Exploration of the Routing Task Domain

by
Christian Matthew Leroy

Submitted in partial fulfillment of the requirements for the Degree of Master
of Science in the Department of Computer Science at Brown University

3 C}Q —U VP 1o

K*m-m-ﬁmr: Prof. Amy Greenwald Date! f

May 2003

1 Abstract

In this work, we provide the framework and justification for a route solv-
ing system that maximizes the utility of the routes it returns across a popula-
tion of users. We show by comparing the properties of the extreme solutions
of routing tasks that multiple routes exist which different users, or the same
user at different times, may consider to be the best solution to a given task.
We present a method for exploring the space in between these extremes based
on building a distribution of multiattribute utility functions and solving for
the set of optimal routes with respect to that distribution. We characterize
this distribution as representing either a population of users with different
preferences, or the different sets of preferences a single user may have at
different times. We demonstrate that the choices we make in building this
distribution allow us to control the type of solution routes that we discover.
We also give two algorithms for reducing the size of the set of solution routes
to a level appropriate for output to the user.

2 Introduction

Commercial websites providing driving directions have existed for a num-
ber of years and have become a popular tool for many web-users. In essence,
they answer the question “how can I get from here to there?” Typically,
interaction involves the entering of a start and end location by the user, fol-
lowed by the return of a route as either a map or step-by-step directions by
the system. While the responses to this question are often sufficient, those
provided by a system that answers the question “what is the best way to get
from here to there?” would be preferable.

This question is inherently subjective; which route is the “best” depends
on the user’s preferences. As such, for a system to find the “best” route,
it becomes necessary to model user preferences in some way. The decision-
theoretic approach is to identify the important attributes of routes, for ex-
ample their lengths and complexities, and to formalize the tradeoffs between
these attributes. This is done through a multiattribute utility function tak-
ing the form of a weighted linear combination of single attribute value func-
tions [4]. Most often, the value functions are thought to map attributes of
differing scales into some normal utility space, and a unit weight vector to
encode the tradeoffs between these mapped values. A set of tradeoffs such as,

“T am willing to go an extra mile to save two minutes of travel time”, might
be captured as a higher weight value associated with the time attribute than
the distance attribute.

For a problem as complex as determining the “best” route for a given
task, it is unrealistic to assume that a single utility function, expressible
as one set of tradeoffs, can express the preferences of a user at all times.
Factors otherwise outside the bounds of a route-solving system can influence
what type of route a user is looking for at any given time. A user’s mood,
the condition of her car, or whether her mother-in-law got in early at the
airport, may all influence her preferences at the time of her request, but it is
unreasonable to assume that any system could model these directly in a single
utility function. We address this by solving her task using multiple utility
functions, each expressing different tradeoffs between the route’s attributes,
in the hope that her current preferences will be captured by one of these
and reflected in our solution. This method can be likened to modeling all
a user’s possible preferences simultaneously. Understood in another way, we
forgo modeling individuals, and instead use our distribution of functions to
model an entire population of users, with the implication being that a user
with preferences that differ between interactions with our system is for all
practical purposes indistinguishable from multiple users with different fixed
preferences.

Solving a single routing problem with a set of utility functions results
in a set of solutions. This set is the collection of the optimal routes of
each sampled member of our modeled population. If our system treated this
route set as its final output, the user would be faced with the additional
task of selecting a final route from it. Depending on the number of utility
functions we use, this solution set can be quite large, and even for small
sets, it may be undesirable to present it whole to the user. This might be
the case when some or even all members of this solution set are exceedingly
similar (although just different enough to register some difference in utility
during generation). In such cases, if we choose to present only a single
representative of all the similar routes, the savings in the user’s time during
the final selection process may be worth a small loss in utility across our
population. We impose the restriction that, although we still output a set of
routes, there is some small limit as to the number of routes we will allow our
system to return. Our system therefore must address the additional concern
of determining a subset of the initial solutions that is as small and diverse
as possible, while maintaining a high utility across our entire population.

In this work, we limit ourselves to the study of sets of utility functions
produced by uniformly sampling the space of our users’ preferences. If we
sample with sufficient frequency, our set of utility functions should capture
all possible user preferences. We liken this to an exhaustive search for all,
or nearly all, potential “best” solutions to a given task. In future work, we
plan on studying preference distributions obtained from observed user-data:
from offline sources such as surveys, or online methods such as prompting
users for their preferred routes and using these to solve for their implicit
preferences. We may also explore passive methods of collecting information,
such as cataloging system interactions for continuous refinement of our model
of our user population. The realistic distributions we could obtain from these
methods would limit our search space, prune our initial solution set of routes
that no real person would prefer, and result in a faster system with potentially
better output route sets.

Formally, this work addresses the following problem: given a distribution
of mutliattribute utility functions, a routing task, and a constraint on the
size of the output set, how can we finds a set of solutions to the input task,
within our size constraint, that maximizes the utility of the function set as
a whole. Our approach is to solve directly for the optimal route for each
function using Dijkstra’s algorithm, then to perform a number of selection
algorithms to reduce the size of the output set. First though, we explore
the properties of the solution space of a given task in two experiments. In
the first, we establish by exploring their borders, that the solution spaces for
most tasks are nontrivial. We then discuss the details of using a distribution
of utility functions to explore the space’s interior. Qur second experiment
presents the results of this exploration pertaining both to the effectiveness of
our user modeling system, and to the observed characteristics of the space.
Finally, we present two algorithms that, given a set of routes and the utility
functions that generated them, determine a subset of routes within a given
size constraint to return to the user.

3 The Routing Task Domain

We consider a route to be a series of connected, non-branching segments
with a well-defined start and end location. For driving directions, segments
may correspond to roads or pieces of roads, and the start and end locations
could be addresses or landmarks. A routing task is any problem, as specified

epsilon epsilon

(ﬂ\; — "—; —_

2| %e 2| *

Z .
Attribute 1 Attribute 1

Figure 1: Effectively trivial solution spaces and e-dominance

by a start and end location, to which a route is a solution. We describe
routes in terms of 4-dimensions: length, time, complezity and scenicness,
while the segments of which they are made have a length, time, street name
and an indicator of whether or not they are scenic. While routes can be
described by many characteristics that are collective combinations of the
characteristics of their segments, they may also have global properties that
their individual segments do not. For example, while the length of a route
is simply the sum of the lengths of its segments, the complexity of a route
is the number of consecutive segments it contains that differ in name, plus
one. This corresponds to the number of turns from one street to another
in the route, ensures that all routes have a complexity of at least one, and
does not depend on any notion of the complexity of an individual segment,
which we do not define. The time of a route is the sum of the times of its
segments. The scenicness of a route is the sum of the lengths of all a route’s
scenic segments.

Many of our analyses and algorithms are geometric in design. We will
often speak of a route, via its description, as a point in n-dimensional space
and operate on it as such. While we have limited our description of a route
to four dimensions, it is easy to imagine other potentially useful characteris-
tics. We have therefore avoided making any assumptions that would prevent
expanding the dimensionality of our route description. Additionally, all our
considerations of and operations on routes employ this description, and thus
we consider two routes with the same description to be identical. We may
eventually consider the real-world geometric differences between routes as a
further source of characterization, but we leave that for future work.

We call the set of possible preferable solutions to a task, the solution
space of that task. We say the “preferable” solutions, because we do not
include a route in a task’s solution space if it is dominated by any other
route that solves the task. A route is said to dominate another if it is the
same or better in every dimension of its description. This can be expressed
as an assumption that “all things being equal, a user will prefer a route that
is shorter, faster, simpler, or more scenic”. To say that a route is preferable
means that some user, with a particular set of preferences, could think that
the route was the “best” solution to a particular task.

We call a solution space trivial if it is made up of a single route. If a
task’s solution space is trivial, some solution route exists that dominates all
other solving routes. At times, we will describe a task’s solution space as
being “effectively” trivial. In this case, a single route exists that e-dominates
all other solving routes. We say a route e-dominates another route if ad-
justments of its description components by no more than some small factor e
allow it to dominate that route. Figure 1 illustrates two cases of ¢ dominance
in effectively trivial solution spaces. The dots are routes plotted according
to their descriptions in 2-dimensional attribute space. On the left, a task has
two preferable solutions that are both e-dominant by nature of their similar-
ity. On the right, the lower route e-dominates the upper as it is much better
in attribute two and only slightly worse in attribute one.

Because the solution space is made up of routes, entities that either exist
or do not as a result of real-world street geometry, we call it discrete. We shall
see the implications of this property in later sections, the most important
being that although there may be “room” in a task’s solution space for a
preferable route, a range of description values that would be dominated by
no other solution routes, there is no guarantee that a route exists to fill it.

4 The Solution Space of Routing Tasks

We demonstrate in this section that the solution spaces of many routing
tasks are not trivial by showing that the spaces’ borders, as defined by the
tasks’ extreme solutions, are sufficiently separated in some and usually many
dimensions. This guarantees that at least a small diverse set of solution routes
exists, and implies one potentially much larger. This implication, confirmed
in our exploration of a task’s non-extreme, or interior, solutions, tells us that
there are hybrid routes to be found by our distribution of functions that are

LENGTHTHRESHOLD(shortest, fastest, simplest, threshold)

1

2

3 then true
4 else false

Percentage of Routes Above Threshold

Figure 2: Simple percentage length thresholding symmilarity metric

Minimal Roules above Distance Threshold

lthresh < (1.0 + threshold) « shortest.length
if max(fastest.length, simplest.length) > Ithresh

Minimal Routes above Time Threshold
T T T

-+— 10% Distance Threshold
=0~ 40% Distance Threshold
90H -8~ 70% Distance Threshold
—+ 100% Distance Threshold

T
—=— 10% Time Threshcid
—0~ 40% Time Threshok
90H -8~ 70% Time Threshold
—+—_100% Time Threshold

80f

Figure 3: Percentage of tasks above one-dimensional thresholds

Percentage of Routes Above Threshold

10

15 20
Route Length (Kilometers)

T

T
—+— 2 Complexity Threshoid
-{— 8 Complexity Threshald

H =&~ 14 Complexity Threshold

~+— 20 Complexity Threshold

f

Minimal Routes above Complexity Threshold
T T

10

15
Route Length (Kilometers)

25

L
30

25

30

Minimal Routes above One or More Threshold Minimal Routes above Two or More Thresholds

100 T T T T 100 T T T T T T
—s— 10% Distance and Time, 2 Complexity Threshold
~0- 40% Distance and Time, 8 Complexity Threshold

90r 90 H -8 70% Distance and Time, 14 Complexity Threshold
—— 100% Distance and Time, 20 Complexity Threshold
80 80
h-} o
2 5}
A G
2 70 70
8 4
£ £
é’ 60 § 60
£ 5 g s
g :
g a0r '5 sof
€ z
8 s0h 8 a0f
-)
[o
20t 20}
~#- 10% Distance and Time, 2 Complexity
10 —0— 40% Distance and Time, 8 Complexity 10
-8 70% Distance and Time, 14 Complexit
——_100% Distance and Time, 20 Complex
0 L L T T T 0
0 S 10 15 20 25 0

Route Length (Kilometers) Route Length (Kilometers)

Minimal Routes above All Thresholds

T T T

-4~ 40% Distance and Time, 8 Complexity Threshold
-B- 70% Distance and Time, 14 Complexity Threshold 4
——_100% Distance and Time, 20 Complexity Threshold

8

. : T
! —e— 10% Distance and Time, 2 Complexity Threshok

s 8

@
S

.
=]

Percentage of Routes Above Thresheld
8 8

Route Length (Kilometers)

Figure 4: Percentage of tasks above multi-dimensional thresholds. Left: At
least one threshold. Right: At least two thresholds. Bottom: At least three
thresholds

Route Length | Time | Complexity
Shortest 10 20 20
Fastest 20 10 20
Simplest 20 20 10
Best, 10 10 10
Worst 20 20 20

Table 1: Sample descriptions of extreme routes and the bounds they form

desirable in various degrees to the separate members of our user population.
In addition, we show that we can detect when a task’s solution space is so
small as to limit either the size or the diversity of the task’s output set.
In such cases, we can skip our usual method of exploration, and output an
optimal solution route immediately.

4.1 The Boundaries of the Solution Space

Initially, we attempted to derive some easily obtained measure for the
combined size and diversity, or “interestingness”, of a task’s solution space,
and we centered our search around the properties of the task extreme solu-
tions — the shortest, fastest, and simplest routes that solve it. As scenicness
is unique in our route description as an attribute one might wish to maxi-
mize, no extreme solution exists for it, as for any task this would be a route
that included all the scenic segments in our database and the segments nec-
essary to connect them; taking the user through Yellowstone National Park,
for example, on their way from New York to Boston.

These routes are useful not only because they are easily computed, well
defined points of reference for any task, but also because they intuitively
bound the task’s solution space. As minima they give the lower bound for
length, time, and complexity for any solving route. They also offer a sort of
upper bound, because we have limited our solution space to preferable routes.
We can express these bounds in two route descriptions, each composed of
components borrowed from the extreme solutions. The first of these captures
our lower bound:

best = (shortest.length, fastest.time, simplest.complezity)

Any route with this description dominates, and so is preferable to, all other
solutions to the task, so we call it the “best” solution. This captures our lower

bound on the values of each of our length, time, and complexity attributes.
We capture our upper bound in similar fashion:

worst.length = worst(fastest.length, simplest.length)
worst.time = worst(shortest.time, sitmplest.time)

worst.complexity = worst(shortest.complexity, fastest.complexity)

We call this the “worst” route, as it is by construction dominated by all
of our extreme solutions, so neither it nor any route it dominates could
be a member of the task’s solution space. Unlike our best route, however,
this route’s description constrains rather than bounds the length, time, and
complexity of potential solutions.

To illustrate how these bound can be used to characterize the routes in
a task’s solution space, imagine some route I in the solution space of the
task with the extreme solutions described in Table 1. We know from the
task’s best route that the complexity of R cannot be less than 10. Although
we can make no such claim as to the maximum R’s complexity can be, if
we find that it is greater than or equal to 20, the complexity of the task’s
worst route, we can make some claims as to the values its other attributes
must have by nature of it being in the task’s solution space. In this case,
R’s length and time attributes must both be at least 10 and below 20. By
the task’s best route, R must have a length of at least 10, and if it has a
length of 20 or more, it will be dominated by the fastest route. Similarly, R
must have a time of at least 10, and if it has a time of 20 or more, it will
be dominated by the shortest route. We have found these constraints are
useful for understanding the limits of a task’s solution space, and note that
although we formulate our bounds as route descriptions, no routes with these
descriptions are guaranteed, or even likely, to exist.

Our motivation for determining a task’s “interestingness” stemmed from
a desire to be able to identify the amount of effort we should exert in exploring
its solution space, so we could tune our system parameters accordingly, on
a per task basis. We developed the notion of the spread of task ¢ defined as
follows:

spread(t) = ||z1(t) — z2@)|| + [lz1(t) — z3(O)|] + |lz2(t) — z3(2)]]

(shortest(t).time shortest(t).complexity

z1(t) = (1.0, : T ;
1(?) fastest(t).time * simplest(t).complexity

10

_, fastest(t).length fastest(t).complexity
~ ‘shortest(t).length’ " simplest(t).complezity

z3(t) = (1.0)

This is the Euclidean distance between the three extreme solutions in a nor-
malized attribute 3-space. We had hoped that a higher spread value, indi-
cating increased separation between a task’s extreme solutions, would imply
a solution set for the task of increased size and diversity. Unfortunately, this
did not bear out as a result of the discrete nature of a task’s solution space,
and led us to abandon any attempt to gauge the “interestingness” of a task’s
solution space in a similar fashion. We shall argue this point in the next
section.

Discarding the notion of spread, we reduced our search from the “inter-
estingness” of a task’s entire solution space to just that of its borders. As
mentioned above, these borders are defined by a task’s extreme solutions
which are well defined and easily computed. Since there are always the same
number of extreme solutions, three per task by our description, their level
of “interestingness” is gauged solely by how much they differ. To measure
this, we computed the extreme solutions for one-hundred randomly gener-
ated tasks for each of thirty one-kilometer bins, from one to two kilometers
to thirty to thirty-one kilometers. Each task then had its extreme solutions
compared using a number of simple thresholding similarity metrics. For ex-
ample, to find the number of tasks with at least a ten percent difference in
the length of their extreme solutions, we would compare 110% of the length
of each task’s best route to the length of the task’s worst route. This al-
gorithm is presented in Figure 2. We employed four threshold levels each
in the length, time, and complexity dimensions. For length and time these
took the form of percentage thresholds as described above. Our complexity
measure differs significantly in scale from that of both our length and time
dimensions, so we compared the complexities of our extreme solutions using
difference thresholds. We compared the difference between the complexities
of the best and worst routes with fixed threshold values. We treat the thresh-
olding methods as effectively equivalent, and prefer them to spread as they
are easier to interpret and allow consideration of differences in individual
dimensions.

Results of this experiment are shown in Figure 3 for the single-dimensional
thresholds. In each graph, the x-axis displays the task bins arranged by

(1)

simplest(t).length simplest(t).time
shortest(t).length’ fastest(t).time ’

11

length from shortest to longest. The y-axes display the percentage of tasks
that registered above threshold, and the four lines represent the various
threshold levels. We combined the one-dimensional comparison results to get
the percentage of tasks above any one-, two- and three-dimensional thresholds
in the left, right and bottom graphs of Figure 4. Again, the x-axes display
the bins and the lines represent differing thresholds. In the left graph, the y-
axis shows the percentage of tasks registering above at least one of the three
single-dimensional thresholds, while in the right graph, the y-axis shows the
percentage of tasks registering above two of three thresholds. The bottom
graph shows the percentage of tasks above all three thresholds.

The graphs in Figure 3 show that for tasks of sufficient length, some-
where between five and ten kilometers, one can expect a majority of tasks
to have extreme solutions that differ by some margin in each dimension: a
ten-percent difference in length or time, or a difference of two in complexity.
These are results for differences of a single dimension, but the right graph
in Figure 4 shows that a majority of these tasks are also above threshold in
at least two-dimensions. The bottom graph in Figure 4 shows that although
fewer tasks have extreme solutions above a three dimensional threshold, many
still do. While the results in Figure 3 are useful for understanding the rela-
tionship between a task’s length and the diversity of its extreme solutions in
a particular dimension, they and the left graph in Figure 4 are insufficient to
guarantee that the tasks registering above the single-dimensional thresholds
have nontrivial solution spaces. The extreme solution in these thresholds’
dimensions may still € dominate all other solving routes.

Figure 4 allows us to make some initial claims as to the “interestingness”
of a task’s solution space. The multidimensional differences shown there, in
at least two dimensions on the right and three dimensions on the bottom,
guarantee that more than one preferable solution exists for those tasks above
the thresholds. At the least, the differing extreme solutions themselves are
members of the task’s solution set, as each is preferable to the other for some
set, of preferences. They also allow for the existence of hybrid routes in the
space between them, which we call the interior of the task’s solution space.
Some of these hybrid routes could also be members of the task’s solution set:
“best” for some set of user-preferences.

In general, for both single and multidimensional thresholds, longer tasks
have a larger chance of being above threshold, and have a larger chance of
being above larger thresholds. This is shown by the positive slope of all the
threshold lines in each of our graphs, and means that a greater portion of

12

longer tasks have the potential to have “interesting” interiors and these inte-
riors are potentially more “interesting” than those of shorter tasks. We stress
the potential nature of this “interestingness” because the discrete nature of
the interior of a task’s solution space makes it impossible to infer from its
borders alone how many hybrid solutions may exist for that task or how
diverse those hybrids may be. At the same time, a task registering above a
higher threshold demonstrates more room in its solution space allowing for
both a greater density and diversity of hybrid solutions.

Although we cannot infer the “interestingness” of the interior of a task’s
solution space from it’s extreme solutions, we can at least determine from
them if it is uninteresting. We can characterize tasks whose minimal solutions
are not above some low multidimensional threshold as having an effectively
trivial solution spaces, as in this case we know that at least one of the task’s
extreme solutions is e-dominant, with an e defined by our threshold. Since
our solution space is trivial, the dominant route is optimal for all users, and
should be returned immediately. Because we can easily compute when a
task’s extreme solutions are below some multidimensional threshold, we can
optimize our system to notice task’s with trivial solution spaces, returning
their optimal extreme solution to the user. Since each of the figures shows
that some tasks of all lengths register below even the lowest multidimensional
threshold levels, this offers a valuable optimization for our system.

4.2 The Interior of the Solution Space

We have shown that there can be multiple non-dominated solutions to
a routing task, and that each of these could be considered the “best” route
for that task by some user. We therefore should take into account what our
users’ preferences are when determining which routes to supply them. While
we believe that a user has a certain set of preferences during any particular
interaction with our system, we think that it is unrealistic to expect that
any system can faithfully model these preferences. Qur chief concern is the
high degree of mutability of a user’s preferences between interactions with
a route-solving system due to considerations no system could, or should be
expected to, model. For example, during one interaction, a user may have
found out her mother-in-law’s flight got in early at the airport, and so wants
the fastest possible route, whereas when driving in unfamiliar territory, she
usually prefers a combination of short, and simple routes. Such circumstances
prohibit attempts to learn a single set of preferences per user, even over

13

Undiscovered

Route Mot-shared Routes

Shared Routes

Routes
encountered
(ina given

Simplest
Route

Length

“Yalue Functions Shortest Route

Complexity

Figure 5: The solution space and utility functions

multiple interactions, and reduce a system to trying to guess what these
preferences may be at any given time.

To address this shortcoming of any modeling technique, we aim to satisfy
not a single set of preferences but a distribution of them. One way of inter-
preting this is that our system does not model individual users, but popula-
tions of them, and seeks to optimize its performance across that population.
Our system views a user whose preferences change between interactions as
essentially two separate members of our population. Because we are now
attempting to satisfy many, rather than a single, sets of preferences, and we
have seen that a given task may have many preferable solutions, our system
should at times output multiple routes. An output set allows us to better sat-
isfy a larger portion of our preference distribution, and if it is small, does not
place too large a burden on the user who should be able to quickly identify

14

Function 1 cw *cr +tw * tr + lw = Ir
Function 2 cw * cr + tw * tr + lw * Ir?
Function 3 cw % cr + tw * tr2 + lw x Ir
Function 4 cw % cr? + tw « tr + lw * Ir
Function 5 cw * ¢r + tw * tr? + lw = [r?
Function 6 cw * ¢r? + tw * tr + lw = Ir?
Function 7 cw * cr? + tw x tr2 + lw * Ir
Function 8 | cw *cr? + tw * tr? + lw * Ir?
Function 9 cw x yJer + tw * tr + lw = Ir
Function 10 | cw * y/er + tw * tr? + lw * r?

Table 2: Utility functions

which single route is currently best for them.

We now need a formal model for users’ preferences, a method for exploring
the interior of a task’s solution space in search of potential output routes,
and a way of determining which of these routes to actually provide the user.
We shall address the first two questions here, and the last in the following
section. In doing so, we show that between tasks, even those characterized
by similarly spaced extreme solutions, the properties of their solution spaces’
interiors can vary widely as a result of their discrete nature. We show that
decisions we make in how to model users’ preferences can affect the routes
found in our exploration of a task’s solution space, and we describe the
interplay between the task’s and our model’s influence on our final view of a
task’s solution space. We begin with a discussion of our exploration method.

Having formulated boundaries on which routes may comprise a task’s so-
lution space, it is possible to solve for all interior solutions to a given task
then meet the additional criteria that none dominates any other. If we solved
for all such routes, we would have fully explored the solution space of the
given task, borders and interior, and could proceed to determine which routes
to output for the user’s consideration. Unfortunately, this requires consider-
ing a potentially large number of routes that are not in the task’s solution
space, and especially for long tasks, this can become computationally unde-
sirable. Another concern is the nature of our upper bound which provides
multidimensional constraints on our attributes rather than strict single at-
tribute bounds (as our lower bound does). As we increase the dimensionality
of our route description these constraints increase in dimensionality as well,
making them inherently weaker, so we will end up considering even more

15

routes at an even higher computational cost. Instead, we incorporate our
model of the users’ preferences directly into our task-solving algorithm, and
limit ourselves to a direct search for the routes that optimally satisfy these
preferences.

We model our population of preferences as a set of multiattribute utility
functions, each expressing a single user’s tradeoffs between the values of the
independent attributes of a potential solution. For n attributes, each of the
functions can be written:

n
U(Q;l,.'ﬂ‘z, ceey :L.n) = Z Aivi(mi)
i=1

where z; is the #** attribute value, v; is the i** value function, mapping z; into
some utility space, and); is the weight associated with the i** attribute, ex-
pressing the relative value placed on differences between attributes. A route
whose description evaluates to an optimal function value, for our functions
the minimum, is the “best” route for the set of preferences captured by that
function. We use functions in this form as the criteria optimized by a Dijk-
stra’s algorithm [5] based search which we run once for each of our functions.
The routes returned by this search are guaranteed to be both in the task’s
solution space and optimal in terms of the preferences of some member of
our modeled population.

Figure 5 demonstrates the relationship between value functions and the
exploration of a task’s solution space. The dots in the picture represent
hybrid solutions to a task that exist to be discovered, projected into a two-
dimensional attribute space.! The circular and elliptical areas in the picture
represent possible mappings between attribute and utility spaces by different
value functions. Routes inside a value function’s area have attribute values
that map to utilities that can be combined with weights to optimize the
overall utility function. In this picture the value functions vary considerably
in the portions of the attributes space they consider, and therefore the routes
that utility functions using them can find optimal. The areas covered by
two value functions can overlap, and there may be routes in areas covered

'We project the routes in Figure 5 because of the difficulty of displaying higher-
dimensional points. One implication of the projection is that some of the routes in the
Figure appear to be dominated by other plotted routes. For the purposes of this discussion
we overlook this, and justify this by saying that in non-projected attribute space, all of
these routes are non-dominated.

16

by no value function we can ecasily express. Within a fixed value function,
the weights used further determine which routes are discovered. A thorough
exploration of the weight space may capture all possible routes within a value
function’s consideration, but it is possible to ignore certain routes by never
solving with the weights necessary to find them. The choice of value functions
and weights used offers a two-tiered level of control of the exploration of a
task’s solution space that we shall show can have a significant effect on the
type of routes returned.

Table 2 presents the ten utility functions with which we have experi-
mented that differ in their value function mappings between attribute and
utility space. Each of these functions captures a distribution of preferences
that can be sampled by using it with specific set of weights. We experiment
with ten functions to validate our distribution based exploration model and
to show that one can control what types of routes are explored by modifying
these functions. We construct our weight sets by randomly sampling a uni-
form distribution of all possible weights to make our search for hybrid routes
within a given value function’s area as complete as possible. Ultimately, both
the distribution of our weights and our choice of value functions will be in-
formed by some external authority on the reality of people’s preferences. This
may take the form of a survey for the weight distribution or a psychologist’s
description for the value functions.

Each of the functions in Table 2 combines a set of attribute weights, the
length weight, [w, time weight, {w, and complexity weight, cw, with a set of
value functions. All of our value functions operate on some ratio between a
route’s attribute and the attribute of task’s corresponding extreme solution.
For example, the length ratio, ir, of a route is its length divided by the
length of the same task’s shortest route. We define the time ration, t¢r, and
complexity ratio, ¢r in similar fashion. Some of our value functions raise
this ratio to a power, others take its square root. Since our utility functions
are minimized while solving Dijkstra’s algorithm, growing ratios, signifying
routes with attributes increasingly distant from the task’s minimum value in
that attribute, can be seen as incurring penalties to their overall utility. These
penalties are adjusted according to the power of the current value function
and the magnitude of the current attribute weight. Larger weight values and
powers for an attribute indicate a desire to produce solutions with values
closer to a task’s minimum value in that attribute. Reduced weights and roots
show a tolerance for exploration of solutions with larger attribute values.
For example, utility function 10 in Table 2 expresses a general willingness to

17

consider increased complexities (the complexity ratio is rooted) but quickly
penalizes any increase in time or length (these attributes have there ratios
squared). When paired with the appropriate weights, however, this could still
express a desire for the least complex route, a weight vector with a complexity
weight of 1.0 for example, some compromise between the fastest and shortest,
time and distance weights of 0.5, or any number of other preferences.

Not shown in the Table 2 is that all ten utility functions discount the
penalties incurred by scenic portions of a route according to the scenic weight,
sw. The discounting works as follows: if a segment in a route is scenic,
the contribution to the route’s utility of that segment’s local attributes is
multiplied by (1.0 — sw). This method was chosen because, as we have
already pointed out, there is no extreme solution corresponding to a route’s
scenicness attribute, and thus no point of reference exists for us to build
a scenicness ratio as we do with our other attributes. Currently the utility
from a route’s global attributes is not discounted according to scenicness as a
result of the difficulty in formulating the impact that a single scenic segment
has on these attributes. We plan on addressing this issue in future work.

Our second experiment exercises our exploration method while investigat-
ing the solution spaces of some of the tasks generated in our first experiment.
We constructed a weight set by randomly sampling a uniform distribution
of all possible weights one-hundred times, and used it to sample the ten dis-
tributions of users’ preferences captured by the utility functions in Table 2.
We solved all of the five kilometer and twenty-three kilometer tasks gener-
ated in our first experiment using the sets of mutliattribute utility functions
produced by this sampling. We then examined the resulting routes and com-
puted some intuitive measures describing the tasks’ solution spaces and the
effectiveness of our method in exploring them.

The first of these measures, the number of unique routes produced for
each task by each distribution, is presented in Table 3. Table 3 shows the
average number of unique output routes for all one-hundred five kilometer
and twenty-three kilometer tasks as well as for two subsets of the twenty-
three kilometer tasks. The first subset is made up of all of the twenty-three
kilometer tasks that registered above a small three dimensional threshold:
10% in length and time and 2 in complexity. The second subset is made up
of all of the twenty-three kilometer tasks that registered above a larger three
dimensional threshold: 50% in length and time and 10 in complexity.

Our second and third measures are the number of routes shared and
not-shared between differing distributions for a given task. We call a route

18

Distribution 5 km | 23 km | 23 km low subset | 23 km high subset
Distribution 1 3.04 9.17 11.09 13.00
Distribution 2 3.10 9.13 11.06 12.7]
Distribution 3 3.10 9.50 11.66 13.76
Distribution 4 2.99 8.38 11.18 11.29
Distribution 5 317 9.26 11.38 13.41
Distribution 6 3.00 8.43 10.35 12.12
Distribution 7 3.01 8.10 9.89 10.82
Distribution 8 3.01 8.26 10.14 11.82
Distribution 9 3.21 | 10.51 12.82 15.53
Distribution 10 | 3.24 | 10.97 13.40 16.47
Aggregate 3.65 | 16.60 20.91 25.35

Table 3: Average number of unique routes by distribution

shared between two distributions if both consider the route as optimal for
some set, of preferences they capture. We express this measure in Table 4 as
an average percentage across all tasks and distributions, which reflects the
portion of a distribution’s output routes for a given task that it may expect
to share with any one of the others. The actual routes shared differ from
distribution to distribution, however, so we also note the average number of
routes for each task that each distribution produces that are produced by
no other distribution. We call this measure the number of routes that are
not-shared.

In Table 5 we have selected two particular twenty-three kilometer tasks
from our second thresholded subset, and listed our specific unique and non-
shared results to illustrate a few points. First, tasks, even those with similarly
spaced extreme solutions, can vary widely in the density of their solutions
spaces. We call the number of routes populating a task’s solution space its
density, and although we have not measured it exactly, we work under the
assumption that the number of unique routes discovered by the aggregate of
our distributions provides a good approximation. The aggregate of our ten
distributions is made up of the combined optimal routes for all the samples
of all our distributions, and so explores all portions of a task’s solution space
covered by any of our value functions with any member of our weight set.
Even if we have not found all possible solutions, the two tasks in the figure
have very different densities: 11 and 54.

Table 5 also gives us anecdotal evidence as to the performance of our

19

Distribution 5kmS|23km S |5km NS |23 km NS
Distribution 1 97.83 85.29 0.01 0.07
Distribution 2 97.19 84.48 0.01 0.19
Distribution 3 97.33 83.40 0.03 0.31
Distribution 4 97.72 85.58 0.02 0.36
Distribution 5 96.18 84.18 0.00 0.12
Distribution 6 98.46 87.97 0.02 0.11
Distribution 7 97.80 87.70 0.00 0.22
Distribution 8 98.53 90.29 0.00 0.13
Distribution 9 94.87 77.78 0.04 0.72
Distribution 10 93.81 71.21 0.07 1.53
Sum 0.20 3.76

Table 4: Average percentage of shared(S) and number of nonshared(NS)
routes by distribution

exploration method. If we look at the number of unique and non-shared
routes produced for tasks one and two, we see how our system handles a
rather sparse and a much denser task respectively. For the sparse task one,
we see from the lack of non-shared routes and the nearly identical number of
unique routes found by each distribution, that the choice of value functions
is not terribly important when a task’s solution space is so lightly populated.
Tables 3 and 4 show that this is nearly always the case for five kilometer
tasks. There is no discernible difference in the performance of any of our ten
distributions: each finds three preferable routes on average, and very rarely
do any discover a solution not shared with the other distributions. We can say
with some confidence then that it does not matter what value functions we
choose for such tasks, and that a weight set of one-hundred weights clearly
samples our distributions more than is necessary. By contrast, Table 5s
dense task two shows that for some tasks, searches with each distribution can
produce a large number of routes, and that many of these may be limited
to that distribution. The average number of unique routes produced per
distribution is 22.7. Of the 54 unique routes found by the aggregate of our
distributions, 35% were found by just one of our distributions. The other 65%
were shared between the different distributions. These three qualities tell us
that for this and similar tasks, the choice of value functions is meaningful,
and allows us to express a nice measure of control over how the solution space

20

Distribution Task 1 U | Task 2 U | Task 1 NS | Task 2 NS
Distribution 1 9 26 0 0
Distribution 2 9 19 0 2
Distribution 3 9 21 0 3
Distribution 4 8 20 0 0
Distribution 5 9 25 0 0
Distribution 6 9 15 0 1
Distribution 7 8 16 0 2
Distribution 8 9 24 0 1
Distribution 9 10 31 0 3
Distribution 10 10 30 0 i
Aggregate/Sum 11 54 0 19

Table 5: Unique(U) and non-shared(NS) routes by distribution for three
highly thesholded 23km tasks

is explored. We can choose our value functions based on the characteristics of
the non-shared routes they lead to without sacrificing a large base of common
routes that are valued by users in each of our modeled populations.

We shall close this section with a discussion of our reasons for abandoning
our attempts to measure the “interestingness” of a task from the character-
istics of its extreme solutions. Primarily, this was because many tasks whose
extreme solutions differed greatly, as measured by registering above some
high multidimensional threshold or having a large spread, were more similar
to the first task in Table 5 than the second. Tasks with high spread values
were too often less “interesting” than those with lower spreads because of the
discrete nature of a task’s solution space. That is, the increased “room” for
hybrid routes between a task’s extreme solutions is not necessarily populated
because of their dependence on the real-world existence of streets and roads.
This meant that while a task’s spread in general correlated with the density
of a task’s solutions, the correlation was not strong enough to make spread a
good predictor of density. Therefore, as described above, we limit our use of
the separation of a task’s extreme solutions to noticing when a task’s solution
space is trivial, and if so returning an optimal solution immediately.

21

U | S5 | Sy| 53
D, | 510035
Dy |19] 5120
Dy| 6] 15| 5

Table 6: Sample utilities of three routes by three functions

5 Determining Interesting Output Routes

We have shown that for many routing tasks we can produce a set of routes
whose members are each optimal for some set of user preferences. If this set
of routes is small, say three or four routes, it is reasonable to supply it to
the user as is and let her determine which route they prefer to take. If the
set is not small, however, and the user has to take the time to consider a
large number of output routes, our system has placed an undesirable burden
on the user (and one that no other current routing system places on them).
We therefore are faced, for some tasks, with the additional problem of deter-
mining a good subset of routes, within some size constraint, to return from
the task’s solution space. We present two algorithms, which share a common
preprocessing step, that solve this problem and differ in runtimes and their
notion of what constitutes a “good” subset.

Our first attempt to describe what makes a “good” subset of routes to
output centered on the notion of ensuring the diversity of the routes in this
subset. We postulated that having the routes in our subset be as different
from each other as possible increased our chances of having some “good”
route for each member of our population. For example, if we have three very
different routes in our subset and some user does not like two of them, she
may like the third by virtue of its difference from the first two. We note
that diversity in our output set is a desirable quality even if a user does
not know her preferences, as it simplifies the decision process of the user
when selecting a final route from our set. Because the routes are diverse the
user never has to make a difficult comparison between routes that are too
similar: the difference between the routes can be thought highlight the user’s
preferences.

Another concern is that we never want to return to the user two routes
that are very similar to each other. If the differences between two routes’
descriptions are slight enough, we recall our notion of e-dominance, there is
no reason to return them both to the user. If we do, we are either wasting

22

valuable space in our return subset on practically duplicate routes, or should
be returning a single route in the first place. We therefore propose a prepro-
cessing step to be used before any subset selection algorithm to remove all
e-dominated routes from consideration. This works as follows: each route in
our solution space is considered in turn, and compared to each other route in
the solution space for e-dominance. If one route e-dominates the other, the
dominated route is removed from further consideration during the determi-
nation of our output. If two routes are found to e-dominate each other, we
remove the route with the lower average utility with respect to all members
of our population. The choice of ¢ depends on how strict a notion of similar-
ity one wishes to enforce, and we leave the problem of picking good values
to future work.

After eliminating all e-dominated routes from our solution set, we are
guaranteed that any routes selected to be returned to the user have descrip-
tions different by our factor e. This ensures a certain level of diversity in any
output set formed of the remaining routes, and has the secondary effect of
reducing the number of routes we need to consider in our subset selection
algorithms. We abandon any further direct attempt to increase the diversity
of the routes in our output set, instead focusing on optimizing two different
definitions of the utility of a set our routes with respect to our distribution
of preferences. These two definitions form the basis of our two set-selection
algorithms. We shift our focus, from diversity to utility, because the utility
of a set is the direct measure of its usefulness to our population of user, and
we have already guaranteed the set’s diversity.

Our first algorithm begins with a simple notion of what make a “good”
subset. For a subset of size n, we will simply take the n routes whose summed
utilities with respect to all the members of our population are optimal. For
us, lower utilities are better, so we are try to compute the following:

D] |5]
ISI’IQIE AverageUtility(D, S) = Z Z U(D;, S;)

i=1 j=1

where D is the set of samples from our distribution of utility functions, and
D; is the it sample. The set S is our subset, of solution routes selected from
the routes in our solution space R, S; is the j* route from this subset, and
U(D;, S;) is the utility of route S; according to function D;.

A subset S of size one that minimizes this quantity will be a route with
minimal utility, on average, with respect to all samples in our population.

23

Each additional route added to the subset while minimizing this quantity
will have property that, of all routes not currently in our subset, it has the
lowest average utility with respect to our population. This means that we
are effectively finding a single cluster of solution routes that in utility space
is centered around the route with the lowest average utility. These routes are
easy to find through an exhaustive search of the potential solution routes,
which takes O(|D||S]|) time. As we have already stated that there is some
small upper bound on the size of our subsets, this is effectively linear in the
number of samples we take from our distribution of functions.

It is important to note that routes with similar average utilities do not
necessarily have similar descriptions. Of course they may, but observe the
following example. If we have two utility functions sampled from our distri-
bution D; and D, and two routes S; and Sy, if D;(S;) = D5(Ss) = 10 and
D,(S2) = Ds(S,) = 20, S; and Sy have the same average utility but must
have very different route description to vary in utility so much between D,
and Dy. Optimizing for average utility then allows us to cheaply compute
a subset whose members each have the best chance possible to satisfy the
samples of our population, and no limit is imposed on the diversity of this
subset.

Our second algorithm is inspired by the observation that although we
return a subset of routes, a user selects only one of them as the final solution
to their query. If we assume the user will pick the route from our subset
with the minimum utility with respect to her exact preferences at the time,
another measure of how “good” our subset is would be the following sum:

|D|
MinimumUtility(D,) = > min{U(D;,S;) | j =1,.., 15|}

i=1

If we minimize this quantity we optimize the average utility, with respect to
all members of our population, of only the best route in our subset for each
sample in our population.

For a subset of size one this will select the same route as our AverageU-
tility algorithm, but when we solve for subsets of size two or more, the
algorithms may diverge. Consider the example in Table 6. As before Dy, D5,
and Dy are utility functions sampled from our distribution, whose utilities
for routes S;, Sz and S3 from our solution space are given in the Table 6.
If we select a subset of size two according to our AverageUtility algorithm,
we will choose routes S; and S3 by virtue of their average utilities of 10 and

24

20 being lower than the 40 of S;. Our MinimumUtility algorithm, however,
will select the subset of S; and S, 19, over S; and S3, 29, and S, and Sy,
45. This is because S| has an optimal utility for D, and a near optimal for
D5, and S, is optimal for Dy. It is interesting to note that in this example,
our MinimumUtility algorithm is free to work around the very poor utility
of Sy to D; and still include S, in an output subset, while this essentially
eliminates it from consideration by our AverageUtility algorithm.

An algorithm that exhaustively searches for the optimal subset with re-
spect to our MinimumUtility measure is much slower than the one we describe
to optimize for AverageUtility. This is because unlike for AverageUtility, a
size n subset does not necessarily contain the size n — 1 subset and an ad-
ditional route we can find directly. An exhaustive search would therefore
require enumerating all subsets of which there are at worst O((llgﬂ)). Since
for distributions that result in large solution sets this quickly becomes infea-
sible, even for small subsets, we use a simple hill-climbing algorithm instead
of an exhaustive search. This means our return subset is not guaranteed
to be globally optimal in our MinimumUtility measure, but repeated ran-
dom restarts run for a moderate number of iterations have been observed to
have a stable output which we take to be optimal. The running time of our
hill-climbing algorithm is O(iterations * restarts).

6 Related Work

Current internet mapping sites such as MapQuest (http://www.mapquest.com)
and MapPoint (http://mappoint.msn.com) offer route solving systems that
optimize for either distance driven or driving time. MapQuest can also be
instructed to, if possible, avoid toll roads and ferries. The focus of recent
improvements to these sites seems to be on developing more intuitive and
useful methods of route presentation: maps that can be zoomed or rotated
and feature business or geographic landmarks.

Other route solving systems have been developed to return route solutions
other than the fastest or shortest. Rogers et. al [2] do so by modeling the
preferences of individual users using a single mutliattribute utility function
per user. This function takes the form of a weighted linear combination of
four route attributes: length, traversal time, number of intersections, and
number of turns. The vector of weights associated with a user encapsulates
their tradeoffs between these attributes’ values, and is said to express their

25

preferences. Dijkstra’s algorithm is then used to solve for the optimal route
in terms of this utility function. This is similar to what our system does for
each sample of our distribution of utility functions, and does not require a
final set selection algorithm as we do.

They use simple machine learning techniques to improve their view of a
user’s preferences, encapsulated in a weight vector, across multiple system
interactions. For every task provided by the user, the system provided two
routes in response: the optimal and one produced by using a slight variation
of the user’s weights. If the user select the first route, the weight vector stays
the same. If they choose the second, their weights are adjusted according to
the perceptron rule to reflect the system’s new view of the user’s preferences.
Further work focused on improving the interface for interaction between the
system and a user [3], to make it usable while driving, and the application
of more powerful learning algorithms such a support vector machines. [1]

Haigh ef. al implemented a system that identifies good routes without
modeling users. [6] They use case-based reasoning to find routes that take
advantage knowledge gained in solving previous tasks. This knowledge takes
the form of a database of cases, previous route solutions, or pieces of them,
deemed appropriate for reuse, that is created and maintained over a period of
many system interactions. A detailed, domain-specific geometric similarity
metric is used to piece together previous cases to form a plan for a more
detailed solution to the current task. This plan is used to direct the search for
an actual route using a modified version of Dijkstra’s shortest path algorithm.
Since plan generation occurs in the space of cases, which is much smaller than
the segment space, and it allows for a severely limited search of the segment
space, their method provides a significant computational benefit. Also, the
cases can be assigned a “goodness” which effects their selection for reuse,
and this can even be parameterized by some factor such a time. This allows
the system to represent things such as traffic, where portions of a road are
less desirable at certain times of the day, and other concerns of a dynamic
nature.

7 Conclusions and Future Work

In this work, we have presented our method for finding a good set of routes
to return to a user for a given routing task. We have shown by comparing
the properties of the extreme solutions of routing tasks that multiple routes

26

exist which different users, or the same user at different times, may consider
to be the best solution to a given task based on their current preferences. We
have presented a method for exploring the space in between these extremes
based on building a distribution of utility functions and solving for the set of
optimal routes over that distribution. We have characterized this distribution
as simultaneously representing either a population of users with different
preferences, or the different sets of preferences a single user may have at
different times. We have demonstrated that the choices we make in building
this distribution, the value functions we select and weights which act as
our sampling points, allow us to control the type of solution routes that we
discover. Using this method, we can create a set of solution routes for a
task whose members are each optimal for some members of our population.
Finally, we have given two algorithms for reducing the size of this set to a
level appropriate for output to the user, and provided guarantees that this
subset is diverse. Taken as a whole, we have provided the justification for
and framework of a route solving system that maximizes the utility of the
routes it returns across a population of users.

Our future work includes improvements to the system model described
here, as well as additions to our problem domain that require new meth-
ods of exploration. Incremental improvements include adding attributes to
our route and segment descriptions and employing a more detailed notion of
route complexity and scenicness. As a start we would like to handle one-way
streets, speed-limits, tolls, and stop signs and stoplights. Larger goals include
incorporating dynamic and temporal information, such as traffic conditions,
into our knowledge base. Also in this category, we would like to include
alternative methods of transportation that may operate under some uncer-
tainty, particularly trains and buses, and accurately reflect their operational
stochasticity.

For each of these changes, we will need to adjust our template for the
utility functions that make up our distribution. We not only want our new
utility functions to take into account any new route attributes we may intro-
duce, we would also like them to accurately capture the real preferences of
our users. While in this work we have experimented with a number of value
mappings and a large evenly-distributed weight set to explore the effects of
using different distributions, we would like the utility functions we use in
future work to be informed by some authority on the actual preferences of
our user population. We may obtain this knowledge through psychological
experiments, surveys, or a search of the related literature. This includes not

iy

only value function mappings for our route attributes but the weights we
employ to sample our distribution.

Finally, we see from our own and the related work that there are ample
opportunities to apply machine learning techniques to improve a system’s
output quality, execution time, or both. This could take the form of adjusting
the number or placement of our distribution samples, encoded as our weight
set, based on observed user interaction and feedback. Also if adding temporal
concerns such as train and bus schedule significantly increases the complexity
of our problem space, we might also apply some hybrid of our current system
with the case-based techniques employed by Haigh et. al to offset this.

The routing task domain is an interesting problem space in which we
have applied the concept of modeling users’ preferences using a distribution
of multiattribute utility functions. This concept could be applied in simi-
lar domains where many preferable solutions exist for a user’s problem, and
some system must decide which solutions to provide. Planning and recom-
mender systems such as automated travel agents or activity planners fit this
description, and we can imagine many of an emerging class of autonomous
web-agents that do as well.

References

[1] Claude-Nicolas Flechter and Seth Rogers. Learning subjective functions
with wide margins. AAAI Soring Symposium on Adaptive User Inter-
faces, pages 106-113, June 2000.

[2] Seth Rogers Claude-Nicolas Flechter and Pat Langley. An adaptive in-
teractive agent for route advice. In Oren Etzioni, Jorg P. Miiller, and
Jeffrey M. Bradshaw, editors, Proceedings of the Third International Con-
ference on Autonomous Agents (Agents’99), pages 198-205, Seattle, WA,
USA, 1999. ACM Press.

[3] Seth Rogers Claude-Nicolas Flechter and Cynthia Thompson. Adaptive
user interfaces for automotive environments. IEEFE Intelligent Vehicle
Symposium, October 2000.

[4] Ralph L. Keeney and Howard Raiffa. Decisions with Multiple Objectives.
John Wiley and Sons, New York, 1976.

28

[5] Thomas H. Corman Charles E. Leiserson and Ronald L. Rivest. Intro-
duction to Algorithms. MIT Press, Cambridge, MA, 1990.

[6] Karen Zita Haigh Jonathan Richard Shewchuk and Manuela Veloso. Ex-
ploiting domain geometry in analogical route planning. Journal of Ez-
perimental and Theoretical Al 9, pages 509-541, 1997.

29

