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This thesis surveys three different deformation models for physically based simulation. The 

ability to model and manipulate deformable objects is essential to many computer graphics 

applications, especially in modeling and simulation of realistic and complex environments. 

Approaches for modeling object deformation, however, have been constrained by the limi

tation of hardware. Although realistic behavior of the deformed objects is most desirable, 

many methods sacrifice the realism for speed. 

The three deformation models that we survey are based on individual nodal point anal

ysis, a reduced degree of freedom model, and an approximate continuum model, each with 

its own strengths and weaknesses. We examine these deformation models using the same set 

of parameters, and measure their performance in terms of speed, stability, and robustness. 
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Chapter 1 

Introduction 

Simulating 3D continuous mesh models using physically based deformation techniques has 

always been a difficult task. In the past two decades, there has been a significant amount of 

research involving deformable objects, but only in recent years has the effort been concen

trated in the area of animation. The limitation of hardware has probably been the primary 

reason for the delay, and with increasing computational power, researchers are now able to 

simulate more complex objects and behaviors. Use of mesh models for 2D objects is be

coming commonplace as simulations of 2D meshes approach interactive speed, but research 

in the 3D realm remains scarce and slow. 

In the movie Flubber, animators at Disney hand animated the dance sequence of each 

flubber. Flubbers possess the unique characteristic of being "Jello-like" or "putty-like" 

while performing complex movements. The animators therefore keyframed not only the 

kinematics of their motion, but also an obvious amount of "stretch and squash" to give them 

the look and feel of soft rubber. The goal of this thesis is to explore different approaches to 

automate the dynamic behavior of a flubber-like material. We intend to animate flubbers 

as viscoelastic models driven by motion captured dance sequences. 

To create realistic motion, we use motion capture data as input for our model. Obtaining 

motion capture data is a relatively fast procedure compared to traditional keyframing, 

and motion capture data is becoming more widely available. Using motion capture data, 

however, requires the deformable model to be a passive system where the motion is applied 

to the character, and the "Jello-like" behavior is passively simulated. Most deformation 

systems currently available are passive only to external forces such as collision forces or 

other type of constraints. In this thesis, we translate the motion capture data into internal 

forces and simulate motion as end results of applying these internal forces. 

1 
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In most character animation systems, individual body parts may be represented as rigid 

objects, which creates seams or discontinuities between body parts. To circumvent this 

problem, we choose to deform the character model as a fully enclosed continuous mesh with 

volume. Because the motion capture data we possess describe the character movements 

based on the position and orientation of each body part during each frame, we first have to 

map regions of the continuous mesh to the body parts. Then we employ volume deformation 

techniques to animate the character's underlying structure, thus deforming the mesh. 

We implemented three different deformation models and tested their performance under 

different sets of parameters. The models that we tested are a mass spring model, a reduced 

degree of freedom model, and an approximate continuum model. These models have dif

ferent characteristics that are difficult to quantify when simulating a complex character, 

therefore we tested these models using a simple geometric cube. 



Chapter 2 

Related Work 

Deformation has been studied for more than two decades in computer graphics. Gibson 

and Mirtich [8] have done an extensive technical report covering the major techniques and 

their strengths and weaknesses. The two main categories of deformation methods are non

physically and physically based modeling. The most prominent technique in non-physically 

based modeling is free form deformation, and the most common techniques in physically 

based modeling include mass spring models, continuum models and finite element methods, 

approximate continuum models, and reduced degree of freedom models. 

2.1 Free Form Deformation 

Free form deformation (FFD) is a general deformation technique that is based on space 

warping functions introduced by Barr [9]. Sederberg and Parry [10] coined the term "Free 

Form Deformation" when they created lattices that define the space to be deformed, thus 

adding an intuitive interface for the user. The lattices are defined by a set of points, and 

by moving the points, the space enclosed by that lattice is warped to a new shape. 

The principle of FFD has been extended in many ways. Coquillart introduced extended 

free form deformations [11] to create lattices of non-parallelpipedical shapes, and then 

added animated free form deformation [12] to animate the deformed objects. To allow 

more intuitive control, Hsu et al [13] allowed direct manipulation of the deformed objects 

on top of FFD. McCracken and Joy [14] adopted Catmull-Clark subdivision surfaces [7] to 

subdivide three-dimensional lattices, creating lattices of arbitrary topology. 

Because FFD is a space warping modeling tool, it requires the user to define lattices of 

the necessary shape and detail on top of keyframing the deformations associated with the 

motions. This is often a non-trivial task for complex meshes, thus requiring many levels of 

3
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refinements before the user could achieve the desired deformation. 

2.2 Mass Spring Models 

Mass spring models are perhaps the most intuitive tool for modeling deformable objects, 

and have been studied and used extensively in modeling and simulation. Objects in mass 

spring models are composed of a collection of nodal points connected by springs in a lattice 

structure. Springs can have different properties for simulating different material behaviors. 

With careful placement of nodal points and selection of the springs properties, mass spring 

models can model very complex and realistic objects. 

Mass spring models have been widely in animation. Chadwick et al [15] combined 

mass spring models with free form deformation to animate cartoon characters. Tu and 

Terzopoulos [16] modeled the muscles of artificial fish using a mass spring system based 

on an implicit Euler method. Waters [18] used mass spring systems in modeling facial 

animation. They gave their springs different properties to represent the dermal, fatty tissue, 

and muscle layers of human skin. 

Although mass spring models are easy to construct, they certainly have their drawbacks. 

Using discrete nodal points and springs to model realistic objects as continuous bodies is 

a significant approximation. The selection of nodal points can often create the problem of 

either over or under sampling, and the selection of spring properties such as spring constants 

and damping constants is often difficult. Furthermore, simulating rigid objects with high 

spring constants can create a stiffness problem causing the numerical integrator to take 

smaller time steps in order to maintain numerical stability. 

2.3 Continuum Models and Finite Element Methods 

Unlike mass spring models, continuum models and finite element methods (FEM) treat 

the deformable objects as solid bodies with continuous mass and energy, and derive the 

numerical integration from equations of continuum mechanics. Although FEM still requires 

a discrete time step as an approximation of real elapsed time, the continuum mechanics 

provide a more physically realistic simulation than mass spring models. 

The flip side to the continuum mechanics and FEM is the computational requirement. 

Due to this limitation, the use of FEM has been limited in computer graphics until recent 

years. Celniker and Gossard [19] applied FEM to generate primitives that build continuous 

meshes designed to support a free form modeling paradigm. Gourret et al [20] modeled 
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interactions between a human hand performing a grasping task on a deformable object. 

Chen and Zeltzer [21] captured the geometry and underlying material properties of muscles 

using FEM. Bro-Nielse and Cotin [22] applied FEM for modeling human tissue deformation 

for surgical simulation. O'Brien and Hodgins [23] formulated their FEM using internal 

energy to model stress and fracture of deformable and rigid bodies. Faloutsos et al [24] 

combined free form deformation and FEM to create dynamic deformable objects with the 

look and feel of cartoons, and Baraff and Witkin [1] demonstrated that even with the 

heavy computation required by FEM, they could still achieve near interactive time modeling 

complex cloth models. 

2.4 Approximate Continuum Models 

In between the discrete models created with the mass spring system and the continuous 

mass and energy models described by FEM lie the approximate continuum models. These 

models utilize the same continuous energy concept as FEM, but formulate it discretely to 

achieve certain desired effects. 

Kass, Witkin, and Terzopoulos [25] introduced snakes for solving low level tasks in com

puter vision such as edge or line detection, stereo matching, and motion tracking. Snakes 

respond interactively to internal forces that resist stretching and bending based on energy 

minimization. Terzopoulos et al [26] employed elasticity theory for deforming curves, sur

faces, and solids for animation applications. Their method used a discretized continuum 

model for the potential energy due to deformation. Terzopoulos and Witkin [27] repre

sented a deformable object based on a rigid reference body that captures the rigid-body 

motion, and a discretized deformation function that defines the movements of mesh points. 

Terzopoulos and Fleischer [28] further expanded this technique to simulate viscoelasticity, 

plasticity, and fracture in deformable bodies. 

2.5 Reduced Degree Of Freedom Models 

Simulating physically based models using the techniques discussed above often leads to 

systems with many degrees of freedom since the object's state is defined by the nodal 

points' positions and velocities. The high degree of freedom can cause systems to slow 

during simulation, thus limiting their use in real time settings. Low degree of freedom 

models address this problem by sacrificing certain physical attributes for speed. 

Pentland and Williams [29] developed a simplified FEM expression for the dynamics 
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of deformable bodies using modal analysis. Their system allows the user to independently 

compute different modes of deformation. These modes could be summed up to create a 

more accurate simulation, or the user could selectively ignore modes that are often not 

necessary for the purpose of most animation and computer graphics applications. Witkin 

and Welch [30J adopted a technique for animating and globally deforming bodies using the 

space-warping functions introduced by Barr [9]. They added a time dependency in the 

process, which allows for animating deformable objects. Baraff and Witkin [3:1.J further 

expanded this technique to simulating combinations of rigid and deformable bodies with 

non-penetration constraints. 

2.6 Our Models 

In this thesis, we implemented a mass spring model, a reduced degree of freedom model, 

and an approximate continuum model. We examined the possibility of using FFD as a 

deformation tool based on the concept presented by Chadwick[15], but the fact that FFD 

is a space warping technique ignoring the structure of the deformed object makes it a poor 

choice for our purpose (Figure (2.1)). 

Our mass spring model is based on simple linear springs, and thus similar to that of 

many generic mass spring models. The reduced degree of freedom model is based on the 

work by Witkin and Welch [30J. In this approach, deformation is limited to a 2nd order 

function, ignoring the higher frequency deformation to decrease computation time. Our 

approximate continuum model adopts the implicit integration technique used by Baraff 

and Witkin[1J. The deformation is based on energy functions described by finite element 

methods, but the numerical integrator calculates the energy discretely on each individual 

nodal point. 
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Figure 2.1: Using FFD to deform a continuous mesh model. The character's arm is deformed 
based on the change in the shape of the lattices. Since FFD is a space warping technique, 
the structure of the underlying mesh is not being considered. 



Chapter 3 

Creating the Model 

We have chosen to animate any given mesh model by giving the model a set of skeletons, 

and using the mesh as a layer of skin. The skeletons make up a rough representation of 

the skin itself. But unlike the skin, skeletons cannot be deformed. During the initialization 

process, we connect the skeletons and the skin with sets of springs creating a mass spring 

system. Moving or rotating the rigid skeletons then would push and pull on the springs, 

causing the skin to deform. 

3.1 Notation 

For the rest of this thesis, we will use bold faced letter to denote a vector containing 

information for a collection of elements. For example, x would denote the position vector 

of a collection of points; Xi will denote the (x, y, z) coordinate of the element i, and Xi 

will be the equivalent of the x coordinate of Xi. Furthermore, we will also let x denote an 

un deformed position vector. 

3.2 Model Generation 

We created two sets of models. The first has a simple geometric shape of a cube as skin 

and a single rectangular block as skeleton (Figure (3.1)), and the second is a full character 

with 19 independent skeletons representing 19 separate body parts (Figure (3.2)). The 

character's skin is a continuous mesh generated using the algorithm created by Markosian 

[2]. 

8 



9 

Figure 3.1: The single skeleton model with skeleton and sampling 

Figure 3.2: The full character model with skeletons and sampling 
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3.3 Sampling and Nodal Point Placement 

To generate the mass spring system, we first create an axis-aligned bounding box around 

the model and sample points within the bounding box. The sample points are chosen such 

that they form a grid with cells of approximately equal volume. To determine the spacing 

between the sample points, we first identify the shortest side of the bounding box, and find 

the spacing distance of that axis based on an user-defined sampling rate. This sampling 

distance is then used on the other two sides of the bounding box to determine the number 

of samples required for each side. 

For each sample point inside the bounding box, we choose a random infinite ray an

chored to the sample point. If this vector intersects an odd number of polygons on the 

skeleton mesh, the sample point is identified to be inside the skeleton and categorized as a 

SkeletonPoint. However, if the number of intersections is even, we perform the same inter

section check again but using the skin mesh. The sample point is determined to be inside 

the skin mesh and categorized as a VolumePoint if the number of intersections is odd. In 

the full-character model where there are 19 disjoint skeleton meshes, The SkeletonPoint test 

is done with each skeleton mesh iteratively tested until either the sample point is assigned 

to a particular skeleton, or the sample point has been tested against all skeletons and found 

not to be inside any of the skeletons. 

For the purpose of speed and stability which will be discussed in the later chapters, the 

skin in the full-character model needs to be divided into 19 separate body parts associated 

with each of the 19 skeletons (Figure (3.3)). Determining which body part a VolumePoint 

or SurfacePoint belongs to is similar to that of decomposing the skin as a continuous mesh 

into one or more body parts. The points are tested during an initialization step to find 

out which skeleton they are closest to and then assigned to the body part that the skeleton 

represents. After all the points have been assigned, each point then checks to see if its 

neighboring points are associated with the same body part. If any of its neighbors belong 

to a different part, the point computes the percentage of how much it belongs to each body 

part using the following equation. 

1 

Ci = n' 
t: 

1 (3.1)
I:i=O t; 

where c denotes the percentage, i represents all the neighboring body parts of the tested 

point, and li represents the length from the tested point to the closest point on body part 

t: 
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Figure 3.3: Different body parts of the human character including the over-lapped sections 

Figure 3.4: A configuration with no diagonal support 

3.4 Spring Creation 

Once the nodal points are established, we connect them using regular springs that have a 

user-defined spring constant and a damping constant. Each spring has its own rest length, 

and follows the standard spring equation: 

X'-X' 
fi = k(lxj  Xil- r) I J 

Xj 
ZI 

- Xi 
- d(Vi - Vj) (3.2) 

where fi denotes the total force exerted on point i, k the spring constant, d the damping 

constant, r the rest length, Xi and Xj the positions of the two points connected by the 

spring, and Vi and Vj the velocities of the two points. 

Choosing the correct nodal points and connecting them with springs will determine the 

stiffness and structural stability of the system. For example, the configuration in Figure 

(3.4) gives no diagonal support to the structure, therefore the structure could easily collapse 
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Figure 3.5: Some configurations with diagonal support 

without incurring forces. Figure (3.5) demonstrates some different connectivities that will 

add angular, or diagonal, support that prevents the structure from collapsing. Since each of 

these configurations is correct, choosing the simplest form with the least number of springs 

will decrease the amount of computation required. 

For the single skeleton case, we connected our 3D mesh similar to that of the second 

diagram in figure (3.5). Each nodal point in this case is connected with 15 springs. After 

several experiments, we discovered that in 2D, breaking up rectangles into triangles would 

give angular support to the structure efficiently. Therefore, in our full character model, we 

inferred that the same reasoning would apply to 3D, and broke up the cubes made up of 

nodal points into tetrahedrons (Figure (3.6)). 

3.5 Undersampling 

Using the heuristic for nodal point placement described above creates an aliasing effect. 

The problem becomes even more obvious in cases where the user-defined sampling rate is 

low. At places where the skeleton is skinny, there could exist only one or sometimes no 

nodal point to represent the skeleton. Similarly, the skin could experience the same problem 

where the finer parts are undersampled. This undersampling problem is currently a research 

area in Computational Geometry with no clear solution [3] [4]. 

We attempt to alleviate the undersampling problem by moving nodal points onto the 
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Figure 3.6: (a) Breaking up a cube into tetrahedrons (b) Cutting the cube diagonally (c) 
Due to symmetry, only one part has to be examined (d) Rotating and cutting (e) The 
resulting tetrahedrons from the cuts 
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surface of the skeletons and the skin. The moving process takes place after the Skeleton

Points and the VolumePoints have been determined. To better represent the skeletons, each 

VolumePoint finds out its distance to the closest skeleton. If any of the x, y, z components 

of this distance vector are less than the sampling distance as described in Section 3.3, the 

VolumePoint is determined to be close enough to the skeleton, and moves onto the skeleton 

to become a SkeletonPoint. 

In dealing with the aliasing effect along the skin, we first determine all the VolumePoints 

that have neighbors outside of the boundary. We then find all the grid points that are 

directly adjacent to these points but lie outside of the skin. Each of these newly found grid 

points is tested for a closest point on the skin and then moved onto the skin to become a 

SurfacePoint. 

3.6 Spring Elimination 

Since the initial sampling was done along a grid, the springs forming the tetrahedrons 

could easily connect nodal points between different body parts at places where springs 

might be undesirable as shown in figure (3.7). The problem becomes more obvious as 

SurfacePoints are created and moved onto the skin because many of these SurfacePoints 

that were originally next to each other on the grid now become much further apart. To 

eliminate this problem, we iteratively check the length of each spring after the SurfacePoints 

have been created. If any of the x, y, or z component of the length vector exceeds the 

sampling distance, the spring is discarded (Figure (3.8)). 
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Figure 3.7: Original configuration without cutting any springs 

Figure 3.8: After spring elimination 



Chapter 4 

Animating The Skeleton 

The primary difference between SkeletonPoints, VolumePoints, and SurfacePoints is the 

fact that SkeletonPoints are attached to skeletons, and therefore not subject to the effect of 

springs. When the skeleton is translated or rotated due to applied forces (refer to the next 

section for more detail), the SkeletonPoints undergo the same amount of transformation. 

The movement of SkeletonPoints in turn stretches or compresses the springs attached. These 

springs will then pull or push on the VolumePoints or SurfacePoints, causing the entire mass 

spring system to deform. 

4.1 Applied Forces 

With the mass spring system in place, creating the animation is as simple as moving the 

skeletons and simulating the nodal points. In the simpler model where there exists only 

one skeleton, keyframed information on the skeleton is defined within a text file that the 

system parses during the initialization process. In the full character model, we use motion 

capture data as input. The motion capture data specifies both position and orientation of 

each skeleton during each frame of animation. Our motion capture data was collected at 30 

frames per second, therefore we linearly interpolate between frames when the simulation is 

running at a higher frame count. Since the translational data is given in x, y, z format in 

relation to the origin, and the rotational data is given in degrees of rotation around each 

axis, the interpolation is nothing more than 

p(t + c~t) = p(t)c + p(t + ~t)(l - c) 

where p is the translational vector, and c is the percentage of the desired interpolated 

time in relation to ~t. Similarly, 
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O(t + c.6.t) = O(t)c + O(t + .6.t)(l - c) 

where 0 denotes the vector that contains the Euler angles of rotation. 



Chapter 5 

Deformation Models 

This chapter describes the mass spring model, the reduced degree of freedom model, and the 

implicit integration model. Because these are volume deformation techniques, each model 

is associated with a skin deformation process that is separate from its numerical integration 

process. 

5.1 Mass Spring Model 

In the single skeleton case, the effects of applying forces to the skeleton create rigid trans

formations such as rotation or translation. The skeleton follows Newton's law of motion 

when it is subjected to external forces. 

a(t) = f(t) 
m 

v(t + ~t) = v(t) + a(t)~t 

1 
x(t + ~t) = x(t) + v(t)~t + 2a(t)~t2 

where f is the external force, m is the mass, a is the acceleration, v is the velocity, x is 

the position, t is the elapsed time, and ~t is the time step. 

For orientation, on top of the initial orientation of the skeleton, we keyframe the addi

tional degree of rotation around each axis during each frame of animation. The skeleton's 

subsequent orientation is computed by adding these additional degree of rotation onto its 

existing orientation. 

18 
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As mentioned in the previous section, moving the skeleton causes the SkeletonPoints to 

move as well, which in turn changes the lengths of the springs. When a spring is not at 

its rest length, it generates forces on the two nodal points connected to it. The spring's 

original rest length, its spring constant, damping constant, and the relative velocities of the 

two nodal points determine the amount of forces as shown in equation (3.2). 

The forces cause acceleration on the VolumePoints. Using the same motion equations 

described above for skeletons, each VolumePoint arrives at a new state with a new acceler

ation, velocity, and position for the next time step. 

5.1.1 Rendering 

One way to render the mesh using a mass spring model is to associate the vertices on the 

mesh with certain nodal points in the mass spring system. When these nodal points change 

their positions during the deformation process, the vertices would move accordingly. In 

our single skeleton case, because the skin is nothing more than a geometric cube, we easily 

pick nodal points that lie exactly on top of the skin and assign them as vertices of the 

mesh. After each iteration of the simulation, the rendering engine draws the mesh based 

on the calculated positions of these particular nodal points (Figure (3.1)). Because the 

VolumePoints are point masses, orientation is omitted. 

5.2 Reduced Degree of Freedom Model 

The reduced degree of freedom (reduced DOF) model limits the deformation process using 

nth order deformation functions. We adopted Witkin and Welch's algorithm [30] where we 

characterize the deformation by a map from !R3 to !R3 while adding time dependence for 

the purpose of animation. Specifically, if Xi is the location of a point on the undeformed 

object, the location of the point on the deformed object is 

(5.1) 

where 

Pi = w(xd 

The function w converts an undeformed position in 1st order to nth order coordinate. 

It does not depend on R or time. In our implementation, we chose w(xd = W(Xi, Yi,ii) to 

be [Xi, Yi, ii, XiYi, Yiii, xiii, xr, Yr, if, 1]. The 3 x 10 matrix R transforms the undeformed Xi 

into the deformed position Xi. R is defined to be 
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R(t + ~t) = R(t) + R(t)~t + ~R(t)~t2 

and R( t) is defined to be 

R(t + ~t) = R(t) + R(t)~t 

and R(t) is equal to 

R(t) = Q(t)M-1 

In order to compute R, we first compute the constant symmetric mass matrix M 

M= ~)mpiPn 
i 

where i represents all the mass points in the system. The generalized force Q given the 

force fi applied to the world-space point Xi = Rpj is defined as 

Q(t) = L fi(t)Pl 
i 

Because R is a map between deformed and undeformed object, the mass matrix M only 

needs to be computed and inverted once. In other words, the set of undeformed points are 

computed once during the initialization step, and used in equation (5.1) at the end of each 

time step of the simulation. For the full derivation of these equations, refer to [30]. 

In the full character model, where the deformation is much more complex, a 3 x 10 2nd 

order deformation matrix is no longer sufficient to describe the deformation process of the 

entire character. Therefore we break down the character into separate body parts where 

each part is described by its own 3 x 10 deformation matrix. To ensure the continuity 

between body parts, the position of each nodal point between body parts is computed: 

n 

Xi = L Cb,i(RbPi) (5.2) 
b=O 

where Cb,i is the percentage computed during initialization described in equation (3.1) 

for body part b and node i. Similarly, Rb denotes the deformation matrix for body part b. 

In this equation, we define the sum of two points as the sum of each x, y, z component of 

the points' coordinates. 
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5.2.1	 Rendering 

Since the reduced DOF model is a space-warping technique, the rendering process requires 

no extra algorithm. The vertices on the skin are deformed using equation (5.1) in the single 

skeleton case, and equation (5.2) in the full-character model after the deformation matrices 

are computed for each body part. 

5.3	 Implicit Integration and Finite Element Method using 

Approximate Continuum Model 

Although Finite Element Methods (FEM) have traditionally been slow, they are still used 

often for their stability and accuracy. The dynamic FEM equation is usually represented as 

F = MU + CtJ + KU 

where M, C, K are the mass, damping, and stiffness matrices respectively for the entire 

object. F is the composite vector of equivalent applied forces, and U is the composite vector 

of node displacements. 

We have chosen the approach described by Baraff and Witkin [:I.]. In their algorithm, 

they utilize implicit integration for solving the stiff differential equation described above. 

The implicit integration technique requires the use of the backward Euler method. Similar to 

the traditional forward Euler method, both approaches attempt to solve for a new position 

x(t+~t) and a new velocity v(t+~t) given the current position x(t) and velocity v(t). To 

compute the new state and velocity using an implicit technique, we first assume that the 

change of position is the same as velocity, and write the differential equation as 

(5.3) 

where M-1 is the inverse of the mass matrix, and f(x, v) denotes the applied force. To 

simplify notation, we define Xo = x(to), and Vo = v(to). We also define ~x = x(to + ~t) 

x(to), and ~v = v(to + ~t) - v(to). 

The Forward Euler method applied to equation (5.3) approximates ~x and ~v as 
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where fo is defined to be f(xo, vo). This approximation requires that flt be quite small 

to ensure stability of the simulation. The backward Euler method appears similar, where 

flx and flv are approximated as 

(5.4)( ~: ) = M-1!(x:::~,vvo + b.v) ) b.t ( 

The primary difference between the forward and backward Euler methods is that forward 

Euler is based solely on conditions at time to while backward Euler starts from the output 

state (xo + flx, Vo + flv) and uses a forward Euler step to run the system backward in time 

to get to the state (xo, vo): 

xo) ( Xo + flx ) ( (vo + flv) ) 
( Vo = Vo + flv· - flt M-1f(xo + flx, Vo + flv) 

To find flx and flv requires that we solve for values of flx and flv that satisfy equation 

(5.4). But rather than solving this nonlinear equation iteratively, we approximate the 

function f using a first order Taylor series 

of off(xo + flx, Vo + flv) = fo + AX flx + ov flv (5.5) 

In this equation, *and *are Jacobian matrices describing the relationship between 

force, position, and velocity respectively. However, because we only need to compute the 

new states for movable points, i.e. VolumePoints and SurfacePoints, *and *has to be 

broken down into four matrices: 

of OXm oXs- [- -]AX su: u: 
oX m oXs 

[
olmof oVm oVs 

ov su: -]u: 
oVm oVs 

where X m and V m denote the position and velocity of movable points, X s and Vs denote 

those of the SkeletonPoints, t,« denotes the force applied on movable points, and I, denotes 

the force applied on SkeletonPoints. We can safely ignore ~ and ~ because the Skele

tonPoints are moved rigidly and do not exert forces on themselves. %1: and :t: denote the 

amount of forces acting on the SkeletonPoints due to the change in positions or velocities of 

the movable points. Although these forces do exist, we are ignoring them because we would 
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like our SkeletonPoints to be transformed by the motion capture data, not dynamically 

simulated. 

We can decompose .6.x and .6.v: 

and 

In order to segregate the movable and non-movable points, we rewrite equation (5.5) as 

.	 8im 8im 8im 8im
i(xo + .6.x, Vo + .6.v) = fo+ ~.6.xm + ~.6.vm + ~.6.xs + ~vs (5.6)

uXm uVm ox, UVs 

Notice that this equation is not the mathematically equivalent of equation (5.5) because 

we are omitting the terms ~f. and ~f• . We choose this approximation in order to achieve 
UXm UVm 

our desired effects. 

The first unknown in equation (5.4) is the vector fo, which represents the total amount 

of force acting on each nodal point at time to. Because VolumePoints and SurfacePoints' 

position displacement and change in velocity between to and to+ .6.t depend strictly on the 

springs, we can write the force equation for fo as 

n	 n 

£0 . = '"' k· ·(Ix· - x·l- r, .) Xi - Xj + '"' d· ·(v· - v·),3	 L...,; 2,3 2 3 2,3 I I L...,; 2,3 2 3 
i=l Xi - Xj i=l 

where i iterates through all springs attached to the nodal point. ri,j represents the rest 

length of the spring that connects the two points i and j, ki,j the spring constant, ~,j the 

damping constant, Vi and Vj the velocities of the two nodal points connected by the spring 

i, j, and Xi and Xj the positions of the two nodal points. 

To compute the elements in ~fm of equation (5.6), we differentiate the force equation 
UXm 

with respect to the position of each nodal point. 

a!I,x a!I,x a!I,x a!I,x a!I,x 
aXI,x aXI,y aXI,. aX2,x aX2,y
a/I,y a!I,y a!I,y a!I,y a!I,y 
aXI,x aXI,y aXI,. aX2,x aX2,y

8im a!I,. a!I,. a!I,. a!I,. a!I,.= aXI,x aXI,y aXI,. aX2,x aX2,y8xm a!2,x a!2,x a!2,x a!2,x a!2,x 
aXI,x aXI,y aXI,. aX2,x aX2,y 
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8fa,x = ~ k .( r ._1__ (Xi - xa)2 _ 1) 
8x a,x ~ m m ILh V~3n~=1 V n 

i=/=a 

8fa,x _ k .( r .(xa - Xi)(Ya - Yb)) i =/= a8Xi,y - cz a~ N 

where i iterates through all of nodal point a's neighboring nodal points. kai represents 

the the spring constant of the spring connecting the nodal point a and i, and rai the length 

of that spring. h represents the current spring length, and is calculated as 

U: is derived similarly 

8fa,x _ ~d . 
- LJ

8va,x i=l 
a~ 

8fa,x = 0 
8va,y 

8fa,x - d --- ab 
8Vb,x 

where dab is the damping constant of the spring between the two nodal points a, and b. 

If a nodal point a is not directly connected to another nodal point b, the X, Y, z, entries 
aof ~aa0., ~aaxo., ~aa and !!.h. would all be zeros. In our system, the highest connectivity of any 

X a b Vo. 
0. aVb 

nodal point is 23, which makes both aalm and aalm symmetric and sparse matrices especially 
Xm Vm 

when the number of nodal points reaches 2,000 or above (as in the experiments described 

in the results section) and the matrices have the dimension of approximately 6,000 x 6,000. 
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The last unknowns in equation (5.6) are terms including SkeletonPoints. ~xs and 

~v s are vectors representing the change in position and velocity of the SkeletonPoints. 

Computing aim and aim is similar to computing aim and aim except that aim and aimax. av. aXm aVm ax. av. 
are not symmetric matrices. They have the dimension of 3n x 38 where 8 is the number of 

SkeletonPoints and n is the number of movable points. 

Substituting the force equation equation (5.6) into equation (5.4) yields: 

~xm ) ( VOm+~vm )- ~t ' 
( ~v - M-1(£ + aim ~x + aim ~v + aim ~x + aim ~v )

m 0 aXm m aVm max. S av. S 

Taking the bottom row of this equation and substituting ~xm with the top row of the 

same equation yields: 

-l( aim ( aim aim aim 
~vm = ~tM fo + ~t~ VO,m + ~vm) + ~~vm + ~~xs + ~~vs) 

uXm uVm ox, ou; 

Let I denote the identity matrix, and regrouping: 

(I - ~tM-l ~Im - ~t2M-l ~Im )~vm = ~tM-l(fo + ~t ~Imvo,m + Ofm ~xs + Ofm ~vs) 
uVm uXm uXm otc; ou, 

In our implementation, every nodal point has unit mass, therefore, our mass matrix M 

is just the identity matrix. Substituting M-1 with I yields: 

ai m 2 aim (aim aim aim(I - ~t~ - ~t ~)~vm = ~t fo + ~t~vo,m + ~~xs + ~~vs) 
uVm uXm uXm ax, ou; 

which we then solve for ~vm using the bi-conjugate gradient method described below. 

Given ~vm, we then trivially compute 

5.3.1 Bi-Conjugate Gradient 

If we substitute 

A = left hand side of equation (5.3), and b = right hand side of the same equation, and 

x with ~vm, we arrive at the form 

Ax=b 

where A denotes a matrix, b a known vector, and x the unknown vector. Instead of 

solving for x by inverting A, which is an expensive process, especially when the number 

of nodal points is large, we can use approximation algorithms. The bi-conjugate gradient 

function we adopted from [5] is a steepest decent method, and solves for the unknown x in 

a fraction of time compared to inverting matrices. 
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5.3.2 Memory Issue 

The matrices 881m and 881m each has the dimension 3n x 3n. In our simulation, the number 
Vm Xm 

of nodal points n could range upwards to approximately 40,000. Assuming that the matrices 

are comprised of doubles, each matrix would require 56 gigabytes of memory. Thankfully, 

because these matrices are both sparse and symmetric, we implemented some data struc

tures to store only the un-repeated non-zero elements. Although this compression slows 

down the computation due to the searches and retrievals required by these data structures, 

the trade off between speed and memory is necessary because of the limitation of hardware. 

5.3.3 Speed-Ups 

There are a few notable speedups that decrease processing time quite significantly. First 

of all, since the matrices Z£: and Z!: are symmetric, the matrix multiplication process is 

approximately halved. Second of all, 881m and 881m depend solely on the damping constant,
Vm v" 

which remains unchanged throughout the simulation. Therefore, 881m and 881m only need to 
Vm v" 

be computed once during pre-processing. 

Lastly, by breaking down the full character model into different body parts, we gain dra

matically in both speed and memory. For example, assume that the character is comprised 

of 100 nodal points, and there are 10 body parts each of 10 nodal points, computing the 

character as a whole would require the 881m and 881m matrices be of size 300 x 300 = 90,000.
V m Xm 

However, if we compute each individual body part separately, the system would compute 

10 matrices each of size 30 x 30 = 900, totaling 9,000, a savings of a factor of 10. 

The downside to this optimization is that the effect generated by one nodal point's 

change in displacement or velocity does not immediately affect the entire system. Instead, 

it would require one extra time step for the effect to cross between boundaries of body 

parts. In other words, by moving the nodal points in the right hand of the character would 

require 7 time steps for the effect to travel through the upper arm, lower arm, torso, pelvis, 

upper leg, lower leg, and into the right foot. However, if the character is computed as a 

whole, the same move to the nodal point in the right hand would require only 1 time step 

to achieve the same effect. 

5.3.4 Rendering 

Unlike the reduced DOF model, FEM does not warp space. Therefore the rendering step 

requires the use of a mesh deformation technique such as tri-linear interpolation or low order 

deformation. Tri-linear interpolation requires that each vertex on the skin be enclosed in a 
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set of movable points that define a volume. Then the position of the vertex is parameterized 

within the volume and defined as a (u, v, w) Barycentric coordinate. When the positions of 

the movable points change, the position of the vertex would change with them but stay in 

the same (u, v, w) position within the volume. 

We believe that using trilinear interpolation would create very high frequency defor

mation causing the possibility of self penetration or other artifacts. For the purpose of a 

pleasing and continuous mesh, we chose to use the low order deformation technique where 

we first collect the movements of all the nodal points in the system. Using that information, 

we build a function that describes the deformation process as follows 

X(t + b.t) = p(x) R (5.7) 

where X(t + b.t) is a n x 3 matrix containing all deformed positions (in x, y, z) of all 

the nodal points: 

Xl YI Zl 

X(t + b.t) = 
X2 

X3 

Y2 

Y3 

Z2 

Z3 

and p(x) has the form of 

Xly Xlz xl.,y Xl yz Xlxz XI",2 Xl y2 Xlz 2 
( ~l. 

X2", X2y X2 z X2",y X2yz X2xz X22 X2 2 X22 z :)'" Y 

p(X) is a n x 10 matrix where n is the number of nodal points, and R is the deformation 

matrix. Assuming that the deformation is described with a 2nd order function, R becomes 

a 10 x 3 matrix. 

We rewrite equation (5.7) as 

X(t + b.t) = p'(x) * r (5.8) 

where x(t + b.t) is a vector of size 3n x 1, p'(x) is a matrix of size 3n x 30, and r is 

a vector of size 30 x 1. Transforming x(t + b.t) from XU + b.t) requires putting all 3n 

elements of X(t + b.t) into a vector. Similarly, transforming r from R requires putting 30 

elements in R into the vector r. In order to multiply p' (x) to a vector of size 30 x 1 resulting 

in another vector of size 3n x 1, p'(x) must have the dimension of 3n x 30. Padding p'(x) 

from a n x 10 matrix into a 3n x 30 matrix, we add zeros into the original matrix as follows: 
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XIx 0 0 Xly 0 0 

0 XIx 0 0 Xly 0 

0 0 XIx 0 0 Xly 

X2x 0 0 X2 y 0 0 

0 X2x 0 0 X2 y 0 

Equation (5.8) becomes a fitting problem where there are 3n number of equations but 

30 unknowns. We use the least square fit approach to find r. 

r = (p'(xf p'(x))-l p'(x) x(t + .6.t) 

Once the 30 x 1 vector r is found, we rewrite it as a 3 x 10 matrix R again, and substitute 

it into equation (5.1) to solve for the new positions of the vertices. 



Chapter 6 

Results 

We tested the three systems: regular mass spring system, reduced DOF system, and the im

plicit integration system as described in Chapter 5 using different spring constants, damping 

constants, forces, time steps, and sample rates. The results are plotted with time on the 

x-axis, and total deformation on the y-axis. Total deformation is calculated as 

n 

d = L Iri -lil 
i=l 

where n denotes the total number of springs in the system, and ri and li denote the rest 

length and current length of spring i respectively. 

6.1 Cube Tests - Critically Damped 

The forces applied in all test cases in this section are applied to the skeleton in the single 

skeleton model for 0.05 seconds. After which time, the skeleton is stopped abruptly with 

its velocity set to 0, then the skeleton is held to the same position for the remainder of 

the simulation with a force in the y direction in order to counter gravity. Gravity in the 

system is assumed to be -9.81mj82 in the y direction, and affects the skeleton as well as 

each individual nodal point at all times. 

In this section, we critically damp all of our systems using the equation 

where de denotes the critical damping constant, and k denotes the spring constant. 

When we alter the spring constant, we also change the damping constant to ensure a 

critically damped system. 

29 
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We first test the effects of modifying the stiffness of the system by fixing the sample 

rate to 7 (per side of the cube), time step to 0.0005 seconds, and force to 2000 kgm/s2 , 

then we change the spring constant from 100 (Figure (6.1)) to 225 (Figure (6.2)). From 

these two figures, we see that by increasing the stiffness by a factor of 2.25, the total 

deformation decreases by approximately 30% throughout the simulation, but the general 

shape of the deformation plots remains similar. Furthermore, although the three systems 

perform just about the same, the reduced DOF system has the least amount of deformation. 

We increase the sampling rate to 13 (per side of the cube), and run the tests with the 

same parameters as described above. We get two similar graphs as figures (6.1) and (6.2) 

shown in figures (6.3) and (6.4) except that the total deformation is about twice as much as 

the ones with sampling rate of 7 for both the mass spring and implicit integration systems. 

The total deformation of the reduced DOF system, however, does not change much. 

Repeating the parameters used in creating figures (6.1), (6.2), (6.3), and (6.4), we gen

erate 4 more figures with the time step increased from 0.0005 to 0.005 (Figures (6.5), (6.6), 

(6.7), and (6.8)). We see that in the cases where the spring constant is 100 (Figures (6.5) 

(6.7)), the mass spring system and the implicit system are both stable, but the reduced 

DOF system begins to be stressed out. The spikes in the graphs are the results of oscilla

tions of the volume similar to the reaction of a plasto-elastic object affected by an impulsive 

force. If we let the simulation run a little bit longer when the spring constant is 100, we 

see that eventually the reduced DOF system stabilizes (Figures (6.9) (6.10)). On the other 

hand, in both instances where the spring constant is 225, the mass spring system and the 

reduced DOF system both become unstable while the implicit integration system remains 

intact. Again, if we let the simulation run a little longer, we see that the mass spring system 

gains energy at an exponential rate, becoming unstable much faster than the reduced DOF 

system (Figures (6.11) (6.12)). 

When we further increase the time step to 0.01, the mass spring system and the reduced 

DOF system continue to struggle, and the implicit integration model begins to reach its 

limitation. With the sample rate set at 7 and spring constant at 100, the implicit inte

gration system seems to be stable as shown in figure (6.13). However, anywhere beyond 

that configuration, the implicit integration system begins to fall apart (Figures (6.14) (6.15) 

(6.16)). 
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Figure 6.2: Sample Rate 7, Spring Constant 225, Damping Constant 15, Time Step 0.0005, 
Force 2000 
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Figure 6.5: Sample Rate 7, Spring Constant 100, Damping Constant 10, Time Step 0.005, 
Force 2000 
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Figure 6.6: Sample Rate 7, Spring Constant 225, Damping Constant 15, Time Step 0.005, 
Force 2000 
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Figure 6.11: Sample Rate 7, Spring Constant 225, Damping Constant 15, Time Step 0.005, 
Force 2000 run for 2 seconds 
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Figure 6.13: Sample Rate 7, Spring Constant 100, Damping Constant 10, Time Step 0.01, 
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Figure 6.15: Sample Rate 13, Spring Constant 100, Damping Constant 10, Time Step 0.01, 
Force 2000 

1200 r-----r----,----,-------,r----,-----r--,-------,r-----, 

1000 

800 

400 

200 

Ole::=-------I.__--'-__-'-__L-_---'-__--'-__-'-__L-_---.J 

o 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 
time 
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We also experiment with doubling the force from 2000 kg m]s2 to 4000 kg m]s2. This 

change does not alter the outcome of the tests except that the total deformation is approx

imately twice as high. The stability of each system does not seem to be affected by the 

increase in force. 

6.2 Cube Tests - Underdamped 

We attempt to explore some other properties of the implicit integration system used on 

underdamped models by gradually increasing the spring constant while holding the damp

ing constant the same. We then apply large amount of forces to the skeleton in a short 

amount of time, simulating impulses. In the test cases that we created, we apply an im

pulse of 400,000 kg m]s2 in the first 0.025 seconds of the simulation, then another impulse 

of -400,000 kg m/s2 in the immediate following 0.025 seconds. After the impulses have been 

applied, the velocity of the skeleton is set to 0, and a force is applied to the skeleton to 

counter gravity. 

Figures (6.17), (6.18), (6.19), and (6.20) show the increase in the spring constant from 

225, 500, 1000, to 5000 while holding the damping constant at 3. The amount of oscilla

tion increases in both the mass spring and reduced DOF systems as the spring constant 

increases. The implicit integration system, however, remains relatively stable throughout 

all the changes. 

This test displays the property of implicit integration as described by Kass [6] where he 

relates the implicit integration method to a filtering process. The effect of filtering smoothes 

out the high frequency impulses and make the simulation more stable. 

6.3 Speed 

Although the implicit integration system out-performs the mass spring system and the 

reduced DOF system in stability, it certainly has its drawbacks. The most obvious is the 

amount of time required to compute each iteration of the simulation. Table [6.1] shows 

the amount of time required to generate 1 second of animation (Figure (6.21)) using each 

system in the single skeleton model with different sampling rate. 

Table [6.2] shows the amount of time required to generate 1 second of animation using 

the reduced DOF and implicit integration systems on the full character model (Figures 

(6.22)(6.23)). Each system is sampled with 14,325 nodal points, and run with 0.00025 

seconds as time step. 



40 

2()()()() 
massspring - 

roclucert OOF 

18000 implicit intaqration -

18000
 

14000
 

6 12000
 

~ 
1()()()() 

~ 
S 
B 8000 

/
 
8000
 / 

/ 

4000
 

2000
 

0 
0 0.01 0.02 0.03 0.04	 0.05 0.06 0.07 0.08 0.09 0.1 

time 

Figure 6.17: Sample Rate 7, Spring Constant 225, Damping Constant 3, Time Step 0.001 
25000 r---,--,-----,----.-----,----.------,r-----,--,------, 

2()()()() 

c: 
0 15000 
.~ 

E 
~ 
"0 

]I 
1()()()()B 

5000 

O'--=---'-__.L.-_----'-__-'-_----'__--'-_----''--_--'-__.L.-_---J 

o	 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 
lime 

Figure 6.18: Sample Rate 7, Spring Constant 500, Damping Constant 3, Time Step 0.001 



41 

25000 r----,--,-----.---,------r--,-------,----.--:-r---, 

20000 

8 15000 

J 
~ 10000 

5000 

oL..-~__'___----'____'__----'-___'___----'-__.l..__ __'____L-_...J 

o 0.01 0.02 0.03 0.04	 0.05 0.06 0.07 0.08 0.09 0.1 
time 

Figure 6.19: Sample Rate 7, Spring Constant 1000, Damping Constant 3, Time Step 0.001 
35000 

30000 

25000 

c: 
.2
;;; 20000 
E 
~ 
]I 15000 
B 

10000 

5000 

0 

mass spring -
n;rllJr.17rl DOF 

implicit integration -

/--"-.. 
<. 

0	 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 
lime 

Figure 6.20: Sample Rate 7, Spring Constant 5000, Damping Constant 3, Time Step 0.001 



42 

Figure 6.21: Deformed cube model (a) skin (b) skeleton and nodal points 
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Figure 6.22: Deformed human character model frame 176 (a) skin (b) skeletons and nodal 
points 
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Figure 6.23: Deformed human character model frame 351 (a) skin (b) skeletons and nodal 
points 
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system sample rate = 7 sample rate = 13 
Mass Spring 4.06 32.0274 
Reduced DOF 3.8412 18.03968 
Implicit Integration 53.8828 2236.01 

Table 6.1: number of seconds required to generate 1 second of animation using time step of 
0.001 with the cube model 

system time 
Reduced DOF 362.6972 
Implicit Integration 35281.48 

Table 6.2: number of seconds required to generate 1 second of animation using time step of 
0.00025 with the full character model 

1\
l\t 

~. 

"? l' 
A !

t, 
Figure 6.25: Sequence of animation continued 



Chapter 7 

Discussion 

Although we have implemented three different deformation algorithms, our original goal of 

automating the process of creating an animation sequence of a viscoelastic model remained 

the same throughout. In our system, the only process that requires some amount of manual 

labor lies in creating the skeleton. The skeleton selection process plays a vital role to the 

stability of the simulation because it directly affects the amount of volume to be deformed. 

Decreasing the sizes of skeletons means that the number of nodal points between the skele

tons and the surface is higher, which as the same effect as having higher sample rate, thus 

requiring the numerical integrator to take smaller time steps. On the other hand, if the 

skeletons are large, the number of movable points would decrease, limiting the amount of 

deformation. Therefore, given a continuous mesh as input, the user must first generate 

a suitable set of skeletons that is neither too small to potentially cause instability in the 

system, nor too big such that the amount of viscoelastic behavior becomes diminished. We 

approximated the skeletons as a collection of spheres scaled and stretched to resemble the 

character (Figure 3.2), and we have demonstrated that this approximation is adequate for 

accomplishing our goal. 

7.1 Initialization 

With the mesh and skeletons in place, the system takes the following as inputs: 

• sample rate 

• spring constant 

• damping constant 
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• force description 

Force description could either be motion capture data or key framed force information. 

With these data, the system begins the simulation and rendering automatically. We first 

sample the volume and identify the nodal points as VolumePoints, SurfacePoints, or Skele

tonPoints. Then springs are added to connect the nodal points creating lattices with angular 

support". Depending on the positions of the nodal points, each nodal point is assigned to 

one or more body parts based on its distances to the closest skeletons. Excess springs that 

span between body parts are removed according to the heuristics described in the section 

3.6. At this point, the initialization step is complete, and the system is ready to start the 

animation and deformation process. 

7.2 Stability Of The Deformation Models 

The three deformation models that we implemented varied in stability and speed. From 

figures (6.1), (6.2), (6.3), and (6.4), we can see that with a small enough time step and a 

reasonable spring constant, all three models behave well. However, as the time step starts 

to increase, the mass spring model and the reduced DOF model begin to buckle under the 

stress. In figures (6.5) and (6.7), we notice that the reduced DOF model begin to show signs 

of destabilizing. The high spikes in the graphs are caused by the oscillation of the volume, 

which is similar to that of an underdamped system. The mass spring model, however, does 

not exhibit signs before becoming unstable. Between figures (6.5) and (6.6), the model 

transitions from being stable to exponentially gaining energy during the deformation. From 

this point on, any further stress on the mass spring model and reduced DOF model such as 

increasing time step or increasing spring constant only causes both models to destabilize in 

a shorter amount of time. The implicit integration model, on the other hand, shows great 

tolerance towards the changes in sample rate, time step, and spring constant. Only when 

the time step reaches 0.01 seconds does the model begin to deteriorate {Figures (6.13)(6.14) 

(6.15)(6.16)). 

7.3 Speed Of The Deformation Models 

The cost of having such stability in the implicit integration model is the speed of the 

simulation. Table [6.1] shows the amount of time required by each system to generate 1 

lThis is only for the full character model, the single skeleton model is connected differently as described 
in section 3.4. 
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second of animation using different sample rates with the cube model. The increase in 

the sample rate from 7 to 13 is approximately the same as increasing the number of nodal 

points 8 times because the sample rate represents the number of samples along each axis 

of the cube. The mass spring model shows that the computation time is O(n) where n is 

the number of nodal points. The reduced DOF model, however, increases at a slower rate. 

Unlike the mass spring model where the numerical integrator computes the position and 

velocity of each individual nodal point (Section 5.1), the reduced DOF model computes 

the deformation matrix once, and applies the matrix to the nodal points for computing the 

positions and velocities making the simulation faster but less accurate (Section 5.2). From 

our experience, the amount of computation time in the reduced DOF model is dominated 

by the time required to generate the deformation matrix. Multiplying the matrix by n 

3 x 1 position vectors requires much less time in comparison. In other words, although 

the complexity of the reduced DOF model is the same as the mass spring model at O(n), 

reduced DOF model is faster because the constant associated with n is smaller. Lastly, 

the implicit integration model increases approximately 40 times in computation time as the 

sample rate increases from 7 to 13 due to the growth in the matrices required by the system. 

As described in section 5.3, such increase in the sample rate would increase the matrices 

from (3 x 73) x (3 X 73 ) = 1,058,841 elements to (3 x 133 ) x (3 X 133 ) = 43,441,281 elements. 

Because creating and multiplying these matrices is the primary cause of the computation 

time required by the implicit integration model, as the matrices grow in order of n 2 , so does 

the complexity of the model (O(n2 ) ) . 

Table [6.2] shows the amount of time required to generate 1 second of animation with the 

character model. The reduced DOF model takes approximately 6 minutes, while the implicit 

integration model would require 588 minutes, or 9.8 hours. The animation sequence shown 

in section 6.3 lasts approximately 6 seconds, which translates to 36 minutes of simulation 

time using the reduced DOF model, and 58.8 hours with the implicit integration model. 

7.4 Future Work 

7.4.1 Deformation Models 

There are areas in our algorithm that we believe could be improved upon. First and 

foremost, we have yet to test other deformation techniques that utilize the continuum model 

such as O'Brien's [23] finite element method that describes deformation based on internal 

energy. Using such continuum models might further increase the amount of computation 
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time, but could also increase the accuracy of the simulation. 

7.4.2 Skeleton Generation 

In order to make our entire system fully automated, we need to improve upon the skeleton 

generation process. Teichmann and Teller [17] explored the possibility of assisted articula

tion of polygonal models using 3D Delaunay triangulation. In their system, a fair amount 

of user intervention is still required to create an accurate skeleton to represent the model, 

but it does offer the user the means to look at their mesh model while trying to generate the 

skeleton. We believe that we could adopt the same technique and principle and create a tool 

that would make our skeleton creation process equally interactive or even fully automated. 

7.4.3 Collision Detection and Penetration Constraints 

Our current system does not support collision detection or penetration constraints. These 

are necessary tools in making the system more robust and accurate in simulating complex 

environments. Although these features would further slow down the computation time, it 

is unavoidable for simulating the interaction between the character and other objects in the 

scene. 

7.4.4 Sampling 

The sampling technique used in our system currently relies on a 3D grid. This creates many 

artifacts such as aliasing, under sampling, or over sampling. Ideally, the nodal points should 

be connected in not just tetrahedrons, but equilateral tetrahedrons where all springs have 

equal rest length and all neighboring nodal points are equally distanced apart. 3D meshing 

of a volume using equilateral tetrahedron, however, is currently a difficult problem with 

no clear solution. In our system, we believe we could relax the constraint of equilateral 

tetrahedrons to approximate equilateral tetrahedrons using some relaxation technique on 

the placement of nodal points and not lose too much accuracy in the simulation. 

7.4.5 User Defined Constants 

The three user defined constants in our system that critically control the results of the 

deformation are the spring constant, the damping constant, and the time step. Currently, 

finding the correct values of these constants is purely based on trial and error. If a particular 

sequence of animation is not desirable in terms of stability or lack of viscoelastic behavior, 

the user has to change the constants based on intuition and restart the simulation again. 
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Although the definition of "lack of viscoelastic behavior" is quite subjective, we believe 

that we could still offer some tool that allows for a preview of the effects of some selected 

constants. Animators then would not have to spend hours rendering and re-rendering 

until the desired constants are found. Furthermore, we would also like give the option of 

assigning specific springs different behaviors or constants to simulate layers similar to that 

of the system created by Waters [18]. 



Chapter 8 

Summary 

The goal of this thesis is to animate a viscoelastic character model in an automated fashion. 

We have demonstrated that by supplying the character model with a set of skeletons, we were 

able to make the character dance in a physically plausible manner similar to that of £lubber. 

Our approach represented the model using nodal points and springs, and applied three 

different deformation techniques for the animation process. The deformation techniques 

vary in speed, stability, and robustness, but each has its own strengths and weaknesses. 

We tested the three deformation techniques using a simple cube model. The results 

demonstrated that the mass spring model, although fast and easy to construct, varied 

greatly in stability when the system parameters were modified slightly. The implicit inte

gration model, on the other hand, was very tolerant towards changes in parameters, but 

suffered in performance as the number of nodal points increased. The reduced degree of 

freedom model fit between the previous two models, sacrificing some accuracy such that it 

is slightly faster than the mass spring model, but slightly less tolerant, and faster than the 

implicit integration model, but not quite as stable. 

Based on the fact that not one technique had a clear advantage over the other two, we 

have essentially offered animators a set of tools for animating and simulating viscoelastic 

models. These systems could be alternatives for the traditional manual keyframing and 

space warping deformation methods because of their ease of use and speed. Depending on 

the needs of the animator, a system could be selected to assist in the process of creating a 

sequence of pleasing animation with the least amount of effort. 
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