A Modular Compilation Strategy for Open Classes
and Multimethods in Java

Gregory H. Cooper

Department of Computer Science
Brown University

Submitted in partial fulfillment of the requirements for the Degree
of Master of Science in the Department of Computer Science at
Brown University

April 30, 2002

Advisor

A Modular Compilation Strategy for Open Classes
and Multimethods in Java

Gregory Cooper

Abstract

Open classes and multiple dispatch provide a powerful
mechanism for constructing extensible object-oriented
software. However, their use significantly complicates
the task of performing modular type-checking and com-
pilation. Existing implementations therefore make var-
ious trade-offs. For example, CLOS is dynamically
typed, Cecil relies on global link-time checking, and
MultiJava forbids the expression of many reasonable
programs. In this paper, we present a new system that
extends Java with open classes and multiple dispatch.
Our system provides better expressiveness than Multi-
Java while preserving static type-safety and integrat-
ing naturally with Java’s modular compilation mecha-
nisms.

1 Introduction

As software systems become ever larger and more com-
plex, the ability to reuse existing program fragments
becomes increasingly important. Already, most pro-
gramming languages provide module systems, which al-
low programmers to compile parts of a system sepa-
rately and later link them together. A common form of
software reuse involves libraries—compiled definitions
of datatypes and functions whose distributors generally
do not provide source code and which therefore cannot
be modified.

While software libraries provide an important form of
code reuse, programmers often require the ability to ex-
tend part of a library’s functionality, such as by adding
a new variant to a datatype or by defining a new oper-
ation over an existing datatype. For example, a set of
libraries may implement parts of a development envi-
ronment for a programming language, such as a parser,
an interpreter, and a user interface. An independent
programmer, who does not have access to the original
source code, may wish to extend such an environment
with a new linguistic construct (a variant in the abstract
syntax tree datatype) or a new form of static analysis
(an operation defined over the existing datatype).

These two forms of extensibility are orthogonal, and
often both are desirable within the same appplication.
Unfortunately, existing programming languages provide

support for only one of the two. In particular, functional
languages (such as ML or Haskell) allow programmers
to define new operations over existing datatypes, but
they do not permit the modular extensibility of the set
of variants comprising a datatype. In contrast, object-
oriented languages (like Java) allow programmers to de-
fine new variants of an existing datatype, but they do
not permit modular extension of existing type hierar-
chies with new operations.

To overcome these limitations, programmers have de-
veloped design patterns that permit extensibility in the
dimension that the language does not support directly.
For example, in the context of object-oriented lan-
guages, the Visitor [4] pattern creates a framework for
extending class hierarchies with new operations. Like-
wise, Steele [6] develops a “tower of types” pattern that
effectively supports modularly extensible datatypes in a
functional language.

Design patterns are an unsatisfactory solution to the
problem of software extensibility. Importantly, library
implementors may not foresee the need for extensions
to their code, in which case they are unlikely to follow
the necessary patterns. Furthermore, the patterns suf-
fer from limitations. For example, the Visitor pattern
allows operational extensions to a fized type hierarchy;
it cannot safely accommodate the introduction of new
variants. Similarly, Steele’s pattern builds an elaborate
framework for extending datatypes in the presence of a
fixed set of operations, but it is not clear how to general-
ize his technique to allow the addition of new operations.

2 Extensibility in Object-Oriented Languages
Recognizing the limitations of design patterns, re-
searchers have investigated augmenting languages with
features that support extensibility. In particular, other
work [1, 2, 3, 5] has investigated the addition of open
classes and multiple dispatch to object-oriented lan-
guages.

Open Classes

Open classes allow programmers to add new members to
existing classes. To see why they are useful, imagine a
programming environment like the one mentioned in the

introduction. For clarity, assume that the application is
written in Java. A class library provides a hierarchy of
FEzpression classes, which represent program expressions
and implement behaviors such as evaluation and pretty-
printing. In addition, the library provides a parser that
constructs Ezpressions from strings.

Suppose that we want to extend the Ezpression hierar-
chy with a type-inference operation. We might consider
any number of strategies in attempting to achieve this
goal, but none provides an adequate solution.

For instance, we might think about deriving a new sub-
class of Ezpression that contains the new operation.
Unfortunately, in Java (as in many common object-
oriented languages), a class’s superclass is fixed during
compilation. Thus, the programmer cannot modularly
update existing subclasses to inherit from a new super-
class.

For now, however, let us assume that we can “reparent”
the subclasses in this way. Even with this assumption,
writing down the code for the new method is trouble-
some, since it may depend upon the implementations
of the specific subclasses on which it is invoked. With
run-time type tests and downcasts, we can define all of
these cases in a single method in the new superclass.
However, if someone later adds a new subclass to the
system, this method will fail, and the only way to fix it,
in general, will be to edit the source code.

It seems that what we really want in such a case is the
ability to put a new abstract method in the superclass.
Then, the language can require that each subclass pro-
vide an appropriate implementation. Unfortunately, if
we could do this, we would be stuck once again; without
source code for the subclasses, we would have no way of
implementing the new method in them. We could derive
a new subclass for each existing subclass, but then the
parser (which constructs all of our Ezpressions) would
have no way of knowing about the new subclasses.

The preceding scenario exemplifies a general problem
in modular software construction that cannot be solved
naturally in existing object-oriented languages. With
the addition of open classes, however, we can overcome
all of the weaknesses mentioned above. We can add ab-
stract methods to the root of the class hierarchy, and we
can compile implementations directly into the concrete
subclasses. Importantly, if we later try to add new vari-
ants to the class hierarchy, the type system will require
that they implement the new method.

Multiple Dispatch

While open classes solve a large part of the object-
oriented extensibility problem, they do not provide a
complete solution. The reason is that datatype extens-
bility in object-oriented languages is largely due to the

dynamic dispatch mechanism, which permits a form of
open recursion. Dynamic dispatch, however, applies
only to the target of a method invocation, but in some
applications a method’s behavior depends upon the dy-
namic types of several of its arguments. Many binary
methods, such as equality, unification, and arithmetic
operators, have this property.

Common object-oriented languages (like Smalltalk,
Java, Eiffel, and C++) only provide single dispatch.
Thus, programmers cannot express these sorts of meth-
ods naturally and must instead follow a pattern. Typi-
cally, this means performing dynamic type tests to de-
termine the argument types and then downcasting the
arguments to their runtime types before performing an
appropriate sequence of operations. This technique can
be tedious and error-prone. Furthermore, once such a
method is written, a programmer without access to the
source code cannot extend it to handle cases involving
new variants of the argument types. If the programmer
planned in advance to support extensibility, he could
build a framework in which each argument class par-
ticipated in the method selection process by providing
a dispatcher. However, this pattern is also error-prone
and can be extremely tedious if there are more than a
few argument classes.

In order to support modular extensibility in a natural
manner, we would like the language to provide a mech-
anism for multiple dispatch. In this case, instead of em-
ploying a cumbersome pattern, a programmer can im-
plement a multiply-dispatched function simply by pro-
viding several method implementations and indicating
which implementations apply to which types of argu-
ments. We call such a function a “generic function” and
the methods that comprise its implementation “multi-
methods”. In a language supporting this style of pro-
gramming, the runtime system automatically selects the
most appropriate multimethod for each invocation of
the generic function.

Code written to take advantage of multimethods has
several advantages over the corresponding code writ-
ten without the aid of multiple dispatch. In addition
to being modularly extensible, the code is clearer and
safer, since dynamic type tests and casts are subsumed
by the dispatch mechanism. Multiple dispatch makes a
language more expressive, a feature that programmers
often desire.

Implications for Modular Compilation

The convenience of open classes and multiple dispatch
do not come for free. In particular, they raise issues for
modular type-checking and compilation.

In languages like Java, a given class definition depends
upon a single compilation unit. With the addition of
open classes, a single class definition may depend upon

several compilation units. Without support for this
capability in the language, it is not immediately ob-
vious how to implement it. Abstract methods signif-
icantly complicate the situation since, not only can a
programmer add operations to a class, he can enlarge
the set of operations that other classes must implement.
The combination of multimethods and open classes can
make things even more complex. In particular, when we
have methods defined over abstract arguments, we may
choose not to require default implementations and in-
stead only demand that there be an implementation for
each tuple of concrete argument types. In this case, the
introduction of a new, seemingly independent class into
a system may result in additional constraints on existing
classes. Clearly, such effects make modular compilation
difficult.

Previous Work

Because of the issues involved in implementing open
classes and multiple dispatch, previous efforts have in-
volved a variety of trade-offs. For instance, early imple-
mentations of multiple dispatch, as in CLOS [1], are not
statically typed at all. While this approach simplifies
the implementation, many programmers are unwilling
to sacrifice the safety guarantees afforded by a static
type system.

Work on Cecil [2] explores the use of open classes and
multiple dispatch in a statically-typed object-oriented
language. Cecil permits unrestricted extensibility but,
as a result, it needs to perform global type-checking and
compilation.

Dubious [5] attempts to overcome Cecil’s need for global
type-checking and compilation, and MultiJava [3] ap-
plies the techniques developed for Dubious to an exist-
ing, practical programming language. However, in or-
der to support modular type-checking and compilation
in these languages, the designers place stern restrictions
on the use of the features. In particular, they disallow
the extension of existing type hierarchies with new ab-
stract methods, and they limit the set of compilation
units to which multimethods may belong. The effect is
to prohibit the expression of some reasonable forms of
extensibility, in particular those in which extensions to
the sets of both operations and variants occur.

MultiJava

Our work is inspired by MultiJava and attempts to im-
prove upon it by allowing more flexible extensibility
without sacrificing modular type-checking or compila-
tion. To make the distinctions between our work and
MultiJava clearer, we provide a brief description of Mul-
tiJava here.

MultiJava extends Java with two new syntactic con-
structs, one for open classes and one for multiple dis-
patch. To use the open class mechanism, a programmer

writes something like:
Type LambdaEzpr.infer Type(TypeEnv env) { ... }

This declaration lies outside of any class body and
adds a method named inferType to the class Lambda-
Expr. To compile such a declaration, MultiJava creates
a new class that contains the implementation in a static
method. In this case, it generates something like:

class inferType {
static Type inferType(LambdaExpr this.,
TypeEnv env) { ... }
}

An important consequence of this compilation strategy
is that it cannot support the addition of instance fields
or abstract methods. This is an important restriction,
since many extensions require both new fields and new
methods. Furthermore, as we have seen, abstract meth-
ods are important for preserving the type-safe addition
of new variants.

To use MultiJava’s multiple dispatch mechanism, pro-
grammers annotate method declarations with argument
specializers. For example:

class Rational extends Number {

Number add(Number@Rational r) { ... }
Number add(Number@Integer i) { ... }
Number add(Number n) { ... }

}

This class declaration contains three implementations
of the edd method: one default implementation and
two that provide specialized behavior for the cases when
the argument is either a Rational or an Integer. When
the application invokes add on a Rational, the system
automatically performs a dynamic type test and selects
the most appropriate implementation.

MultiJava compiles a set of multimethod definitions into
a single method. In this case, for example, it translates
the Rational class into something like:

class Rational extends Number {

Number add(Number n) {
if (n instanceof Rational) {
Rational r = (Rational) n;

} else if (n instanceof Integer) {
Integer i = (Integer) n;

} els;i

}

}

There are two important consequences of this compila-
tion strategy. One is that we cannot modularly extend
this method to handle cases involving arbitrary new
variants. The other is that, to preserve type safety, there
must always be a default implementation of a method
with abstract arguments. For example, if the Num-
ber class is abstract, then either every concrete subclass
must provide a default implementation of add(Number),
or the add method in class Number must not be ab-
stract. Unfortunately, it is not always possible to pro-
vide meaningful defaults for such methods.

3 TUnrestricted Open Classes and Multimeth-
ods

In this section, we describe our strategy for adding open

classes and multiple dispatch to Java. Unlike Multi-

Java's, our approach permits arbitrary extensions and

multimethods without sacrificing modular compilation.

Language Extensions

Our syntactic extensions are similar to those of Multi-
Java. Specifically, they include new constructs for open
classes and multiple dispatch.

Our open class declarations are somewhat different from
MultiJava’s. Instead of defining extensions at the level
of a single method, a programmer writes a compound
extensionof declaration, whose syntax is as follows:

extensionof (class) {
(field | method declaration)*

This allows the programmer to bundle a set of related
fields and methods into a single declaration, which is
useful when there are dependencies between them.

For example, in the programming environment example
from above, we might extend the Ezpression class with
an abstract pretty-printing operation as follows:

extensionof Ezpression {
static int tabWidth = 8;

abstract void prettyPrint(Print Writer out,
int indent);

}

Compiling this declaration extends the class with the
new abstract method, as well as a new static field that
the programmer can modify to customize the method’s
behavior. While this example adds a static field, our
open class mechanism also permits the inclusion of in-
stance fields.

To support multimethods, we allow argument special-
izers on formal parameters. For example, consider a

hierarchy of numeric classes rooted at the abstract class
Number. The class supports various binary operations
over numbers, such as addition:

abstract class Number {
abstract Number add(Number n);

}

In a concrete subclass representing integers, a program-
mer may write an efficient, specialized implementation
of the add method:

class Integer extends Number {
Number add(Number@Integer i) { ... }
}

Unlike MultiJava, our system does not require default
methods. In this case, for instance, if Integer is the only
concrete subclass of Number in the system, then the
above declaration is sufficient. However, a programmer
may decide to extend the system with a new class, for
example Rational:

class Rational extends Num {
Num add(Num@Rational r) { ... }
}

Attempting to compile this class fails for two reasons.
First, because of the existence of the Integer class, Ra-
tional’s implementation of the add method is incom-
plete, so the programmer must at least add a method
to handle Integers. (If possible, he may also (or instead)
add a default implementation.) In addition, the intro-
duction of the Rational class into the system makes In-
teger’s implementation of the add method incomplete.
The programmer must provide an extension of Integer
containing the appropriate method or methods. Fortu-
nately, in our system, the programmer can do this mod-
ularly (without access to Integer’s source code) through
the open class mechanism. For example:

extensionof Integer {
Number add(Number@Rational r) { ... }
}

4 Compilation Strategy

The ability of our language to express the sorts of
modularly extensible programs described above depends
heavily on our compilation strategy. In this section, we
describe this compilation strategy in detail.

High-Level Approach

We aim to reuse existing compiler technology as much
as possible. In particular, our compilation strategy does
not require a custom code generator. Instead, our ap-
proach is to translate programs written in the extended
language into ordinary Java, which we compile with a

standard compiler. In addition, we extract semantic in-
formation from the original source code and, after com-
pilation, apply bytecode transformations on the result-
ing classfiles to implement the extensions.

Compiling Open Class Extensions

To compile a class extension, we first translate it into
a legal Java class declaration. Specifically, we generate
source code defining a subclass of the class we intend to
extend. For example, taking the example from above,
we would translate

extensionof Ezpression {
static int tabWidth = 8;

abstract void prettyPrint(Print Writer out,
int indent);

}

to

abstract class Expression_ ###
extends Ezpression {
static int tabWidth = 8;

abstract void prettyPrint(Print Writer out,
int indent);

}

and apply a standard Java compiler to this code. If
compilation succeeds, we next merge all of the mem-
bers defined in the resulting classfile into the Ezpres-
sion class. Since this merging procedure is critical to
our compilation strategy, we take a brief digression to
describe it in some detail.

Merging Classes

Java classfiles comform to a well-defined structure and
contain a significant amount of semantic information
aside from the virtual machine instructions of the meth-
ods they contain. Specifically, every classfile contains a
constant pool that identifies the names and types of all
the members declared in the class, as well as any exter-
nal members on which the class depends.

Knowing the structure of a classfile makes it possible to
copy all of the members of a subclass into its superclass.
The procedure is as follows: first, internally change all
occurrences of the subclass’s name within its classfile to
the superclass’s name; next, import all entries from the
subclass’s constant pool into the superclass’s constant
pool; finally, copy all members of the subclass into the
superclass, changing any references to the old constant
pool to refer to the new (superclass’s) constant pool.

While this simple procedure works for most cases, “spe-
cial” methods, including super calls and constructors,
require special treatment. In particular, for our pur-
poses, we require that the subclass provide exactly the

same set of constructors as the superclass, and that all
constructor implementations simply invoke super with
the same arguments. Then, when merging the classes,
we can simply ignore the subclass’s constructors. This
allows us to avoid a number of issues, and we can easily
enforce the requirement during our translation stage.

Another complication is that, if any method in the sub-
class overrides a method in the superclass but still makes
use of the old version (through a super call), the merg-
ing process becomes more intricate. Specifically, the
new method needs to override (in this case, replace)
the old version, but the old version still needs to be
available. The solution is to rename the old method
to avoid conflicts, add the new one, and replace the
new method’s super call with a normal invocation of
the (now renamed) method. We can perform this pro-
cedure through mechanical bytecode manipulations.

Compiling Multimethods

Our compilation strategy for multimethods involves
generating dispatcher methods for each argument class
of each multimethod. For example, imagine that we
want to compile the Number example from above. The
source code looks like:

class Rational extends Number {

Number add(Number@Rational) { ... }
Number add(Number@Integer i) { ... }
Number add(Number n) { ... }

}

Instead of translating the set of multimethods as a single
method with dynamic type tests, we translate it into
three implementation methods and generate dispatchers
for the appropriate classes. The result looks like:

extensionof Number {
Number add_disp1(Rational arg0) {
arg0.add_impl(this);
}

}

extensionof Integer {
Number add_disp1(Rational arg0) {
arg0.add_impl(this);
}

}

class Rational extends Number {

Number add_impl(Rational 1) { ... }
Number add_impl(Integer i) { ... }
Number add_impl(Number n) { ... }

Number add.disp1(Rational arg0) {
arg0.add_impl(this);

}

Number add(Number n) {
n.add_disp1(this);
}

}

Note in particular that, in the resulting code, the
method specializers have been removed. The implemen-
tation methods (the ones whose names end in .impl)
correspond exactly to the original multimethod defi-
nitions. The add method itself, however, now simply
calls a dispatcher, which in turn calls an implementa-
tion method according to the argument’s dynamic type.

An important property of this compilation strategy is
that it supports extensibility. For example, if a pro-
grammer later adds a new Number variant to our sys-
tem, say Complez, he can modularly extend the system
with a specialized method for adding Rationals to Com-
plez numbers. He simply writes:

extensionof Rational {
Number add(Number@Complez ¢) { ... }
}

which effectively compiles to:

extensionof Complez {
Number add_disp1 (Rational arg0) {
argl.add_impl(this);
}
}

extensionof Rational {
Number add_impl(Complez ¢) { ... }
}

In this case, the resulting code integrates naturally with
the existing dispatching framework.

Things are slightly more complicated, however, if we
want to compile an extension that specializes a pre-
existing singly-dispatched method. In this situation,
we must first build the multiple-dispatching framework
from scratch. Aside from the normal dispatcher gener-
ation, we need to rename the existing default method
from [meth] to [meth].impl and create a fresh version of
[meth] that invokes the appropriate dispatcher.

The situation is most complicated when we specialize an
abstract method without providing a default. In this
case, the method must also have abstract arguments,
and the system should only require that an implemen-
tation exist for each tuple of concrete arguments. As be-
fore, when compiling the implementation methods, we
need to rename them and generate dispatchers for the
argument classes. In addition to generating dispatchers
for the concrete argument classes, we also need to add

abstract dispatchers in the abstract superclasses of the
arguments. This extra step enforces the constraint that
an implementation must exist for each concrete subclass
that we compile.

Since this mechanism is somewhat subtle, let us con-
sider an example—specifically, the Number example
from above. First, suppose we have the following decla-
ration:

class Integer extends Number {
Number add(Number@Integer i) { ... }
}

This effectively translates to:

class Integer extends Number {
Number add_impl(Integer i) { ... }

Number add_disp1(Integer arg0) {
arg0.add_impl(this);
}

Number add(Number n) {
n.add_disp1 (this);
}

}

extensionof Number {
abstract Number add_disp1(Integer i);
}

In order for the add method in Integer to type-check, we
need for Number to provide an add_disp! (Integer) dis-
patcher. Since we cannot provide a concrete implemen-
tation of this method in general, we add it abstractly.
Note that Integer provides an implementation of this
method, reflecting the fact that there is a method for
adding two Integers. Furthermore, the presence of this
abstract dispatcher method reflects the constraint that,
if the programmer tries to add any concrete Number
classes to the system, he must extend Integer with an
implementation of add that handles the new variant.
For example, an attempt to compile the following def-
inition of a Rational class can only complete when ac-
companied by an appropriate extension of Integer:

class Rational extends Number {
Number add(Number@Rational r) { ... }
Number add(Num@berInteger i) { ... }

}

// required in this instance
extensionof Integer {

Number add(Number@Rational r) { ... }
}

This translates to:

class Rational extends Number {
Number add_impl(Rational r) { ... }
Number add_impl(Integer i) { ... }

Number add_disp1(Rational arg0) {
arg0.add_impl(this);
}

Number add(Number n) {
n.add_disp1(this);
}

}

extensionof Number {
abstract Number add_displ(Rational r);
}

// this extension comes from the definition of Rational
extensionof Integer {
Number add_disp1(Rational arg0) {
argl.add_impl(this);
}

}

// this extension corresponds to the actual
// Integer extension
extensionof Integer {

Number add_impl(Rational) { ... }
}

// this extension comes from the extension to Integer
extensionof Rational {
Number add_disp1(Integer arg0) {
arg0.add_impl(this);
}

}

Alternatively, if the programmer determines that it is
possible to write generic add methods, he can compile
these as extensions, which will replace the abstract dis-
patchers with concrete ones, reflecting the fact that the
corresponding classes now require no additional imple-
mentations as new classes enter the system.

One problem we encounter when compiling multimeth-
ods for abstract generic functions is that the sorts of ex-
tensions that arise may be mutually dependent. Specif-
ically, in the above example, we cannot compile the
Rational class without having an implementation of
add(Rational) in the Integer class. Conversely, we can-
not compile the add(Rational) method until Rational
exists. Standard Java compilers are designed to handle
these sorts of situations in normal Java programs, but in
our case the dependencies may involve extensions that

can only be merged into their superclasses after com-
pilation finishes. Here our translation strategy causes
problems, since the Java compiler sees extensions as dis-
tinct subclasses.

To work around this problem, we can do one of two
things. When the compilation process is stuck because
of a dependency on a dispatcher, we can simply gen-
erate this dispatcher and merge it into the appropriate
class. This operation is trivial because dispatchers have
no dependence on the code for the methods for which
they dispatch. The only problem is that, if compilation
subsequently fails, we must be sure to remove the dis-
patcher. Alternatively, if the Java compiler requires the
existence of a certain class before it can compile a par-
ticular extension, we can generate a stub for this class.
In this case, the stub would contain all the members of
the actual class, except that the method bodies would
simply throw exceptions. Again, generating these stubs
is easy, since they do not require code generation by an
actual Java compiler.

Type-Checking

Because of the nature of our compilation strategy, our
extensions do not introduce any new type-checking
problems. That is, we provide a translation from our en-
riched language to standard Java which preserves type
safety in a way that Java’s ordinary, modular type-
checking can detect. In particular, we have seen that
our treatment of abstract class extensions and of multi-
methods with abstract top methods expresses complete-
ness constraints directly in Java’s type system.

Readers may be bothered by the fact that our open
class mechanism allows programmers to extend abstract
classes with new abstract methods, an action that ef-
fectively makes all existing concrete subclasses become
abstract (or lose type safety, depending upon one's
viewpoint). However, Java already gives programmers
this capability—our system only extends the capability
to situations in which source code is unavailable. In
any case, whenever such a change occurs, all depen-
dent classes, including subclasses, must undergo type-
checking again. Thus, to build a perfectly “safe” system
in the presence of such capabilities, a programmer needs
a tool that tracks dependencies between classes and di-
rects recompilation as necessary.

In addition to the problem of completeness, multi-
method systems may suffer from ambiguous method in-
vocations. These arise when more than one method
applies to a given argument tuple but none is strictly
more specific than all the others.

For example, consider a variation on the Number hier-
archy from above:

abstract class Number {

Number add(Number n) { ... }
Number add(Number@Integer i) { ... }

}

class Integer extends Number {
Number add(Number n) { ... }
}

This program contains three add methods—a default
method, a partially specialized method for adding In-
tegers to generic Numbers, and a partially specialized
method for adding generic Numbers to Integers. If the
system needs to add two Integers, all three of these
methods apply. However, the system can eliminate the
default method from consideration, since it is less spe-
cific than either of the specialized methods. Unfortu-
nately, in trying to decide between the other two meth-
ods, there is no clear winner—each method is more spe-
cific in one argument position but less specific in the
other.

It is always possible to resolve such ambiguities au-
tomatically, for example by linearizing the method-
selection procedure, so that earlier arguments count
more heavily than later ones. In the above scenario,
for example, we might argue that the receiver is more
important than the argument, in which case we should
choose the method in the class Integer. However, there
are reasons why this sort of resolution may be undesir-
able. In particular, an ambiguity may indicate an over-
sight by the programmer, in which case the type-checker
should ideally raise a flag instead of silently assigning an
arbitrary meaning to an underspecified system.

We call a system in which all arguments count equally
symmetric. When such a system has no ambiguities, its
behavior is not only robust but also highly predictable.
In a symmetric system, the only way to resolve an ambi-
guity is to write a new method that is as specific as each
of the ambiguous methods in every argument position.
In the above scenario, for example, we would need to
add a new method in which both the receiver and the
argument are Integers.

In our system, dispatching proceeds from left to right
through the argument list. Thus, it processes earlier
arguments first. However, this does not mean that our
system performs linear dispatching. On the contrary,
our method-selection algorithm is symmetric, as we now
explain.

When building the dispatching framework for a method,
our compiler constructs a “net” of dispatchers that
spans the cartesian product of argument specializers
for all argument positions. As a result, after running
through the full spectrum of dispatchers, the system
knows enough about each argument’s type to perform
method selection. Furthermore, each path through the

dispatching framework manifests itself statically as a
final dispatcher in the chain—a dispatcher that calls
an implementation method. In the above example, the
compiler generates the following set of final dispatchers:

abstract class Number {
Number add_disp!(Number argl) {
argl.add_impl(this);

Number add_disp1(Integer argl) {
argl.add_impl(this);
}

}

class Integer extends Number {
Number add_disp1(Number argl) {
argl.add_impl(this);

Number add_disp1(Integer argl) {
argl.add_impl(this);
}

}

Essentially, we can view our dispatching framework as
providing a bridge for moving dynamic types into the
static type system. That is, it reduces the problem of
dynamic method selection to that of static method selec-
tion. Importantly, Java’s static overloading mechanism
uses a symmetric lookup algorithm. Hence, our system
also gets symmetry “for free” by virtue of its transla-
tion scheme. In the above scenario, for instance, Java’s
method-selection algorithm detects an ambiguity when
trying to select which add_imp! method to call from the
last dispatcher.

5 Conclusions and Future Work

We have presented an extension to the Java language
that supports open classes and multimethods. Un-
like previous approaches, our compilation strategy per-
mits unrestricted use of these features without resort-
ing to global checking or compilation. Specifically, our
strategy translates the extended language into stan-
dard Java in such a way that we can reuse ordi-
nary Java type-checking and compilation almost exclu-
sively. Importantly, our translation naturally expresses
the completeness and unambiguity constraints of open-
class/multimethod programs directly within Java’s type
system. We are currently in the process of developing
an implementation of the system. Specifically, we have
written and tested various pieces of it but have yet to
integrate them all into a single, coherent tool.

Once the implementation is complete, we look forward
to using it in our software development tasks. For ex-
ample, various aspects of the compiler itself lend them-
selves to more natural expression through open classes
and multimethods. Rewriting the compiler in our ex-

tended language would be an interesting experiment and
would help both to verify its utility and to mold it into a
useful tool. Other linguistic projects, including modular
interpreters, compilers, and type systems, also benefit
from the capabilities our language provides.

With use, we expect to find features that are not en-
tirely satisfying. For instance, the merging technique
that we use to implement open classes mutates the ex-
isting classes. As a result, it is not clear how one can
easily undo the effect of compiling a particular exten-
sion. This property is contrary to the traditional models
of modular software development, where each compila-
tion unit corresponds to exactly one object module, and
these modules can easily be compiled, re-compiled, or
un-compiled. In the future, it might be worth inves-
tigating extending the system with an explicit linking
process, so that class fragments can be compiled inde-
pendently and later linked into their containing classes.

REFERENCES

(1] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel,
S. Keene, G. Kiczales, and D. A. Moon. Common
LISP object system specification. ACM SIGPLAN
Notices, 23(special edition):1-143, 1988.

[2] C. Chambers and G. T. Leavens. Typechecking
and modules for multimethods. ACM Transactions
on Programming Languages and Systems, 17(6):805—
843, November 1995.

[3] C.Clifton, G. T. Leavens, C. Chambers, and T. Mill-
stein. MultiJava: Modular open classes and sym-
metric multiple dispatch for Java. In ACM SIG-
PLAN Conference on Object-Oriented Programming
Systems, Languages & Applications, volume 35(10),
pages 130-145, 2000.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design Patterns: FElements of Reusable
Object-Oriented Software. Addison-Wesley Personal
Computing Series. Addison-Wesley, Reading, MA,
1995.

[5] T. Millstein and C. Chambers. Modular stati-
cally typed multimethods. In Proceedings of the
Thirteenth European Conference on Object-Oriented
Programming (ECOOP’99), volume 1628 of Lecture
Notes in Computer Science, pages 279~303, Lisbon,
Portugal, June 1999. Springer Verlag.

[6] G. L. Steele, Jr. Building interpreters by compos-
ing monads. In ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages,
pages 472492, January 1994.

