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Abstract

The direct neural control of external devices such as computer displays
or prosthetic limbs requires the accurate decoding of neural activity rep-
resenting continuous movement. We develop a real-time control system
using the spiking activity of approximately 40 neurons recorded with
an electrode array implanted in the arm area of primary motor cortex.
In contrast to previous work, we develop a control-theoretic approach
that explicitly models the motion of the hand and the probabilistic re-
lationship between this motion and the mean firing rates of the cells in
70ms bins. We focus on a realistic cursor control task in which the sub-
ject must move a cursor to “hit” randomly placed targets on a computer
monitor. Encoding and decoding of the neural data is achieved with a
Kalman filter which has a number of advantages over previous linear
filtering techniques. In particular, the Kalman filter reconstructions of
hand trajectories in off-line experiments are more accurate than previ-
ously reported results and the model provides insights into the nature of
the neural coding of movement.

1 Introduction

Recent results have demonstrated the feasibility of direct neural control of devices such as
computer cursors using implanted electrodes [5, 9, 11, 14]. These results are enabled by a
variety of mathematical “decoding” methods that produce an estimate of the system “'state”
(e.g. hand position) from a sequence of measurements (e.g. the firing rates of a collection
of cells). Here we argue that such a decoding method should (1) have a sound probabilistic
foundation; (2) explicitly model noise in the data; (3) indicate the uncertainty in estimates
of hand position; (4) make minimal assumptions about the data; (5) require a minimal
amount of “training” data; (6) provide on-line estimates of hand position with short delay
(less than 200ms); and (7) provide insight into the neural coding of movement. To that
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Figure 1: Reconstructing 2D hand motion. (a) Training: neural spiking activity is recorded
while the subject moves a jointed manipulandum on a 2D plane to control a cursor so that
it hits randomly placed targets. (b) Decoding: true target trajectory (dashed (red): dark to
light) and reconstruction using the Kalman filter (solid (blue): dark to light).

end, we propose a Kalman filtering method that provides a rigorous and well understood
framework that addresses these issues. This approach provides a control-theoretic model
for the encoding of hand movement in motor cortex and for inferring, or decoding, this
movement from the firing rates of a population of cells.

Simultaneous recordings are acquired from an array consisting of 100 microelectrodes [6]
implanted in the arm area of primary motor cortex (MI) of a Macaque monkey; recordings
from this area have been used previously to control devices [5, 9, 10, 11, 14]. The monkey
views a computer monitor while gripping a two-link manipulandum that controls the 2D
motion of a cursor on the monitor (Figure 1a). We use the experimental paradigm of [9], in
which a target dot appears in a random location on the monitor and the task requires moving
a feedback dot with the manipulandum so that it hits the target. When the target is hit, it
Jumps to a new random location. The trajectory of the hand and the neural activity of 42
cells are recorded simultaneously. We compute the position, velocity, and acceleration of
the hand along with the mean firing rate for each of the cells within non-overlapping 70m.s
time bins. In contrast to related work [8, 15], the motions of the monkey in this task are
quite rapid and more “natural” in that the actual trajectory of the motion is unconstrained.

The reconstruction of hand trajectory from the mean firing rates can be viewed probabilis-
tically as a problem of inferring behavior from noisy measurements. In [15] we proposed
a Kalman filter framework [3] for modeling the relationship between firing rates in motor
cortex and the position and velocity of the subject’s hand. This work focused on off-line
reconstruction using constrained motions of the hand [8]. Here we consider new data from
the on-line environmental setup [9] which is more natural, varied, and contains rapid mo-
tions. With this data we show that, in contrast to our previous results, a model of hand
acceleration (in addition to position and velocity) is important for accurate reconstruction.

In the Kalman framework, the hand movement (position, velocity and acceleration) is mod-
eled as the system state and the neural firing rate is modeled as the observation (measure-
ment). The approach specifies an explicit generative model that assumes the observation
(firing rate in 70ms) is a linear function of the state (hand kinematics) plus Gaussian noise.
Similarly, the hand state at time ¢ is assumed to be a linear function of the hand state at the
previous time instant plus Gaussian noise. The Kalman filter approach provides a recursive,
on-line, estimate of hand kinematics from the firing rate in non-overlapping time bins. The

"This is a crude assumption but the firing rates can be square-root transformed [7] making them
more Gaussian and the mean firing rate can be subtracted to achieve zero-mean data.



results of reconstructing hand trajectories from pre-recorded neural firing rates are com-
pared with those obtained using more traditional fixed linear filtering techniques [9, 12]
using overlapping 1.4s windows. The results indicate that the Kalman filter decoding is
more accurate than that of the fixed linear filter.

1.1 Related Work

Georgopoulos and colleagues [4] showed that hand movement direction may be encoded
by the neural ensemble in the arm area of motor cortex (MI). This early work has resulted
in a number of successful algorithms for decoding neural activity in MI to perform off-
line reconstruction or on-line control of cursors or robotic arms. Roughly, the primary
methods for decoding MI activity include the population vector algorithm [4, 5, 7, 11],
linear filtering [9, 12], artificial neural networks [14], and probabilistic methods [2, 10, 15].

This population vector approach is the oldest method and it has been used for the real-time
neural control of 3D cursor movement [11]. This work has focused primarily on “center
out” motions to a discrete set of radial targets (in 2D or 3D) rather than natural, continuous,
motion that we address here.

Linear filtering [8, 12] is a simple statistical method that is effective for real-time neural
control of a 2D cursor [9]. This approach requires the use of data over a long time win-
dow (typically 500ms to 1.5s). The fixed linear filter, like population vectors and neural
networks [14] lack both a clear probabilistic model and a model of the temporal hand kine-
matics. Additionally, they provide no estimate of uncertainty and hence may be difficult to
extend to the analysis of more complex temporal movement patterns.

We argue that what is needed is a probabilistically grounded method that uses data in small
time windows (e.g. 50— 100m.s or less) and integrates that information over time in a recur-
sive fashion. The CONDENSATION algorithm has been recently introduced as a Bayesian
decoding scheme [2], which provides a probabilistic framework for causal estimation and
is shown superior to the performance of linear filtering when sufficient data is available
(e.g. using firing rates for several hundred cells). Note that the CONDENSATION method 1s
more general than the Kalman filter proposed here in that it does not assume linear models
and Gaussian noise. While this may be important for neural decoding as suggested in [2],
current technology makes the method impractical for real-time control.

For real-time neural control we exploit the Kalman filter [3, 13] which has been widely
used for estimation problems ranging from target tracking to vehicle control. Here we
apply this well understood theory to the problem of decoding hand kinematics from neural
activity in motor cortex. This builds on the work that uses recursive Bayesian filters to
estimate the position of a rat from the firing activity of hippocampal place cells [1, 16]. In
contrast to the linear filter or population vector methods, this approach provides a measure
of confidence in the resulting estimates. This can be extremely important when the output
of the decoding method is to be used for later stages of analysis.

2 Methods

Decoding involves estimating the state of the hand at the current instant in time; i.e.
X = [%,Y, Vg, Uy, Az, ay];{,‘ representing x-position, y-position, x-velocity, y-velocity, z-
acceleration, and y-acceleration at time ¢;, = kAt where At = 70ms in our experiments.
The Kalman filter [3, 13] model assumes the state is linearly related to the observations
z € R which here represents a C' x 1 vector containing the firing rates at time ¢, for C



observed neurons within 70ms. In our experiments, C' = 42 cells. We briefly review the
Kalman filter algorithm below; for details the reader is referred to [3, 13].

Encoding: We define a generative model of neural firing as
zr = Hypxp + qp, (1

where k = 1,2,---, M, M is the number of time steps in the trial, and H € R¢*6 is a
matrix that linearly relates the hand state to the neural firing. We assume the noise in the
observations is zero mean and normally distributed, i.e. q, ~ N (0, Qz), Qx € RE*C,

The states are assumed to propagate in time according to the system model
Xp+1 = ApXp + wi, (2)

where Ay € R9* is the coefficient matrix and the noise term w;, ~ N(0, W), W), €
R6%6_ This states that the hand kinematics (position, velocity, and acceleration) at time
k + 1 is linearly related to the state at time k. Once again we assume these estimates are
normally distributed.

In practice, Ay, Hy, Wy, Q; might change with time step k, however, here we make the
common simplifying assumption they are constant. Thus we can estimate the Kalman filter
model from training data using least squares estimation:

M—1 M
argmin Z ||Xr+1 — Axg||?, argmin Z ||z — Hxy||?,
A k=1 H k=1

where ||-|| is the L* norm. Given A and H it is then simple to estimate the noise covariance
matrices W and Q; details are given in [15].

Decoding: At each time step £ the algorithm has two steps: 1) prediction of the a priori
state estimate X ; and 2) updating this estimate with new measurement data to produce an
a posteriori state estimate Xy.. In particular, these steps are:

L. Discrete Kalman filter time update equations:

At each time £}, we obtain the a priori estimate from the previous time ¢_,, then compute
its error covariance matrix, P :

X, = AXp-1, (3)

Pri= AP AT +W. 4)

II. Measurement update equations:

Using the estimate X and firing rate z;, we update the estimate using the measurement
and compute the posterior error covariance matrix:

X=X, + Kz, — H"\(E) (5)
Pj= (I - KkH)P; 5 (6)

where P}, represents the state error covariance after taking into account the neural data and
K. is the Kalman gain matrix given by

Ki =P;HT(HP HT + Q). 7

This K. produces a state estimate that minimizes the mean squared error of the reconstruc-
tion (see [3] for details). Note that Q is the measurement error matrix and, depending on
the reliability of the data, the gain term, K., automatically adjusts the contribution of the
new measurement to the state estimate.



Method Correlation Coefficient (z,y) | MSE (em?)
Kalman (Oms lag) (0.768,0.912) 7.09
Kalman (70ms lag) (0.785, 0.932) 7.07
Kalman (140ms lag) (0.815, 0.929) 6.28
Kalman (210ms lag) (0.808, 0.891) 6.87
Kalman (no acceleration) (0.817,0.914) 6.60
Linear filter (0.756,0.915) 8.30

Table 1: Reconstruction results for the fixed linear and recursive Kalman filter. The table
also shows how the Kalman filter results vary with lag times (see text).

3 Experimental Results

To be practical, we must be able to train the model (i.e. estimate A, H, W, Q) using a
small amount of data. Experimentally we found that approximately 3.5 minutes of training
data suffices for accurate reconstruction (this is similar to the result for fixed linear filters
reported in [9]). As described in the introduction, the task involves moving a manipulan-
dum freely on a 30cm x 30cm tablet (with a 20cm x 20cm workspace) to hit randomly
placed targets on the screen. We gather the mean firing rates and actual hand trajectories
for the training data and then learn the models via least squares (the computation time is
negligible). We then test the accuracy of the method by reconstructing test trajectories off-
line using recorded neural data not present in the training set. The results reported here use
approximately 1 minute of test data.

Optimal Lag: The physical relationship between neural firing and arm movement means
there exists a time lag between them [7, 8]. The introduction of a time lag results in the
measurements, zj, at time ., being taken from some previous (or future) instant in time
tr_; for some integer 7. In the interest of simplicity, we consider a single optimal time
lag for all the cells though evidence suggests that individual time lags may provide better
results [15].

Using time lags of 0, 70, 140, 210 m.s we train the Kalman filter and perform reconstruction
(see Table 1). We report the accuracy of the reconstructions with a variety of error measures
used in the literature including the correlation coefficient (r) and the mean squared error
(MSE) between the reconstructed and true trajectories. From Table 1 we see that optimal
lag is around two time steps (or 140ms); this lag will be used in the remainder of the
experiments and is similar to our previous findings [15] which suggested that the optimal
lag was between 50-100ms.

Decoding: At the beginning of the test trial we let the predicted initial condition equal the
real initial condition. Then the update equations in Section 2 are applied. Some examples of
the reconstructed trajectory are shown in Figure 2 while Figure 3 shows the reconstruction
of each component of the state variable (position, velocity and acceleration in x and y).

From Figure 3 and Table 1 we note that the reconstruction in ¥ is more accurate than in
the 2 direction (the same is true for the fixed linear filter described below); this requires
further investigation. Note also that the ground truth velocity and acceleration curves are
computed from the position data with simple differencing. As a result these plots are quite
noisy making an evaluation of the reconstruction difficult.
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Figure 2: Reconstructed trajectories (portions of 1min test data — each plot shows 50 time
instants (3.5s)): true target trajectory (dashed (red)) and reconstruction using the Kalman

filter (solid (blue)).

3.1 Comparison with linear filtering

Fixed linear filters reconstruct hand position as a linear combination of the firing rates over
some fixed time period [4, 9, 12]; that is,

Aﬁ
ce=at S8,
=0

v

where xj is the z-position (or, equivalently, the y-position) at time ¢, = kAt (At =
70ms), k = 1,---, M, where M is the number of time steps in a trial, a is the constant
offset, rg_j is the firing rate of neuron v at time ¢, ;, and f;’ are the filter coefficients. The
coefficients can be learned from training data using a simple least squares technique. In
our experiments here we take N' = 20 which means that the hand position is determined
from firing data over 1.4s. This is exactly the method described in [9] which provides a fair
comparison for the Kalman filter; for details see [12, 15]. Note that since the linear filter
uses data over a long time window, it does not benefit from the use of time-lagged data.
Note also that it does not explicitly reconstruct velocity or acceleration.

The linear filter reconstruction of position is shown in Figure 4. Compared with Figure 3,
we see that the results are visually similar. Table 1, however, shows that the Kalman filter
gives a more accurate reconstruction than the linear filter (higher correlation coefficient and
lower mean-squared error). While fixed linear filtering is extremely simple, it lacks many
of the desirable properties of the Kalman filter.

Analysis: In our previous work [15], the experimental paradigm involved carefully de-
signed hand motions that were slow and smooth. In that case we showed that acceleration
was redundant and could be removed from the state equation. The data used here is more
“natural”, varied, and rapid and we find that modeling acceleration improves the prediction
of the system state and the accuracy of the reconstruction; Table 1 shows the decrease in
accuracy with only position and velocity in the system state (with 140ms lag).

4 Conclusions

We have described a discrete linear Kalman filter that is appropriate for the neural control
of 2D cursor motion. The model can be easily learned using a few minutes of training data
and provides real-time estimates of hand position every 70ms given the firing rates of 42
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Figure 3: Reconstruction of each component of the system state variable: true target motion
(dashed (red)) and reconstruction using the Kalman filter (solid (blue)). 20s from a lmin
test sequence are shown.
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Figure 4: Reconstruction of position using the linear filter: true target trajectory (dashed
(red)) and reconstruction using the linear filter (solid (blue)).

cells in primary motor cortex. The estimated trajectories are more accurate than the fixed
linear filtering results being used currently.

The Kalman filter proposed here provides a rigorous probabilistic approach with a well
understood theory. By making its assumptions explicit and by providing an estimate of
uncertainty, the Kalman filter offers significant advantages over previous methods. The
method also estimates hand velocity and acceleration in addition to 2D position. In contrast
to previous experiments, we show, for the natural 2D motions in this task, that incorporat-
ing acceleration into the system and measurement models improves the accuracy of the
decoding. We also show that, consistent with previous studies, a time lag of 70 — 140ms
improves the accuracy.

Our future work will evaluate the performance of the Kalman filter for on-line neural con-
trol of cursor motion in the task described here. Additionally, we are exploring alternative
measurement noise models, non-linear system models, and non-linear particle filter decod-



ing methods. Finally, to get a complete picture of current methods, we are pursuing further
comparisons with population vector methods [7] and particle filtering techniques [2].
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Abstract— We present a Switching State-Space Model (SSSM)
for the real-time inference of hand kinematics from a population
of motor cortical neurons. First we model the probability of the
firing rates of the population at a particular time instant as
a Gaussian mixture where the mean of each Gaussian is some
linear function of the hand kinematics. This mixture contains a
“hidden state”, or weight, that assigns a probability to each linear,
Gaussian, term in the mixture. We then model the evolution of
this hidden state over time as a Markov chain. The Expectation-
Maximization (EM) algorithm is used to fit this mixture model
to training data which consists of measured hand kinematics
(position, velocity, accleeration) and the firing rates of 42 units
recorded with a chronically implanted multi-electrode array.
Decoding of neural data from a separate test set is achieved
using the Switching Kalman Filter (SKF) algorithm. Quantitative
results show that the SSSM outperforms the traditional linear
Gaussian model in the decoding of hand movement. These results
suggest that the SSSM provides a real-time decoding algorithm
that may be appropriate for neural prosthesis applications.

I. INTRODUCTION

Recent research on neural prostheses has explored a variety
of neural decoding methods that convet neural activity into
a voluntary control signal [3], [7], [8], [9]. Recently, we
proposed a control-theoretic Kalman filter model [10], in
which hand movement is encoded by a population of cells
with a linear Gaussian model and is decoded using the Kalman
filter algorithm. Our results suggest that this simple Kalman
filter model enables accurate and efficient decoding of contin-
uous hand motion. The method is based on an approximate
generative model of neural firing. In particular, it assumes
that the observed firing rates are a linear function of hand
kinematics (position, velocity, and acceleration) and that they
are corrupted by Gaussian noise. This generative model is
only a rough approximation and we seek to systematiclly
extend the linear Gaussian model to non-linear and/or non-
Gaussian models and evaluate their performace with respect
to neural decoding. Unfortunately, these non-linear models are
difficult to learn from training data and the associated decoding
methods are computationally expensive [1].

OThis work was supported in part by: the DARPA Brain Machine Interface
Program, NINDS Neural Prosthetics Program and Grant #NS25074, and the
National Science Foundation (ITR Program award #0113679). Any opinions,
findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the National
Science Foundation.

In this paper, we exploit a mixture of linear Gaussian models
which provides a general probabilistic model relating neural
activity to hand kinematics. The key insight is that, while
such a model is more general than the simple linear Gaussian
model, it admits an efficient, real-time, decoding algorithm.
This mixture model is called a Switching State-Space Model
(SSSM) [2] and the parameters of the model can be learned
from training data using the Expectation-Maximization (EM)
algorithm. Decoding is achieved using the Switching Kalman
Filter algorithm [5] which has computational efficiency similar
to the Kalman Filter and provides real-time decoding. Quanti-
tative results show that the SSSM outprforms the Kalman filter
in the decoding of hand movement. The method satisfies the
goals of accurate decoding and real-time performance which
are both necessary for direct neural control tasks [7].

I1. DATA ACQUISITION AND PROCESSING

Task: Simultaneous recordings are acquired from an array
consisting of 100 microelectrodes chronically implanted in the
arm area of primary motor cortex (MI) of a Macaque monkey.
The monkey views a computer monitor while gripping a two-
link manipulandum that controls the 2D motion of a cursor
on the monitor [7]. We use the experimental paradigm of [7],
in which a target dot appears in a random location on the
monitor and the task requires moving a feedback dot with the
manipulandum so that it hits the target. When the target is
hit, it randomly jumps to a new location. Note that the hand
motions in this task are more “general” and natural than those
in the more common “‘center-out” tasks [8].

Data: The trajectory of the hand and the neural activity of
42 cells are recorded simultaneously. In particular, we compute
the position, velocity, and acceleration of the hand every
70ms. Neural data is recorded using a commercial Plexon
system, units are isolated manually, and spikes are detected
on-line using manually set thresholds. The activity of each unit
is summed within within non-overlapping 70ms time bins.

Pre-processing: Before fitting our model we apply a square-
root transform to the firing data as suggested in [4]. The mean
firing rate for each unit is then subtracted to obtain zero-mean
data.

In the work that follows we fit a Gaussian mixture model
to the data in which each component of the model has a full
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Fig. 1. Graphical model representation for SSSM: It is a mixture of State-

space model and Hidden Markov model. Both states and switching labels are
assumed Markov related over time, and given states and lables, the observation
has a linear Gaussian model.

covariance matrix (i.e. 42 x 42). Given the large number of
units, correlations between their firing activity, and a limited
amount of training data, fitting multiple covariance matricies
can be computationally unstable. To deal with this, we reduce
the dimensionality of the input firing rates using Principal
Componnent Analysis (PCA). Here we project the firing rates
onto a 39 dimensional subspace which results in a loss of less
than 1% of the information. For simplicity, we still refer to
these 39 principal components as “cells”. This approach could
be applied to larger populations to significantly compress the
firing data making it feasible to fit full covariance matricies
with limited training data.

ITI. METHODS

In the Switching State Space Model, the hand movement
(position, velocity and acceleration) is modeled as the system
state and the neural firing rate is modeled as the observation
(measurement). Let the state of the hand at the current instant
in time be X; = [z,y, vz, Vy, az,a,]] € RS, which represents
x-position, y-position, x-velocity, y-velocity, x-acceleration,
and y-acceleration at time tAt where At = 70ms in our
experiments. The observations y, € % which here represents
a K x 1 vector containing the firing rates at time ¢ for K
observed neurons within 70ms. In Section 2, we show that
(after the PCA) we have K = 39 “principal cells”.

Figure 1 shows the SSSM framework, where the probability
of observing the firing rate vector is given by

N
p(yelxe) =D p(Se = 5)p(y,Ixe, St = 5) (1
F=1
where
p(Y{.lxh St =J) ZJV(Hth QJ) (2)

where j =1,2,--- , N, t =1,2,---,T. T is the total number
of time steps in the trial and NV is the number of different linear
models in our mixture. N(H;x;,Q;) denotes a Gaussian
distribution with mean H;x; where H; € R%*% is a matrix
that linearly relates the hand state to the neural firing. The
noise covariance matrix is Q; € RF*K,

We assume the hidden states Si, Ss,---,Sp form a first
order Markov chain as illustrated in Figure 1; that is,

I\T
p(Se =) =Y _p(Si = j|Si-1 = i)p(St-1 = i)

i=1

where we denote

cij = p(St = j|Si-1 =1), 1<4,j<N.

We represent these state transition probabilities as a transition
matrix C = {¢;;}.

The kinematic state is also assumed to form a Markov chain
represented by the system model:

p(xe[xe—1) = N(Axi—;, W) (3)

where A € R%%6 is the coefficient matrix and the noise
covariance matrix is W € J6%6,

In the SSSM, the joint probability over states ({x; }), obser-
vations ({y, }) and switching variables ({S5;}) is

P({Kt,Yqu.}) =

p(51) [T p(SelSe-1)lip(xo) T ] pxelxe- N ] pCvelxe, Sl

t=2 t=1

Below we will formulate this recursively.

Encoding

In practice, we need to estimate all the parameters
A, W.H,.n,Qi.n,C from training data, in which both hand
kinematics {x;} and firing rates {y,} are known, but the
switching labels {S;} are hidden. Therefore, we estimate all
the parameters by maximizing likelihood p({x;,y;}):

argmax 4 w. g, v, 01.x ,CP({X! )
= argmaxy w ;o .cPUXe Py H{x:})
= argmax 4 yp({x¢ }argmaxy, o o - op({y }{x:})

Using the linear Gaussian property of p({z;}), we have

argmax 4 ywp({x¢}) =
o
argmin 4 Z[log(detW) + (x¢ — Axe—1) "W (%, — Axi—1)]
t=2
The above minimization has a closed form solution:

T 7 i

-1
§ : I § g T
XtXp 1 Ml“‘:—l)

t=2 t=2

T 14
1 .
W = H(ngf—AZx,g_le)

t=2 t=2

A =

The other term p({y,}[{x}) = 2 g5y PUYe SeH{xe})
contains hidden variables {.5; }. While no closed form solution

exists, the EM algorithm offers an effective way to estimate all
the parameters. Denote ¢ = (H;.v, Q1:n,C) and p(-|--+) =
p(-|{x¢,¥,};6r), we update 6. to 8y, as

argmax, Ep1s,11.-) log p({y;, Se}{x:}; 6).



The detail of the maximization process can be found in [5].
We only show the updating result here:

T i
e = Y pSe=5Secr=il-)/ Y p(Se-r =il )
t=2

t=2
. .
Hi = [D_p(Se=3l-wad 1D p(Se =l xexd ]!
—i] t=1
T ;
Q= D (S = il el - HixyD/ Y p(se=il--)
t=1 t=1

where 7,7 = 1,---, N and the conditional probabilities of
St, Si—1 can be calculated using Standard Dynamic Program-
ming techniques.

Experimentally we find that approximately 3.5 minutes of
training data suffices for accurate reconstruction (this is similar
to the result for fixed linear filters reported in [7]). Training
the model takes approximately 1 minute on a Pentium III 866.
Decoding (Estimation)

Given the probabilistic encoding model defined above, we

turn to the problem of decoding; that is, reconstructing hand
motion from the firing rates of the cells. Let x;; denote
X1, -,Xq, and the same for y,, and Sy.;. We seek the a
posteriori mean X; = F(x¢|y,;.,) which minimizes the mean
square error E((x; — %;)?|y;.,). We achieve this using the
efficient Switching Kalman Filter algorithm which is briefly
described here (see [5] for details).
Switching Kalman Filter: The Switching Kalman Filter
(SKF) [5] assumes that the posterior density p(x¢|y;.,) is a
mixture of N Gaussians at each time step. Propagating these NV
Gaussians in time and updating would result in N2 Gaussians
at the next time instant. We keep the fixed number N over
time by “collapsing™ -Gaussians into one under the criterion
of minimization of relative entropy between them. o

Assume at time step ¢, p(x|y;,) = 2, wiN(x{,V}),
where 'mg is the weight (sum to 1) and x{ and V{ are mean
of variance of jth Gaussian. The algorithm deocding is as
follows:

From time step t — 1 to ¢:
ionpiiorii] i i
[x/, VI, L] = filter(x;_,,Vi_1,y,,H;, Q,;, A, W)
wy = Licjwi_/ 5 LY cijw;_y
i
w, = E w,’
i
o = wd
x5 = E g;y'x;’  Collapse Gaussians
i
o i ygiJ j SAYENE] T
Vy; = E g (Vi + (xf —x))(x —x1)")
i
i{ = E w{x{
J

where we use the standard Kalman Filter subroutine filter,
which is shown in the appendix.

TABLE 1
RECONSTRUCTION ACCURACY USING KALMAN FILTER AND SKF

Method | Corr-Coef (x,y) | MSE (cmm?)
Kalman (0.82, 0.93) 5.87
SKF (0.84, 0.93) 5.39

x-position

y-position

x-acceleration

[T b \

w

&
H
i 4

5 10 15 20

time (second)] 1d)
Fig. 2. Reconstruction of each component of the system state variable: true
target motion (dashed (red)) and reconstruction using the SKF (solid (blue)).
20s from a lmnin test sequence are shown.

time (se

At the beginning of the test trial we let the predicted initial
condition equal the average of state in training data, then
the SKF algorithm is applied over time. Table I shows that,
the SKF under the SSSM framework gives a more accurate
reconstruction than Kalman Filter (which uses a single linear
Gaussian model).

Figure 2 shows the reconstruction (first 20 seconds) of
each component of the state variable (position, velocity and
acceleration in x and y) by SKF. We see that the reconstructed
trajectories are smooth and pretty much like (high Correlera-
tion Coefficient) the true ones, and closed to (low Mean Square
Errror) them. The reconstruction for velocity and acceleration
are also pretty accurate.

In SKF, the posterior distribution of the state is assumed
as a mixture of Gaussian density function and the uncertainty
can be estimated by the error covariance. The 95% confidence
interval is shown for both x and y — position in Figure 3. We
see that most of time the true positions are within of them.

IV. CONCLUSIONS

Based on previous Kalman filter work, we proposed a
natural non-linear extension which is more appropriate for
the neural control of 2D cursor motion. The new approach
is focused on the observation model, which can be efficiently
learned by EM algorithm using a few minutes of training data
and provides real-time estimates of hand position every 70ms
given the firing rates of 42 cells in primary motor cortex.
The estimated trajectories are more accurate than the standard
linear Kalman filter results being proposed recently. The SSSM
has almost all nice properties of Kalman filter (e.g. (con-
ditional) linear Gaussian model, full covariance description,



red: true, blue: estimated, cyan: confidence (21) red: true, blue: estimated, cyan: confidence (21)

2 APPENDIX
° 1‘1 :;! )‘ i‘\ . The subroutine filtering is the standard kalman Filter:
10 g *i“.' ,l,3 ‘:
511,‘ !{q \?JWl\ A‘ﬁ \ [ [x1,Vy,L] = filtering(x,V,y,H,Q,A, W)
of \J » Xm = Ax,
5 10 15 20 V;un 55 AIVAI + W,
S = HVaH +0Q,

K = V,HE,

L= Ny S Hx s 0,3),
X1 = X, +K(y—Hx,),
Vi, = (-KH)V,.

5 10 - |5‘ 20 5 10 15 l20
Fig. 3. True, reconstructed trajectories and their 95% confidence intervals.
The upper two plots denote & and y coordinate respectively: the lower two are
their normalized version (subtracting the reconstruction to show the validity
of confidence intervals)

efficiencient encoding and decoding), while more versatile and
accurate. It is able to deal with more complicated data.

Finally, our future work will evaluate its performance for
on-line neural control of cursor motion and compare with
Kalman filter and popularly used linear regression method.
Additionally, we are exploring alternative measurement noise
models, non-linear system models, and non-linear particle
filter decoding methods.
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