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Abstract

We have created a framework for detecting user errors in spreadsheets. It consists of a
unit-checker (XeLda) and a type-checker. The unit-checker enforces unit consistency
and flags misused units and derived units that clash with their annotations. The type
checker assigns types to cells based on their header labels. There are two types of
relationships between headers, namely is-a and has-a relationships. We develop a set
of rules to assign types to cells. We check that every cell has a well-formed type. Our
framework is sensitive to the intracicies of Excel spreadsheets, and can handle tables,
matrices, and even circular references. Our approach draws on the idea of unit inference
for programming languages developed by Goubault, Kennedy, Wand, and others. The
framework integrates smoothly with Excel by accessing its COM interfaces from PLT
Scheme. Our technology can detect errors in the consistency of some off-the-shelf
scientific spreadsheets.
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Chapter 1

Introduction :

The formula languages used to program spreadsheet applications are today’s most
widely-used functional languages. While such languages lack many of the sophisti-
cated features and abstraction mechanisms found in languages such as Scheme, ML,
and Haskell, their core is an effect-free language of expressions. Programming lan-
guage researchers would do well to pay some attention to such languages, because
research results for them can have a big impact. To date, only a modest amount of
language research has been directed toward spreadsheets.

Not only are spreadsheets programs, they are increasingly one of our most popular
programming languages. Millions of users employ spreadsheet utilities on a regular
basis. The wealth of features and tools in these utilities lets users perform several
complex operations ranging from “what if” calculations to limited forms of database
management. Because of their powerful operators, they are used not only in business
applications [31], but in some forms of mathematical and scientific computing, both to
teach students [33] and to build applications [32].

Spreadsheet applications appeal to many users because their formula languages are
expressive enough to create complex computational models without in-depth program-
ming knowledge. But spreadsheet programs are particularly likely to contain errors:
one reason is that users are likely not to be professional programmers, who may not
use rigorous software design and testing methods [15]. Given the large numbers of
spreadsheet users, and the likelihood of errors, there is a great potential payoff for
automatic detection of spreadsheet errors.

Indeed, the problems with spreadsheets are also a software engineering problem.
Spreadsheet utilities are increasingly accessible to external programs through powerful
interfaces, such as those defined for Microsoft Excel in COM [34]. This, combined
with the growing desire to cobble applications from fragments in different domain-
specific languages, means the reliance on spreadsheets will only grow. Therefore, the
reliabilitys of an overall software system can increasingly be compromised by a buggy
spreadsheet.

Spreadsheet formulas are commonly used to perform financial, scientific, and en-
gineering calculations, which manipulate quantities with associated units. As far as
we know, no spreadsheet application performs the consistency checks that are nor-



mally done for hand calculations with units. If the user puts numbers in some cells, a
spreadsheet application blithely calculates results for other cells based on the formu-
las provided, even if the results are nonsensical from a units viewpoint. The practical
and economic importance of unit consistency is great. To cite a well-known exam-
ple: In 1999, the $125 million Mars Climate Orbiter project failed because of a unit
consistency error [1].

Over the past twenty years, the programming languages community has recognized
the significance of units and developed techniques for dealing with them. In particular,
during the 1990°s, Wand [21], Kennedy [11, 13], and Goubault [9] independently de-
veloped similar methods for integrating units into ML-like languages. Unfortunately,
these techniques have not yet found their way into popular programming languages.
With XeLda, we have borrowed some of the ideas behind earlier research efforts, and
devised some new ones, and applied them to a working implementation for a spread-
sheet language.

We also tackle the problem of statically type-checking spreadsheets by analyzing
the formulae in the spreadsheets following the lead of Erwig and Bumett [4]. We
present a collection of rules that help identify weaknesses in spreadsheets that are likely
to be errors.

Our tools for checking spreadsheets extract data from Excel, perform unit-checking
and type-checking, and report errors using flow graphs drawn back into the spreadsheet.
We borrow from functional programming languages and functional programming in
three ways:

e we analyze a functional language, the formula language of Microsoft Excel
spreadsheets;

e we adapt technology used to analyze functional languages, applying that tech-
nology to spreadsheets; and

e our tools are mostly-functional Scheme programs.

We addresses the important problem of unit/type consistency in the setting of spread-
sheets.

Excel is weaker than spreadsheet languages such as Forms/3 [23], and provides
less information to build an effective checker. Nevertheless, because we do not have
the power to change practice, we believe it is important to contend with the vicissitudes
of a mainstream utility to make our work most widely applicable.

The rest of the document is organized as follows. In Chapter 2 we describe the
theoretical foundations behind the type checker. In Chapter 3, we describe how to use
the unit checker tool and provide the theoretical foundations behind the unit checker.
Chapter 4 describes our implementation in more detail. In Chapter 5, we report on our
experience testing the checkers with some off-the-shelf scientific spreadsheets. Chap-
ter 6 mentions related work, and Chapter 7 suggests how our tool might be improved.



Chapter 2

Types

In this chapter we describe the type checking aspect of our framework. We start with
a few motivating examples that lay the groundwork for the formalism behing the type
checking. We then present the judgement rules and types used to validate spreadsheets.

2.1 Motivating Examples

In this section we introduce the basic concepts and desired behavior of our type check-
ing system by providing several examples. Suppose the spreadsheet user works at a
company that produces home electronics. A very simple table from this domain is
shown in Figure 2.1, where the top view shows the values in the spreadsheet, and the
bottom view shows in bold the formulas and references actually entered by the user.
Intuitively, the user should be able to add the numbers in each row and column of the
table because each row or column consists of compatible types. For example, cells B3
and B4 have both the type: TVs, so we can add them together to get another number
in terms of TVs. We can also add cell B3 to C3, because they both have the type:
year 2001. The result, D3, will be of type 2001, and moreover, we can abstract over
the specific type of electronic device in each cell and determine that the result is also
of type Electronics. On the other hand, if the user tries to add B3 and C4 (perhaps
because of a formula error), this will cause a type-checking error, because these cells
do not have either a year or a type of device in common.

Figure 2.2 shows a slightly more complicated table in the same domain. Here,
TVs and VCRs are further subdivided into three categories each. As in the previous
example, we can perform an operation (in this case, subtraction) on cells B4 and C4
because they both have type of 2001 and abstract to types of TVs. We also want to
be able to handle column H, which contains the sum of defective TVs and defective
VCRs. We see that cells C4 and F4 have the type 2001 in common. They are also
both Electronics and both Defective, but they do not have the intermediate category
of either TVs or VCRs in common. Ideally, we would like our type system to be
able to capture this information by assigning the result type of 2001 and Defective
Electronics.
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Figure 2.1: Electronics Production by Year

Finally, consider Figure 2.3. If we follow the pattern laid out above, D3 will have
types of the year 2001 and Gross Sales, because we will “abstract” over TVs and
VCRs and find that B3 and C3 have Gross Sales in common. This seems slightly odd,
since Gross Sales is not a supercategory of TVs and VCRs the same way Electronics
is. In addition, we now want to be able to subtract B9 from B3 to obtain B15, but B3
and B9 have only the subcategory TVs in common, and no common supercategory at
all.

In the remainder of this section we describe a type system that will allow us to
perform all these operations, as well as preventing errors such as adding B3 to C4 in
Figure 2.1 or subtracting C9 from B3 in Figure 2.3. This type system is insensitive to
the specific arrangement of data, so that if the user chooses to present the data in Figure
2.3 differently (see Figure 2.4), the results of type checking will be exactly the same.

2.2 Headers and Relationships

We now describe our model of spreadsheets, defining key concepts of our type checker
such as headers and relationships. We then introduce types, the basic elements of our
system upon which error checking occurs. We continue with rules to govern how types
may be built from spreadsheet.

We consider spreadsheets to be comprised of cell locations, values, and expres-
sions. Cell locations are given by their addresses, which we take from the Excel grid
system. Values in spreadsheets are typically numbers or strings, but may include other
data types as well. Some cells contain expressions, and may include operations on the
values of other cells referenced by their locations. The evaluation of an expression
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Figure 2.2: Electronics Production Minus Defective Products

yields a value.

A header is a concept that defines the common type for a group of cells. Some
cells contain values that provide names for headers, and we call these header cells. For
example, in Figure 2.1, B1 is a header cell containing the value Electronics, which is
the header for TVs, VCRs, and Total (in cell D2). We assume that each header cell
defines a different header, unless it contains a reference to another header cell. For
example, in Figure 2.1, the value Total appears in cell A7 as a total over Years and in
cell D2 as a total over Electronics. In this case, although these header cells contain
the same value, they define two different headers. On the other hand, in Figure 2.2, the
value Defective in cell F3 comes from a reference to C3, so these two cells define the
same header.

Note that a single cell may have more than one header. For example, cell B3 has
two headers, TVs and 2001. In addition, there may be cells whose headers are not
defined explicitly by header cells. Figure 2.3 illustrates this situation. Here the TVs
and VCRs cells are both electronic goods, so they implicitly share a header we will
call Electronics, though there is no cell to indicate this. The problem of inferring
implicit header information will be discussed further in Chapter 5. We assume in our
type-checking system that all headers are known.

There are two kinds of relationships that can exist between headers in our type
system. These relationships, common to many type systems, are the is-a and has-a
relationships. We use the is-a relationship for both instances and subcategories, so that
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Figure 2.3: Electronics Sales and Profits

in Figure 2.1, we say that 2001 is-a (instance of) Year and that TVs is-a (subcategory
of) Electronics. The has-a relationship generally describes properties of items or sets.
For example, we can say that in Figure 2.3, the set of TVs has-a (property called)
Gross Sales.
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2.3 Types

Using the concepts of headers and relationships, we can now introduce the concept of
types. Types form the basic elements upon which we perform error checking. Every
cell has a type determined by the cell’s headers and the relationships those headers
participate in. The simplest type is the Top type. Any cell that has no headers has type
Top. Examples from Figure 2.3 are cells A2 (Year) and B1 (Gross Sales). Header
cells that participate in is-a relationships have hierarchical is-a types, which we denote
with square brackets. The type of cell C3 in Figure 2.2 (Defective) is therefore written



Topl[Electronics[TVs]]. Since all is-a hierarchies are ultimately derived from Top, we
will generally leave Top out when describing types from this point onward.

Non-header cells have somewhat more complex types. The type of every non-
header cell contains exactly one has-a relationship, which we denote with braces. This
is because a has-a relationship uniquely identifies the kind of data present in a value
cell. If there were more than one has-a relationships, we would need to represent
multiple data values in that cell, which is impossible. For the same reason we cannot
have types made entirely of is-a relationships, although the has-a relationship might
be implicit, as described below. In addition, non-header cells may have an arbitrary
number of headers, each of which defines its own is-a hierarchy. We create types with
multiple is-a hierarchies using the & operator. For example, cell B3 in Figure 2.3 has
two headers, 2001 and TVs. The TVs header is related to the Gross Sales header by
the has-a relationship, so the type for B3 is:

Electronics[TVs]{Gross Sales} & Year[2001]

Note that, like other headers, the header defining the has-a portion of a cell’s type
may not be explicitly given in the spreadsheet. The tables in Figures 2.1 and 2.2, for
instance, do not list this header explicitly. However, we can see by looking at the tables
that the property described by the data is a Number or Quantity of electronic devices.
That is, each set of devices listed in the table has-a Quantity. The type for cell B3 in
Figure 2.1 is therefore similar to the previous example:

Electronics[TVs]{Quantity} & Year[2001]

Now that we have covered headers and types, we focus our attention on the de-
scription of well-formed types. In particular, below, we formally state requirements
for a well-formed type through judgement rules that encompass all the different kinds
of cells that may appear on a spreadheet. We observe the following conventions for
notation:

e [(d) is the is-a header for header d (possibly ()

e U(d) is the type for header d

e T(a) is the set of is-a headers for the cell at location a
e U{(a) is the type for the cell at location a

e d — h shows header d has-a header h

v(a) is the value of the cell at location a

(= uq[ug|. .. us]...]]) is the short-hand representation for a hierarchy of is-a
relationships

o if i =wul... [un].. ] then @] = ug... [une]].. ]

The four categories of elements for which we compute types are:
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1. Headers. The type for a header is determined by its is-a relationships. Every
header itself has either zero or one is-a headers. In the former case, the header’s
type is Top '

FI(d) =0
F U(d) = Top

Otherwise, its type is a concatenation of its header’s type and its header’s name:

FId)=d Fd#0 FUd)=1
- U(d) = d|d]

We define the type of a header cell to be the type of the header it names.

2. Non-header cells containing values (i.e. user data), such as cell B3 in Figure
2.1. These cells also obtain types from their headers. Every cell containing user
data must have at least one is-a header. Moreover, there must be exactly one
is-a header with a has-a relationship. In the case where a cell has only one is-a
header, the cell’s type is formed by concatenating its header’s type and header’s
name as above to obtain the is-a part of the type, and adding the has-a header at
the end:

FZ(a)={d} FUd)=d +Fd—h
F U(a) = dd){h}

When a data cell has more than one is-a header, each is-a header defines its own
is-a hierarchy, and the results are combined using the & operator:

F Z(a) = {d,dy,...,dn}
Vi€ l.n: U(d;) = u;
U(d) = uy d—h

b U(a) = ug[d]{h} & di[di] & ... & 4y, [d,]

3. Cells containing references only, such as cell E3 in Figure 2.2. The type of a cell
containing a reference is the type of the cell it refers to.

F v(a) =a’
F U(a) =U(a)

4. Cells containing formulas, such as cell BS in Figure 2.1. These cells contain
expressions involving mathematical operators, and the resulting type for this kind
of cell depends upon the actual operator in use. We discuss the rules needed for
our type system to support the four basic mathematical operators (+, -,*,/) in the
following section.

I'The bottom part of a judgement rule is what the type checker is able to infer based on the preconditions
present in the top part of the judgement. See Pierce's book [27] for a detailed explanation of type systems.

12



2.4 Types and Mathematical Operators

In this section we motivate and describe the behavior of our system with regard to
mathematical operations. The formal judgements for these operations are listed in full
in the Appendix. The section introduces these judgements in a less formal way, making
use of the Excel examples.

We begin with the simplest example, Figure 2.1. We want to be able to add the
quantity of TVs and VCRs. Intuitively, we can think of trying to union the set of TVs
and VCRs to get a combined set. The resulting set will still represent quantities (the
has-a relation) but we want the union to be described by only the common part of TV
and VCRs. In our type notation this means that

Electronics[TVs]{Quantity} + Electronics[VCRs]{Quantity}
when type-checked should yield:
Electronics{Quantity}

Essentially, we want to keep the has-a part unchanged and perform a union operation,
@, on the is-a part of the type. In general, we have:

F ui{h} F aia{h}
Foai{h} +us{h} — uj ® uz{h}

Thus, when we add two types, if they have the same has-a part, the result is the union
of their is-a part. There is an underlying principle here that is the core of the addition
rule: in order to add two types, they must have something in common (in this case the
has-a part). Now consider the case where the two types have a common is-a part. Here
is a variant of the example in Figure 2.3:

Electronics[TVs]{Costs} + Electronics[TVs]{Profits}

Clearly, we cannot perform a union operation on Costs and Profits, because they are
both properties of the same set, namely TVs. By adding Costs and Profits, we obtain
a new property of the same set of TVs. In general, this new property will be some
irreducible combination of the two old properties. Using the o combinator to indicate
the new compound property, the result of the previous equation therefore becomes:

Electronics[TVs]{Cost o Profit}
Or, in general:
Fo@{h} F a@{ha}
F @{h1} + d{ha} — @{h1 o ha}

There is only one situation that we haven’t covered yet, the one where both the is-a
part and the has-a part of the type differ:

Electronics[TVs]{Cost} + Electronics[VCRs]{Profit}

13



This equation clearly violates our principle stating that types must have either the is-a
part or the has-a part in common in order for the addition to pass the type checker.
Intuitively, also, we see that this is the kind of operation we want to prevent, as it could
only result from a mistake made by the user.

We turn our attention now to the & rule, as it is an important part of the addition
operation. We quickly glanced over it in the first example of the section, when we
obtained Electronics from Electronics[TVs] & Electronics[VCRs]. The @ rule ap-
plied to the is-a parts of the types, and combined them by retaining in the result only
the common parts of the two types. Judging from our first example, it might seem that
the result of the union operation will always be a more general type than either of the
two arguments. But suppose we want to perform a union operation on these two types:

Electronics[TVs[Wide-Screen[Defective]]] &
Electronics[VCR[Defective]]

In this case we could also say that the result should be Electronics, but we would
lose information common to the two original types: the fact that they are both defective.
Instead, our desired result is:

Electronics[Defective]

The & operation therefore combines the is-a parts of two types creating a new type
from all the common features of the two types, not just the most general ones.

To summarize, the addition rule applies only to types that either have identical has-
a parts, in which case the result is a @ operation on their is-a parts; or identical is-a
parts, in which case the result is a o operation on their has-a parts.

Now that we have seen how addition works, we will describe subtraction. As with
addition, we want to allow subtraction only between cells that have either identical
has-a or is-a parts. We begin with the first case. In Figure 2.2, the Okay column for
TVs requires us to subtract the following two types:

Electronics[TVs[Total]]{ Quantity} -
Electronics[TVs[Defective]]{Quantity}

We want our type checker to identify the result as representing a quantity of TVs:
Electronics[TVs]{Quantity}

We cannot be any more specific about the type of the result, since there is no way to
know in general whether the set resulting from a subtraction operation contains any
items of the subtracted type. In other words, we may not have subtracted all the defec-
tive TVs from the original set. We only know that, since both original sets were types
of TVs, we must still have a set containing only TVs (of some type). This result is
satisfying, since it exactly mirrors the behavior of addition, where we apply & operator
to the is-a parts.

Now consider subtracting two types with a common is-a part, as in Figure 2.3,
where the data in the Profit column is given by:

Electronics[TVs]{Gross Sales} - Electronics[TVs]{Costs}

14



As with addition, the result is the combination of the is-a part, Electronics[TVs], and
a new property derived from Gross Sales and Costs:

Electronics[TVs]{Gross Sales o Costs}

Having seen how addition and subtraction work, we can conclude that any binary
operator must correctly handle two cases: identical is-a parts and identical has-a parts.
In the case of identical is-a parts, the result of the operation is always a compound of
the two different has-a parts. For example, suppose we have a computation for the area
of a rectangle:

Shape[Rectangle]{Length} x Shape[Rectangle]{Width}

It is obvious we want to remember that the result is given by the combination of Length
and Width:
Shape[Rectangle]{Length o Width}

We conclude, therefore, that when dealing with identical is-a parts, any binary operator
returns a o combination of the has-a parts along with the is-a part as the result.

Is the case of identical has-a parts also uniform across all binary operators? We
have seen that both addition and subtraction require the use of the @ operator on the
different is-a parts. But suppose we have the following equation:

Shape[Rectangle]{Length} x Shape[Square]{Length}

Clearly it does not make sense to have Shape{Length} as the result. In fact, there is no
satisfactory combination of the two is-a parts that will accurately describe the result.
However, we do not want to flag this as an error, since there might be a legitimate
reason for the user to perform this operation. Therefore, when dealing with any binary
operator other than + or -, the result of combining two types with different is-a parts
and the same has-a part is always Top{h} (where h is the common has-a part).

To obtain meaningful results from constructs such as:

Shape[Square]{Length} x Shape[Square]{Length}

the identical is-a combination, o, takes precedence over the identical has-a combina-
tion, & or Top.

Finally, we will describe the and(&) operation. As briefly noted above, the type of
cell B3 from Figure 2.1 is:

Electronics[TVs]{Quantity} & Year[2001]

The type of a value cell that has more than one header is given by the & constructor on
the types inferred from each individual header. There are restrictions on the kinds of
types on which we can perform &.

Each header conveys a distinct property for the data in the cell, which means that
a well-formed & type consists of different, header inferred, types containing only is-a
parts, with only one of them potentially having a has-a part. Since there is only one
has-a part at most, the difference applies to the is-a parts of the types. Two is-a parts

15



are different if and only if their top labels are different because only then do the two
is-a parts represent disjoint data properties. The & operation is idempotent to handle
the special case when two is-a parts are identical. For example, Electronics and Year
are clearly different so it is correct to join them through &. On the other hand,

Electronics[TVs] & Electronics[VCRs]{Gross Sales}

does not represent a valid & type operation because both headers represent Electronics
and that contradicts our requirement that the headers differ.

The & operation is distributive with respect to any other binary operation between
types. For example, in Figure 2.1, cell BS has type:

Electronics[TVs]{Quantity} & Year[2001] +
Electronics[TVs]{Quantity} & Year[2002]

which reduces to:

Electronics[TVs]{Quantity} &
(Year[2001] + Year[2002])

We want the type checker to perform the addition on the two is-a types as if there
were an empty has-a part, yielding the following result:

Electronics[TVs]{Quantity} & Year

We thus handle the reduction of Year[2001] + Year[2002] using the special case
of the identical has-a rule for binary operations, the one with empty has-a parts.



Chapter 3

Units

In this chapter we present the unit checker. We start with a description of the unit
checker tool, XeLda. We then describe the theory underlying the unit checking mech-
anism.

3.1 A XeLda Tutorial

Both our unit checker and type checker use the same interface to interact with spread-
sheets. Below is a description of XeLda the unit checker. The usage in the presence
of types mirrors exactly that of units with the difference that cells are annotated with
types (see the chapter on types for a full description) instead of units.

Xeldais a MrEd program. Figure 3.1 shows the Xel.da control panel, which allows
the user to specify a spreadsheet for unit-checking. Pressing the Load File button
starts an instance of Excel on the specified spreadsheet. The user annotates cells with
unit expressions, if desired, or can allow XeLda to infer unit expressions. If a cell
containing just a number, and not a formula, is unannotated, it is assumed to contain
a dimensionless constant. XeLda computes units for all cells with formulas, which
may or may not have explicit unit annotations. Unit expressions are placed in Excel
comment fields, either directly in Excel, or by using the unit annotator in the XelLda
control panel. The annotator assigns a unit expression for all cells within a “cell range,”
or a block of cells. A cell range can be entered textually in the control panel, or selected
with the mouse in Excel itself.

Once the spreadsheet is loaded and annotated, the user presses the Analyze button
to perform unit-checking. Two basic kinds of unit errors can occur:

e a unit expression derived from a formula appearing in a cell is different from its
unit expression annotation (a march error), or

e the unit expression derived from a formula indicates an error in the formula or
one of its subexpressions (a consistency eriror).

XeLda flags these errors by coloring the cells where they occur, orange for a match

17



" [Ready to load Excel file
| | |Loaded file: F:\ph\collects\xelda\errors.xls

Figure 3.1: XeLda control panel.

error and yellow for a consistency error. In addition, whenever an error occurs at a cell,
all cells that depend on it are colored purple, indicating error propagation.

When a unit error occurs, it is useful to know why the error occurred, and what the
sources of the error are. XelLda gives an explanation of why an error has occurred in
a cell by inserting text in the cell’s comment field beneath its unit expression, if any.
Unit expressions are entered using the syntax shown. Error explanations are prefaced
by a semicolon. The sources of an error are shown by drawing arrows to the error cell
from the cells it depends on.! Right-clicking on an error cell draws its source arrows
and colors the source cells red; right-clicking again removes the arrows and coloring.
Figure 3.2 shows a XeLda-analyzed spreadsheet with a textual explanation display and
some source arrows drawn. Cell C4, annotated with kilogram-meter/second?
is the product of cells A2 and B3, annotated with kilogram and meter-s econd?,
respectively. Therefore, there is a mismatch between the computed units for C4 and its
units annotation. The other error occurs at cell C9, which is unannotated, because cells
A7 and B8 are annotated with apple and orange, respectively. In both cases, the
data sources for the cells where the error is detected are indicated by arrows from the
sources to those cells.

Some cells may depend on a range of cells for their computation. For example,
if an error cell is an element of a matrix resulting from a matrix multiplication, Excel
shows dependency arrows from both source matrices.

The Clear button on the XeLda control panel allows the user to remove error mes-
sages, error coloring, and source arrows. Removing those artifacts from a spreadsheet
supports iterative debugging of unit errors. If Xel.da detects many errors in a spread-
sheet, the user might wish to fix just a few of them at a time over multiple sessions.
The user can clear a worksheet from XeLda, save it without any extraneous information
added by the analysis, and work on it at a later time.

We switch our attention now to the unit checker. As mentioned before, a spread-
sheet has cells that may contain formulas and unit expression annotations. We begin

I'The idea of drawing source arrows came from the MrSpidey [7] static debugger for PLT DrScheme.
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Figure 3.2: Unit errors in a spreadsheet.

with a detailed description of formulas.
The abstract syntax of formulas is given by:

eu=n|cell-ref|id | eop e | fun(e, ..., e)

where n is a number, cell-ref is a cell reference, op is an arithmetic operator, and fun
is an identifier denoting an Excel function. Examples of Excel functions are SUM,
AVERAGE, and MAX. Lexically, a cell reference is a string consisting of one or two
letters followed by one or more digits, where the digits denote a positive number; ex-
amples are A1, B52, and CH22. Excel imposes some restrictions on the letters that
may be used in cell references, but those need not concern us here. An id is an identi-
fier that names a spreadsheet cell, but is lexically not a cell reference. It is possible for
a function name to do double-duty as the name of a cell; the role of an id can be de-
termined by syntactic context. The association between cell references and particular
spreadsheet cells is implicit in the layout of the spreadsheet. Cell names, on the other
hand, are assigned by users. Excel will flag an error if an identifier used in a formula
is not associated with any cell, so XeLda need not consider that possibility. In the con-
crete syntax of formulas, parentheses may be used for grouping, of course, and there
are alternate notations for cell references. With this grammar, we purposely ignore a
few constructs found in Excel formulas, such as boolean constants and conditionals.

Unit expressions represent the dimensions associated with a numeric value, con-
sisting of a possibly empty list of unit, exponent pairs, or an error:

U:=((wn)...) | error/equality | error/propagate |
error/circular

where each w is the name of a unit and n is an integer exponent. The unit expres-
sions of the form erroxr/... are error unit expressions. Our implementation uses
a more conventional notation for units, rather than the Scheme-like list syntax given
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here. The names of units are arbitrary; examples are kilogram or second. In our
system, we do not associate those names with physical dimensions; their significance
is simply the user’s interpretation of them.? The empty list denotes dimensionlessness.
A nonempty list of units and their exponents denotes a product of units; a negative
exponent indicates division. For example, the unit expression

((kilogram 1) (meter 1) (second -2))

denotes an SI Newton.

Because we wish to compare unit expressions, it is convenient to have a normal
form for them. Within a unit expression, the ordering of units is unimportant: a
kilogram-meter denotes the same unit as a meter—kilogram. A unit name needs to
appear within a unit expression only once, because the exponents in multiple occur-
rences can be summed. Any unit with a zero exponent does not contribute to the unit
expression, and therefore can be omitted. So:

Definition 1 A unit expression ((winy) ... (Wmny)) is in normal form iff
e eachw inwy, ..., w, is distinct;

o w; < witq forl < i < m, where the comparision on the w's is lexicographic;
and

en;#0forl <j<m

This definition is close to Kennedy’s presentation of unit expressions as elements of an
Abelian group [13], except for the sorting requirement, which is useful for an imple-
mentation. Clearly, we can obtain the normal form of any unit expression by summing
exponents of like units, filtering out units with a zero exponent, and sorting on the unit
names.

3.2 Deriving Units

Given a spreadsheet, we wish to compute unit expressions for each cell containing a
number or formula that yields a number. Our basic strategy is to take the unit expres-
sions of arguments to a function and combine them according to that function. That
strategy corresponds to the way people derive units for paper calculations.

‘We can partition nonempty spreadsheet cells into those that contain a number (value
cells) and those whose value is derived from a formula (formula cells). In Excel, an
equals sign as the first character in a cell introduces a formula cell; all other nonempty
cells contain values. A formula can be extremely simple, such as =17. We consider
formulas that consist of just an equals sign followed by a number as a value cell. Cells
whose text is of the form =name or =A5 are formula cells, because their value depends
on other cells, even though they do not contain operators or functions.

The distinction between functions and operators is syntactic; from here on, we re-
fer to both as just “functions”. Some Excel functions, such as SUM and AVERAGE,

*While we might get stronger unit-checking by fixing the available unit names, XeLda allows users to
choose any consistent system of units. New unils can come into existence; consider the euro.
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are variadic. To indicate an Excel function, we subscript its name, writing the arith-
metic operators as + xz,, *xr, and so on, and the others just mentioned as SUMx,, and
AVERAGE xJ..

Except in the case of circular references, described below, we use unit transformers
to compute unit expressions. The use of a unit transformer mimics the derivation of
units that people perform when doing hand calculations. For each spreadsheet func-
tion or operation Fun x,, we introduce the unit transformer m, which takes one or
more unit expressions and produces a unit expression. The arity of Fun is the same as
Funxr: Fun is variadic if Funyyp, is.

For example, + x;, performs addition in Excel. Let U be any unit expression.
error-unit(U) holds iff U is an error unit expression. We define the unit transformer:

error /propagate if error-unit(Uy) or
error-unit(Uy)

Uy if Uh =Us
error/equality  otherwise

That is, the units associated with the arguments to + must be identical and not error
units; otherwise, we have a units-equality error. The F just mimics what people do
when adding two numbers with associated units: they check that each addend has the
same units, and if so, assign that unit to the sum; otherwise, there is an error. The =
unit transformer for subtraction is identical to +.

Now consider multiplication as performed by the *x;, operator. The unit trans-
former for multiplication is:

error /propagate
if error-unit(Uy) or error-unit(Us)
Uy 5Us =
[Uh @ Uy
otherwise

where @ indicates list append, and [-] indicates normalization.
The unit transformer for division has a slight twist:

error/propagate
if error-unit(Uy) or error-unit(Us,)
U1 a U2 =
U1 @ T
otherwise

where U is like U, with all the signs of exponents reversed. In Excel, division is
denoted by °/°, as usual; here, we write div to avoid syntactic confusion with other
slashes.

In the ordinary case, the unit expression for a formula is derived bottom-up, starting
at value cells, and propagating up to formula cells. Therefore, we might characterize
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unit expression derivation as the computation of synthetic attributes of parse trees. In
order to lessen the annotation burden for users, if a leaf cell does not have an explicit
annotation, we assume it is annotated with the empty list. For cells with formulas, we
use a unit transformer to provide a derived unit expression. Define a map from formula
expressions to unit expressions:

( ()  if eisanumber

Anno(e)
if e is a value cell reference

Anno(e’)
if e is an identifier naming the value cell &’

Units(e) = < Units(Formula(e))

if e is a formula cell reference

Units(Formula(e'))

if e is an identifier naming the formula cell e’

ﬁ?ﬁ( Units(arg,), ..., Units(arg,)))
L if eis Funyy(argy,...,arg,)

where

e Anno is a map from cell references to unit expressions, indicating user-supplied
unit annotations, and

e Formula(e) is the formula associated with the cell reference e

This definition is well-founded for finite formulas. Some Excel formulas depend on
their results, allowing iterative computations; we consider circular references below.

Unit transformers are only useful if they compute a sensible result. The transform-
ers we have just seen, -T—, :, ¥, and div given are fundamental, because they correspond
to basic arithmetic operations, and they handle units in the expected way for those op-
erations. Let Funxy, be a function that takes some numbers and produces a number
by uses of +xr, -xr, *x1, and divx;. Then we derive ﬁ:ﬁ a unit transformer for
Fun xy,, by substituting the corresponding unit transformer for each arithmetic opera-
tion. We can define this notion in a lambda calculus extended with numbers, arithmetic
operations, and corresponding unit transformers.

Definition 2 (Unit transformer) Let [ be the term A\x.e, where e may contain arith-
metic operations, but not +, —, ¥, or div. Then

f=Az.e[F/+,5/—, %/ div/div]

is a unit transformer for f.



£ ST e e E: T T

) i | ™ Tl

B — e e

BN Magic Carpet Pricing| | ~7/|pound/meter®2 |77
41 : ] : A B
| Area needed US price, | Total pried | [

B 14.14% 7.50!Unit price_| 106,051 <~ US total price

_.;_ = \\ M AR U‘,,_dff—::‘“ pound

S il

WY i\ Sheet1 (Shestz { Shesra /T

Figure 3.3: Element-polymorphic table map.

Concretely, suppose AVERAGE xy, when applied to three arguments is implemented as
Azixazs.(T1 + oo + 23) div 3
then the corresponding unit transformer AVERAGE would be
Az1zox3. (1 FTaF23) div3

Of course, for Excel functions, no program text is available. Because we do not have
program text, we intend this specification to be notional, rather than literal, for our
implementation.

3.3 Tables and Matrices

Excel supports tables, typically used to perform “what-if” analyses, and matrix opera-
tions, both of which are handled specially by XeL.da. We cannot use unit transformers
to compute unit expressions in quite the same way as in the ordinary case, because
Excel does not associate formulas with the result cells.
Tables

A data table in Excel is a range of cells that shows the results of a formula com-
putation based on different input values. Tables are derived from ranges of cells much
as functional programmers derive lists by mapping functions over input lists. Using
tables, one can calculate multiple variations of an operation and view them as a block
of cells.

Figure 3.4 shows a simple data table. Cell A1l contains the number 10, and cell
C1 contains the formula A1 + 1, so the number 11 is displayed. The range B2 :B10
contains some other numbers. Each cell in the range C2:C10 contains the formula
{=TABLE (,A1) }. Excel “maps” the x + 1 operation for each value in B2:B10
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and places it in the neighboring cell in C2:C10. When performing table operations,
Excel uses the layout of the spreadsheet to determine what input values to use, and
where to put the results.

i
T T L ;-
» d[\Sheet1 (Sheetz [ ]

Figure 3.4: Data table.

Tables accept formulas with either unary or binary arity, indicating how many num-
bers are replaced in the calculation. In the preceding example, just Al is replaced, so
the formula is of unary arity. Currently, XeL.da analyzes only unary formulas, but han-
dling binary arity ones should not be difficult. Depending on the placement of the
comma in the TABLE arguments, table results may be placed in an row adjoining the
input values, as in the example just given, or in an adjoining column.

For each cell in a table, we compute a unit expression by applying the unit trans-
former for the cell containing the formula, except that we use the unit expression for
the current input value instead of that for the original input. Using the table in Fig-
ure 3.4, suppose we wish to calculate a unit expression for the cell C3 in the table. The
corresponding input cell is B3. The unit expression for C3 is the result of applying the
unit transformer + to the unit expression for B3 and the empty list, the unit expression
for the constant 1.

Because a unit transformer is applied to each input element, which may have dif-
ferent unit annotations, elements of a result table may have different associated unit
expressions. For each input element, we always use the same unit transformer; hence
the computation of units for tables yields true parametric polymorphism over unit ex-
pressions. To continue the analogy with mapping over lists, our approach to tables
is comparable to mapping a function over a heterogeneous list and obtaining hetero-
geneous results. For an example of such polymorphism, see Figure 3.3. We wish to
compute the cost of a magic carpet in several world currencies. The area of the carpet
is specified in square meters. The original input to the table is the price of a magic car-
pet in dollars per square meter. The “what if” inputs to the table are prices per square
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Figure 3.5: Equation of motion.

meter, where the price varies by country. In the resulting table, each numeric price is
annotated with a unit expression indicating the appropriate currency.
Matrix values

Excel supports operations that result in matrix values, for example, matrix multi-
plication. In Excel, a matrix value occupies a rectangular block of cells. Each cell in
the matrix contains the formula that produced the result. In the case of matrix multi-
plication, that formula has the form {=MMULT (M1, M2) } where M1 and M2 are cell
ranges denoting matrix arguments.

For each cell in the result matrix, we check that all elements in the row in M1
required for the calculation of that cell have equal unit expressions. Similarly, we
check the units for the column in M2 that produced the entry for equality. If any
of those input elements has an associated error unit, the unit expression for the re-
sult cell is erroxr/propagate. If either of the equality checks fails, the result is
error/equality. Otherwise, the unit for the cell becomes the normalized product
of the unit expressions for the row in M1 and the column in M2.

We can formalize this idea with a unit transformer for matrix multiplication that is
specialized to a result cell at row 7 and column j:

( error/propagate
if ErrorRowUnits(My,t) or
ErrorColUnits(Ma, )

MMULT(My, Ma)(i, ) = ¢ U1 @QUs;
if UniformRowUnits(Mjy,1)and
UniformColUnits(Ma,J)

| error/equality otherwise

where
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e Uy ; is the unit expression associated with each cell in row 7 in M,
e U, ; is the unit expression associated with each cell in column j in Ma,

e ErrorRowUnits and ErrorColUnits hold iff any unit expression associ-
ated with the given row or column is an error unit expression,

e UniformRowUnits and UniformColUnits hold iff all unit expressions
associated with the given matrix row or column are identical.

3.4 Circular References

Excel allows formulas to depend on themselves, though it issues a warning to the user
when they are entered. The simplest case is a cell reference that depends on itself,
so that a cell, say Al, contains the formula A1. When a formula is circular, Excel
computes a solution iteratively; unless otherwise specified, cells start off with a value
of 0. A user-selectable limit on iteration enforces termination, even in the absence of
a fixpoint; the user can request successive rounds of iteration. Xelda is able to infer
unit expressions and detect unit errors in the presence of circular references with a
specialized unit inference mechanism.

Figure 3.5 shows a spreadsheet containing three circular references. We wish to
iteratively compute the position of a particle under a linearly-increasing acceleration,
given an initial position, velocity, and acceleration. Cells B6 and B7 specify the incre-
ments for acceleration and time, respectively. With each round of iteration, we compute
a new position (cell A4), velocity (B4), and acceleration (C4). By varying the iteration
limit in Excel, we can vary the time interval used to compute the new values. Xelda is
able to validate the units we have assigned to the cells in this spreadsheet.

During parsing, XeLda is able to distinguish formulas with circular dependencies
from those with purely tree dependencies. We first solve for unit expressions for the
latter class of formulas, using unit transformers as described above. Next, we derive
unit expressions for the formulas with circular dependencies.

For formulas with circular references, unit derivation is a three-step process. First,
for each circular formula, we generate a set of constraints containing unit variables and
unit expressions. Next, we build equivalence classes of unit variables and propagate
class representatives to other constraints. We are left with constraints that we map
into algebraic equations, which are then transformed into a set of homogeneous linear
equations. Finally, we solve for the unit variables using Gaussian eliminations, yielding
unit expression solutions for the circular formulas.

3.4.1 Constraint Generation

In the case of formulas with circular dependencies, we cannot apply unit transformers,
because dependency loops would lead to divergence. Instead, for each application
of an Excel function, we generate constraints on unit expressions appropriate to that
function. Essentially, constraint generation postpones application of unit transformers.
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From the definitions of -, =, %, and c’ﬁ?r, the unit transformers for arithmetic oper-
ations, and Definition 2, we see that, except in error cases, all unit transformers produce
unit expressions that contain only the units appearing in their inputs. Both ¥ and =
impose equality constraints on their inputs; % and div specify how to combine input
units to obtain a result unit expression; such specification yields append constraints.
Other unit transformers may specify both equality and append constraints.

Within each formula containing a circular reference, for each use of an Excel func-
tion, we provide fresh unit expression variables for the application node and its argu-
ments and generate constraints. For the arithmetic operators, we generate constraints
as follows:

Q= ey

el +xre =
1 +XL ez {a=aeg

e e = i
1 —XL €2 il

€1 ¥X|, €2 = { a = [ae, Qay,)

erdivyr e = { a=|a,, @og]

where a is the unit expression variable associated with the formula. We also generate
equality constraints for references to annotated value cells, and to cells with noncircular
formulas, whose units have already been computed. Hence, equality constraints can
have nonvariable unit expressions on their right-hand sides.

Let us look at the constraints generated from an arithmetic formula in our example
in Figure 3.5. Cell C4 contains the circular formula: C4 + A6 « A7. The constraints
generated for this formula are:

Qcg = Qg
Qcg = Qg

where «; and «p are fresh variables for the operands of +. For the subformulas, we
obtain: with the formula in cell C4 are:

Q1 = Gcg

az = [as @ ay]
a3 = (@1)(s-3))
ag = ((s1))

where a3 and a4 are associated with the arguments of *.

For each application of other Excel functions, we generate constraints in a similar
fashion. Notionally, we generate constraints guided by the syntax of the function’s def-
inition. As for unit transformers, we can use the lambda calculus for illustration. For
the application (Az.e) e/, we generate constraints for the uses of the arithmetic oper-
ators in e according to the specification above, and the following additional equality

constraints:
a = @
Qer = Qg
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(provide

load-xl-file ;; filename -> void
close-x1l-workbook ;; void -> void
clear-cell-precedents ;; cellref -> void
get-cell-text ;; cellref -> string
get-cell-value ;i cellref -> cell-value
get—-cell-formula ;; cellref -> string
get-cell-name ;; cellref -> string
get-cell-row-col ;3 cellref -> (list num num)
get-cell-color ;j; cellref -> color
set-cell-color! ;; cellref color -> void
get-cell-comment ;; cellref -> string
set-cell-comment! ;+ cellref string -> void
delete-cell-comment! ;; cellref -> void

iterate-over-worksheet
;; (cellref -> V) (V -> bool) —>
iz (listof (list cellref V))

Figure 3.6: I/O layer interface.

where a is associated with the occurrence of €', and «, is associated with all instances
of the binding =. As for unit transformers, this specification is notional, because we do
not have access to the code used to implement Excel functions.

3.4.2 Constraint Resolution

In order to solve the constraints, we use the following algorithm. Because each trans-
formation substitutes equals for equals, they are sound.

From the equality constraints, we generate equivalence classes of variables. Choose
a representative variable for each class. For each class, if at least two members partic-
ipate in constraints with distinct nonvariable right-hand sides, then we choose as the
representative unit for the class error/equality. If there is exactly one nonvari-
able unit expression associated with the class, choose that unit expression as the rep-
resentative unit. Otherwise, there is no representative unit for the class. Substitute the
representative unit, if any, for occurrences of class members on the right-hand sides
of append constraints; otherwise substitute the representative variable. Substitute the
representative variable for occurrences of class members on the left-hand sides of the
append constraints.

Next, we deal with the append constraints. Each of these constraints has the form:

Q; = E,B]@ 82] (31)

where 3 is a metavariable ranging over unit variables and unit expressions.
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A unit expression U may be written in algebraic form. Without loss of generality,
suppose U is in normal form. Then its algebraic form is given by:

u = :l_‘[wzli 3.2)
i

where each w; is a distinct unit name; in this algebraic setting, consider these to be
constants.

From equation 3.1, we can have unit variables, unit expressions, or both, on the
right-hand sides of append constraints. We can represent every append constraint in
the following algebraic forms:

a = 1 X Q2 (33)
= a1 XU (34)
a = U XU (35)

Because normalization is a presentation issue, rather than semantic, it does not appear
in the algebraic representation. The x operator is commutative, so the order of its
arguments does not matter. We wish to solve for the unit variables in terms of unit
expressions. In one special case, we simplify before proceeding to Gaussian elimina-
tion. If the left-hand side unit variable also occurs on the right-hand side of equations
of type 3.4, we can immediately deal with the constraint by examining the right-hand
side unit expression u. If u is the empty list, we discard the constraint, because there is
no effective constraint on the variable. Otherwise, associate error/circular with
the variable, because there is no solution for the constraint.

For the remaining constraints, we divide through by their left-hand sides. The
equations 3.3 — 3.5 become:

1 = alxa; xas (3.6)
1 = alxa xy 3.7
1 = alxu xus (3.8)
Taking logarithms, we get:
0 = —loga+loga; +logas (3.9)
0 = —loga+loga; +logu; (3.10)
0 = —loga+logu; + logus (3.11)

From equation 3.2, by taking the logarithm of a unit expression in algebraic form
u, we have:

logu = Z (n; x logw;)

i
Subtituting for the logarithms of unit expressions in equations 3.9 — 3.11, we obtain
the following linear equations:

0 = —loga+loga; + logas (3.12)
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o
I

— log & + log oy +Z("1e x logwy,) (3.13)

i

0 = —loga+ Y (ny, xlogwy,)+ (3.14)

Z (ng; x logwy;)
J

We solve these equations using Gaussian elimination. If we have fewer equations than
variables, we attempt to solve for as many variables as possible. The remaining vari-
ables are unconstrained, so we assign them error/circular.

For each unit variable « that may have a solution, Gaussian elimination produces
equations of the form:

cloga = Z (n; x logw;)
1

where ¢ is a nonzero integer. Equivalently:
a = Hw;!"lc
i

We accept only solutions where all n;/c are integers. In all other cases, we assign o
the unit expression error/circular.

Let us see how this approach applies to our Figure 3.5. After constraint generation
and equivalence class substitution we have the following append constraints to solve:

Qpg = [&54 O ( S 1 ]
ap = [(m1) (s —2)) @((s2))]
aps = [((m1) (s -2)) @((s 1))]

Converting these to algebraic equations we obtain:

(pg = (ypg X S
Qpg = m
ga = mxs !

‘We have one equation of type 3.4 and two of type 3.5. Following the steps outlined
above, we get the system of linear equations

0 = —logan +logaps +logs
0 = —logap + logm
0 = —logaps +logm—logs

By Gaussian elimination we have:

logaps = logm
logagy = logm—logs
hence
Qpg = I
apy = m/fs
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;7 (cellref -> V) (V => bool) -> (listof (list cellref V))
;; lterate f over cells in a worksheet, returning a list of
;7 cell value pairs, where those values satisfy pred?
(define (iterate-over-worksheet f pred?)

(let* ([used-range (com-get-property worksheet "UsedRange") ]
[cells (com—get-property used-range "Cells")]
[first-row (com-get-property cells "Row")]

[first-col (com-get-property cells "Column")]
[num-rows (com-get-property cells "Rows" "Count")]
[num-cols (com-get-property cells "Columns" "Count")]
(filter (lambda (entry) (pred? (cadr entry)))
(apply append
(build-list num-rows
(lambda (row)
(build-1list num-cols
(lambda (col)
(let ([curr-row (+ row first-row)]
[curr-col (+ col first-col)])
(list (cell-name curr-row curr-—-col)
(f (get-cell curr-row curr-col))))))))))))))

Figure 3.7: MysterX: higher-order COM programming.

as desired
We could use this technique for handling circular references even in the ordinary
case. We do not do so for several reasons:

o the use of unit transformers corresponds more closely to manual manipulation of
units;

e using constraints is more complex and computationally expensive;
e perhaps most importantly, the source of errors becomes unclear.

When deriving units via a unit transformer, the units for a given expression are derived
from the units of its subexpressions. When solving constraints, we use equational
reasoning, which masks the sources of derived unit expressions.
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Chapter 4

Implementation

XeLda is a program that runs in the DrScheme programming environment [6, 8] . The
control panel relies on DrScheme’s MrEd graphical classes. We use the MysterX COM
extension for DrScheme to interact with Excel [20].

The following diagram captures the high-level XeLda system architecture:

- (| CHECKER
I

I
COM API

Currently our interface works with either the unit checker or the type checker, but
not with both simultaneously. The main reason is the current requirement that spread-
sheets must be annotated with either units or types in order to be checked.

An 1/0 layer mediates between the checker(units or types) and Excel, handling all
COM operations. That way, the checker does not have to deal with low-level details.
The interface exported by the I/O layer, shown in Figure 3.6, suggests the operations
used by the checker.

4.1 Excel, COM, and MysterX

Excel exposes all of its functionality through a variety of Component Object Model
(COM) interfaces. To access those interfaces, typically, Excel users write code in Vi-
sual Basic for Applications (VBA), executing the code as a spreadsheet “macro.” Any
COM client in any programming language may access Excel through those interfaces,
though. Xelda uses the MysterX extension to PLT Scheme to communicate with Ex-
cel.

The Excel COM programming model is complex: in Excel 2002, there are over
400 COM interfaces available, each with several methods and properties. In XeLda,
we use only a few of them, such as Application, Workbook, Worksheet,
and TRange. By invoking their methods and using their properties, COM can be
used to make Excel do anything a person might do by interacting with the application,
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Figure 4.1: Unit errors in off-the-shelf spreadsheet.

such as: entering and retrieving information in cells; opening files; drawing charts;
following hyperlinks; invoking VBA macros; and so on. Some of Excel’s interfaces
are outbound, allowing Excel to call code in a client event sink. For example, the
outbound WorkbookEvents interface has a BeforeClose event that is invoked
when a workbook closes.

COM interfaces are not directly visible to the MysterX programmer. Instead, the
programmer invokes methods and gets and sets properties of Scheme objects that rep-
resent COM objects. To retrieve a cell range from a worksheet, for example, we could
use

(define range
(com—get-property worksheet "Range" "D4"))

assuming that worksheet is already bound to a worksheet object. In this case, the
range is a single cell, D4. To add a comment to that range, we could use

(com-invoke range "AddComment"
"this is a comment")

4.2 Mostly-Functional COM Scripting

Using Scheme makes COM programming pleasant. For instance, the I/O module ex-
ports a function iterate-over-worksheet, which gathers information about the
current worksheet. Its inputs are a function that extracts information from a cell, and
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a predicate on that information, indicating whether the cell is of interest. To give the
flavor of programming with MysterX, we show the definition of the function in Fig-
ure 3.7.

The function body is a doubly-nested loop that runs over the rows and columns of
the used portion of a worksheet, building a result list and filtering out undesired ele-
ments. Note that the MysterX primitive com-get-property can take several argu-
ments to form a parh of properties, as in the bindings for num-rows and num-cols.
That is, the Rows and Columns properties of cell ranges return COM objects; we ob-
tain the Count property of those objects within a single call to com-get-property.
The function returns a list of symbol, value pairs, where the symbol is a cell name and
the values are those extracted by the passed-in function. Using this function in the
SOLVER module, we can easily obtain a list of worksheet cells and their formulas with
the function application:

(iterate-over-worksheet
get-cell-formula
(lambda (formula)
(and (> (string-length formula) 1)
(char=? (string-ref formula 0)
#\=))))

The first functional argument retrieves the formula from a cell. The second argument
is the predicate that indicates whether we really have a formula, by making sure the
formula text is not the empty string and that it begins with an equals sign.
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Chapter 5

Applying the Checkers

We have tested the checkers on our own spreadsheets for testing purposes, and also
on some scientific spreadsheets occurring “in the wild.” For the latter class of spread-
sheets, we wished to see if we could detect any errors, or at least confirm unit/type
consistency.

The book by Filby [5] has an accompanying CD-ROM that provides spreadsheets
from a variety of scientific disciplines. None of the spreadsheets appearing in the book
has units or types directly associated with spreadsheet cells. Many of the spreadsheets,
though, specify units in textual headers for columns and rows containing numeric data.
Using XeLda’s unit annotation feature, we inserted unit expressions in the cells labelled
by those headers.

At the same time, we annotated the value cells in the spreadsheets appearing it the
book with the types that we should have obtained through header inference. Header
inference is a difficult artificial intelligence and natural language processing problem.
Our current implementation does not have a type inference mechanism. Instead, it
relies on the same process used by the unit checker, where the user has to annotate the
value cells with the correct types. In the future we plan to work on automating the type
inference, and as part of that mechanism, we may do semantic analysis of headers to
determine relationships with the aid of WordNet [29].

The table in Figure 5.1 describes the spreadsheets we used to test our checkers.
Each horizontal grouping represents one Excel file; within each grouping, each line rep-
resents a worksheet. The size given is the number of non-empty cells; the times are in
minutes and seconds, as provided by PLT Scheme’s t ime macro. The COM time rep-
resents the total time took by the application minus the time the checker (units/types)
took. The Units represents the time for the unit checker and the Types represents the
time for the type checker. The mark (/) accompanying the checkers times represents
those spreadsheets for which the checkers found errors.

The discrepancy between the checkers times and the COM time is explained by
the slowness intrinsic in the COM Automation method which we have used to com-
municate with Excel. There is only one spreadsheet, the Volterra-Lotka Model, that
took a considerable amount of time to unit check. We speculate that this is due to the
formula structures present in this spreadsheet. Most of the formulas are additions and
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Author Description Size | COM [ Units Types |
S.Leharne | Acid Base Titration 109 | 0:23 | 0:01 0:01
W.J. Orvis Oscillations Frequency 43 0:18 | 0:08 /| 0:01
Oscillations Euler Method 345 | 1:51 | 0:27 4/ | 0:01
A.A. Gorni | Cubic Crystalline Systems X- | 83 0:39 | 0:04 0:01
Ray Diffraction
W.J. Orvis Electron Drift Velocity in GaAs | 44 0:15 | 0:03 0:01
J.P. LeRoux | Cleavage Strike Direction 236 | 1:13 | 0:06 / | 0:03 /
Palaeocurrent 284 1:38 | 0:04 0:02
Untilt 53 0:21 | 0:03 0:01
Chi-square 41 0:15 | 0:01 0:01
A.A. Gorni | Grain size of microstructure 40 0:22 | 0:02 0:01
E.Neuwirth | Feigenbaum Diagram 1000 | 2:57 | 0:02 0:01
E. Neuwirth | Simple Model 54 0:06 | 0:01 0:01
Parametric Model 55 0:09 | 0:02 0:01
Complex Model 56 0:12 | 0:01 0:01
Complex Model with Table 75 0:18 | 0:02 0:01
Complex Model with Stepwidth | 57 0:07 | 0:02 0:01
Volterra-Lotka Model 8004 | 14:38 | 3:00 0:21
Planets 4001 | 12:18 | 0:12 0:16
Planets Halfstep 4001 | 10:10 | 0:10 0:14
W.J. Orvis Blackbody spectral emission 507 | 0:52 | 0:01 0:01
A.A. Gorni | Viscometric molecular weight 41 0:46 | 0:03 0:01
A.A. Gorni | Point count method 26 0:17 | 0:02 0:01

Figure 5.1: Experimental results.

substractions. To unit check those we have to check that each operand unit is identical
across both addition and subtraction. None of the other spreadsheets had addition and
subtraction formulas on the same order of magnitude as this one and this might be the
reason why the rest took far less time to unit check.

Three of the tested worksheets had unit errors detected by the unit checker. For
the Oscillation worksheets, the errors were caused by inappropriate textual labelling
of units by the author. By using those same units in annotations, XeLda detected unit
inconsistencies. The other error found was caused by supplying too big a cell range to
the Excel FREQUENCY function. Figure 4.1 shows that spreadsheet. The FREQUENCY
function is used in the formula for each of the shaded cells in column I. That function
takes two vectors of numbers, where the second is in increasing order, indicating bins
in which to place numbers from the first vector. It returns a vector that contains the
number of numbers from the first vector within each bin; the last element in the returned
vector is the number of numbers greater than the highest bin. In the spreadsheet shown,
the cell range for the second argument erroneously includes the cell G10, which has
been left blank and has no unit annotation. All the other values in the G column have
the unit st rike; because that does not agree with the units for G10, there is an error

36



in the shaded cells in column H.

The type checker found only one spreadsheet with errors, the one containting the
FREQUENCY formula problem which the unit checker also marked as having an error.
We expected both checkers to flag this spreadsheet because the error comes from a
misuse of the formula. The other two spreadsheets that the unit checker flagged passed
the type checker because we did not rely on the wrong units present in the spreadsheet,
but rather assigned the correct types for the value cells based on the header labels from
the tables that they belonged to.

When testing our tool on existing spreadsheets, we found that the unit/type an-
notation process involved relatively little time and effort. All the correctly annotated
spreadsheets passed the checkers; both checkers detected errors in those spreadsheets
where we intentionally introduced them or where errors where present already. Our
experience with these spreadsheets suggests that our approach offers promise to be a
useful tool for real-world users of spreadsheets.
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Chapter 6

Related Work

There are two research streams that feed into our unit checker work. Many researchers
have suggested adding units directly to programming languages. We have already al-
luded to Kennedy’s work on integrating units into ML [12] and a System F-like lan-
guage [13]. Like these systems, XeLda uses unit polymorphism: the + operator, for
example, works with arbitrary units. Our inference algorithm does not rely on unifica-
tion, as in Kennedy’s ML system. Unlike ML-based languages, in which unification
restricts mapping operators to work on homogeneous aggregates, the mapping opera-
torin Xelda used to construct tables, is polymorphic over the possibly-heterogeneous
units of elements in aggregates. Also, XeLda only works with a fixed set of functions,
just those provided by Excel, not user-defined functions. Around the same time as
Kennedy was developing his ML system, Goubault also proposed a dimension system
for ML, using a sorted type algebra [9], allowing rational dimension exponents where
Kennedy requires integers. As described, our system requires integer exponents. In
a brief article, Wand and O’Keefe proposed integrating units with the simply-typed
lambda calculus [21]. In their system, the basic units are fixed, although a programmer
can add new units within a delimited scope.

There have also been some earlier proposals for adding units to programming lan-
guages, most notably the work of House [10]. More recently, Rittri considered dimen-
sional analysis in the presence of polymorphic recursion [19].

Along with the work on units in programming languages, there has been some work
on detecting errors in spreadsheets. The most closely related work to our type checker
is the checker of Erwig and Burnett [4]. Their system is based on the same principles
as ours. There is, however, a significant difference between their formulation and ours.
Their system fails to distinguish between the is-a and has-a relationship. Additionally
our system is capable of handling subtraction in cell expressions. These changes lead
to a more thorough type system. We present the following examples to highlight valid
spreadsheets that would be allowed to pass unhindered by our system, yet fail to pass
through the system in [4].

Consider Figure 2.3. Under the system in [4], cells B3 and B9 would have the
types Gross Sales[TVs] and Costs[TVs] respectively. In cell B15, we are subtracting
the cost of TVs from the gross sales of TVs, to obtain the profits. Applying our rules,

38



the checking progresses as follows. Cells B3 and B9 are given the types Electron-
ics[TVs]{Gross Sales} and Electronics[TVs]{Costs}. Cell B15 requires checking
the following operation:

Electronics[TVs]{Gross Sales} + Electronics[TVs]{Cost} =
Electronics[TVs]{Gross Sales o Cost}

In this case it is not possible to apply Erwig and Burnett’s rules, since they do not
include a type transformation for the subtraction operation. Hence, their system would
mark this as an error.

In Figure 2.4, we rearrange the tables in Figure 2.3, and assume that the header
inference is able to infer that TVs and VCRs are both types of electronic goods.
Again, consider the operation in cell B15. First we discuss how Erwig and Burnett’s
checker would operate in this situation. In their system, cells B3 and B9 have types All
Electronics[TVs[Gross]] and All Electronics[VCRs[Gross]] respectively. The sub-
sequent addition operation in cell B15 fails, because the hierarchies of the two types
differ in their second components (TVs vs. VCRs), despite the common third com-
ponent of Gross. The header inference could conceivably reverse the hierarchy of the
types. Cells B3 and B9 could be assigned types Gross[TVs] and Gross[VCRs], en-
abling cell B15 to pass the checker. However the computation of profits, in cell D3
for example, would now fail (Cost[TVs] cannot be subtracted from Gross[TVs]). Our
system handles this case in exactly the same manner as described above. Cell B15
turns out to be an addition of:

All Electronics[TVs]{Gross} + All Electronics[VCRs]{Gross} = All
Electronics{Gross}

Cell D3 is:

All Electronics[TVs]{Gross} - All Electronics[TVs]{Cost} = All
Electronics[TVs]{Gross o Cost}

This demonstrates that despite any rearrangement of the tables, providing the header
inference is able to determine the relationships in the manner above, our rules may be
consistently applied. Erwig and Burnett’s system is unable to handle an intuitive way
of tabulating data, and no rearrangement of headers is able to account for the differ-
ences in the is-a and has-a relationships. These failures were highlighted while we
implemented their unit checker, which Erwig and Burnett lacked.

There have been other works tackling the specific problem of detecting errors in
spreadsheets. Rothermel et al. [22] apply an adaptation of testing mechanisms for im-
perative programs to spreadsheets. This aims at detecting the most common of spread-
sheet errors, cell reference errors in cell expressions [25], through the use of data flow
adequacy criteria. Specifically the authors define the data flow test adequacy criteria
employed, in terms of definition-use (du) associations that are involved in visible cell
outputs. With the use of user interaction to validate the values in cells, the system
marks du-associations as having been exercised, and visually reflect the percentage of
all du-associations exercised per cell with shades of colors. Spreadsheet testing forms
a component of the underlying spreadsheet systems we are checking. Rothermel et al.
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apply this kind of testing to the Forms/3 spreadsheet language [23], whereas our system
pertains to Excel spreadsheets. Specifically, Excel spreadsheets are able to detect the
use of blank cells in cell expressions. Thus the types of errors we are able to detect are
of a different nature, and this belief is reinforced if we consider the following example.
In Figure 2.1, suppose the cell B5 contained the cell expression B3 + C4. Our type
system would flag an error due to the addition of the types:

Electronics[TVs]{Quantity} & Year[2001] + Electronics[VCRs]{Quantity} &
Year[2002]

However the system in [22] would not be able to detect this problem in Figure 2.1.

Peyton-Jones, Blackwell, and Burnett have designed a language for adding user-
defined functions into Excel [16]; adding unit-checking might require a different design
than XeLda now uses. They propose adding matrices as first-class values, which could
obviate the special treatment XelL.da now uses. Because Excel uses ad hoc methods for
assigning values to cells, some of our analysis techniques have to follow suit. Perhaps
a more uniform spreadsheet language, such as proposed by Peyton-Jones et al. would
lead to a cleaner design for a unit-checker.

There has been some work on data visualitsation in spreadsheets. Igarashi et al.
[24] have designed a system to visualize dataflow in spreadsheets through transient
local views and static global views. They provide a semantic navigation through the
spreadsheet with the possibility of modifications through graphical editing techniques.
We could incorporate these techniques into our tool to enhance the error reporting and
ease the user interaction with the spreadsheet.

MysterX, the COM scripting extension for PLT Scheme used to construct our tool
is described in [20]. There are COM bindings for other functional languages, in par-
ticular, for Haskell [14]. Pucella has described a module system for COM [17] and
formalized certain aspects of COM [18].

40



Chapter 7

From Prototype to Product

We have designed and implemented a unit/type-checker for Microsoft Excel that is able
to handle its complex idioms. Our tool was able to find errors in off-the-shelf spread-
sheets, validating our effort. We believe that this prototype also justifies the combi-
nation of functional programming and component programming. Although COM was
designed with more conventional languages in mind, it works well with functional lan-
guages, including Scheme.

At this point, our tool is a prototype. To turn it into a true product, we will need
several kinds of improvements:

We need to design unit transformers and constraint generators for all Excel func-
tions. There are over 300 such functions in Excel 2002, although many of those
do not operate on numbers. One class of interesting Excel functions operate on
relational databases embedded in spreadsheets. For example, the DAVERAGE
function takes a range of cells representing the data, a column name, and another
range that specifies query-by-example criteria; it returns the numeric average of
the cells meeting the criteria. Hence, all cells in the named column should have
the same units. There are also some odd cases. For example, one can apply AND
to numbers as well as boolean values.

We need feedback from experienced Excel users about how the application inter-
face might be better designed. Instead of launching Excel from our application,
for instance, it might be nicer if the application were launched from Excel.

Currently, the user interface uses MrEd graphical classes, which use a fair amount
of memory. As an alternative, MysterX can also use Internet Explorer for graph-
ics, which might require fewer memory resources.

We should add features based on properties of units. We could create an inter-
nal table of commonly-used units, allowing automatic conversions between unit
systems. Given a spreadsheet with a worksheet with values in English units, for
example, we could automatically create a new worksheet with values in SI units.

We should integrate the unit checking and type checking aspect of XeLda. The
user should be able to select through the interface the kind of checking to be
performed.
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e We should work on the header inference problem so that the units will be an-
notated and the types inferred, allowing for both checkers to work on the same
spreadsheet, where the type annotations should be implicitly derived through the
inference mechanism and the unit annotations should be explicitly entered by the
user.

Although automatic unit conversion seems straightforward, there are a few sub-
tleties that have kept us from implementing this feature. Consider a spreadsheet with
the following values in cells: Al containing the number 5 and annotated with unit
inches, Bl containing the number 3 and annotated with unit centimeters, and
C1 containing the formula A1+B1. Because Excel has no knowledge of units, it will
always compute 8 as the result in C1 even though this answer is clearly incorrect.

In order to fix this problem, the unit checker has to modify the Excel formula in C1
by multiplying one of the operands by a conversion factor: for instance, multiplying
Al by 2.54 to convert it to cent imeters so these can be added to the value in B1.
In turn, if C1 has a unit annotation, the result has to be converted from the unit of the
result to the annotated unit.

In short, supporting physical units takes more than just providing conversion rules
between units; it requires rewriting the formulae, both to make the inputs consistent and
to present the results in the units the user prefers. These rules also slightly complicate
the process of determining unit errors, because an exact match is no longer necessary.
Finally, while some units (such as physical units) have well-defined conversion factors,
other “units” do not: it is reasonable to add dollars and euros, for instance, but the
conversion factor literally changes constantly.

The most problematic issue we currently have with our tool is the speed of access
to Excel through COM, which makes checking large spreadsheets time-consuming.
Probably the most direct solution to this problem is to modify the MysterX extension
to use COM Direct Interfaces, rather than COM Automation.
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Appendix

Unit inference rules

Let:

- V = any binary operator

- V" = any binary operator except for +/-

- I(d) are the is-a headers for header d (possibly ()
- U(d) is the unit for header d

- I(a) are the is-a headers for the cell at location a
- U(a) is the unit for the cell at location a

- d — h shows header d has-a header h

- v(a) is the value of the cell at location a.

- U (= uifua[...[u,]. . ]]) is the short-hand representation for a hierarchy of is-a
relationships.

- ifd=wuif...[un)...] then W] = u].. . [un[u]] .. ]

46



{y}dof — {y}en.A{y}in 4
A
e
{y}on @ n — {y}2n F {y}In 4

{u}en 4 {y}in 4
£Kdwia oq ued p-spy ‘AN P-sPY [EINUIP]

{7y o Wy}n — {Fylna{Ty}n 4
{eyln 4 {"y}n 4
DN 2-S1 [E21UIP]

tn A n) 3 In

—

Enzpin A inyin =

=(nmin)in

tnpinyl T
:sa[n1 uoneagduig
ann o
g n
[ [fe] e =a
Tin=n
RANI-p

[[1,“]

o —Tng In 4

["'["'[!“D]"'-‘D]'
01y ea<fip<r 4 In 4
[. e [[ s [[ g [_[_,)] L. I+!3]i'fi] P Ifi]?o] .. .113 — 3._”
[. e [[ Wi [[ s [;3] v [+-’:)]\’:E] - 1:13]?9] i ']I:} i L
DIMNI-B
(:D)n= (@) +
D= D) o
:SQ0UIRJIY
[#p]un 2p -+ =3 [p]in 33 {y}[plin = (V)12 A
ye—p ‘tn=(p)n
‘(z={vp‘ P} 4

(*P) w13

{y}pln = (®)n 4
Y —p =(p)n A (®)z2p 4
[pln = (P)
n=(p)n ()I3fp—l

do] = (P)2
=PI 4

:SaN[eA

:sIapeaH

S9N UOJIN.IISU0D JIUN)




