copy of that object. There can be only
one read/write cached copy, or multiple read-only cached copies. If a client has a cached copy of the
object, it keeps track of whether the object is busy (in use by a local thread), or if so, whether the home has
requested the copy to be returned or invalidated. If a PI wants to acquire an exclusive access to a global
object held by another, it does the following:

1. It sends a RetrieveRequest message to the object’s home.

The home checks whether the object has been held by other PEs: if yes, it sends a ReleaseRequest

message to the PF holding the cached copy, and RetrieveRequest.run() blocks; if not, it sends the

object to the PF that requested in RetrieveResponse message.

3. Atthe PE holding the copy, the ReleaseRequest.run() method blocks while the cached copy is in
use. When object becomes free, the method invalidates the copy, and returns a ReleaseResponse
message to the home as confirmation.

4. At the home, the blocked RetrieveRequest.run() is notified, and it sends a RetrieveResponse
message containing the current object copy to the requesting client,

2

There are two blocks (process waiting) in the home directory; we need to make some changes to the default
behave of home directory to remove the blocks in our Obstruction-Free Transaction protocol. In next few
sections, we will explain how we can remove these blocks,

rmaa,

3. Obstruction-Free transaction protocol

The Distributed Transactional Memory system is based on dara-shipping model. A transaction, from
transaction start to transaction commit or abort, is confined in a single process element (PE). The
transaction manager uses an Optimistic Algorithm to handle object access contention between transactions,
and achieve Obstruction-Free object access among transactions that are running in the same or different
PEs. In this algorithm, if a transaction A wants to open an object O for reading or writing, it will ask
Directory Manager to retrieve the object O, if the object O is free, the current owner of object O will ship
the object O to the PE that is running the transaction A. If the object O is being opened by another
transaction B, the transaction A will back off the attempt for a randomized period of time before another
attempt to open the object O. The transaction A will keep make this attempt for pre-defined times, if the
object O is still opened by transaction B after so many attempts, the transaction A can force transaction B to
abort, and take over the object O.

4. Implementation

First, we need a transactional memory thread that is running within one PFE, and able to invoke a
transactional memory thread within another PE, and optionally wait for that thread to finish. We can
extend Aleph remote thread class to create a transactional memory thread, TMThread. In order to support
transaction, the TMThread class should have methods to start transaction, commit or abort transaction. The
objects that are accessed in TMThread could reside at other PESs, we should use Aleph GlobalObject within
TMThread. TMThread uses GlobalObject open method to open objects it needs.

public class TMThread extends RemoteThread {
Transaction transaction,

public void beginTransaction() {
this.transaction = new Transaction();

public boolean commitTransaction() { ... }
public void abortTransaction() { ...}
public void run() { ... }

}

UserThread extends TMThread, and uses GlobalObject (saving, checking account) as shared data object.

It also implements the run() method, which is invoked at remote PE when UserThread starts another
UserThread at remote PE,

static class UserThread extends TMThread {

GlobalObject saving, checking;
Transaction transaction,
UserThread(int count, GlobalObject saving, GlobalObject checking) {

this.saving = saving;

this.checking = checking;

/
public void run() {
beginTransaction();

Account save = (Account) saving.open(transaction, "w");
save.credit(amount) ;

Account check = (Account)checking.open(transaction, "w");
check.debt{amount);
if (lcommitTransaction())

abortTransaction();

J

The open() method in GlobalObject calls the open() method in TransactionManager:
public class GlobalObject implements Externalizable {
private static TransactionManager tManager =
TransactionManager.getManager(),

public Object open (Transaction transaction, String mode)
throws AlephException {
return tManager.open(this, transaction, mode);

The TransactionManager keeps track of Transactions running in its PE, GlobalObjects accessed by these
Transactions, and the changes made to the GlobalObjects. The TransactionManager uses the
DirectoryManager to locate GlobalObject, uses ContentionManager to handle GlobalObject access
contention, and uses Locator to keep track of versions of objects during a transaction. The

ExponentialBackoff Algorithm is used in ContentionManager when GlobalObject is accessed by other
Transaction.

public class OptiTransactionManager extends TransactionManager {
I* setup jim contention manager to use ExponentialBackoff algorithn. #/
private static ExponentialBackoff cManager = new ExponentialBackoff();

I* map transaction -> vector of global objects #/
private static Hashtable t2object = new Hashtable();

I* map global object -> Locator */
private static Hashtable g2locator = new Hashtable();

static final DirectoryManager directory = DirectoryManager.getManager(),

The open() method in OptiTransactionManager calls the open() method in DirectoryManager with a
Boolean value force that is determined by ExponentialBackoff contention manager. If force is true, it will
ask DirectoryManger to take over the object by abort the other transaction that is holding the object; if
force is false, the DirectoryManger will try to open the object and return it if it is not opened by other
transaction, otherwise, it will return null immediately without waiting for the object free. We made the
change to the default behave of DirectoryManager by adding a Boolean force to the open() method of
DirectoryManger, and makes open() method “non-blocking™.

public Object open(GlobalObject object, Transaction t, String mode)
throws AlephException {

Object obj = getAlreadyOpen(t, object);
if (obj I= null)
return obj;
boolean force = cManager.prepare(object, mode); llinform Contention
Manager of first try.
for (int attempt = 0, attempt++){
if (t.isAborted())| Ilquit if we'return already aborted.

throw new Alephlxception();
/
obj = directory.open(object, mode, force);
if (obj != null) {
Locator start = new Locator({(TMCloneable)obj, t);
g2locator.put(object, start);
return start.getNewObject();
/
/I uh, oh Contention!
force = cManager.react(object, attempt, mode),
}
/

The ExponentialBackoff algorithm will determine the frequency and number of attempts made to call
DirectoryManager open() method. Initially it set force to false, if open() method returns null value, it will
sleep for a period of randomized time before making another attempt to call open(). It will make this
attempt for MAX RETRIES times, if object is still opened by other Transaction, it then set force to true,
DirectoryManager will then abort the other Transaction and take over the object,

public class ExponentialBackoff implements ContentionManager, Constants {
static final int MAX RETRIES = 128;
static final int MIN BACKOFF LOG =4;
static final int MAX BACKOFF LOG = 12;
int logBackoff = 0;

public boolean prepare(GlobalObject object, String mode) {
this.logBackoff = MIN BACKOFF LOG;,
return false;

}

public boolean react(GlobalObject object, int attempt, String mode)
throws AlephException {

int modeName = parseMode(mode);
/1 If this is an early attempt, back off for a bit
if (attempt < MAX RETRIES) {
Il Backoff for a random duration
int mask = (1 << this.logBackoff) - I,
int backoff = random[random_counter++ & RANDOM MASK] & mask;
try {
Thread.currentThread().sleep(backoff);
} catch (InterruptedException e) {}
this.logBackoff *= 2,
if (logBackoff > MAX BACKOFF LOG)
logBackoff = MAX BACKOFF LOG;
/I Don't force yet
return false;

/

Il Just go straight in if this is for write access
if (modeName == WRITE_MODE && attempt < (2 * MAX RETRIES))(
return true;

/

/I Livelock!

throw new AlephException("livelock detected!”);

}

A transaction can commit or abort the changes it made to objects. If a transaction commit successfully, the
newer version of objects is made permanently, otherwise, the older version of objects is restored. We use
Locator to Keep track of versions of GlobalObject as following:

public class Locator {
private Transaction transaction;
private TMCloneable oldObject;
private TMCloneable newObject;

public Locator(TMCloneable object, Transaction transaction) {
this.transaction = transdaction;
this.newObject = (TMCloneable) object.clone();
this.oldObject = object;

/

public void commit() {
oldObject.copy(newObject); I/ commit the change,
copy newObject into oldObject, and oldObject returned.

}

*Abort the changes, doing nothing, oldObject returned.
public void abort() {}

We made some changes to “home” DirectoryManager to make it “non-blocking”, and able to abort other
Transaction to accommodate OptiTransactionManger, as showed in step 3 of following process. In this
new home directory, if a PE wants to acquire an exclusive access to a global object held by another, it does
the following:

1.
2.

It sends a RetrieveRequest message to the object’s home.

The home checks whether the object has been held by other PESs: if yes, it sends a ReleaseRequest
message to the PE holding the cached copy, and RetrieveRequest.run() blocks; if not, it sends the
object to the PE that requested in RetrieveResponse message.

At the PE holding the copy, the DirectoryManager will pass the releaseRequest to ClientSide. 1f
Boolean force is true, DirectoryManager will first abort the Transaction that held the
GlobalObject before calling ClientSide releaseRequest method. At ClientSide, if force is true,
releaseRequest will wait for the Transaction abort() complete that should be quick, or wait for
object free as original home DirectoryManager; if force is false and GlobalObject is busy,
releaseRequest will send back ReleaseResponse with “null” object immediately. If object is free,
releaseRequest will send back ReleaseResponse with its copy of object

At the home, the blocked RetrieveRequest.run() is notified, and it sends a RetrieveResponse
message containing the current object copy or null object to the requesting client,

DirectoryManager:
public void releaseRequest (PE from, GlobalObject key, boolean force) {
if (force){ Ilabort other transaction, and take over GlobalObject key
Transaction transaction = tManager.getTransaction(key),
if (DEBUG)
Aleph.debug("abort transaction:" + transaction),
if (transaction != null)
transaction.abort();
/

getClientSide(key).releaseRequest(from, force);

ClientSide:
public synchronized void releaseRequest(PE from, boolean force) {

while (force && (writer || readers > 0)) {

try{ wait(); } catch (Interruptedbxception e) {};

/
requested = false,
if (writeValid && 'writer && readers == 0) {
ReleaseResponse release = new ReleaseResponse(key, object);
release.send(from),

}else
ReleaseResponse release = new ReleaseResponse(key, null);
release.send(from),

/

The above changes to home DirectoryManager make it compatible with both the old non-transactional
applications and our new Obstruction-free distributed transactional memory applications.

5. Experiments

We have created a simple bank account application as an example of testing Obstruction-free distributed
transactional memory. In this bank account application, there are one checking account and one saving
account. We debited some random amount of money from saving account, waited for a random period of
time between 0 and WAIT (WAIT = 1250, 2500, and 5000 mini-second), then credited it into checking
account in a single transaction. We ran this transaction 10 times at every PE, among 2 up to 32 PEs. To
prove these transactions are atomic, the total amount of checking and saving account should remain the
same after these transactions. We also changed MAX_RETRIES values in ExponentialBackoff algorithm
to 64 and 128, which is the maximum number this algorithm should try to open a global object before abort
other transaction to take over the global object. We logged the percentage of transitions aborted among all
transactions, and elapsed time it took to finish all transactions in every run of experiments.

From the experiment results (Figure 1 & 2), we can see the following trends:
1. The percentage of aborted transactions increases with the number of PEs.
2. The longer the transaction takes, the more transactions will be aborted.
3. The more times a transaction try to open an object, the fewer transactions will be aborted, but it
takes longer to complete all transactions.

We can also conclude from these experiments that as long as given enough time for the transaction to
complete we can achieve the zero aborted transaction. We believe that an adaptive Max_Retries to the
transaction execution time will dramatically reduce the number of aborted transactions. Intuitively, the
longer a transaction take, the longer we should wait for the object to free. For the applications with
expected transaction time, we can easily implement the Max_Retries value corresponding to the transaction

time. But for the applications with variant transaction time, we have no choice but to use a fixed
Max_Retries value.

Another potential problem with the pure ExponentialBackoff algorithm is that it could increase the number
of aborted transactions in the following scenario:
1. Transaction A requests to open object O that is used by transaction B, Transaction A will back off
the request for a random period of time. Transaction A makes the retry and back off many times,
but before reaching the Max_Retries.

]

Transaction B releases the object O while transaction A is back off, but transaction C requests to
open object O, and get hold of object O since O is free at this moment.

3. Transaction A makes another retry and reaches the Max_Retries count, it will abort transaction C.
If we hold on the object O for transaction A, we can avoid aborting transaction C.

In order to prevent this problem, we need to use priority when decide which transaction can acquire an
object. The more tries a transaction makes to request an object, the higher priority it has to acquire the
object. But if a transaction does not make the request for an expected time, we should lower its priority, so

other transaction have chance to acquire the object in case of a transaction dies, or network failure.

Max_Retries =128 w Max Retrles =128
8% ‘ 00
ES0%t ‘ 800
TH0%- ‘ 700
620 /) ' |l i 600
——t0 ‘ g 500
ek A / """i‘“;:’ | 5 40
] A N, Juls
3 ¥
280w / } 200
. /“4’ y [oo
sl — r "
[11 SN 4} n r/ ¥ " L r f’/’ ! 0
AR T L T e ‘ 2 B 10 12 14 16 18 20 2 M X 2B N B
PEs | PEs
\
Figure 1. Experiment results with Max_Retries = 128
Max_Relries = 64 Max_Refries = 64
3000% e00
: A ‘ 700
25.00%
! / 1 600 —/
£ zooon i o
F / —o—snno‘H 2 // e
§ 15.00% ot 2500 E w0 / e [0
3 1250] - 1250
E 10.00% ﬁ \ gaco ,.fn"---x')g
2 / T i o i ’—/ i e
o il | e ST o
500% B
/’J ’&’,x/&“s&"'&/ 1 100 /,/,/ =
0.00% et rr, v p e R ARE R | i Ll
2 4 6 B 10 12 14 16 18 20 22 24 26 28 30 32 1 2 s 10 12 14 16 18 20 22 24 26 20 3¢ 32
PEs PEs
Figure 2. Experiment results with Max_Retries = 64
Reference:

[1] M Herlihy. The Aleph Toolkit: Support for Scalable Distributed Shared Objects. Workshop on
Communication, Architecture, and Applications for Network-based Parallel Computing, January 1999,

Orlando, FL.

[2] M.P. Warres and M.P. Herlihy. A Tale of Two directories: Implementing Distributed Shared Objects in
Java. ACM Java Grande Conference. June 1999, Palo Alto CA.

