Reliable Multicast for Small Wireless Networks

Reliable Ad Hoc Communication for the Electronic Student Notebook

Roberto Almanza
Department of Computer Science
Brown University

roalmanz @cs.brown.edu
May 2003

Submitted in partial fulfillment of the requirements for the Degree of Master of Science in the
Department of Computer Science at Brown University

I A fé/ 5/ 16/03

Signature (Professor Thomh$ W. Doeppner Jr.) Date

1. Introduction

The goal of this project is to provide a
reliable multicast client for use in the
Electronic Student Notebook (ESN) project.
The ESN project is a research project
dedicated to exploring the use of ad hoc
collaborative electronic notebooks deployed
on Table PC’s.

Imagine a standard classroom; a teacher
stands at the front of the classroom writing
notes and dictating. As the teacher lectures,
the students rapidly write down notes on
their spiral notebooks or lecture slides
provided by the instructor. Although most
people are comfortable with this particular
setting, few would disagree that there are
several glaring inefficiencies and
annoyances with this particular method. We
have all experienced the annoyance of
having to photocopy, or even hand copy, a
classmate’s notes when we are unable to
attend lecture. There have also been plenty
of times when we have crowded around one
or two classmates as they illustrate a concept
from lecture by referencing there notes from
class.

The Electronic Student Notebook solves
many of the shortcomings of the standard
paper notebook. ESN allows individuals to
easily share documents and annotations.
These documents and annotations can also
be saved for future use.

Assuming no fixed infrastructure, the
Electronic Student Notebooks allows users
to meet in any location sharing documents
and annotations via the ad hoc network
consisting of the users in the meeting. This
project provides the communication
substrate needed to provide group data
dissemination for settings with no fixed
infrastructure.

2. Overview

The primary goals of the Reliable Multicast
Client provided to the ESN project are as
follows:

1.Reliable Data Transfer — all data
transmitted is received by all participating
nodes

2.In-order delivery — data transmitted from
node x is received in the same order at all
participating nodes

3.Efficient Data Transfer — the client
provides an adequate data transfer rate

4 Scalable Performance - the client
performs well in networks of varying size
5.Resource Efficient — Since the client is
running in the same process as the ESN
project, it is important that the client not
consume large amounts of resources

To achieve the goals specified above it was
essential to minimize the amount of control
messages being sent across the networks.
This essentially meant that whenever
possible we would avoid doing things like
broadcasting hello messages. This particular
design choice will be evident throughout the
following discussion of our implementation.

2.1 Rationale
The rationale behind our design of the RMC
is largely based on two interrelated
problems: feedback implosion and
coordinating agreement using unreliable
communication.

Feedback implosion is the problem of
overwhelming nodes in the system with
messages meant to relay the current status of
the system. For example this would happen
if a data-transmitting node required all the
receiving nodes to respond with
acknowledgments. In this case the
transmitting node might send a message to n
nodes who then respond with n ack’s, thus
overwhelming the originator of the message.

To avoid feedback implosion, we chose to
have nodes transmit gossip requests for
missing data instead of ack’s.

Maintaining precise group membership in
order to allow the system to know precisely
who should have received the data at any
given point is also a very difficult problem
to solve. Normally, when a node transmits
data it is preferable to have the receiving
nodes be well known. The sender would
then know which nodes should have
received the transmitted data. There are two
problems with this approach: feedback
implosion and maintaining accurate
membership. The problem of feedback
implosion is clearly specified above.

Maintaining an accurate membership in an
asynchronous network wusing unreliable
communication is a problem that is regarded
as a difficult problem to solve. Many
control messages would need to be
transmitted to maintain a group membership
that would likely only approximate the
actual membership. With nodes joining,
leaving and failing the algorithm needed to
coordinate the acknowledgment from the
current proposed group members quickly
becomes very complicated. The complexity
of this was not the sole factor behind our
choice to avoid coordinating precise
agreement among the set of nodes receiving
data. The performance of the system would
also be degraded by the control messages
that would likely need to be retransmitted,
since we are using unreliable
communication. The system would also
likely suffer significant delays when data is
not transmitted until nodes have accurately
determined the current group membership
and then reached agreement.

Our design rationale was to avoid
coordinating unreliable nodes with

unreliable communication. Thus we allow
for nodes to probabilistically decide on the
next step. This choice is ideal for the
particular problem we are addressing, since
the system is able to deal with multiple
uncoordinated nodes. For example, if
several nodes probabilistically decide to
respond to one node’s request for missing
data, then the node receiving the responses
gracefully deals with duplicate responses.

The cost of dealing with multiple responses
is less than the cost of coordinating a single
response from a dynamic set of nodes.

2.2 Changes in Group Membership
Hierarchical structures are often used to
allow for multicast on wired networks. We
did not pursue the use of such structures due
to the dynamic nature of the network we are
working with.

Since we can not assume that the structure
of our network is fixed, it is not feasible to
simply use a hierarchical structure for our
group data dissemination. If we had used a
hierarchical structure, something as simple
as a user leaving a meeting could potentially
cause serious performance degradation.

For example, assume Alice is participating
in a meeting using the ESN client and the
multicast client has chosen to use a
hierarchical structure. Further assume that
Alice is placed near the top of the hierarchy.
If Alice were to leave the meeting the
system would require a restructuring based
on the departure of Alice from the group.
This restructuring would require the nodes
in the system to agree on the new
hierarchical structure of the group without
Alice. This coordination would likely
introduce some lag, during the restructuring,
for messages being transmitted that rely on
the hierarchical structure. Additionally, the
coordination would introduce a large

number of control messages into the system.
This is something we clear want to avoid.

The RMC does not require any such
coordination of hierarchies; therefore, for
the example given above the multicast client
would only need to adjust the group
membership once it determines that Alice is
gone. The modification of the group
membership is definitely not a change that
needs to take place immediately. The only
repercussions that would arise from the
inaccurate membership would be that the
RMC might reply with slightly lower
probability. (Lower than the ideal based on
the exact group membership.)

In the case stated above, with members
leaving a session, we would also incur
unnecessary messaging if we had chosen to
coordinate acknowledgements from all users
for every packet transmitted. If a member,
Bob, was transmitting data in the above
scenario for the entire duration of Alice’s
transition from member to non-member,
then Bob would need to wait for Alice’s
acknowledgment while Bob still believes
Alice to be a part of the group. For this case,
it is quite possible that Bob might block or
send unnecessary control messages. The
potential for blocking amplifies the cost of
requiring acknowledgments from all
members.

For algorithms that rely heavily on precise
group membership it is also possible to
adjust the membership timeout so that
membership departures are easily detected.
This solution would not; however, come
without a cost. By lowering the group
membership timeout, even non-faulty
members that are slightly lagged could be
removed from the membership. The
membership would then become volatile an
inaccurate. Thus, adjusting the timeout value
for membership does not necessarily

improve the performance of the system. Our
approach avoids the sometimes intractable
problem of maintaining precise group
membership.

Our decision to use gossip requests rather
than gossip acknowledgements from the
members in the group would clearly perform
better in our example of user departing from
a meeting. With our protocol Bob would
transmit his data during, through and after
Alice’s departure and not suffer any
decreased performance. Essentially, Bob
would simply not hear a request from Alice
for missing data (Gossip Request). Therefore
the performance of the system remains
stable during the departure of members from
the session. The system performs the same
whether the departure was announced or due
to a failure.

For these reasons we believe the
decentralized approach that we have taken
with Gossip will perform well.

We further discuss alternative algorithms at
the end of the paper.

The rest of the paper will provide details on
the implementation of our ad hoc Reliable
Multicast Client. I will conclude with a brief
discussion on the results obtained using the
client for communication in the ESN
project.

3. Implementation

The Reliable Multicast Client (RMC) was
implemented on Windows XP using C# and
the Microsoft .Net platform. We made the
assumption that all nodes are within reach of
one another. Given the hardware that we are
working with, as well as the reach of
802.11b, this is a fair assumption. The client
uses UDP, which 1is an unreliable
connectionless transfer protocol.

The RMC provides the following interface:

void Close()

byte[] Receive;(ref IPEndPoint end);

byte[] Receive,(ref IPEndPoint end,
int waitTime);,

void Send(bytel[] data);

Close shuts down the client. Receive; waits
indefinitely for incoming data, setting end to
the corresponding endpoint from which the
data was received. Receive, waits until data
is received or until the number of
milliseconds prescribed by waitTime
expires. Send transmits the specified byte
array. ‘

3.1 Packet Structure

All packets transmitted onto the network
follow a strict packet format. The structure
of each packet is specified by a struct. The
structs are then converted to byte arrays and
from byte arrays back into structs using the
unsafe keyword in C#, which allows for
pointer manipulation. (Pointers are not
allowed in C# without the unsafe keyword
around the body of code using the pointer)
The more important packet structures are
specified below, along with a brief
description as needed.

Common Header- Header for all messages

16 32
Message Source
i 2 Quadl | Quad2
Quad3 | Quad4 Data Length

Data Length

Source Node specifies the origin of the
packet. The Quad’s specify the multicast

address that this packet is associated with.
The 32 bit Data Length specifies the length
of the data following the header. Messages
sent over the network have the following
format:

Common Header

Data

Gossip Request Header — header for each
gossip request

16 32

Number of Requests

Data From

Number of Requests specifies how many
requests will follow this header. Data From
denotes the node associated with the
fragments being requested.

Gossip Data- a gossip request for a missing

fragment
16 32

Sequence Number

Fragment Number

Each gossip is of the following format:
Gossip Replies use Data Info to identify

(Gossip Request Header incoming gossip replies. The format of the
gossip reply is:
Gossip Data
Requests< Data Info A Single
fora .
Single i byte(] gssls;p
node
Gossip Data N N\
? Gossip RequestHeader Data Info More
Gossip
Gossip Data byte[] ¢ Replies
Requests
for other J
nodes
Gossip Data Although multiple replies are supported, we
limit the number of replies in a single
transmission to one. This limitation

\ e increases the probability of the response
being successfully delivered. This is largely
done because in the wireless environment
large UDP packets have a higher probability
of failing to be delivered. Any type of gossip
packet is not retransmitted, therefore it is
important to increase the probability of these
messages arriving successfully.

There is a size limit on the size for any given
gossip of the format specified above. If a
request is too large it is fragmented into
several gossip requests.

Data Info- uniquely identifies fragment

. .- The structs listed above are the most critical

packets in the Reliable Multicast Client
infrastructure.

Sequence Number

Index 3.1.1 Component Overview
In the following sections we will outline the
major components of the Reliable Multicast

Bt e gt Client. These components are:
Data From L. Data.T.ransmission

2. Receiving Data
3. Gossip Requests
4. Gossip Replies

The <Data From, Sequence Number, 3 Grqup ‘Membershlp

Index> triplet uniquely identifies a data 6. Malnta}nlng Sequence Numbers
7. Canceling Gossip Requests

fragment.

8. Caching Recent Requests
9. Cache Eviction

The first four components (Data
Transmission, Receiving Data, Gossip
Requests and Gossip Replies) form the core
that allows for data to be transmitted in the
system.

Group Membership allows for the system to
adjust how data transmission is achieved by
adjusting how each node responds to gossip
requests based on its own view of the group.

The module that maintains the current range
of sequence numbers for nodes in the system
allows for the components of the system that
deal with retransmission to be aware of
missing data.

The last three components allow the system
t0 minimize unnecessary data transmission,
as well as unnecessary caching.

3.2 Sending Data

For data transmission, data is first assigned a
unique monotonically increasing sequence
number (unique per node). A thread object is
then created that encapsulates the process of
actually fragmenting the data and
transmitting the fragmented packets on the
network. This thread object is then queued
onto a thread-pool.

The fragmentation consists of fragmenting
the data into fragments of fixed size,
currently 1024 bytes. Each fragment is
uniquely identified by the triplet <Node ID,
Sequence Number, Fragment Number>,
where Node ID is unique for each node.
Currently unique node ID’s are assigned by
a randomly generated number. This is
currently done for testing purposes and to
allow for quick testing on the Virtual Area
Network being used for testing the ESN
project. The client is also capable of simply

reading a unique id from a file. This would
definitely be preferable once the client is
deployed across a larger number of Tablet
PC’s for actual testing in the classroom.

As data is transmitted it is also cached
locally; this ensures that at least one node in
the network always has a completed packet
that other nodes might not have completely
received.

3.3 Receiving Data

Data received is first checked to ensure that
the receiving client is a participant for the
multicast address specified by the packet.
Data corresponding to the client’s address is
added to the local cache.

The local cache consists of a mapping from
node id’s to packets. Packets consist of
Packet Fragments. In addition to
maintaining this mapping, the local cache
also notes the range of sequence number
received from each host.

As incoming data completes pending
packets, these packets are inserted onto a list
of completed packets that are ready to be
sent up to the application.

When packets are completed a thread is
awakened to process the completed packets.
Since the cache is aware of the range of
sequence numbers received from each node
and since it is also aware of what packets
have been delivered to the application, it is
able to determine whether a particular
packet is ready to be passed to the
application layer. Since in-order delivery is
guaranteed, a packet is not ready if packets
with a lower sequence number, from the
originating node, have not yet been sent to
the application layer.

There are scenarios in which the local cache
believes some node x has a range of

sequence numbers b...z, while there exists
some packet a that has not yet been
received. It is possible that b is delivered to
the user and then « is later received. In this
particular scenario the thread processing
incoming data marks a as being out of order
and ignores this packet, thus preserving in-
order delivery. Below we specify what steps
the client takes to avoid this particular case.

3.4 Gossip

Gossiping is handled by a thread, which
periodically walks through the local cache
extracting information on missing
fragments. This data is gathered by seeing
the range of sequence numbers that are
known for a particular node and seeing
which packets have been received. For
packets in the known range of sequence
numbers that have no fragments at all, the
gossip thread only requests the first
fragment. Any packet that has at least one
fragment received is time stamped with the
time at which it was received. Given the
number of fragments, and thus overall data
length, each packet only requests missing
fragments once sufficient time has passed
since the first fragment was received. This
waiting allows the data to be transmitted
uninterrupted from the sending node. A
constant ~WAIT_PER_FRAGMENT is
currently defined to determine how long to
wait for each fragment. Thus a packet with 5
fragments would wait,
5*WAIT_PER_FRAGMENET milliseconds
before requesting missing fragments.

The gossip thread requests pending packets
in batches, therefore if a node x is missing
fragments x,y,z for packet / then the gossip
thread would request these fragments in a
single request along with other missing
fragments. Currently, the size of the entire
gossip request is trimmed to a constant size.
Batches of gossip requests that surpass this
constant are partitioned accordingly.

Although uniquely identified, gossip
requests are only transmitted once. Nodes
never send gossip requests for missing
gossip packets, nor do nodes enforce in-
order delivery of gossip packets.

As gossip requests are received, the client
probabilistically processes the incoming
request. The client chooses to process the
incoming request with probability
1/(membership size). The motivation behind
this choice for probabilistic replies is to
force a node to reply to gossip requests with
lower probability as the number of nodes
transmitting data in its vicinity increases.
The process of maintaining membership is
specified below.

Gossip replies are broadcasted by nodes
once they determine that they can fulfill the
request. Any given reply is no larger than
the fragmentation constant. Replies are sent
one fragment at a time to increase the
likelihood of successful delivery.

As nodes receive gossip replies, they
process the replies, determining if the data
received is need for a pending packet
fragment. This allows for all nodes that hear
a reply to take advantage of the delivered
response, despite the fact that the reply
might not have resulted from a request
issued by that particular node.

The Ad-Hoc network thus acts as a data
store of sorts, where all nodes are able to
benefit from potentially overlapping gossip
requests.

3.5 Membership

Each node maintains a membership list,
which is used to determine whether or not to
respond to gossip requests. This list is
constructed by maintaining information on
which nodes have successfully transmitted

data (User data or gossip data) directly to a
particular node. Membership is therefore
solely determined by what nodes are
currently transmitting data. The list is

dynamic, since members are removed once .

data has not been received for some amount
of time. This method of maintaining
membership is a direct result of the
overarching goal of minimizing the number
of control messages. In this case control
messages are avoided by extracting the
membership information from actual data
being transmitted.

3.6 Sequence Numbers

As stated above, it is immensely important
to ensure that nodes are aware of the range
of sequence numbers being transmitted. To
ensure that this information is kept up to
date, nodes transmitting data keep track of
the most recent range of sequence numbers
transmitted. A thread then periodically
transmits this range if the node has
transmitted data recently. This is one of very
few control messages beyond gossip
requests and replies.

The only drawback to this approach is the
fact that it is possible for a node joining a
multicast address to receive data that was
transmitted slightly before it joined
(Currently ~20 seconds, this can be adjusted
by simply changing a few constants). We do
not believe that this is a significant problem.

Since the sequence number range is the only
data needed for a node to become aware of
the existence of missing packets, the
sequence numbers could also be used for
very limited routing. Currently, nodes
probabilistically rebroadcast advertisements
of sequence number ranges. This allows for
adequate one hop routing. (The sequence
number advertisements are marked with a
TTL to avoid flooding the network.)

3.7 Canceling Gossip Requests

It can often be the case that a node
broadcasts a gossip request that is satisfied
by one node before another node has had an
opportunity to process the request. In this
particular case, it is possible that the request
is satisfied by the first node, yet the other
node will also broadcast a reply. It is easy to
see how this problem is amplified when
several nodes probabilistically choose to
reply after a node has already had its request
satisfied.

To avoid this problem, we have chosen to
broadcast cancellations as packets are
delivered to the application. Nodes maintain
a list of cancellations received from other
nodes which specify the highest sequence
number processed for a particular node.
Using this data, nodes are then able to
ignore subsequent gossip requests from
these nodes for the corresponding hosts that
they have sent cancellation requests for.
Since these cancellations are transmitted
unreliably, initially it might seem like a
better mechanism is needed to counter this
problem. However, this method sufficiently
suppresses unnecessary data transmission in
conjunction with the probabilistic replies
based on dynamic group membership.

3.7.1 Caching Recent Requests

In addition to avoiding superfluous
responses it 1s also essential to avoid
unneeded requests. As stated above, a node
is able to process responses to gossip request
that it might not have originally requested.
Therefore, it is not necessary for several
nodes to request the same fragments.

Imagine the case where several nodes
require a set of fragments and each
repeatedly requests these fragments. This is
clearly sub-optimal behavior.

To avoid flooding the system, each node
caches recent requests that it has received.
When any node is about to transmit a
request it first checks that no other nodes
have recently requested the same fragment.

The cache of recent requests is reaped
appropriately to allow for nodes to
eventually issue there own requests in the
event that other nodes are unable obtain the
missing fragment.

This component of the RMC is crucial for
the scenarios where the system is
experiencing a high loss rate.

This particular method of achieving
coordination amongst the requesting nodes
is directly inline with the overarching
strategy of decentralized coordination used
throughout the Reliable Multicast Client.

3.8 Cache Eviction

An important factor in the implementation
of the reliable client is cache eviction. It is
important to free up unnecessary memory
use. The eviction of packets from the cache
is handled by a reaper thread. Essentially,
packets are maintained in the local cache of
a node as long as they have received some
sort of use recently, by either receiving a
fragment or fulfilling a gossip request for
another node. Once the packet is no longer
being used, then the packet is removed in a
bottom wup fashion. The reaper thread
periodically sees what packets are not being
used, testing from the lowest sequence
number until it encounters a packet that is
still in use. As unneeded packets are
removed the corresponding node sequence
number range is adjusted.

3.9 Departing Nodes / Unreachable Nodes
Clearly the algorithm should perform well in
the event that a node stops participating in
the multicast session. The cache eviction

policy is useful in this respect by allowing
pending packets for these departing nodes to
eventually be removed from this system.

Although cache eviction allows the
departing node to gracefully be removed
from the system, this alone will not provide
good performance. It is easy to see that there
are cases where nodes leaving the system
are the only nodes caching the data that they
have transmitted. This scenario occurs when
data has been recently transmitted and the
other nodes in the system only receive a
small percentage of the transmitted data or
perhaps only the sequence numbers
identifying the missing packets. In this case,
all of the nodes would then continue to
request the missing data, thus slowing down
the entire system. To avoid this problem,
packets use a linear back-off, which is used
when a packet has not received a fragment
for a significant amount of time (defined by
a constant, currently 35 seconds). As more
time passes, since the packet has received
any responses, the back-off is increased. A
packet therefore requests missing fragments
less frequently once a substantial amount of
time has passed. This back-off is
immediately stopped once the packet starts
receiving fragments.

4 Design Choices

By choosing to minimize the number of
control messages, the client dedicates
bandwidth to either transmitting data or
gossiping. This choice was crucial in the
current performance of the system. Initially
a large design choice in the development of
the RMC was whether to have two distinct
modes of wuse: Anonymous and Non-
Anonymous. The Anonymous mode was
initially proposed for networks with a large
number of nodes. Essentially, the
Anonymous client is very similar in design
to the final RMC client produced.

The Non-Anonymous mode was initially
suggested for use in small ad hoc networks.
Based on the small group size, we thought
that we would benefit from transmitting data
and having the members of the group ack
the data. The Non-Anonymous client would
have required precise group membership to
be maintained. The Non-Anonymous client
would have also involved several control
messages, not only to maintain accurate
membership, but also to allow each client to
acknowledge receipt of data Dbeing
transmitted. The need for a Non-Anonymous
client was avoided by simply noting that the
local cache can be forced to maintain entries
for an extended period of time. The cache
eviction policy stated above ensures that all
data is delivered reliably and that
unnecessary memory usage is kept to a
minimum.

5 Results

The Reliable Multicast Client has been fully
implemented and is currently being used in
the Electronic Student Notebook project.

The client has performed well in our current
test runs. Our tests were run on networks of
5 Tablet PC’s, with: 1GHz Transmeta
processors with 20 GB disks and 256 MB
RAM.

For the test runs we ran the Electronic
Student Notebook on each of the Tablets.
We then participated in a session in which
we distributed documents and annotations.
The documents ranged in sizes from 25kb (a
one page Word document) to 1.2mb (an 83
page PowerPoint document). The
annotations being shared ranged from 2-8kb.
Our criterion for a successful test run was
that all documents and annotations be
delivered to nodes participating in the
session.

For all test runs, all data was delivered
reliably and in-order at acceptable
transmission speeds. Twenty five kilobyte
documents were delivered in less than 2 or 3
seconds. Larger documents (1.2mb) were
delivered in 13-16 seconds.

The delay' in delivery is largely attributed to
the fragmentation that the ESN performs on
documents in order to provide the transfer
status to the user.

These times are taken from the moment the
document is added to the moment the
document appears as being successfully
delivered at the receiving nodes. When a
document is added for sharing, ESN also
caches the document as well as Meta-Data.
Additionally, the multicast client is heavily
used to send coordination messages to
participants in a session. The caching,
processing and messaging by the application
adds to the perceived time required for a
document to be delivered.

Annotations alone were delivered very
quickly. We noted that we were able to write
text on one client and the text would rapidly
appear at the other clients. Therefore, from a
users perspective annotations are delivered
rapidly.

We did not encounter any cases of out-of-
order delivery. All test runs were failure
free, no data was lost.

5.1 Stand-Alone Tester

To further test the performance of the
Reliable Multicast Client, we implemented a
stand-alone tester. (Figure 2) The tester
allows us to specify the amount of data to
transmit. The tester also prints out data that
is received, along with the corresponding

' The delay beyond the benchmark times listed in the
following section

data length and transmitting host IP. The test
client also provides 4 predefined test cases:

1. Session Test- specified below
2. Annotation Test- tests sending 6kb of

data 1000 times
3. Benchmark- used for data from
Table 1

4. Climbing Test- first sends 5kb of
data and then increases the data
transmitted by 250kb increments
until 1.5 mb is reached

Using this tester the RMC was able to
achieve the transmission rates specified in
Table 1.

Data Time(Seconds) Transmission

Size Delay(Seconds)
6kb 25 1
250kb 3.2 5
500kb 6.8 10
750kb 10.3 15
Imb 12.3 20
Table 1

These times were gathered by running 25
simulations in which the 5 nodes in our

experiment transmitted 100 packets of each
data size specified above via the RMC. The
third column in the table indicates the delay
between each transmission. The indicated
times are the averages across the 5 nodes
throughout the simulations.

Beyond testing data transmission rates for
arbitrary data, we also ran a simulation of an
ESN session on the stand alone tester. This
simulation consisted of each node
transmitting the following:

e Four Imb byte arrays
e Two Hundred 6kb byte arrays
e Four Imb byte arrays

This particular sequence of data
transmissions emulates the typical
multicasting pattern in an ESN session,
where a user joins, shares several
documents, then shares annotations and then
finally shares some final documents before
leaving the session. For this particular
sequence of data transmissions we once
again ran several simulations and then
averaged out the results across the 5
participating nodes, Figure 1 shows the
results.

12 =
10

Time(Seconds)

o N B oo @

Session Averages

Data Transmission

| — Session Averagesl

Figure 1

The graph clearly shows that the client
performs well for the initial sharing of
documents, delivering the 1mb data arrays
quickly. (12.2-13.4 seconds)

Once the session begins the various
annotation sized (6kb) data arrays are also
transmitted quickly. (.01-.55 Seconds)

At the end of the session, we once again see
that Imb data arrays are transferred in
reasonable times, ranging from 12.5 to 14
seconds. The slight increase in the time it
takes for the 1mb byte arrays to be
transmitted in the end is likely caused by the
control messages that exist in greater
abundance after the system has been
running: Gossip Request, Gossip Reply’s,
Sequence Number Advertisements and
Gossip Cancellations.

1{10.0.0.1:9, 4000
1110.0.0.1:3, 4000
1110.0.0.1:9, 4000
{110.0.0.1:5 . 4000
{110.0.0.1:9, 4000
{110.0.0.1:3 , 1000000
1110.0.0.1:9 , 1000000
{110.0.0.1:5 . 100G000

5.1 Remarks

It is important to note that we tested a
modified client that provided faster data
transfer using the ESN client, however the
client then consumed too many resources for
the ESN project to still function properly.
This particular modification was the
motivation for the fifth goal stated at the
beginning of this paper: The RMC should be
Resource Efficient.

Figure 2: a sample run
of the stand alone test
client

Finally, when using the Electronic Student
Notebook it is more useful to use the
provided visualizer (Figure 3) to view the
performance of the Reliable Multicast Client
instead of the file transfer status reported by
ESN. The file transfer status only provides
an estimate of the amount of data
transferred, based on application layer
information. The visualizer shows the cache
size, member list, probabilistic response
information, gossip requests sent, gossip
replys sent, user bytes sent and the total
bytes sent.

r

iﬁfol ———— —— e ———r—
Node %
Members Cache Complete Noda Cacke Sice:
23648 23648 - %96.4687818 23648 Cache Size (Bytes): ~ 200085¢
_{] il Ijz]
Total Cache Complete %: TFEEETTER
Total Cache Size: ~2000896
Probablistic Replies: iz o
Gossip Reply (Bytes) Sent: ~0
Gossip Request (Bytes): ~ 6056
User Bytes Sent: ~0 Figure 3: The RMC
Total Data Sent (Bytes): ~7172 Visualizer
NODE: 6361
6 Future Work 7 Conclusion

It would be interesting to derive a more
precise mechanism for determining how
long one should wait before requesting
missing fragments for a particular packet.
The current approach is strictly based on the
size of the data and when the first packet
was received. This is somewhat limiting
since a single constant can not easily capture
the precise amount of time that one should
wait for delivery. A more elaborate
approach would definitely require one to
take several variables into account,
including: traffic, load at the sending site
and load at the receiving site.

As the ESN project is deployed for initial
testing, it will be beneficial to note the
performance of the client, using the
visualizer we have provided to determine
how to modify some of the constants
currently being used.

The Reliable Multicast Client is an essential
part of the Electronic Student Notebook.
The RMC allows users to collaborate
through the Electronic Student Notebook
without being restricted to areas with a fixed
network infrastructure. The Reliable
Multicast Client was built to be scalable.
The client currently performs well in small
networks, and we are sure that it will also
perform well for larger networks, based on
the design choices we have made.

