Security in Reliable Multicasting

(Security for the Electronic Notebook Project)

Qiang Ye
Department of Computer Science
Brown University
qy(@cs.brown.edu

May 2003

Submitted in partial fulfillment of the requirements for the Degree of Master of Science
in the Department of Computer Science at Brown University

(4:)/“ (M 5S¢/

Signature (Professor Thoras W. Doeppner Jr.) Date

Security in Reliable Multicasting
(Security for the Electronic Notebook Project)

Qiang Ye
Department of Computer Science
Brown University

gy(@cs.brown.edu
May 2003

1 Introduction’

Consider the old-fashioned paper notebook. Everyone is familiar with it and needs no
instruction on its use. We go to class or a meeting and use it to take notes. We can
annotate any printed matter that is handed out and stuff it in the notebook. Later we can
go over our notes and handouts, further annotate them, and perhaps share them with
others (with the help of a copying machine).

However, despite amazing progress in computer technology, we really have no useful
electronic analog of the notebook. We can certainly take notes on a computer; we can
receive documents on a computer; we can annotate documents stored on a computer and
send them to others on a computer. But none of this adds up to the convenience of a
notebook.

What’s missing? One obvious thing is the ergonomics of the hardware. Taking notes or
annotating a document using a laptop computer is not as painless as doing it on a pad of
paper contained in the notebook. Fortunately, with some limitation, this issue is being
addressed with the newly availability of Tablet PC computers, wireless networks and
Microsoft Windows Tablet PC Edition. But this deals only with note taking and
communication. It will help a lot, but it’s still not a notebook. What else is missing?

Notebooks are easy to use and are universal. The only compatibility issue we have to
worry about is paper size. Distributing handouts (though not producing them) is
uncomplicated. Everything can be annotated using the one and only annotation interface.
Producing copies for others is well understood and straightforward (though not always
convenient). Notebooks are less subject to failures than are computers: what I write in
them will likely survive power problems, viruses, and being dropped from moderate
heights. And it is easy to authenticate the person you give your documents to.

The object of the electronic notebook project is to build an electronic analog of the paper
based notebook by adding the missing part of the state of the art. An electronic notebook

! Part of this section is adapted from An Electronic Notebook: A Proposal to Microsoft Research by
Professor Thomas W. Doeppner Jr. October 29, 2001.

should be able to do everything the paper version can but provides enough additional
useful functionality to make paper-based notebooks go the way of typewriters.

The following are the three basic scenarios to which our project is targeted:

1) The lecture. Students are taking a lecture-oriented course. Notes for each lecture are
distributed just prior to the lecture. During the lecture they can look at additional
materials, such as web pages. They annotate the notes and other materials, share, and
study them. They further annotate the materials afterwards, perhaps in their dorm
rooms or perhaps on a train or plane while traveling. Occasionally the professor finds
an error in the notes and distributes a new version. Students incorporate the new
version into their annotated versions (or vice versa).

2) The meeting. Participants are given an agenda. They take private notes, possibly by
annotating the agenda. During the meeting various participants distribute materials
that are gone over by all. Suggestions are made and incorporated into the materials.
Whoever is responsible for official minutes distributes them shortly after the meeting.
Corrections are made and the minutes become the official record. Participants
incorporate their own and others’ annotations into their copies of the minutes. In this
scenario, any materials that are distributed during the meeting should be kept within
the participants. The communication of the meeting should be protected from security
bleach introduced by the un-secure natural of wireless network.

3) The museum trip. We tour the museum. Many of the exhibit areas have write-ups
describing what’s on display, perhaps with photographs. Individual exhibits have
labels. We collect or copy these as we walk through and jot down our thoughts on
what we see. Later we share our notes with one another and perhaps incorporate them
into articles or research papers we’re writing about the museum or the subject area.

This paper deals with all the security related issues in the electronic notebook project as a
whole. It consists of three main parts:

(1) Mutual authentication and session key management (its generation, storage and
distribution);

(2) Secure communication during normal operating and
(3) Multicast group leadership handover.

It can be seen that different application scenarios require different levels of security. The
meeting scenario described above should have higher security requirement than either of
the other two. Nonetheless, the security work should be built on a common framework.
Some of the security components can be set as optional or user configurable and the
system administrator (in the project we call it the group leader) can choose to turn them
on and off according to the security requirement of the application, or through profiling.

2 Design Goals

In this section, we discuss the several security goals that we want to achieve in the
electronic notebook project.

2.1 Mutual authentication and session key management

In the three application scenarios discussed above in section 1, a multicasting group for
an application is usually formed in an ad-hoc fashion. Members will be able to join and
leave at any time. The formation and routing processes are out of the scope of this paper.
However, when a person requests to join a group, he/she needs to do a mutual
authentication with the group before the real group joining protocol begins (or as the first
step of the group joining process). That is, the group (through its leader) needs to verify
that the person is indeed the one who claims to be. Likewise, the person can verify about
the group.

The only session key used for the whole group, which is managed and distributed by the
group leader, is then distributed to the person who will then use the session key as a proof
when joining the group.

Public key based (using security certificate) authentication similar to what is used in SSL
protocol is a good candidate here. If we want to use this approach, we need to require that
everyone who wants to join the group holds a verifiable certificate. By saying verifiable, I
mean that either the certificate has a chain that ends in a trusted root CA (operating
system build-in trusted root CA) if we are connected to the internet, or the certificates are
signed by an organization whose certificate everyone has cached in his system. For
example, all certificates are signed by Brown University.

Unlike a secure web site using SSL, whose domain name we can check with DNS entry,
and compare it with the CN in the certificate, no such a directory exists for the time being
against which we can check the person’s name and determine if it matches the CN in his
certificate. Hence, when verifying the certificates, we might need to ignore the CN part as
we usually do with SSL.

The authentication requirement should apply to all of the known application scenarios.
However, the requirement for each scenario should not be the same. For example, in a
business meeting, we might have a list of all the attendances and check the names against
the CN part in the certificate. In other occasions, this step could be omitted.

2.2 Data integrity check (Tamper detection)

Everyone in a group is able to send data to the group. Although we assume that there will
be a leader in each group (see the next section), the duty for the leader is limited to
mutual authentication (verifying the identity of new members) and managing the session
key. The leader should not be responsible for filtering every data item and verify its
source identity. Instead, group members who are interested in the data item should be
able to verify the origin and detect any tamper.

To achieve the highest integrity check requirement, we should require that every piece of
data be signed by the sender with his/her private key. However, asymmetric approach is
much more expensive than symmetric one. And due to the length of keys, in this project

we should allow the user to select an option to use private key or session key to sign the
data, depending on the application scenario. This could be done through application
profiling.

If we only need to make sure that the document we received is from one of the members
in the group and has not been tampered by anyone outside the group, signing the
document with the common session is enough. If we want to be able to verify the origin
of a document (i.e. it is coming from a particular member) in addition to the above
requirement, the document in question needs to be signed by the owner’s private key.

2.3 Non-repudiation (optional)

In some situations, we may want to enforce the non-repudiation requirement, that is, to
prevent the sender of data item from claiming at a later time that the item was never sent.
Such a requirement would be rare in our targeted application scenarios, though. If this is
indeed required, it is easily implemented together with the data integrity check part. Of
course this has to be accomplished with signing every document with its owner’s private
key, which is quite expensive.

2.4 Confidentiality (optional)

Again, in some situations, such as a business meeting, we might want to send and receive
sensitive information between group members. To fulfill such a requirement,
communication between group members must be encrypted and decrypted. However, in
the lecture and museum scenarios, the need for data encryption is not high. In such a case
the encryption and decryption overhead should be avoided. Hence this part is optional. In
the case that confidentiality is a requirement, the common session key could be used for
encryption and decryption.

2.5 Least user interference

As the target users of the application produced by this project are mostly non-technical
persons, e.g. humanities faculties, business men and museum tourists, we want the
security implementation of this project be as user-transparent as possible. In the normal
cases, the users should not worry about dealing with the security issues; instead, the
system should do the most of the job. Only when there is something abnormal happening,
e.g. attacks, malicious users, malicious groups, should the users be warned. And even in
such a case, the system should do most of the job.

The security protocol should stay in the backend and should act as transparently as
possible to the user. The user should not be bothered if all goes well, and only be notified
if serious security problem has happened. I believe this should be the basic approach for
all applications that need security in place.

2.6 System robustness (Group leadership handover)

Last but not least, the security protocol should be robust. This could be the harder part of
the project.

We assume that there is a leader for each group who is in charge of accepting new
members and managing the session keys. Obviously, this is true for most cases.

When someone requests to join the group, the join request is routed to the group leader.
The following handshaking protocol happens between the one who requests to join the
group and the group leader through uni-cast communication, until the new-comer
securely and officially joins the group.

Since the group leader is responsible for authenticating with new members and managing
the session key, this could become a single point failure. Although the communication
between existing group members will not be affected should the leader disappear for any
reason, new members will no longer be able to join the group. For the sake of the
robustness of the system, we must have means to deal with this kind of situation.

There are two different kinds of handovers, voluntary and involuntary. The first one is the
easier one, in which the leader is scheduled to leave and could arrange the handover of
leadership, including the handover of the directory entries cache.

The other one refers to the situation in which the leader’s computer crashes. This is
difficult to deal with. One possible solution would be the leader periodically multicasts to
the group a keep-alive packet. If this packet is not heard by group members for a pre-
determined time, the leader is assumed to have disappeared and the group needs to decide
a new leader using some election mechanism.

2.7 Some assumptions
This section defines some assumptions we will make in the development of the project.

2.7.1 Everyone has a security certificate

We want to use the public key infrastructure (PKI) approach to do peer authentication
and session key distribution. Public key approach requires that each peer who wants to be
authenticated has a security certificate installed in his computer. In our project, we want
to be able to do two way authentication, meaning that one who wants to join a group
needs to make sure that the group is indeed the group that it claims to be, and on the other
hand the group (its leader) needs to make sure that the person who requests to join the
group is indeed the one whom he claims to be.

To use this approach in our project, we assume that each participant has a security
certificate. Hence the authentication could be done through members’ security certificates.

Furthermore, for group members that are not the group leader, they only need a client
authentication certificate. For the group leader, he must have a server authentication
certificate.

2.7.2 Certificates could be verified

To be able to do the authentication, we further assume that certificates can be verified due
to SSL protocol requirements, i.e. the Certificate Authority (CA) or CAs who issued the
certificates, and who either can be reached when needed or is built into the system.

(One approach to fulfill this requirement is to assume that all the potential members have
certificates that are issued by a common organization that the system can trust, such as
assuming we all have a certificate issued by Brown University.)

We also assume that there exists a directory server that supports Lightweight Directory
Access Protocol (LDAP) or some other directory services so that we can check every
certificate against entries in the directory. This is a heavy weight approach in that it
requires that we have network connections all the time.

Since such a directory server is not always available in reality, especially when in ad-hoc
mode, the step of checking certificate against a directory could be made optional in most
scenarios. However, in situations that this is required, such as in some business meetings,
the group leader (meeting organizer) could access the directory server beforehand for
entries for all the allowed persons in the meeting and cache them in local host, and later
check certificates against this cache.

Alternatively, for the common case in which all group members are in the same
organization, everyone’s certificate could be signed by a CA, whose public key is held by
all. Thus all members can verify each other’s certificate.

Another possible approach is to exchange the certificate via the [rDA port, which exists
on almost all laptops nowadays. Unfortunately, it seems that some newer Tablet PC has
dropped the support for the IrDA port since this technology has never taken off in reality.

2.7.3 Multicast group addresses are well know

The name and address of a multicast group that one would like to join is published so that
one can select the group to join by a simple click on one of the names in the UI without
having to manually input the group address or name. This is not an issue that is directly
related to security. However, during developing period, we need to make the Ul part of
the security project.

3 Protocol design

As mentioned earlier, we choose to use public key infrastructure (PKI) approach to do the
authentication. At first we tried to design our own authentication handshake protocol
similar to the SSL protocol. (The protocol we put together is attached to this report as an
appendix.) Later we realized that it is kind of dangerous to design a brand new security
protocol by our own in the sense that it might introduce some “holes”.

So we now use instead the actual SSL protocol with the client authentication option
enabled (mutual authentication) to do the two way authentication and through the
established secure SSL channel to distribute the session key. The new member, upon
receiving the session key, then begin the next step in the multicast group joining process
with the acquired session key, since knowing the session means the person has
authenticated to the group through the leader. We could decide how to use the session
key in the joining process. Two approaches are available: one is to encrypt the join
message with the session key and the other is to sign it.

3.1 Mutual (Two-way) Authentication

We choose to use the proven SSL protocol (with client authentication option enabled) to
do the two-way authentication between the new-comer and the group leader using unicast
communication through a well-known port number. If anything went wrong, the
underlying SSL protocol will report errors and information about the error so we can
handle in the program or report to the user. Otherwise, if SSL finishes the authentication
without any problem, the group leader could use the established secure channel to
distribute the session key to the new comer. The SSL channel is then closed and the new
comer could use the session key to do the actual multicast group joining process, either
by encrypting all the messages or just signing them. We will evaluate these two options
later.

3.2 Session Key

The session key, together with the initial vector, is generated in a cryptographically
secure manner when the group leader starts the session. Or it can also be manually
assigned to a pre-selected one by the group leader.

Once the session key is generated, it is used throughout the whole multicast group session
and is managed by the group leader.

3.3 Communications

After the handshake is successfully finished and the group formed, all following
communications between group members could use the same and only session key,
together with the initial vector, to fulfill the security requirement.

3.3.1 Data integrity (Tamper detection)

Data integrity check is the only required part in the communication for all application
scenarios. This is done with hashing algorithm.

We compute the hash code for any data item by appending the session key and initial
vector to the end of the original data. The original data together with the hash code is sent,
but not the session key and the initial vector.

All parties in a group are required to hash data items in this way before sending the
message out, so that other members in the group can check their integrity when they
receive the data.

The session key is the common secret among the group members and no one else can
acquire it based on the handshake procedure. Hence if we can verify the hash of a data
item with the session key, we are guaranteed that it is from inside the group and not
tampered in any form. In other words, if the data item is altered in transition by an
outsider, the alternation can be detected.

However, this approach does not prevent tampering from inside, i.e., some members in
the group alternate the content of the data sent by other members. If we want to achieve
this degree of data integrity guarantee, we must require group members to sign the data
items they send with their own private key in their certificates.

3.3.2 Non-repudiation (optional)

This is optional, and can be achieved easily if we take the second approach in data
integrity checking, i.e., each member uses his own private key to sign the data item he
sent. Since the private key in one’s certificate is one’s own secret, he/she can’t deny at a
later time that he/she hasn’t sent the data item.

If we use the common session key to sign data items, then the requirement is hard to
fulfill.

3.3.3 Encryption (optional)

In some situations, which are especially true for some business meetings, we want to
keep the content of the whole meeting confidential. In such an application, we could
encrypt any data item using the session key and decrypt it when receiving. Again based
on the handshake procedure and distribute mechanism of the session key, the session is
only known by group members, and it is a common secret between all group members.
We are guaranteed that the information in the session is kept confidential.

4. Security Certificates

Before jumping into the actual implementation, I would like to first discuss in this section
the way how to get certificates to be used in this project, since without usable security
certificates in place, the implementation code will make no sense.

4.1 How to get a free verifiable test certificate

There are several options that you can get a free verifiable security certificate to test out
the security functions in this project.

L.

Best option is: Microsoft's free test Certificate Authority Server located at:
http://131.107.152.153. Just click on “Request a certificate”, “Web Browser
Certificate” “Use advanced Certificate form”. Fill out the fields. Generate both
Client and Server Authentication Certificates. Leave the defaults except for Key
size, change it to a bigger one if you want. You can also generate SSL test
certificate for your IIS server there if you want.

The CREN web site at: http://ca.cren.net is offering free test certificates. The
limitation of this service is that it only provides client authentication or email
security certificates. It does not provide server authenticates for free, so you need
to go the other ways to get one for the leader. Just click “CREN Test Certificate
Authority” and follow the link and the instructions to get your free test certificate.

If you use option 2, you need to get a separate certificate for server authenticate
certificate. If you have access to a Windows XP/2000 machine with IIS installed,
you can use the IIS installation on that machine to generate a SSL server
certificate request and send it to VeriSign to be signed by its test CA for free. The
downside is that it is only valid for 15 days.

You can explore the options offered by OpenSSL. Check this FAQ for more info:
http://www.openssl.org/docs/HOWTO/certificates.txt

Another option is using the built-in CA of windows 2000 Server edition. You can
find step by step example in ATL7 SecureSOAP Sample's readme that comes
with VS.NET MSDN.

Yet another option is to use makecert.exe that comes with NET SDK/PSDK. A
new version that comes with current PSDK supports exportable private keys (-pe
option).

4.2 How to get a real world certificate

To get a real world security certificate, we can order one from www.verisign.com or
www.thawte.com or some other commercial CAs. Each CA has its own rules to follow
when you request/order a security certificate.

4.3 Where do | put my certificates

The implementation of this project supports two ways to store and use the security
certificates. The first one is to install them into the System Certificate Store and the other
is to store the certificates as files on disk. I recommend the first approach for simplicity
manageability.

If you store your certificates in the system certificate store, your personal certificates will
be stored under MY store.

Windows XP offers a high security option when you import your certificate to the MY
store, which enables password protection for your private key in the certificate. If you
enable this option, the system will ask you for the password every time the private key is
used. This could become annoying over time. Furthermore, if you enable this option for
the server certificate, you will have trouble loading the certificate to be used by the server.
Hence I recommend not enabling this option.

To View your current certificates on Windows XP/2000/NT: Run “mmc.exe”. Go to
Console | Add/Remove Snap-in | Add | Certificates.

Your personal or "MY" store will be under Personal | Certificates tree items.

K ole T Window i

G Console Root T

&-8 Certificates - Current Use
C8=Personall .

@ Certificates

E7H Fov oraro or i i A sl isasemidaaris Lo bt
If you prefer to store the certificate in a disk file, and let the code load it from that file,
you can do so. The implementation supports two certificate file format, DER Encoded
Binary X.509 and PKCS#7 Certificate, the first one has a .cer extension name and the
second one has a .p7b or .pfx extension name and it supports password protection.

10

5 Implementation

5.1 Target platform

The target running platform is Windows XP TabletPC Edition with Microsoft .NET
framework support. In particular, we are using the C# programming language and
utilizing the CLR (Common Language Runtime) library introduced in the .NET
framework.

On the other hand, this implementation is not limited to the Windows XP TabletPC
Edition. The result code is also tested successfully on Windows XP professional version
and Windows 2000 professional version.

The result code is a class library that can be called from the reliable multicast code and in
the form of a DLL file. Two test applications using the class library is also included.

Microsoft has PKI built into Windows 2000 and Windows XP through an API called
CryptoAPI, which is an interface for all security related Win32 applications. And it
implemented a basic security service provider in the system. We can also install our own

security service provider to the system. The Microsoft implementation of SSL support is
called SChannel.

Unfortunately, the current release of .NET class library does not have SSL support for the
general socket class. It only supports SSL in some specified applications. That is not what
we need. Hence we have to look elsewhere for a security library to be used in our project.
Or otherwise we are forced to do some hybrid coding, i.e. call Win32 functions from our
C# code. The InteropService facility of .NET, the System.Runtime.InteropServices
Namespace, could be used to call some Win32 security API (CryptoAPI) if we have to.

Mentalis.org (http://www.mentalis.org/soft/projects/seclib/) released a free open source
C# (and also support VB.NET) class library, which support SSL for general socket
application. We have been following its development. The first public release of the
library seems to have fixed some problems that existed in the earlier developer’s beta
releases, and we now can use it in our project. Their documents claim that it uses
OpenSSL as the underlying security engine. But from reading the source code, it seems to
me they just used the built-in Microsoft implementation, SChannel, as the underlying
engine. But since CryptoAPI is just an interface, we can install OpenSSL to the system
and selection that as the underlying security service provider if we want to.

In the implementation, for the sake of convenience, we call the group leader the “server”
and other group members need to authenticate to the leader “client”, since their respective
roles fall into the server-client definitions.

5.2 Code Organization

The main code is organized in a hierarchy fashion. At the top it is an abstract class called
Authenticator, which represents the base class for the security entity in the system for the
electronic notebook from which both the secServer and secClient classes must derive. It
has some methods that are common to both the subclasses. The secServer class is the
code that is running on the group leader’s system, which represents the group and does
mutual authenticate with new group members and takes care of the group session key.

11

The secClient class is the code that is running on all group members’ systems, which
does mutual authentication with the group leader and retrieve the group session key.

There are also some helper classes that provide support for the main code.

5.3 The Authenticator base class

The Authenticator base class includes some methods that are common to both server and
client subclasses.

The main methods are:
public ICryptoTransform CreateDecryptor ()

public ICryptoTransform CreateEncryptor()

These two methods each returns an ICryptoTransform object with the group session key
and initial vector with which the user can create a CryptoStream to encrypt/decrypt
stream data as used in the following example.
Socket sock = new Socket(AddressFamily.InterNetwork,
SocketType.Stream, ProtocolType.Tcp);
sock.Connect (new IPEndPoint(Dns.Resoclve(host) .AddressList[0], port));
NetworkStream strm = new NetworkStream(sock);
CryptoStream cstrm = new CryptoStream(strm, client.CreateEncryptor()
CryptoStreamMode.Write);
bytel[] buff = Encoding.ASCII.GetBytes(StringMessageToBeSend) ;
cstrm.Write(buff, 0, buff.Length);
cstrm.Flush();
cstrm.Close();
strm.Close() ;

sock.Close() ;

Usually you use the Encryptor to create a stream to send messages, and use the Decryptor
to receive messages.

public byte[] ComputeHash(byte([] message)
The user calls this method on some messages to compute the hash code. The
implementation internally uses SHA1 algorithm for the computation. The hash code is
computed by appending the session key and initial vector to the end of the original
message. This is used for message integrity check. The session key and initial vector are

not transmitted with the message; hence if someone from outside of the group ftries to
alter the message, it can be detected. It can also detect transmission errors.

Other members of this class include storage for the session key and initial vector and
properties for the local certificate and local network endpoint in use.

Properties about the local certificate:
public X509Certificate LocalCertificate

public string LocalCertString

12

There are two read only properties. The first gets back the certificate in X.509 format,
which is a .NET built in type. The other gets back the string representation of it.
Properties about the local network interface:

public EndPoint LocalEndPoint
This is a read write property, with which the user can read back the local endpoint or
change it to a different one from what was set when the object was constructed.
Properties about the session key and the initial vector:

public byte[] SessionKey

public byte[] InitialVector

public string SessionKeyString

public string InitialVectorString
The first two are read write ones. They are used to read back the session key and initial

vector in byte array format or set them to a different value. The later two are read only
and are used to get back the string representation.

5.4 The secServer subclass
The secServer class is a subclass of the Authenticator. It has 6 overloaded constructors.

public secServer ()

public secServer(string certfile)

public secServer(string certfile, string password)

public secServer(int port)

public secServer(int port, string certfile)

public secServer(int port, string certfile, string password)
The first three do not provide a port number. The class will use the default port number
50000. If the “certfile” name is not given in the constructor, the class will automatically
search the system “MY” or “personal” certificate store for a qualified server authenticate
certificate to load. A qualified server authenticate certificate must have an object
identification (OID) of “1.3.6.1.5.5.7.3.1” and the user has the private key for it. If a
“certfile” name is given without the password, then it is assumed that the certificate file is
a DER format file, which can be opened without a password; otherwise it is PKCS#7

format certificate file. The constructor will throw a SecurityException if no qualified
certificate could be loaded.

After the server object is created, the following methods should be called to start or stop
the authenticate server.

public virtual void Start()

public virtual void Stop()

13

The secServer runs on the group leader’s machine and listens on a dedicated port. It uses
SSL protocol with mutual authentication option turned on to verify the incoming
connection from clients, or group members, for mutual authentication.

The session key and initial vector are generated in a cryptographically secure way when
the Start method is called and destroyed when the Stop method is called. The user can use
the SessionKey and InitialVector properties, which are inherited from the base class, to
read them back or to manually set them to a different set. If the manual setting of the
session key happens before the Start method is called, this setting will be used instead of
the system generated random one.

For every incoming connection from the client, the authentication happens in the
underlying SSL protocol layer. If all goes well, the server sends over the session key and
the initial vector to the client using the established secure connection. The client, armed
with the session key and the initial vector, can then join the multicast group and
communicate with other members in a secure way.

If so chosen, the server could also send additional application defined data to the client to
be used in the session.

If there is any problem during the SSL authentication process, it throws exception to alert
the up level application.

A regular server certificate usually includes its DNS name as the distinguish name in it
and it could be verified through comparing the included domain name and the result of a
DNS query. In our case, however, we are not expecting that every participant has a valid
domain name for the computer he/she uses and further more to bind it to his/her security
certificate. Hence, we choose to ignore the common name verification part and accept the
given name. And in some situations, when we have a list of allowed participants, we can
compare the name in the certificates we received to that of the list.

The one SSL connection with this client is then terminated.

The server keeps a list of the clients that have been authenticated to the group and their
certificates. There is another list that keeps the information of the clients that failed the
authentication. Both lists could be retrieved or displayed using the following methods and
properties.

public void ShowClientsInfo()
public int NumOfAuthenticated
public int NumOfDenied

public GroupMember|[] Authenticated

public GroupMember|[] Denied

5.5 The secClient subclass

Similar to secServer class, this secClient class is also a subclass of Authenticator. It has 6
overloaded constructors.

14

public secClient(string host)

public secClient(string host, string certfile)

public secClient(string host, string certfile, string password)
public secClient(string host, int port)

public secClient(string host, int port, string certfile)

public secClient(string host, int port, string certfile, string
password)

The parameter “host” is the host name or IP address of the machine that the authenticate
server is running. The parameter “port” is the port number to use, or if it is not provided,
the system default, 50000, is used. The rest of the parameters tell the class how to load
the client authenticate certificate to load in a similar way as that of the secServer. The
OID for a client authenticate certificate is “1.3.6.1.5.5.7.3.2".

If a qualified certificate can’t be loaded, a SecurityException is thrown.

Then the system connects to the secServer and does SSL mutual authentication with the
SErver.

After the successful mutual authentication, the client receives the session key and the
initial vector from the server through the established secure channel, and caches them in
the client object. The property

public bool Authenticated
1s set and can be checked.

This SSL connection is then terminated.

Armed with the session key and initial vector, the methods and properties inherited from
the base class Authenticator can be used by up-level application to communicate with
other group members securely.

This class also provides some additional properties:
public X509Certificate RemoteCertificate
public string RemoteCertString

public EndPoint RemoteEndPoint

to let the user query information about the remote authentication server.

15

6 Some Test Results

This section should discuss the results we get from the implementation.

6.1 The interfaces

There are two test applications coded to test out the security library implementation. One
is called TestServerApp, which is to test the secServer class, and the other is called
TestClientApp, which is to test secClient class. Below are the interfaces for these two test
applications.

The status bar on the bottom of the Test Server Application Frame shows its current
status and the numbers of clients (members) who have been authenticated and those who
have been denied. Click on it, and you can read the information about the clients as
shown on the screen shot below.

16

6.2 The Error Message in Certificate Validation

The screen shot below shows the message box that pops up when the remote certificate
has a problem in the process of authentication. It asks the user to manually check the
status of the certificate and decide whether to accept it. The screen shot shows that the
certificate the system received has expired. This is because I have a test certificate
installed which was only valid for 15 days and has expired.

6.3 The Communication

The following screen shots show the communications between two authenticated clients.
On the left side are the sender’s, and the right side are the receiver’s.

[f7 o3 2€ 00 57 18 47 17 55 32 FC CA C6 C
.

] S 15 a test message to test the
| 4 encryption/decryption functions! | lencryption/decryption functions!

S 15 a Test message to test the

)

[rhis is a test esage 0 test the
|encryption/decryption functions!

These two screenshots show that the sender enabled Cl'lCtIO, but the receiver didn’t,
hence it can’t see the original message.

1
} 03 2E DD 57 18 47 17 55 32 FC CA C6 C9 0B FB

)

ls7 t -) s o I P e e
These two screenshots show that the sender didn’t enable encryption
enabled it. The receiver gets the correct number of bytes, but it was not the readable
message.

and the receiver

18

7 Future Works

For the time being, the implementation does not include the functionality of group
leadership automatic handover. This is to be done in the future.

This could be done in the following way:

When starting up, the group leader sends out update message on a UDP port to the
broadcast address in some set time interval. All authenticated members listen on that port
for the updated message. If an update message is not received in the expected time
interval, it is assumed that the group leader has a problem and some one else has to take
over the leadership. Every client should wait for a random time period before trying to do
so. The first client who takes over the leadership will then broadcast the updated message.
Others cancel the pending actions upon receiving the new updates and go back to normal.

The ability that the session key and the initial vector could be manually set in the current
implementation of secServer class can serve this purpose.

Also in the next step we can define some more message formats for information
exchange in the authentication process so that additional application data could be sent
out to members by the group leader.

References
1. Stephen A. Thomas SSL and TLS Essential, Wiley Computer Publishing 2000

2. Charles Petzold Programming Microsoft Windows with C#, Microsoft Press 2002

3. Richard Bondi Cryptography for Visual Basic, A Programmer’s Guide to the
Microsoft CryptoAPI, Wiley Computer Publishing 1999

David S. Platt Introducing Microsoft .NET, Microsoft Press 2001
Tom Archer & Andrew Whitechapel Inside C# Microsoft Press 2002
Microsoft Microsoft C# Language Specifications, Microsoft Press 2001

=N S O

Jeffrey Richter Applied Microsoft .NET Framework Programming, Microsoft
Press 2001

Mentalis.org .NET Security Library, http://www.mentalis.org/soft/projects/seclib/

9. 1IETEF RFC2459 Internet X.509 Public Key Infrastructure Certificate and CRL
Profile

o0

19

Appendix A

Our Original Authentication Protocol

This appendix is included to show our original authentication protocol design and may include some
potential security ‘holes’ of it.

I think it is worth leaving this protocol here as an appendix as we have put so much effort in its
development.

A.1 Handshake

The handshaking process here is similar to that of SSL. However due to the different application
environment of our project from that of SSL, we have some differences from the SSL protocol.

Our protocol uses a combination of public key and symmetric key encryption. Symmetric key encryption is
much faster than public key encryption. On the other hand, public key approach provides easier key
management techniques.

An application session always begins with an exchange of messages called the handshake. The handshake
allows a new member who wants to join a group to authenticate himself to the group (through the group
leader) using public key techniques. After verifying the new member’s identity, the group (through its
leader) then authenticates itself to the new member also using public key technique. And at the same time
the group securely distributes the session key to the authorized new member. The sesion key is then used
for rapid encryption, decryption, and tamper detection during the session that follows.

The session key for an application session is generated when the first member besides the group leader
joins the group. Then the same session key is used for the whole session and shared by all authorized group
members.

The following are the steps involved in the handshake. (Handshake is done through uni-cast between the
new member and the group leader. For the simplicity of explanation, in the following text, server refers to
the group (through its leader) and client refers to a new member who requests to join the group. But note
that they are not really server and client.)

(Another issue related to this part is the communicate port number set up and discovery process. For the
sake of simplicity, we could assign a fix number above the system port number range for now. Ultimately,
we need a way to let the group select a port number at runtime and advertise it and a new member could
find it through some mechanism. This part need to be further investigated.)

1. The client sends to the server a join group request along with it, he also sends some randomly
generated data, the signature of the random data using its own private key, and its certificate, and
maybe some other information needed for the communication between the server and the client.

2. The server uses some of the information sent by the client to authenticate the client (see section 3
for details). If the client cannot be authenticated, the group leader is warned of the problem and
informed that some one is trying to join the group but his identity cannot be authenticated. If the
client can be successfully authenticated, the server goes on to Step 3.

3. Optionally, the server can check that the client's certificate is present in the client's entry in an
LDAP directory. This optional step provides one way of ensuring that the client's certificate has
not been revoked. In the Ad-Hoc mode, this directory entry should be fetched from the directory
server beforehand and stored in the local cache.

4, If this client is the first one who requested to join the group. The server also generates some
random data and uses this data together with the random data sent by the client to generate a

20

session key to be used in the following application session. Otherwise the server just uses the
existing session key.

5. The server first encrypts the session key with its own private key, then again encrypts the
encrypted key with the client’s public key (obtained from the client's certificate, sent in Step I,
and verified in Step 3), and sends the double encrypted session key to the client.

6. The server also signs another piece of randomly generated data. The server sends both the signed
data and the server's own certificate to the client along with the double encrypted session key.

7. The client, upon receipt of the packet sent by the server in step 6, attempts to authenticate the
server (see section 4 for details). If the server cannot be authenticated, the session is terminated. If
the server can be successfully authenticated, go to step 8.

8. Optionally, the client can check that the server's certificate is present in the server's entry in an
LDAP directory. This optional step provides one way of ensuring that the server's certificate has
not been revoked. (For this to happen in the ad-hoc mode, the entry needs to be in local cache, or
is exchanged via IR port. —Need better solution!)

9. The client first uses its private key and then uses the server’s public key (from the server’s
certificate) to decrypt the double encrypted session key.

10. Both the client and the server now have the same session key, which is a symmetric key used to
encrypt and decrypt information exchanged during the application session and to verify its
integrity -- that is, to detect any changes in the data between the time it was sent and the time it is
received over the connection.

11. The client sends a message to the server informing it that future messages from the client will be
encrypted with the session key. It then sends a separate (encrypted) message indicating that the
client portion of the handshake is finished.

12. The server, upon the receipt of the message sent by the client in the above, sends a message to the
client informing it that future messages from the server will be encrypted with the session key. It
then sends a separate (encrypted) message indicating that the server portion of the handshake is
finished and the client has been successfully added to the group.

13. The server then multicasts to the group the information of the new member.

14. The handshake is now complete, and the client becomes a member of the secure multicast group
and can begin secure communication with the group.

It's important to note that both client and server authentications involve encrypting some pieces of data with
one key of a public-private key pair and decrypting it with the other key:

In the case of client authentication, the client encrypts some random data with the client's private key -- that
is, it creates a digital signature. The public key in the client's certificate can correctly validate the digital
signature only if the corresponding private key was used. Otherwise, the server cannot validate the digital
signature and the session is terminated. Also the server encrypts the session key with the client’s public key,
only the corresponding private key can correctly decrypt the secret, so the server has another assurance that
the identity associated with the public key is in fact the client with which the server is connected. Otherwise,

the client cannot decrypt the session key, and will send back the notification of completed handshake
encrypted with the session key.

In the case of server authentication, the server encrypts a piece of data with the server's private key, that is,
it creates a digital signature. The public key in the server's certificate can correctly validate the digital
signature only if the corresponding private key was used. Otherwise, the client cannot validate the digital
signature and the session is terminated. In addition, the server also encrypts the session key with its private
key, only the corresponding public in the certificate can correctly decrypt the session key, so the client has
some assurance that the session key is indeed sent by the server.

21

A.2 New member authenticate to group (client authentication)

As explained in step 1 of the handshake section, the client sends the server a certificate to authenticate itself.
The server uses the certificate in step 2 to authenticate the identity the certificate claims to represent.

When the user wants to join a group, he/she selects the targeted group’s published group name or address
from a list in his/her Ul, sends the join request by pressing a button or similar action. For the underlying
client program, along with the join request, it also sends over enough additional information for the server
to authenticate itself.

To authenticate the binding between a public key and the client identity by the certificate that contains the
public key, the server (group leader) must receive a “yes” to each of the following five questions. Step 6 is
optional.

1. 1Is today's date within the validity period? The server checks the client certificate's validity
period. If the current date and time are outside of that range, the authentication process won't go
any further. If the current date and time are within the certificate's validity period, the client goes
on to step 2.

2. Is the issuing CA a trusted CA? Each computer maintains a list of trusted CA certificates. This
list determines which client certificates the server will accept. If the distinguished name (DN) of
the issuing CA matches the DN of a CA on the list of trusted CAs, the answer to this question is
yes, and the client goes on to step 3. If the issuing CA is not on the list, the client will not be
authenticated unless the server can verify a certificate chain ending in a CA that is on the list.

3. Does the issuing CA's public key validate the issuer's digital signature? The server uses the
public key from the CA's certificate (which it found in its list of trusted CAs in step 2) to validate
the CA's digital signature on the client certificate being presented. If the information in the client
certificate has changed since it was signed by the CA or if the CA certificate's public key doesn't
correspond to the private key used by the CA to sign the client certificate, the server won't
authenticate the client's identity. If the CA's digital signature can be validated, the server treats the
client’s certificate as a valid "letter of introduction" from that CA and proceeds. At this point, the
server has determined that the client certificate is valid. Go to step 4.

4. Does the DN (distinguished name) in the client's certificate match the user name he/she
claims? This step confirms that the client is the one who claims. (This step is hard to concisely
define and need more work as we can’t associate IP address to a personnel). If it matches, proceed;
otherwise terminate.

5. Does the client's public key validate the client's digital signature? The server checks that the
client's digital signature can be validated with the public key in the certificate. If so, the server has
established that the public key asserted to belong to the client matches the private key used to
create the signature and that the data has not been tampered with since it was signed.

6. Is the authenticated client authorized to join the group? The server checks the clients DN
against a list of names that are authorized to join the group. This is an optional step that is suitable
for some business meeting application scenario.

The client (new member) is authenticated. The server proceeds with the handshake. If the server doesn't
get here for any reason, the client identified by the certificate cannot be authenticated, and the leader will
be warned of the problem

After the steps described here, the server must successfully receive the notification sent from the client
encrypted with the session key that says the client also has complete authentication and then really add the
new member to the group; otherwise the session will be terminated. This provides additional assurance that
the identity associated with the public key in the client's certificate is in fact the client who requested to join
the group since the session key is sent to the client encrypted with the client’s public key.

22

A.3 Group Leader authenticates to new member and session key
distribute

This should be similar to that of section 3. For the most parts just switch the role of server and client. I will
wait until a late time to define the differences.

Appendix B
Manually Validating Schannel Credentials in Win32 API

By default, Schannel validates the server certificate by calling the WinVerifyTrust function; however, if
you have disabled this feature using the ISC REQ MANUAL CRED_VALIDATION flag, you must
validate the certificate provided by the server that is attempting to establish its identity.

To manually validate the server certificate, you must first get it. Use the QueryContextAttributes function
and specify the SECPKG_ATTR_REMOTE_CERT_CONTEXT attribute value. This attribute returns a
CERT_CONTEXT structure containing the certificate supplied by the server. This certificate is called the
leaf certificate because it is the last certificate in the certificate chain and is farthest away from the root
certificate.

Using the leaf certificate you must verify the following:

The certificate chain is complete and the root is a certificate from a trusted certification authority (CA).
The current time is not beyond the begin and end dates for each of the certificates in the certificate chain.
None of the certificates in the certificate chain have been revoked.

The depth of the leaf certificate is not deeper than the maximum allowable depth specified in the certificate
extension. This check is only necessary if there is a depth specified.

The usage of the certificate is correct, for example, a client certificate should not be used to authenticate a
Server.

For server authentication, the server identity contained in the server's leaf certificate matches the server that
the client is attempting to contact. Typically, the client will match some item in the certificate's Subject
Name field to the server's IP address or DNS name.

23

