The Aurora Storage Manager

Christian Convey Master’s Project
April 2003

Abstract

This paper gives an architectural overview of
the Aurora storage manager, and details the
more interesting issues that arose during its
design and implementation.

I assume in this paper that the reader is
familiar with data stream management systems
in general, and with Aurora in particular.

Introduction

At its heart, the Aurora data stream
management system (DSMS) is a data
processing system. To be taken seriously,
Aurora must quickly process the volumes of
data associated with robust RDBMS’s. The
Aurora Storage Manage (ASM) is designed to
enable Aurora to perform in that league.

ASM manages all of the tuples that rest on the
arcs, waiting for processing by the next box in
the query network.

ASM also manages all of the tuples stored at
Connection Points.

Requirements

ASM'’s initially stated requirements were to
provide:

e atuple-oriented view of data, despite any
underlying paging mechanisms employed,

e durable data, available after a planned
restart of the system,

e high-performance, low-latency data access,

e support for over 100 GB of concurrently
stored data, and

e freedom from the need to pre-calculate a
database’s total storage size. (Le., allow
dynamic growth of the database.)

Moreover, whatever data access was needed
for the ever-changing concept of Connection
Points must be provided efficiently.

I make a point of referring these as ASM’s
initially stated goals because as Aurora has
evolved, additional data storage needs have
appeared. We'll discuss those new needs later
in this paper.

This initial version of ASM also has specific
non-requirements:

e Atomic transactions
e Recoverability after a crash / media failure.

In the original uses foreseen for Aurora, no
need was anticipated for recoverability. The
assumption was that after a system crash, the
data which had been in Aurora would be too
stale to be of interest, and could thus be
discarded. As of this writing, however, those
assumptions are being questioned.

General Design Goals

Storage management in a DSMS can differ
significantly from that of a RDBMS. The most
obvious difference is that tuples are arranged
into queues rather than random-access
relations. We’d like to capitalize on that
knowledge in our design.

Aurora’s scheduler produces explicit

execution plans describing when tuples will be
enqueued / dequeued from various arcs. Again,
we’d like to put this information to use ASM.
The hope is that foreknowledge of data
accesses will permit unique opportunities for
efficient pre-caching and cache-eviction
policies in the buffer cache.

Aurora allows various priorities to be assigned
to a query network’s outputs. This could
ultimately lead to the storage manager
operations for one queue being prioritized
above those that are pending on another queue.
If possible, we’d like to take all reasonable
steps to ensure ASM’s internal processing is
sensitive to those relative priorities.

Common wisdom warns against excessive
copying every tuple’s contents from one

Page 1 of 9

memory location to another. With all of the
layers of software in Aurora, there’s a
temptation to copy tuples’ content between
layers just to gain a simple interface. We must
therefore be vigilant and only copy tuple data
when absolutely necessary.

Finally, at any moment ASM may have a large
set of pages that must be read from or written
to disk. Linux uses an elevator-seeking
algorithm that may reward concurrent, rather
than sequential, requests for file operations by
an application. This is an important design
consideration as we try to maximize low-level
I/O rates.

Architectural Overview

ASM is organized into three layers of
functionality:

e [OLIB
e Buffer Cache
e Queue Management

IOLIB provides a low-level, page-oriented
view of the underlying filesystem.

Buffer Cache manages the buffer pool, pre-
caches data pages, and lazy-writes dirty pages.

The Queue Management system provides all
queue operations and Connection Point
operations, as well as admission control. It’s
the lowest-level system in Aurora that has the
concept of tuples and of queues; the Buffer
Cache and IOLIB think entirely in terms of
pages and frames.

IOLIB

The Unix filesystem API falls short in some
significant ways compared to the needs of a
DSMS like Aurora:

e File accesses are byte-oriented, even
though page-sized operations are known
to exhibit better performance.

e On some filesystems no single file may be
later than 2 GB.

e In order to have concurrently pending
requests for n different regions of a file(s),
one must have n application threads, each
concurrently invoking the filesystem API.

e Support for easy experimentation with the
performance ramifications of different
page sizes.

IOLIB is designed to mask the higher levels of
Aurora from these specific problems.
Additionally, IOLIB provides internal page
management so that most page allocation/free
operations avoid translation into filesystem
operations.

IOLIB provides the following kind of interface
to its users:

e Initialize(max-concurrency, bytes-per-
page, page-file-directory-path)

e Operations are requested with a
submitOp(...) function, and their results
are discovered with a
receiveCompletedOp(...) function.

e The operations are: read-page, write-page,
allocate-page, free-page

Single-filesystem support

For simplicity, an instance of IOLIB only
manages one body of data at a time, all of
which is stored in a single filesystem directory.
Contrast this to sophisticated RDBMS’s that
allow different groups of data to appear on
different filesystems for reasons such as load
balancing and making the best use of high-
performance storage.

Catering to elevator-seeking

It seems like a good idea to cater to the Linux
kernel’s elevator-seeking disk management
technique. To do so, an application cannot
present all of its read/write operations
sequentially to the Unix filesystem API; they
must be concurrently pending. However, we’d
like to shelter the users of IOLIB from having
to create many threads merely to improve 1/O
throughput.

A performance mistake that we could make
when attempting highly concurrent /O would
be to issue an open(...) call every time a new
page read / write operation needed to be
executed. Therefore, some way must be found
to re-use file descriptors (FDs) as much as
possible.

Page 2 of 9

To accomplish these goals, IOLIB keeps an
internal thread pool and an FD pool, and
provides an asynchronous I/O (AIO) interface
to IOLIB’s users. Each thread, when executing
an I/O operation, uses one FD. Because of
Linux’s limit on the number of threads and
FDs (1024) a process can have, IOLIB
imposes a user-defined limit on the number of
concurrent filesystem operations it will
support.

This AIO functionality works as follows:

1. The user submits an I/O Control Block
(IOCB) which describes the kind of
operation desired. The IOCB is placed
into a queue of all not-yet-executed
IOCBs.

2. Each IOLIB worker thread, upon
completing its previous IOCB operation,
pulls a new IOCB from the head of the
queue and executes it.

3. When an IOLIB worker thread completes
its current IOCB-specified operation, it
places a return status into the IOCB and
puts the IOCN into a response queue
that’s monitored by the user.

This scheme permits a user to have just one or
two threads for interacting with IOLIB, and
yet achieve great concurrency of I/O
operations.

One feature of the FD pool is worth noting. As
we’ll see later, IOLIB may have to access
many distinct files in the filesystem at nearly
the same time. However, even when using
multiple files, IOLIB must not violate its
constraint on the total number of FDs it may
have open at one time.

In order to support multiple data files without
resorting to frequent open(...) / close(...)
system calls, the FD pool uses the following
logic. For each FD that’s in the pool but not
presently leased out, the pool remembers
which particular file the FD is tied to. When a
lease-request is made on the FD pool, the pool
first tries to provide a FD that’s already open
on the file specified in the request. If no such
FD is available, the pool will close one of the
available FDs, open(...) a new one on the
specified file, and return it to the caller.

File structure

As the set of pages stored by IOLIB grows, a
linear-fill strategy is applied to file growth as
follows.

IOLIB presumes that the underlying filesystem
doesn’t support files larger than 2 GB. As
storage needs grow, IOLIB will grow its
current file until approximately the 2 GB mark.
Once additional growth is needed, a new file
will be created, and that file in turn will
experience the same growth pattern that older
files did.

For example, if IOLIB is managing 13.2 GB
of data, there will be 7 data files: 6 files that
are 2 GB in size, and one file (the most
recently created one) that’s 1.2 GB in size.

The internal structure of an IOLIB data file is
a function of the page size, but the same basic
approach is always employed.

Each file contains a sequence of allocation
regions (ARs). The first page in every AR is a
bitmap giving the allocation status of all the
other pages in that AR. One bitmap bit is used
for each page, simply describing whether or
not that page is currently in use by the
application. Unused pages are available for
allocation.

An AR contains as many pages as its bitmap
can describe. For instance, if page sizes are
64KB, then the bitmap page will have 65,536
bytes, which is 524,288 bits. That means in a
64KB-page system, each AR will contain
524,289 pages (1 bitmap page + the 524,288
data pages whose statuses are recorded in the
bitmap page).

Two factors may prevent the currently last AR
in a file from being as large as its bitmap’s
potential.

If the AR size doesn’t evenly divide into 2GB,
the final AR in a full sized file is necessarily
smaller than the other ARs in the file.

Secondly, files aren’t necessarily grown in
integer multiples of AR sizes, as we’ll discuss
later. Therefore, the current length of a file
may limit the number of data pages contained
in that file’s last AR.

Page 3 of 9

Page allocations and file growth

IOLIB keeps all of the AR allocation bitmaps
in virtual memory at all times, for simplicity.
When a page allocation request is made, the
bitmaps are scanned for an available page. If
an available page is found, its bitmap bit is set
and the page’s logical address is returned. If a
no page in the entire system is available, the
allocation request will be held up pending file
growth.

IOLIB has a high-water mark for triggering
file growth. For example, if the high-water
mark was 90% and IOLIB had a disk footprint
of 20GB, then file growth would be triggered
when 18GB were actually allocated by the
application.

The following describes how an individual file
is grown. File growth is not done in constant-
sized chunks. In most cases, it’s done as a
proportion of the current file size. For example,
if the growth ratio is set to 10%, each attempt
to grow a file would be by 10% of the file’s
current size.

This growth ratio is bounded, however. In
order to prevent many distinct growths on a
small database, a constant lower limit can be
established for file growth sizes. Any file
growth attempt whose ratio would lead to a
smaller growth than this lower limit, is
automatically adjusted to grow the file at the
lower limit. At the upper bound, each file
growth attempt is reduced, if necessary, to
prevent the file from growing larger than 2 GB.

If file growth is needed but the last file in the
file set is already at 2 GB, a new file must be
allocated. Each new file starts out with a
modest size, without any attempt to
immediately make the file large enough to
satisfy the IOLIB’s high-water mark.

Because IOLIB uses linear fill on files, there’s
no obvious reason to support the concept of
concurrent growth operations; there’s only one
“end” of the file set that can be grown.
Therefore, IOLIB permits at most one file
growth operation at a time.

Open issues and future work for IOLIB

Two features of the Linux 2.6 kernel are
expected to obviate much of IOLIB’s code.
One feature is large file support in many

filesystems, and the other is native support for
the Posix Asynchronous I/O standard. These
two features would let IOLIB use merely one
file, and would take away the need for
IOLIB’s thread pool and FD pool.

Another open issue is that IOLIB has a
weakness in the way page allocation / page
free requests are made. The can normally be
satisfied extremely quickly, because an
internal bitmap consultation is all that’s
needed in most cases. However, in such cases
we still require the user to use the AIO
machinery: formulate an IOCB for a page
allocation request, submit the IOCB, and await
the response. IOLIB would be simpler to use if
page allocations/frees were simply blocking
function calls.

Another issue is whether or not IOLIB should
be extended to let each IOCB be tagged by the
user with a priority level. If we had more
outstanding IOCB requests than we could
handle, then some IOCBs would have to wait
for execution. We could ensure that IOCBs
awaiting execution were fully executed
according to priority order, rather than in first-
come-first-serve order.

Finally, we have the issue of disk location for
pages. Experience teaches us that great
performance benefits are found when pages
that are accessed around the same time also
happen to be near each other on disk.

However, the standard Unix filesystem API
gives no explicit control over disk location.
Some filesystem-specific APIs, such as SGI’s
XFES, provide a measure of control in this
regard, but not all Linux systems support XFS.
The only sure way of achieving specific data
placement on disk is to have the IOLIB store
data on a raw partition. The open question is
whether or not such steps are worthwhile.

Buffer Cache

ASM'’s buffer cache is different than
traditional demand-paging buffer caches. Its
users don’t simple request pages and await
their framing. Instead, the users maintain a
table of page priorities, which the buffer cache
consults to perform pre-caching and during
cache evictions. The user knows that as long
as certain restrictions are adhered to, any page

Page 4 of 9

whose user priority is set to 10 will eventually
become framed.

The Aurora scheduler can plan ahead its page

accesses by tens or hundreds of pages at a time.

The buffer cache’s unusual design was created
to capitalize on this special foreknowledge
held by the scheduler.

The public interface provided by the buffer
cache is conceptually as follows:

e To allocate or free a page, the user directly
operates on a pool of available pages.

e For any page of interest: The user can set
the caching priority between 0 and 10,
indicating how much the user wants the
page to be framed. Once framed, a page
with priority 10 will remain framed until
the user lowers its priority. (The user is
responsible for not setting more pages to
priority 10 than there are frames.)

e A user can wait for a particular page to be
tramed, or for an already-framed page to
be lockable by the user.

e For any framed page: lock-for-read, lock-
for-write, mark-dirty, and unlock the page.

An application that wanted to allocate a new
page and write to it would take the following
steps:

1. Acquire a new page address out of the
available-pages pool. (Block if the pool is
currently empty.)

3]

Set the page’s priority to 10, so that it will
definitely be framed eventually. Await the
page’s framing.

3. Wait until a write-lock on that page can be
granted to the user. (The buffer cache’s
lazy writer may compete with the user
over a write lock on the page.)

4. Modify the contents of the page’s frame
buffer. Mark the page as dirty, and
relinquish the write lock.

Using this interface can be much more
complicated than using a traditional demand-
paging system. This complexity has proven to
be one of this buffer cache’s biggest
drawbacks.

Pages, Frames, and Priorities

Every framed page in the database has two
different priorities: A user priority, and an
effective priority. (For space efficiency, a user
priority may remain unstated and is then
presumed to be 0.)

The effective priority of a frame is a function
of (a) the user priority of the page occupying
the frame, and (b) the lock status and I/O
status of the frame. Differentiating between
user priority and effective priority lets us
represent a temporary boost of a page’s
priority, even beyond what the user requested.
While a page’s user priority is in the range [0,
10], a page’s effective priority is in the range
[0, 11].

In order to keep the pre-caching / page-
eviction logic clean, the buffer cache applies
two simple rules:

e A page with a higher effective priority
always gets preferential framing over a
page with lower effective priority.

e A page currently holding a frame will not
be evicted to make room for another, not-
yet-framed page with the same effective
priority.

These rules provide a somewhat clean way for

the buffer cache to offer pinning when

necessary.

In order for a page frame to be pinned, its
effective priority must be 11. The following
frame states will cause a frame’s effective
priority to be 11:

e The user holds a read-lock or a write-lock
on the page frame.

e The page frame is being lazy-written to
disk.

e The page frame is currently being
populated from disk.

A page that isn’t pinned will just have an
effective priority equal to its current user
priority. With this scheme, all page frames that
meet any of the three pin-causing conditions
will have a higher effective priority than any
page frame that lacks all those conditions. This
mechanism is how we prevent the eviction of
pinned frames.

Page 5 of 9

Internal Design

Three main data structures in the buffer cache
contain information about pages and/or frames:

e Available Page Set
e Frameless Pages Map
e Framed Pages Map

Available Page Set is a cache of available
pages. This cache exists because acquiring a
new page from IOLIB can involve a lot of
latency. When a user asks the buffer cache to
allocate a new page, the page is drawn out of
this set. If the cache is getting too low on
pages, requests are issued to IOLIB for
additional pages. Then IOLIB satisfies those
page-allocation requests, the resulting pages
are placed into the Available Page Set.

Frameless Pages Map tracks the user
priorities for pages that the user has explicitly
set the priority on, but which aren’t currently
framed. In the simplest sense, this map just
remembers, per page, the user priority that the
user has specified.

This map also has logic for quickly finding n
pages in the map that have the highest user
priority. This is helpful when frames become
available, and the buffer cache must quickly
select the pages that are to be granted frames.

Framed Page Map has one entry for each
framed page. It carries information regarding
the page and the state of the frame. Each entry
in this map records: Page address, user priority,
effective priority, locking status, and /O status.

The buffer cache uses a single dedicated
thread to perform pre-caching, lazy-writing,
and to handle all results from IOLIB
operations. A single thread is able to
accomplish all these tasks because of IOLIB’s
asynchronous interface. This seems to validate
the choice of using AIO at the IOLIB level. It
lets higher levels avoid the complexity of
heavy multithreading.

Engineering Challenges

The buffer cache’s complex interface proved
very difficult to implement and to use. While
the priority-based map still seems sound
conceptually, it’s unclear whether or not it can
provide enough performance boost (or any

boost for that matter) to warrant its code
complexity.

Another issue was specifically a result of the
buffer cache not offering demand paging.
When a user’s thread wants to access or lock a
page, the buffer cache must provide an
efficient way to sleep that thread until the page
is in the desired state

To implement this, the buffer cache keeps a
map of {page addresses = signal semaphores}.
Any user thread that wants to await the
framing, or the lockability, of a page puts a n
entry into this map. The user thread then waits
on the semaphore, and the buffer cache will
signal it when the page reaches the desired
state.

This machinery seems overly complex, and an
open question exists regarding if/how this
mechanism can be improved.

Finally, using many different data structures to
track the states of pages and frames may
contribute to the general CPU-boundness of
ASM. ASM relies on C++’s Standard
Template Library extensively for providing
maps, sets, etc. Unfortunately, the C++ STL
can lead to a programmer carelessly create too
many container structures, because it takes so
little programming time to do so. One must
wonder exactly how much performance loss is
attributed to my willingness to instantiate
maps, sets, etc. whenever it was convenient.

Queue Management

The ultimate goal of ASM is to present queues
of tuples, and Connection Points. The Queue
management is the layer that offers that
interface.

While the lower implementation layers in

ASM work in terms of pages, frames, and files,
the Queue managements builds on those to
provide the language of tuples, QBases,
QViews, Connection Points, and Superbox
Plans.

QBases and QViews represent the two
different ends of a tuple-containing queue.
Tuples are inserted into QBases and removed
from QViews.

It seems natural to use a single object, perhaps
called a Queue, to represent the data structure

Page 6 of 9

just described, rather than two objects, a
QBase and a QView. We’ll now discuss the
motivation and the power of the QBase /
QView scheme.

In an Aurora flow diagram, queues are drawn
from the output(s) of one box to the input(s) of
one (or more) boxes. One possible
configuration, the one that motivates the
QBase/QView model, is shown in below.

Box2 ™

y

Box 1

Box3 —»

The meaning of a flow diagram like the one
above is that any tuple placed onto the
Box1->Box2 arc, will also have a copy placed
on the Box1->Box3 arc.

A naive implementation of this topology
would actually duplicate the storage of each
tuple leaving Box 1. One copy would be
placed into the backing store of the
Box1-2>Box2 arc, and the other copy would be
placed in a distinct backing store location for
the Box1->Box3 arc. Such an implementation
seems wasteful, because we know that the two
arcs pass the same data. The QBase / QView
model is how we address this scenario.

When a QView is created, it’s indelibly
associated with some particular QBase. In our
example, a QBase would be defined at the
output of Box1, and two QViews would be
defined: one at the input of Box2, and the
other at the input of Box3.

A QBase manages the backing storage
associated with the tuples inserted into it. It
keeps the stream of still-interesting tuples in a
sequence of pages, where a given page will
hold as many tuples as it can fit. The QViews
simply store pointers into that page sequence.

When a tuple is removed from a QView, the
QView’s pointer into the page sequence is
advanced by as many tuples as were removed.

Once all of the QViews have “removed” the
tuples on one of the pages, the page is no
longer needed by the QBase. At that point, the
QBase can deallocate the defunct page.

(Actually, that’s a simplification. A QBase
keeps a circular queue of pages, to avoid
excessive page allocations and frees. A page
can be freed when it’s empty, but its
appearance in a circular queue means it will
likely get reused and never actually become
empty. As of this writing, the functionality for
returning an empty page to the free-page store
hasn’t been implemented.)

Any QBase can be a Connection Point. When
a QBase is a Connection Point, it can retain
tuples that are no longer of interest to any of
the currently attached QViews. This is to
permit other QViews, attached at some later
time, to have access to the history of the

stream of tuples that passed through the QBase.

Each Connection Point has a hisrory
specification defining how far back into
history the QBase retains old tuples. The
history specification is in terms of maximum
tuple age (elapsed wall-clock time since
inserted), the number of tuples that the queue
will hold at once, or both.

To scan the history stored in a Connection
Point, the user attaches a new QView to that
Connection Point. In the act of attaching, he
specifies how much history is to be replayed
through that QView. The user can specify how
many tuples to return in terms of the
maximum number of tuples, the maximum age
of tuples, or both.

A QView that has been attached to a
Connection Point will present the historical
tuples in the same sequence in which they
were inserted. When all of those historical
tuples have been removed from the QView,
the QView will proceed to present all newly
inserted tuples. That is to say, a QView
attached to a Connection Point smoothly
transitions from presenting historical data to
presenting live data.

Once a page of tuples is no longer needed
according to this history specification, and
now currently attached QView still needs to
present tuples on that page, the page can
finally be freed from the QBase. So in general,

Page 7 of 9

a Connection Point might hold onto data pages
longer than a non-Connection Point QBase
would have.

The Queue management requires the Aurora
scheduler to provide it all active execution
plans. In Aurora’s runtime, there are many
worker threads, each of which is single-
handedly responsible for processing a
sequence of flow diagram boxes. Since there
are many worker threads in the runtime, there
can be many concurrently active execution
plans.

There are two reasons that these execution
plans must be pre-declared to ASM: admission
control, and page prioritization.

Admission control is necessary to prevent
excessive competition for page frames. Every
box that runs, in order to have the necessary
data access, will concurrently pin one or twp
pages from every arc going into or out of that
box. If we allowed an arbitrary number of
boxes to run at the same time, they could
collectively need to pin more pages at one
time than there are page frames. Avoiding
pinning deadlock in such a situation would be
difficult.

To solve this problem, ASM actually controls
when a given worker thread may proceed to
process the next box in its execution plan. By
doing so ASM ensures that there are enough
page frames for all the worker threads’ needs.

One might think that such throttling of the
worker threads would best be left to the
scheduler, not ASM. However, only ASM has
all of the information needed to know exactly
how many frames are available at a particular
moment. This is because dirty frames aren’t
available for re-use until the buffer cache’s
lazy writer commits the frame to disk. That
information should, and does, remain private
to ASM.

Recall that for each execution plan, at most
one step is currently active. Each execution
plan step is associated with a single box that
can operate on two or more queues. For each
execution plan step we can know which will
be accessed and whether the accesses will be
insertions or removals.

ASM'’s elaborate page prioritization scheme
is the other reason that ASM needs

foreknowledge of the scheduler’s execution
plans. It uses the following heuristics to
estimate the global importance of any
particular page being framed.

e The pages associated with currently active
execution plan steps deserve frames more
than do pages associated with not-yet-
active execution plan steps.

e Some of the pages in a queue are closer to
the insert point / removal points than other
pages in the queue. We use the knowledge
of which pages are closest to those insert /
remove points, along with the knowledge
of what insertions / removals a particular
execution plan step is likely to perform, to
give varying priorities to the pages.

Finally, the Queue management makes some
statistics and metadata available to its users.
These include internal performance
measurements, the total number of tuples in a
QView, the number of tuples in a QView that
can be immediately removed without a page
fault, and the average timestamp of all tuples
currently in a QView.

Open Issues and Future Work for
Queue Management

The QBase / QView model has been a mixed
blessing. On the one hand, it allowed a very
easy implementation of the Connection Point
page-retention logic. Pages are kept in a
QBase’s page ring whenever a QView hasn’t
yet presented that page’s data. A Connection
Point just has an extra, internal QView that’s
properly positioned to force the QBase to
retain all of the appropriate historical tuples.

On the other hand, people find the QBase /
QView model confusing. The implementation
was also very complicated; I spent over a
week getting the page-ring logic correct for the
case of multiple QViews.

The ultimate justification for the QBase /
QView model would be the existence of flow
networks, which solve real problems,
containing a lot of boxes whose outputs are
sent to multiple destinations. Whether or not
this will happen remains to be seen.

Performance is another problem. During
informal profiling of an ASM test program, I

Page 8 of 9

found that 70% of the CPU time was spent
recalculating page priorities.

While the page prioritization scheme in ASM
is interesting, it may just be too
computationally expensive to ever justify itself.
If nothing else, ways must be found to reduce
the costs of this scheme.

Another possibility is that we should simply
ignore the tantalizing information we have on
future probable page-access-order. Perhaps
demand-paging with LRU or MRU eviction
policies would serve us well. This is a very
important research topic for ASM’s future
viability. If ASM doesn’t improve in this area,
Aurora has little chance of performing
acceptably.

Atomic operations may be necessary if
Aurora is every to be recoverable after a crash.
One difficulty, though, is deciding exactly
what the granularity of atomicity ought to be.

For the future, we’re considering an alternative
representation for storing a Connection Point’s
purely historical data. Instead of simply having
Connection Points hold on to data pages
longer than their non-Connection Point
counterparts, we may migrate such historical
information into a relational database, such as
Berkeley DB. The motivation is the hope that
Connection Points could more efficiently offer
selections and/or projections of the historical
tuples in a way not currently possible.

Finally, in the future ASM may need to
provide per-box state storage. Various box
types may need significant amounts of durable
private state. That state information only needs
to be in main memory while its associated box
executes. Since ASM already has a paging
system in place, it may be the natural
mechanism for storing box states.

State of Integration

Aurora still uses its old prototype storage
manager. This is largely because we’ve lacked
the time to integrate this new ASM. We hope
to begin the integration in late April of 2003.

The integration will be somewhat complicated
by the different services provided by the two
storage managers

Acknowledgements

Few of the ideas for ASM came only from me.
Many of the ideas were originated and
improved by the various people attending
Aurora meetings over the past few years.
Thanks to all.

Page 9 of 9

