Priority-Based Bandwidth
Allocation in Aurora®*

Alexander Rasin
Department of Computer Science

Brown University

Submitted in partial fulfillment of the requirements for the Degree of Master of Science in the
Department of Computer Science at Brown University

Sacglnl. 5%5'/53

Signature (Prof. Sgafi Zdonik, Project Advisor)

Priority-based bandwidth allocation in Aurora*

Ugur Centintemel, Alexander Rasin, Stan Zdonik

21st March 2003

Abstract

There are many application areas in which real-time data stream pro-
cessing is needed. Aurora is a data stream manager that addresses those
needs. Aurora* is a distributed Aurora query network. It scales signific-
antly better since it is able to utilize hosts (or nodes) in parallel. Unfortu-
nately, by distributing Aurora query network we introduce a new limited
resource — inter-node bandwidth. In addition to allocating CPU time for
processing tuples at the node, we must also allocate available bandwidth
for transferring tuples from node to node. Based on the application classes
that are more sensitive to bandwidth constrains than to CPU constraints,
we would like to concentrate on the problem of bandwidth allocation for
the tuples. The problem is similar to real time scheduling of CPU tasks
or delivering multimedia streams, but most of the existing algorithms are
not suited for our needs. We would like to consider several algorithms
and present experimental evaluation of algorithm performance using a
simulation of Aurora*.

1 Introduction

Many modern applications require processing infinite streams of data tuples in
real time. Examples include monitoring of an army in the battlefield or ana-
lyzing stock data in real time. Unlike in conventional non-streaming databases,
the inputs and outputs are usually push based and processing of a query is
potentially infinite. Aurora [4] is a data stream manager that is designed to
handle the concurrent processing of multiple continuous queries. Each query
consists of a directed acyclic graph of SQL-like operators (or boxes). A query
processes some continuous tuple streams and produces results for one (or more)
stream-based client applications. Applications specify their Quality-of-Service
(QoS) requirements to announce their relative importance and guide resource
allocation in Aurora query network. Since the query network must scale well
for arbitrary size, we introduce Aurora* [1], the distributed version of Aurora.
In this paper, we modify the Aurora QoS model slightly by assigning the QoS
requirements to tuple streams rather than output applications.

An example application that we would like to run is the MITRE application.
The purpose of their application is to monitor the battle arena that contains

both friendly and hostile units. Several data sources periodically report posi-
tions and heading directions of the units present on battlefield. Data valuation
specifications determine the delivery requirements for each object type. The
data valuation specifications have several parameters, as shown in the table:

[Class | Value [Initial Delivery | Update | Friend/Foe | Ground/Air
Class a | High Fast Frequent Foe Air
Class b | Medium Slow Frequent Friend Air
Class ¢ Low Slow Medium Foe Ground

The first three parameters determine the performance expected from a par-
ticular object class. Value determines the relative importance of an object. In
general, if we must drop one of the objects, we drop the object with lowest value.
Initial delivery determines the allowable delay between the object creation and
the time object is delivered to an output application. Finally the update value
determines the frequency with which the object stream must be refreshed.

The operations performed on the objects are simple, thus little CPU time
is needed for processing. However, the bandwidth between different command
and analysis centers that process data is limited. Therefore the bottlenecks of
the MITRE query network are the limited bandwidth links between the network
components. The goal of the network is to satisfy the requirements of as many
highest value object classes as possible (i.e. deliver the tuples within the allowed
delay and deliver as many as the update field requires). A secondary goal is
to deliver as many tuples as possible from the lower value streams that whose
goals were not completely met.

Let us define the environment and our assumptions. We would like to keep
our environment simple and ignore CPU scheduling issues to focus our atten-
tion on bandwidth allocation. Our query network is a directed acyclic graph
that is distributed over one or more physical nodes. The nodes are connected
by network links with a specified constant bandwidth. The client applications
are located on some other node(s) and are also connected to Aurora* outputs
via their node network links. Aurora* has some inputs that receive continu-
ous tuple streams (produced by some data source, for example, a temperature
sensor). Data input sources are producing input tuples at a uniform rate but
we make no strong assumptions about the distribution of inter-arrival times (in
our simulation we use exponential distribution). The tuples are processed by
the network and are passed to the client applications as they reach the out-
puts. Since we are concentrating on bandwidth allocation, we assume that the
throughput capacity of node’s CPU is higher than the throughput capacity of
the incoming network link. Therefore queues never form on intra-node arcs and
the processing time of a tuple within a node is considered negligible.

Each tuple consists of three fields: the arrival (at input) time-stamp, data
payload and priority class. The priority class designates the relative importance
of a tuple. The size of a tuple is assumed to be constant for a tuple class
and is used to calculate the time (cost) of tuple transfer over a network link
(cost = ﬁﬁm)- A sequence of tuples with the same priority a tuple stream

N)M

A4 B3 A3 B2 | A2 Bll A/l
OO
()
B2 | A2
Dropped Tuples: A priority > B priority

24 BK A min. delivery = 3/4

B min. delivery = 3/4

7 7
B3 A3

Figure 1: Priority schedule building under our model

of that priority. In this environment our goal is to give preference to more
important data streams over less important ones. An example might be two
sensors one of which reports the nuclear reactor core temperature and the other
that reports coffee machine temperature.Here’s (Figure 1) an example reordering
that we might expect. Assuming that As are high priority tuple stream and Bs
are low priority and that A’s update frequency is 3 out of every 4 tuples we
might expect the following schedule behavior:

In Figure 1 arrows refer to the tuple deadline (the latest point at which the
tuple will be accepted by client application). Thus the first slot is taken by
A1, second slot is taken by A2 (B1 is dropped since As are higher priority).
B2 gets the third slot without competition and A3 gets the fourth slot. Note
that in competition for the fifth slot B3 wins because A’s minimum delivery
requirement (3 out of 4 tuples) is already fulfilled.

Each tuple stream has Quality-of-Service (QoS) specifications that define
the service expectation for the stream. The specification consists of a deadline
and a minimum delivery rate. Deadline is the maximum allowed latency for
each tuple (= Timestamparrivai — TiMeoutput). A tuple that misses its deadline
provides no utility to the client application and does not need to be delivered at
all. Minimum delivery rate is the percentage of tuples from the data stream that
must be delivered to a receiving application. Minimum delivery rate is specified
as a fraction £ < 1 which means that out of a window of n tuples at least m
must be delivered. The window is a tumble window, i.e. the stream is split
into disjoint windows of size n. Delivery rate is not guaranteed for arbitrary
sliding window (any continuous tuple subset of size n) because this would place
very deterministic requirements on the tuples that must be delivered (or might
be impossible to meet). Note that the 2} fraction also specifies the maximum
allowable number of undelivered consequent tuples (2 * (n — m)).

An example of such stream might be a news broadcast. The deadline is

the maximum allowable delay between the time the news are announced at the
source and the time the recipient hears them. Minimum delivery rate corres-
ponds to the number of packets that must be delivered from the source in order
for the audio stream to be coherent.

2 Related work

2.1 Bandwidth allocation as a real-time scheduling prob-
lem

The Aurora* bandwidth allocation problem can be mapped into a real-time
scheduling problem with some modifications. Real-time scheduling problem
deals with scheduling a set of tasks with soft (can be missed) or hard (cannot
be missed) deadlines. We assume that tuples can not miss their deadlines,
corresponding to hard deadlines. QOur limited resource is the bandwidth thus
instead of allocating A CPU cycles for a task, we are allocating B K-bytes per
second for tuple transfer. A tuple is a task that has a constant cost (,—3—51% ,
a priority (priority class) and a deadline. We assume that tuple transfer is atomic
which corresponds to non-preemptive tasks.

While these problems are similar, there are some properties that distinguish
our problem from real-time scheduling. Qur input does not have a periodic
nature (neither can we guarantee a minimum inter-arrival rate at any time). We
also require the delivery of some percentage of the tuples delivered on time to
meet QoS requirements with flexibility allowed in dropping tuples. There is also
another, more subtle problem that we might have to deal with. Class deadline
is defined at the output. The scheduler at every link must be independent and
make local decisions in order for the scheduler to scale at all. Therefore the
intermediate deadlines at nodes that the tuple traverses on its way must be
chosen by our algorithm.

2.2 Scheduling algorithms

Liu and Layland presented an optimal fixed priority scheduling algorithm, the
Rate Monotonic (RM) algorithm as well as two dynamic priority scheduling
algorithm, Farliest Deadline First (EDF) and Minimum Lazity First (MLF)
[10). These algorithms serve as a basis for real-time scheduling research and
represent the two approaches to scheduling — static and dynamic. Static schedule
requires the least overhead but provides worse utilization guarantees than the
dynamic schedule. The priorities are computed apriori and do not change at
the run time. Dynamic schedule requires a relatively high overhead but is able
to guarantee higher CPU utilization and automatically adapts to changes in
task arrival rates.

RM algorithm assigns priorities based on the frequency of task arrival. RM
assumes periodic tasks for which deadline of the task is equal to the inter-arrival
time of that task. The task with highest arrival frequency gets the highest

priority. The scheduler always executes the task with the highest priority. RM
assignment is optimal in a sense that no better static assignment of priorities
exists. The CPU utilization for which a set of n tasks is guaranteed to be
scheduleable is W, = n(2!/" —1). A CPU utilization of a single task P; is
defined as a ratio of its cost C; to its period T;.

EDF algorithm assigns priority according to task’s deadline. The task that
has the earliest deadline (i.e. the one that will be the first to miss its deadline)
has the highest priority and gets precedence over other tasks. EDF guarantees
100% CPU utilization and will automatically adjust to any changes in the task
set. EDF assignment is optimal, as it is able to find a feasible schedule if one
exists. These advantages come at a price: 1) EDF overhead is higher than RM
overhead 2) EDF does not perform well in case of transient overload as it has
no sense of how critical a task is. When the processor is overloaded, EDF might
keep running earliest deadline tasks even if they are going to miss their deadline.
Minimum Laxity First (MLF) algorithm is very similar to EDF algorithm. The
task with the smallest laxity (or slack) is assigned the highest priority. As
a result the cost of the task is taken into consideration when choosing task’s
priority (but not the task’s priority).

Jones et al. presented Rialto operating system [8] that supported CPU re-
servations using precomputed schedules. In Rialto the responsibility of load
shedding is relegated to the thread. They also assumed a common base period
for all scheduled tasks by proportionally scaling the task reservation request
when necessary. McCanne et al. propose Receiver-driven Layered Multicast
(RLM) in [12] where data transferred is encoded in multiple layers. The re-
ceiver is responsible for shedding higher-order layers when it detects a network
congestion. In [7] Fall et al. developed an Early Discard Load Shedding (EDLS)
algorithm which would detect and uniformly discard MPEG frames when CPU
is overloaded. EDSL does not support meeting specific deadlines or specifying
the amount to be shed per video stream. RLM and EDSL are used in tandem
to meet streaming multimedia QoS requirements.

In [3] Waldspurger and Weihl describe a random Lottery Scheduling al-
gorithm. Such approach does not work in our environment because the share
of link utilization is determined by data arrival rate. The decisions that our
scheduling algorithm must make consist of dropping and reordering tuples rather
than deciding what bandwidth share should stream get. As some of tuple
streams are (temporarily) exhausted, the priorities of remaining streams change
unpredictably.

Dovrolis et al., in [6] presents a differentiating mechanism that allows con-
trolling the average packet delay by service class. His mechanism supports a
ratio based differentiation between the delays. Note that for our purposes av-
erage class delay is inappropriate, since only the tuples whose delay is smaller
than deadline are useful. Chang et al in [5] studies the use of Weighted Fair
Queuing and Priority Queuing. This paper demonstrates that such algorithms
can be used provided admission control is used (as these algorithms share the
bandwidth between the existing users). This paper also distributes the resources
in some proportion rather than to meet a specific fixed goal.

3 Scheduling

Let us define what tuple slack is: tuple slack is the difference between the tuple’s
arrival deadline and the tuple’s arrival time if it were sent now. Tuple’s arrival
deadline is the tuple timestamp plus the deadline of the tuple’s priority class.
Tuple’s arrival time if sent now is equal to the current time plus the cost of
transmitting the tuple. In other words, the tuple slack is the maximum amount
of time one can delay the tuple and still expect it to arrive on time.

3.1 First In First Out

FIFO is the most straight forward baseline approach to scheduling. The tuples
are processed as they arrive without any regard to their deadlines or priority
classes. This approach requires zero overhead since there is no management
performed at the physical link. Note that this algorithm is modified to keep
it competitive with the dynamic algorithms. When tuple is about to be sent,
we compute its slack and if the slack is negative, we drop the tuple instead of
sending it. If we allow delivering tuples that we know to be late, we severely
penalize this algorithm by wasting bandwidth. If capacity is exceeded and we
are unable to shed tuples, the queues will keep growing and none of the tuples
will be delivered on time.

3.2 Static Priority

This algorithm simply maps the priority class (or value) of a tuple into tuple’s
priority. The highest priority class gets the highest priority and lowest priority
class gets lowest priority. This approach is similar to shedding of lower priority
classes in case of congestion. It is not equivalent, because lower priority tuples
will be sent if there are no higher priority tuples queued at the time. Note that
this algorithm is modified in the same way as FIFO and will shed tuples with
negative slack.

In order to avoid overhead we can maintain two first-in-first-out queues for
each priority class (one queue for normal tuples and another one for best effort
tuples). When selecting the next tuple, we select one from the highest priority
non-empty queue (lowest priority normal queue supersedes highest priority best-
effort queue).

3.3 Minimum Slack First

Minimum Slack First (MSF) algorithm uses the same approach to scheduling
as MLF. Tuples are prioritized based on their slack. If the tuple’s slack is
negative the tuple is going to be dropped. MSF does not allow us to distinguish
between priority classes but does consider the relative tuple cost. MLF is fairly
straightforward to implement and is very predictable (we will demonstrate it in
results section).

A*| B A B A*

6 5 4 3 2 1 0
A*| B A B A | A*

6 5 a 3 2 1 0
A*| B A B A | B

5 s a 3 2 1 0
A*| B | A | A A | B

Figure 2: A demonstration of several insertion steps for Conveyor Belt

3.4 Conveyor Belt Scheduling

We would like to define a dynamic algorithm similar to MLF. We approach
it in the following way: we maintain a schedule of slots which are filled with
tuples as the tuples arrive. We assume the tuples to be of the same size but
this model can be easily extended to accommodate tuples of different size. Any
time a tuple arrives, we compute its slack and find the latest slot at which the
tuple could be scheduled. We attempt to insert the tuple starting from that slot
and moving towards the beginning of the schedule. This is done in up to three
different passes.

Note that the some of the tuples are statically marked as non-mandatory
according to minimum delivery requirements. For example if the minimum
delivery requirement is %, one in every four tuples is marked for non-mandatory
delivery. This approach is simpler than the dynamic approach and based on
the simulation results it performs the same as dynamic approach. Figure 2
demonstrates several steps of the scheduler. Non-mandatory tuples are denoted
with a *. Class A priority is higher than Class B priority. The top schedule is
the initial schedule that we have. A tuple A arrives and it has a slack equal
to 3. Starting from the first slot we do a pass looking for empty slots. We
find an empty one at position 2 and place the newly arrived tuple there (second
schedule reflects that). Starting from the second schedule, we receive a tuple B
with slack of 4. A pass through last four slots find no empty place for the tuple.
Therefore we fall over to a second pass that detects non-mandatory tuples in
the schedule. At slot 1 we find A* and replace it by B (reflected in the third
schedule). The tuple is discarded rather than delayed, since all the slots it could
have used are taken by higher priority tuples (any mandatory tuple has a higher
priority than a non-mandatory one). Finally, an A tuple arrives with a slack

Aurora node

Inputl | Physical Link /

Queue

/ mgr

Applicationl

|

Application2

-
Input2 |

Figure 3: Single node simulation setup

of 3. We perform a scan for free schedule slots and, failing that, we scan for
non-mandatory tuples. Since that attempt to find a slot also fails, we resort to
the third pass that looks for lower priority tuples. A tuple in slot 2 has a lower
priority since priority A is higher than priority of B. Therefore the tuple B in
slot 2 is replaced by A in the last, fourth schedule.

This algorithm has the highest overhead compared to other algorithms. How-
ever, the length of the queue is bounded by the longest slack a tuple could have.
The longest slack is in turn bounded by tuple deadlines, thus the overhead is
constant per tuple.

4 Simulation results

Our simulation is built in C++, using the CSIM18 library written by Mesquite
Software [11]. CSIM provides all the routines necessary for running a simulation
using a virtual time counter.

The initial network consists of one Aurora* node (see Figure 3). The network
is fed by two tuple sources that produce tuples of priority class 1 (highest) and
2. The inputs are fed to a box in Aurora node and the box output is sent to a
queue manager that makes tuple scheduling decisions before they are sent via
the physical link. Applications count only the tuples that have been delivered
on time. The default inter-arrival rates are 200ms and 300ms (exponentially
distributed) for Inputl and Input2 respectively. Default tuple size is 500 bytes
and default minimum delivery requirements are -1% for both priority classes. The
default deadlines are 1400ms and 1950ms for Classl1 and Class2 respectively. We
measure and average the data over a run time of 800 seconds.

4.1 Static scheduling algorithms

First we would like to compare the performance of static algorithms. Naturally,
we expect the SP priority algorithm to do better as it is able to shed load when
link capacity is insufficient. In Figure 4 we measure the tuples delivered vs link
bandwidth in Kbytes/sec. The number of tuples delivered is normalized with
respect to the minimum delivery requirements. We compute the expected total

-,

180

L
> 160
['ns
Y 140
@ 120
0 'o" ":
W 100 |~—
5 !
P 8
8 60
N
2 % FIFO Class 1 —— |
S FIFO Class 2 ——
8 20 SP Class 1 = 1
SP Class 2 —o—
zZ 0 . L
1 2 3 4 5 6 7

LINK BANDWIDTH (Kbytes/sec)

Figure 4: Static Priority and First In First Out: tuples delivered

number of tuples using the input rate of a class. In Figure 4 the y-value of 0
means no tuples were delivered, 60 means that 60% of the expected minimum
number of tuples have been delivered. So the value of 100% corresponds to
a point where particular class requirements are met. For example SP Class 2
(denoted by square) achieves the value of 100 and thus meets its requirements
at around 3.6 Kbytes/sec.

The point of 100%-intersection is an important measurement. The intersec-
tion represents the amount of bandwidth that is required to meet the minimum
delivery requirements of the current class (and all priority classes that were
already met). Each curve represents a combination of class and scheduling al-
gorithm. In the rest of our figures, we are going to measure that number to
represent the performance of a scheduling algorithm. Clearly, the less band-
width a priority class requires, the better.

In Figure 5 we plot the minimum bandwidth required by FIFO versus
changes in the deadline of Class 1. The absolute value of the deadline is not as
significant as the relationship between the Class 1 and Class 2 deadlines. There-
fore we normalize the Class 1 deadline on the x-axis with respect to the (fixed)
value of Class 2 deadline. The x-axis values range from % to about 2. Points
of intersection in a graph such as the one in Figure 4 corresponds to a point on
Figure 4. In fact, the two values at x equals to 43 are taken from the intersections
we see in Figure 4. Important thing to note is that the minimum bandwidth
required for satisfying both priority classes is the max of two bandwidth values
for two classes. Therefore the smaller value is the bandwidth required for satis-
fying the one class, but the larger value is the bandwidth needed for satisfying

1F

05 FIFOClass 1 —+— |
. FIFO Class 2 —»—

o 1
02 04 06 08 1 12 14 16 18
NORMALIZED CLASS 1 DEADLINE

BANDWIDTH THRESHHOLD (Kbytes/sec)

Figure 5: FIFO performance

both classes.

Note the behavior of FIFO in Figure 5. The priority class with the longer
deadline has a clear advantage as a bigger fraction of tuples from that class
arrive on time. The minimum bandwidth curves of priority classes under FIFO
intersect at x equals to 1. At the point where both class deadlines are equal,
the bandwidth requirements of the two priority classes matches. It is obvious
that FIFO is very unstable and is not well suited for meeting our goals. SP
in Figure 6 behaves better than FIFQ. It is able to meet the requirements of
class 1 at a very low bandwidth, though that comes at a price of needing a lot
of bandwidth to satisfy the requirements for both classes. The behavior of SP
is close to that of an algorithm that simply sheds all class 2 tuples. A good
property of SP is its ability to meet the requirements of class 1 at very low
bandwidth. Unfortunately, that means that to meet the requirements of both
classes, we need a significant amount of bandwidth.

4.2 Dynamic Scheduling Algorithms

Figure 7 demonstrates performance of our dynamic algorithms, MSF and CB.
MSF demonstrates some interesting properties. While it does not consider the
priority of tuples when scheduling, it is able to achieve the requirements of
both tuple classes at a reasonably low bandwidth (72.5k). However, MSF will
fail to satisfy either of the tuple classes if less than 2.5Kbytes/sec is available.
The algorithm orders tuples by their slack and, since the arrival rates are ran-
domly distributed, the tuples are dropped uniformly and equally from both tuple

10

4

e R
e e —————X
35 >]

3}
25|

N ‘:

15 t } t .

1} 4
051 SPClass 1 —+—]
0 . . . SPClass2 —x—
02 04 06 08 1 12 14 16 1.8
NORMALIZED CLASS 1 DEADLINE

BANDWIDTH THRESHHOLD (Kbytes/sec)

Figure 6: SP performance

streams. As a result, the delivery requirements of both classes are achieved at
the same time. Note that while the required bandwidth for a class is always
a nearly straight line (i.e. independent of the relationship between class 1 and
class 2 deadlines), they are not necessarily at the same level as in Figure 7 (see
next section, and Figure 8).

CB algorithm differs from MSF. CB considers the tuple priorities and tries
to guarantee that the needs of class 1 are met first. It is fairly restricted at very
small class 1 deadlines (i.e. left side of x-axis) since the slack of arriving class
1 tuples is very small. However as we increase the deadline of class 1, CB is
able to decrease the bandwidth required for satisfying class 1 significantly. The
performance of Class 2 is not decreased, however. CB is able to improve its
performance by producing more efficient schedules. A longer deadline increases
the average tuple slack and thus it also increase the size of the schedule that
CB maintains. As the schedule size increases, CB becomes more flexible in its
decisions. While CB requires relatively little bandwidth to satisfy class 1, it
requires more bandwidth to satisfy both class 1 and class 2.

Figure 7 clearly demonstrates that depending on the bandwidth that we have
available, we will have to select a different algorithm. None of the algorithms are
optimal under all circumstances, thus we need to develop a hybrid algorithm.

4.3 Hybrid Scheduling Algorithm

As pointed out in previous section, we need to design the hybrid algorithm
that will perform well using any available bandwidth. Both MSF and CB have

11

-

X]

B e %

CBClass1 —+—
05+t CB Class 2 ——
MSF Class 1 %
0 MSF Class2 —8—

02 04 06 08 1 12 14 16 1.8
NORMALIZED CLASS 1 DEADLINE

BANDWIDTH THRESHHOLD (Kbytes/sec)
o

Figure 7: MSF and CB performance

their advantages and weaknesses. Even SP might be preferable under some
circumstances.

The advantage of SP is obvious. Due to the heavy shedding that it employs,
it is able to satisfy class 1 requirements at slightly lower bandwidths than CB
can. CB can satisfy class 1 requirements at a slightly higher bandwidth, but
at the same time it allows class 2 tuples to pass. What distinguishes CB is its
ability to reorder tuple to maximize the number of tuples that are delivered on
time. CB can satisfy Class 1 at low bandwidth while still delivering as many
Class 2 tuples as it can. CB is particularly effective in the case when the deadline
of Class 1 is large. Thus until the bandwidth is sufficient for MSF to meet the
requirements of both classes, CB is our best choice.

The advantage of MSF is in the uniform way it sheds extra load when a link
is congested. As a result, MSF is able to satisfy both priority classes at lower
bandwidths than other algorithms. CB loses to MSF in that sense because
it must make sure that Class 1 requirements are satisfied before it can give
bandwidth to Class 2 (i.e. it is greedy when reserving space for Class 1 tuples
and thus its efficiency is reduced). As a result CB has less flexibility than MSF
in shedding tuples. Once the bandwidth is sufficient for MSF, it does better
than other algorithms, since no other algorithm can meet the requirements of
both priority classes at such low bandwidths.

The final question that we need to answer is whether it is possible to com-
pute the threshold bandwidth value at which one should switch to MSF. Due to
MSF’s predictability it is possible. The computation is rather simple. Based on
the parameters, using 200ms and 300ms for average inter-arrival rate, 500bytes

12

for sizes and % for both priority classes we can compute the bandwidth that
MSF should require. Since loss is distributed evenly, we must base our estim-
ation on the priority class with highest requirements, so we select max(g,)
as minimal delivery multiplier:

(gecond o 500bytes + Legeend « 500bytes) * 5 = 2.5Kbytes/sec

Figure 8 demonstrates that the above computation works for any combin-
ation of minimum delivery requirements. The top graph shows the computed
threshold values for MSF and the bottom graph shows the same values measured

using our simulation.

5 Future Work

There are quite a few directions in which this work should be extended. Some
are obvious extensions of the considerably simplified model, others are comple-
mentary techniques to improve performance of Aurora*

5.1 Multiple Priority Classes

Clearly we would like to be able to schedule more than two classes at the same
time. The algorithms described require no modifications to work with any num-
ber of priority classes. However, it would be even more interesting to consider
whether the problem of distributing bandwidth resources can be simplified by
considering priority classes in pairs. It is possible to distribute the bandwidth
between different priority class pairs and utilize most appropriate (possibly dif-
ferent) scheduling algorithms for each pair.

5.2 Multiple Aurora Nodes

Our simplified model works with a single Aurora node. Consider an Aurora*
query network consisting of two sequential Aurora nodes. The problem in this
network is that it is unclear what the class profile specifications are for the
first node. The class parameters (such as deadline, minimum delivery rate,
etc.) are defined at the output. The intermediate nodes do have such things
defined. Thus the first question we need to resolve is whether we need to take any
additional steps. Thus in Figure 9 we analyze the performance of our algorithms
with no modifications. We assume that both links have same bandwidth.
Figure 9 demonstrates the performance of all 4 algorithms using default
settings. Note that FIFO performs somewhat worse in the distributed case (due
to the additional cost incurred by the second transfer). It does not deteriorate
greatly, however, since most of its tuples have sufficient amount of slack to pay
the additional transfer cost and still arrive on time. SP algorithm performs
almost identically in the distributed case as in single node case. The reason
for that is due to SP tuples having the highest slack as they arrive to the
intermediate queue. SP always gives precedence to priority class 1 and as a
result the tuples of class 1 have relatively high expected slack upon arrival. As

13

- 4 T T
E A A
g %5L 4 .
g
5 ¢ PP S R
w
T 25(-nQrmn®
'_
I
E oM - -
2 Class2reqs 1 —+—
15 Class2reqs 2 —<— -
g Class 2 roqs 3 ¥
1 Class 2 raqs 4 —5—
a Class 2 raqs 5§ —i— |
= Class 2 roqs 6 -
‘E‘ 05 | Class2reqs 7 ~—~@--
= Class 2 reqs 8 —&-—
7] Class 2 reqs 9 —-4—
Y] o L s I L L I 1
1 2 3 4 5 6 7 8 9

CLASS 1 DELIVERY REQUIREMENTS (tuples delivered/10)

e e e e e e A
-~~-..._A_4_.--~"A“ -

Class 2

Class 2
Class 2
Class 2

o
B
"]
)

o
8
0
N

Class 2

BANDWIDTH THRESHHOLD (Kbytes/sec)

OQANROAPWN =

“[§23214428

1 2 3 4 5 6
CLASS 1 DELIVERY REQUIREMENTS (tuples delivered/10)

Figure 8: MSF switch threshold, measured vs estimated

14

~

~

o
o
13

“
F3
[

L

O 0Z Q4 00 08 1 12 14 10 18 2 0 0204 060 08 1 12 14 186 13 2
NORMALIZED CLASS 1 CEACUNE NORMALIZED CLASS 1 DEACUNE

BANDWIDTH THRESHOLD (Kiyes/vec)
@ g L.d

BANDWIDTH THRESHOLD (KbytesAec)
»

37 ki
L :
9s 'g'a
g‘ g4
£, £,
1 -
§1 §1
© 0z o4 0o 08 1 12 14 10 18 2 0 02040000 % 12 14 16 18 2

NORMALIZED CLASS 1 CEADUNE NQRMALIZED CLASS 1 BEABUNE

Figure 9: Unmodified algorithms on multiple nodes (Distributed) vs perform-
ance on single node

a result SP is barely affected by the extra cost of tuple transfer on the second
Aurora node.

Both MSF and CB exhibit significant performance deterioration in the two
node network. This is happening because by their nature both of these al-
gorithms try to optimize performance and maximize the number of tuples ar-
riving on time by reordering the tuples. Therefore tuples are often reordered so
that they are transferred at their last feasible slot, i.e. a point in time where
their slack is very close to 0. As a result most of the tuples do not have the extra
slack that can compensate the cost of the transfer via the second Aurora node.
Not surprisingly at the bandwidth that’s sufficient for a single node, most of
these tuple arrive late in the two node case. So we see that the static algorithms
are not severely affected by the lack of knowledge of the second node, yet the
dynamic algorithms are severely handicapped by the same lack of knowledge.

This brings us to conclusion that, at least for dynamic algorithms, we must
take additional steps and propagate the class profile specifications to intermedi-
ate nodes. We are not going to present these results here, but an even deadline
distribution (first node sets the requirements for class deadlines at % of their
final output deadline) shows little performance deterioration in the distributed
case.

15

5.3 Migrating boxes to reduce link congestion

If a physical link between two nodes is congested, we might be able to reduce its
load by migrating Aurora boxes. Each Aurora nodes in Aurora* contains some
queries with some number of operators (or boxes). A subset of a query may
migrate to another Aurora node as long as the integrity of the query network
is maintained. This ability is generally used to balance CPU load between the
nodes. However, if we detect a link saturation and the upstream box has a low
average selectivity (i.e. if it discards a lot of the tuples it receives), we may want
to migrate the box. As a results many more tuples will be discarded before they
are pushed through the link.

6 Conclusion

We have analyzed adaptations of existing real-time scheduling algorithms and
proposed our own algorithm. In general we found no fully optimal algorithm.
In some case we might want to use SP or MSF algorithm. However, our pro-
posed algorithm (CB) closely approximates the performance of both of these
algorithm based on the bandwidth changes. At low bandwidth the performance
in highest priority class comes close to that of SP. When bandwidth is sufficient,
CB performs similarly to MSF, though slightly worse. In an environment where
some of the parameters fluctuate (bandwidth or input rates) CB would be op-
timal as it guarantees performance of highest priority stream while passing the
remaining resources to a lower priority class.

References

{1] D. Abbadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: A New Model and

Architecture for Data Stream Management. Brown Computer Science CS-
02-10, August 2002.

[2] R. Braden, L. Zhang, S. Berson, S. Herzog and S. Jamin, “Resource ReSer-
Vation Protocol (RSVP) Version 1, Functional Specification,” RFC 2205,
IETF, Sept. 1997

[3] Carl A. Waldspurger and William scheduling: Flexible proportional-share
man-agement. In First Symposium on Operating De-sign and Implement-
ation (OSDI), pages California, November 14-17 1994.

[4] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M.
Stonebraker, N. Tatbul, and S. Zdonik. Monitoring Streams: A New Class
of Data Management Applications. In proceedings of the 28th International
Conference on Very Large Data Bases (VLDB’02), Hong Kong, China,
2002.

16

.

[5] L.F. Chang, Z. Jiang, N.K. Shankaranarayanan, Providing Multiple Service
Classes for Bursty Data Traffic in Cellular Networks, Proc. 19 th Conf. on
Computer Communications (IEEE Infocom), Tel-Aviv, Israel, 2000.

[6] Dovrolis C., Stiliadis D. and Ramanathan P., Proportional Differentiated
Services: Delay Differentiation And Packet Scheduling. Proceedings of SIG-
COMM 02

[7] Fall, Kevin and Pasquale, Joseph and McCanne, Steven, Workstation Video
Playback Performance with Competitive Process Load , Proc. NOSSDAV
'95, Apr 1995, p. 179-182

[8] M. B. Jones and P. J. Leach. Modular real-time resource management in
the rialto operating system. Technical Report MSR-TR- 95-16, Microsoft
Research, Advanced Technology Division, May 1995.

[9] J. P. Lehoczky and S. Ramos-Thuel, An optimal algorithm for scheduling
soft-aperiodic tasks in fixed-priority preemptive systems, in 13th Real-Time
Systems Symposium, pp. 110 123, Dec. 1992.

[10] Liu, C. L., and J. W. Layland, Scheduling Algorithms for Multiprogram-
ming in a Hard Real Time Environment, Journal of the Association for
Computing Machinery, v.20, n.1, January 1973, pp. 44-61.

[11] Mesquite Software, home page: http://www.mesquite.com/

[12] McCanne, Steven and Jacobson, Van and Vetterli, Martin, Receiver-driven
Layered Multi-cast , Proceedings of SIGCOMM ’96, Aug 1996, p.117-130

[13] Salama, H.F., Reeves, D.S. and Viniootis, Y., A Distributed Algorithm for
Delay-Constrained Unicast Routing, IEEE INFOCOM’97, pp.84-91, 1997

17

