
Simulation Techniques For Deformable Animated

Characters

by

Remco K. Chang

B. A., Johns Hopkins University, 1997

A thesis submitted in partial fulfillment of the

requirements for the Degree of Master of Science

in the Department of Computer Science at Brown University

Providence, Rhode Island

April 2000

Abstract of "Simulation Techniques For Deformable Animated Characters" by Remco K.

Chang, Sc. M., Brown University, April 2000.

This thesis surveys three different deformation models for physically based simulation. The

ability to model and manipulate deformable objects is essential to many computer graphics

applications, especially in modeling and simulation of realistic and complex environments.

Approaches for modeling object deformation, however, have been constrained by the limi

tation of hardware. Although realistic behavior of the deformed objects is most desirable,

many methods sacrifice the realism for speed.

The three deformation models that we survey are based on individual nodal point anal

ysis, a reduced degree of freedom model, and an approximate continuum model, each with

its own strengths and weaknesses. We examine these deformation models using the same set

of parameters, and measure their performance in terms of speed, stability, and robustness.

AUTHORIZATION TO LEND AND REPRODUCE THE THESIS

As the sole author of this thesis, I authorize Brown University to lend it to other institutions

or individuals for the purpose of scholarly research.

Date 4/2 ~ f 2-.>tiO

author's signatur

I further authorize Brown University to reproduce this thesis by photocopying or other

means, in total or in part, at the request of other institutions or individuals for the purpose

of scholarly research.

Date q:(2.?>('LuO c.7

aUlhor'~~

This thesis by Remco K. Chang is accepted in its present form by

the Department of Computer Science as satisfying the thesis requirement

for the degree of Master of Science.

5?~lloDate4/ZB/UvD, ,
D . Nancy Pollard, Director

Approved by the Graduate Council

Date _
Peder J. Estrup

Dean of the Graduate School and Research

11

Acknowledgments

I would like to thank my advisor Nancy Pollard for helping me :findmy thesis topic, stepping

through all the algorithms and derivations we found in related papers, and reviewing and

editing countless drafts of this thesis. Without her guidance, this thesis would not have

been possible. I would also like to thank Daniel Acevedo, Vasiliki Chatzi, Galina Shubina,

John Hughes, and David Laidlaw for brainstorming with me on my crazy ideas. Lastly,

I would like to thank Sonia Leach, Nathan Lauster, and Emmanuel (Manos) Renieris for

proof-reading and formatting this thesis.

III

Contents

List of Tables vi

List of Figures vii

1 Introduction 1

2 Ftelated VVork 3

2.1 Free Form Deformation 3

2.2 Mass Spring Models . . 4

2.3 Continuum Models and Finite Element Methods 4

2.4 Approximate Continuum Models .. 5

2.5 Reduced Degree Of Freedom Models 5

2.6 Our Models 6

3 Creating the Model 8

3.1 Notation 8

3.2 Model Generation 8

3.3 Sampling and Nodal Point Placement 10

3.4 Spring Creation .. 11

3.5 Undersampling . . 12

3.6 Spring Elimination 14

4 Animating The Skeleton 16

4.1 Applied Forces . . 16

5 Deformation Models 18

5.1 Mass Spring Model 18

5.1.1 Rendering. 19

IV

5.2 Reduced Degree of Freedom Model. .. 19

5.2.1 Rendering................................. 21

5.3	 Implicit Integration and Finite Element Method using Approximate Contin

uum Model 21

5.3.1 Bi-Conjugate Gradient.	 25

5.3.2 Memory Issue.	 26

5.3.3 Speed-Ups.	 26

5.3.4 Rendering.	 26

6 Results	 29

6.1 Cube Tests - Critically Damped.	 29

6.2 Cube Tests - Underdamped	 39

6.3 Speed .	 39

7 Discussion	 47

7.1 Initialization .	 47

7.2 Stability Of The Deformation Models	 48

7.3 Speed Of The Deformation Models	 48

7.4 Future Work .	 49

7.4.1 Deformation Models	 49

7.4.2 Skeleton Generation	 50

7.4.3 Collision Detection and Penetration Constraints	 50

7.4.4 Sampling .	 50

7.4.5 User Defined Constants	 50

8 Summary	 52

Bibliography	 53

v

List of Tables

6.1 Time required to generate 1 second of animation using the cube model. .. 46

6.2 Time required to generate 1 second of animation using the full character model 46

VI

List of Figures

2.1	 Effects of free form deformation . 7

3.1	 The single skeleton model with skeleton and sampling 9

3.2	 Models with skeletons and samplings. . . . 9

3.3	 Colored body parts of the character model. 11

3.4	 Mesh with no diagonal support . . . 11

3.5	 Meshes with diagonal support. . . . 12

3.6	 Creating a tetrahedron from a cube. 13

3.7	 Original Configuration with no spring elimination. 15

3.8	 Result of the spring elimination algorithm 15

6.1	 Plots with Sample Rate 7, Spring Constant 100, Time Step 0.0005 31

6.2	 Plot with Sample Rate 7, Spring Constant 225, Time Step 0.0005 . 31

6.3	 Plots with Sample Rate 13, Spring Constant 100, Time Step 0.0005 . 32

6.4	 Plots with Sample Rate 13, Spring Constant 225, Time Step 0.0005 . 32

6.5	 Plots with Sample Rate 7, Spring Constant 100, Time Step 0.005 . 33

6.6	 Plots with Sample Rate 7, Spring Constant 225, Time Step 0.005 . 33

6.7	 Plots with Sample Rate 13, Spring Constant 100, Time Step 0.005 34

6.8	 Plots with Sample Rate 13, Spring Constant 100, Time Step 0.005 34

6.9	 Plots with Sample Rate 7, Spring Constant 100, Time Step 0.005 (run for 2

seconds) .. 35

6.10	 Plots with Sample Rate 13, Spring Constant 100, Time Step 0.005 (run for

2 seconds) .. 35

6.11	 Plots with Sample Rate 7, Spring Constant 225, Time Step 0.005 (run for 2

seconds) .. 36

6.12	 Plots with Sample Rate 13, Spring Constant 225, Time Step 0.005 (run for

2 seconds) .. 36

Vll

6.13 Plots with Sample Rate 7, Spring Constant 100, Time Step 0.01 37

6.14 Plots with Sample Rate 7, Spring Constant 225, Time Step 0.01 37

6.15 Plots with Sample Rate 13, Spring Constant 100, Time Step 0.01 38

6.16 Plots with Sample Rate 13, Spring Constant 225, Time Step 0.01 38

6.17 Plots with Sample Rate 7, Spring Constant 225 using multiple forces 40

6.18 Plots with Sample Rate 7, Spring Constant 500 using multiple forces 40

6.19 Plots with Sample Rate 7, Spring Constant 1000 using multiple forces 41

6.20 Plots with Sample Rate 7, Spring Constant 5000 using multiple forces 41

6.21 Deformed cube model 42

6.22 Deformed character model at frame 176 43

6.23 Deformed character model at frame 351 44

6.24 Sequence of animation 45

6.25 Sequence of animation continued 46

viii

Chapter 1

Introduction

Simulating 3D continuous mesh models using physically based deformation techniques has

always been a difficult task. In the past two decades, there has been a significant amount of

research involving deformable objects, but only in recent years has the effort been concen

trated in the area of animation. The limitation of hardware has probably been the primary

reason for the delay, and with increasing computational power, researchers are now able to

simulate more complex objects and behaviors. Use of mesh models for 2D objects is be

coming commonplace as simulations of 2D meshes approach interactive speed, but research

in the 3D realm remains scarce and slow.

In the movie Flubber, animators at Disney hand animated the dance sequence of each

flubber. Flubbers possess the unique characteristic of being "Jello-like" or "putty-like"

while performing complex movements. The animators therefore keyframed not only the

kinematics of their motion, but also an obvious amount of "stretch and squash" to give them

the look and feel of soft rubber. The goal of this thesis is to explore different approaches to

automate the dynamic behavior of a flubber-like material. We intend to animate flubbers

as viscoelastic models driven by motion captured dance sequences.

To create realistic motion, we use motion capture data as input for our model. Obtaining

motion capture data is a relatively fast procedure compared to traditional keyframing,

and motion capture data is becoming more widely available. Using motion capture data,

however, requires the deformable model to be a passive system where the motion is applied

to the character, and the "Jello-like" behavior is passively simulated. Most deformation

systems currently available are passive only to external forces such as collision forces or

other type of constraints. In this thesis, we translate the motion capture data into internal

forces and simulate motion as end results of applying these internal forces.

1

2

In most character animation systems, individual body parts may be represented as rigid

objects, which creates seams or discontinuities between body parts. To circumvent this

problem, we choose to deform the character model as a fully enclosed continuous mesh with

volume. Because the motion capture data we possess describe the character movements

based on the position and orientation of each body part during each frame, we first have to

map regions of the continuous mesh to the body parts. Then we employ volume deformation

techniques to animate the character's underlying structure, thus deforming the mesh.

We implemented three different deformation models and tested their performance under

different sets of parameters. The models that we tested are a mass spring model, a reduced

degree of freedom model, and an approximate continuum model. These models have dif

ferent characteristics that are difficult to quantify when simulating a complex character,

therefore we tested these models using a simple geometric cube.

Chapter 2

Related Work

Deformation has been studied for more than two decades in computer graphics. Gibson

and Mirtich [8] have done an extensive technical report covering the major techniques and

their strengths and weaknesses. The two main categories of deformation methods are non

physically and physically based modeling. The most prominent technique in non-physically

based modeling is free form deformation, and the most common techniques in physically

based modeling include mass spring models, continuum models and finite element methods,

approximate continuum models, and reduced degree of freedom models.

2.1 Free Form Deformation

Free form deformation (FFD) is a general deformation technique that is based on space

warping functions introduced by Barr [9]. Sederberg and Parry [10] coined the term "Free

Form Deformation" when they created lattices that define the space to be deformed, thus

adding an intuitive interface for the user. The lattices are defined by a set of points, and

by moving the points, the space enclosed by that lattice is warped to a new shape.

The principle of FFD has been extended in many ways. Coquillart introduced extended

free form deformations [11] to create lattices of non-parallelpipedical shapes, and then

added animated free form deformation [12] to animate the deformed objects. To allow

more intuitive control, Hsu et al [13] allowed direct manipulation of the deformed objects

on top of FFD. McCracken and Joy [14] adopted Catmull-Clark subdivision surfaces [7] to

subdivide three-dimensional lattices, creating lattices of arbitrary topology.

Because FFD is a space warping modeling tool, it requires the user to define lattices of

the necessary shape and detail on top of keyframing the deformations associated with the

motions. This is often a non-trivial task for complex meshes, thus requiring many levels of

3

4

refinements before the user could achieve the desired deformation.

2.2 Mass Spring Models

Mass spring models are perhaps the most intuitive tool for modeling deformable objects,

and have been studied and used extensively in modeling and simulation. Objects in mass

spring models are composed of a collection of nodal points connected by springs in a lattice

structure. Springs can have different properties for simulating different material behaviors.

With careful placement of nodal points and selection of the springs properties, mass spring

models can model very complex and realistic objects.

Mass spring models have been widely in animation. Chadwick et al [15] combined

mass spring models with free form deformation to animate cartoon characters. Tu and

Terzopoulos [16] modeled the muscles of artificial fish using a mass spring system based

on an implicit Euler method. Waters [18] used mass spring systems in modeling facial

animation. They gave their springs different properties to represent the dermal, fatty tissue,

and muscle layers of human skin.

Although mass spring models are easy to construct, they certainly have their drawbacks.

Using discrete nodal points and springs to model realistic objects as continuous bodies is

a significant approximation. The selection of nodal points can often create the problem of

either over or under sampling, and the selection of spring properties such as spring constants

and damping constants is often difficult. Furthermore, simulating rigid objects with high

spring constants can create a stiffness problem causing the numerical integrator to take

smaller time steps in order to maintain numerical stability.

2.3 Continuum Models and Finite Element Methods

Unlike mass spring models, continuum models and finite element methods (FEM) treat

the deformable objects as solid bodies with continuous mass and energy, and derive the

numerical integration from equations of continuum mechanics. Although FEM still requires

a discrete time step as an approximation of real elapsed time, the continuum mechanics

provide a more physically realistic simulation than mass spring models.

The flip side to the continuum mechanics and FEM is the computational requirement.

Due to this limitation, the use of FEM has been limited in computer graphics until recent

years. Celniker and Gossard [19] applied FEM to generate primitives that build continuous

meshes designed to support a free form modeling paradigm. Gourret et al [20] modeled

5

interactions between a human hand performing a grasping task on a deformable object.

Chen and Zeltzer [21] captured the geometry and underlying material properties of muscles

using FEM. Bro-Nielse and Cotin [22] applied FEM for modeling human tissue deformation

for surgical simulation. O'Brien and Hodgins [23] formulated their FEM using internal

energy to model stress and fracture of deformable and rigid bodies. Faloutsos et al [24]

combined free form deformation and FEM to create dynamic deformable objects with the

look and feel of cartoons, and Baraff and Witkin [1] demonstrated that even with the

heavy computation required by FEM, they could still achieve near interactive time modeling

complex cloth models.

2.4 Approximate Continuum Models

In between the discrete models created with the mass spring system and the continuous

mass and energy models described by FEM lie the approximate continuum models. These

models utilize the same continuous energy concept as FEM, but formulate it discretely to

achieve certain desired effects.

Kass, Witkin, and Terzopoulos [25] introduced snakes for solving low level tasks in com

puter vision such as edge or line detection, stereo matching, and motion tracking. Snakes

respond interactively to internal forces that resist stretching and bending based on energy

minimization. Terzopoulos et al [26] employed elasticity theory for deforming curves, sur

faces, and solids for animation applications. Their method used a discretized continuum

model for the potential energy due to deformation. Terzopoulos and Witkin [27] repre

sented a deformable object based on a rigid reference body that captures the rigid-body

motion, and a discretized deformation function that defines the movements of mesh points.

Terzopoulos and Fleischer [28] further expanded this technique to simulate viscoelasticity,

plasticity, and fracture in deformable bodies.

2.5 Reduced Degree Of Freedom Models

Simulating physically based models using the techniques discussed above often leads to

systems with many degrees of freedom since the object's state is defined by the nodal

points' positions and velocities. The high degree of freedom can cause systems to slow

during simulation, thus limiting their use in real time settings. Low degree of freedom

models address this problem by sacrificing certain physical attributes for speed.

Pentland and Williams [29] developed a simplified FEM expression for the dynamics

6

of deformable bodies using modal analysis. Their system allows the user to independently

compute different modes of deformation. These modes could be summed up to create a

more accurate simulation, or the user could selectively ignore modes that are often not

necessary for the purpose of most animation and computer graphics applications. Witkin

and Welch [30J adopted a technique for animating and globally deforming bodies using the

space-warping functions introduced by Barr [9]. They added a time dependency in the

process, which allows for animating deformable objects. Baraff and Witkin [3:1.J further

expanded this technique to simulating combinations of rigid and deformable bodies with

non-penetration constraints.

2.6 Our Models

In this thesis, we implemented a mass spring model, a reduced degree of freedom model,

and an approximate continuum model. We examined the possibility of using FFD as a

deformation tool based on the concept presented by Chadwick[15], but the fact that FFD

is a space warping technique ignoring the structure of the deformed object makes it a poor

choice for our purpose (Figure (2.1)).

Our mass spring model is based on simple linear springs, and thus similar to that of

many generic mass spring models. The reduced degree of freedom model is based on the

work by Witkin and Welch [30J. In this approach, deformation is limited to a 2nd order

function, ignoring the higher frequency deformation to decrease computation time. Our

approximate continuum model adopts the implicit integration technique used by Baraff

and Witkin[1J. The deformation is based on energy functions described by finite element

methods, but the numerical integrator calculates the energy discretely on each individual

nodal point.

7

Figure 2.1: Using FFD to deform a continuous mesh model. The character's arm is deformed
based on the change in the shape of the lattices. Since FFD is a space warping technique,
the structure of the underlying mesh is not being considered.

Chapter 3

Creating the Model

We have chosen to animate any given mesh model by giving the model a set of skeletons,

and using the mesh as a layer of skin. The skeletons make up a rough representation of

the skin itself. But unlike the skin, skeletons cannot be deformed. During the initialization

process, we connect the skeletons and the skin with sets of springs creating a mass spring

system. Moving or rotating the rigid skeletons then would push and pull on the springs,

causing the skin to deform.

3.1 Notation

For the rest of this thesis, we will use bold faced letter to denote a vector containing

information for a collection of elements. For example, x would denote the position vector

of a collection of points; Xi will denote the (x, y, z) coordinate of the element i, and Xi

will be the equivalent of the x coordinate of Xi. Furthermore, we will also let x denote an

un deformed position vector.

3.2 Model Generation

We created two sets of models. The first has a simple geometric shape of a cube as skin

and a single rectangular block as skeleton (Figure (3.1)), and the second is a full character

with 19 independent skeletons representing 19 separate body parts (Figure (3.2)). The

character's skin is a continuous mesh generated using the algorithm created by Markosian

[2].

8

9

Figure 3.1: The single skeleton model with skeleton and sampling

Figure 3.2: The full character model with skeletons and sampling

10

3.3 Sampling and Nodal Point Placement

To generate the mass spring system, we first create an axis-aligned bounding box around

the model and sample points within the bounding box. The sample points are chosen such

that they form a grid with cells of approximately equal volume. To determine the spacing

between the sample points, we first identify the shortest side of the bounding box, and find

the spacing distance of that axis based on an user-defined sampling rate. This sampling

distance is then used on the other two sides of the bounding box to determine the number

of samples required for each side.

For each sample point inside the bounding box, we choose a random infinite ray an

chored to the sample point. If this vector intersects an odd number of polygons on the

skeleton mesh, the sample point is identified to be inside the skeleton and categorized as a

SkeletonPoint. However, if the number of intersections is even, we perform the same inter

section check again but using the skin mesh. The sample point is determined to be inside

the skin mesh and categorized as a VolumePoint if the number of intersections is odd. In

the full-character model where there are 19 disjoint skeleton meshes, The SkeletonPoint test

is done with each skeleton mesh iteratively tested until either the sample point is assigned

to a particular skeleton, or the sample point has been tested against all skeletons and found

not to be inside any of the skeletons.

For the purpose of speed and stability which will be discussed in the later chapters, the

skin in the full-character model needs to be divided into 19 separate body parts associated

with each of the 19 skeletons (Figure (3.3)). Determining which body part a VolumePoint

or SurfacePoint belongs to is similar to that of decomposing the skin as a continuous mesh

into one or more body parts. The points are tested during an initialization step to find

out which skeleton they are closest to and then assigned to the body part that the skeleton

represents. After all the points have been assigned, each point then checks to see if its

neighboring points are associated with the same body part. If any of its neighbors belong

to a different part, the point computes the percentage of how much it belongs to each body

part using the following equation.

1

Ci = n'
t:

1 (3.1)
I:i=O t;

where c denotes the percentage, i represents all the neighboring body parts of the tested

point, and li represents the length from the tested point to the closest point on body part

t:

11

Figure 3.3: Different body parts of the human character including the over-lapped sections

Figure 3.4: A configuration with no diagonal support

3.4 Spring Creation

Once the nodal points are established, we connect them using regular springs that have a

user-defined spring constant and a damping constant. Each spring has its own rest length,

and follows the standard spring equation:

X'-X'
fi = k(lxj Xil- r) I J

Xj
ZI

- Xi
- d(Vi - Vj) (3.2)

where fi denotes the total force exerted on point i, k the spring constant, d the damping

constant, r the rest length, Xi and Xj the positions of the two points connected by the

spring, and Vi and Vj the velocities of the two points.

Choosing the correct nodal points and connecting them with springs will determine the

stiffness and structural stability of the system. For example, the configuration in Figure

(3.4) gives no diagonal support to the structure, therefore the structure could easily collapse

12

................. ' .
....................

'.

...........
.....................

" .
...............

<,

'
' .<,

Figure 3.5: Some configurations with diagonal support

without incurring forces. Figure (3.5) demonstrates some different connectivities that will

add angular, or diagonal, support that prevents the structure from collapsing. Since each of

these configurations is correct, choosing the simplest form with the least number of springs

will decrease the amount of computation required.

For the single skeleton case, we connected our 3D mesh similar to that of the second

diagram in figure (3.5). Each nodal point in this case is connected with 15 springs. After

several experiments, we discovered that in 2D, breaking up rectangles into triangles would

give angular support to the structure efficiently. Therefore, in our full character model, we

inferred that the same reasoning would apply to 3D, and broke up the cubes made up of

nodal points into tetrahedrons (Figure (3.6)).

3.5 Undersampling

Using the heuristic for nodal point placement described above creates an aliasing effect.

The problem becomes even more obvious in cases where the user-defined sampling rate is

low. At places where the skeleton is skinny, there could exist only one or sometimes no

nodal point to represent the skeleton. Similarly, the skin could experience the same problem

where the finer parts are undersampled. This undersampling problem is currently a research

area in Computational Geometry with no clear solution [3] [4].

We attempt to alleviate the undersampling problem by moving nodal points onto the

13

., . , , , , , ,

..
Figure 3.6: (a) Breaking up a cube into tetrahedrons (b) Cutting the cube diagonally (c)
Due to symmetry, only one part has to be examined (d) Rotating and cutting (e) The
resulting tetrahedrons from the cuts

14

surface of the skeletons and the skin. The moving process takes place after the Skeleton

Points and the VolumePoints have been determined. To better represent the skeletons, each

VolumePoint finds out its distance to the closest skeleton. If any of the x, y, z components

of this distance vector are less than the sampling distance as described in Section 3.3, the

VolumePoint is determined to be close enough to the skeleton, and moves onto the skeleton

to become a SkeletonPoint.

In dealing with the aliasing effect along the skin, we first determine all the VolumePoints

that have neighbors outside of the boundary. We then find all the grid points that are

directly adjacent to these points but lie outside of the skin. Each of these newly found grid

points is tested for a closest point on the skin and then moved onto the skin to become a

SurfacePoint.

3.6 Spring Elimination

Since the initial sampling was done along a grid, the springs forming the tetrahedrons

could easily connect nodal points between different body parts at places where springs

might be undesirable as shown in figure (3.7). The problem becomes more obvious as

SurfacePoints are created and moved onto the skin because many of these SurfacePoints

that were originally next to each other on the grid now become much further apart. To

eliminate this problem, we iteratively check the length of each spring after the SurfacePoints

have been created. If any of the x, y, or z component of the length vector exceeds the

sampling distance, the spring is discarded (Figure (3.8)).

15

Figure 3.7: Original configuration without cutting any springs

Figure 3.8: After spring elimination

Chapter 4

Animating The Skeleton

The primary difference between SkeletonPoints, VolumePoints, and SurfacePoints is the

fact that SkeletonPoints are attached to skeletons, and therefore not subject to the effect of

springs. When the skeleton is translated or rotated due to applied forces (refer to the next

section for more detail), the SkeletonPoints undergo the same amount of transformation.

The movement of SkeletonPoints in turn stretches or compresses the springs attached. These

springs will then pull or push on the VolumePoints or SurfacePoints, causing the entire mass

spring system to deform.

4.1 Applied Forces

With the mass spring system in place, creating the animation is as simple as moving the

skeletons and simulating the nodal points. In the simpler model where there exists only

one skeleton, keyframed information on the skeleton is defined within a text file that the

system parses during the initialization process. In the full character model, we use motion

capture data as input. The motion capture data specifies both position and orientation of

each skeleton during each frame of animation. Our motion capture data was collected at 30

frames per second, therefore we linearly interpolate between frames when the simulation is

running at a higher frame count. Since the translational data is given in x, y, z format in

relation to the origin, and the rotational data is given in degrees of rotation around each

axis, the interpolation is nothing more than

p(t + c~t) = p(t)c + p(t + ~t)(l - c)

where p is the translational vector, and c is the percentage of the desired interpolated

time in relation to ~t. Similarly,

16

17

O(t + c.6.t) = O(t)c + O(t + .6.t)(l - c)

where 0 denotes the vector that contains the Euler angles of rotation.

Chapter 5

Deformation Models

This chapter describes the mass spring model, the reduced degree of freedom model, and the

implicit integration model. Because these are volume deformation techniques, each model

is associated with a skin deformation process that is separate from its numerical integration

process.

5.1 Mass Spring Model

In the single skeleton case, the effects of applying forces to the skeleton create rigid trans

formations such as rotation or translation. The skeleton follows Newton's law of motion

when it is subjected to external forces.

a(t) = f(t)
m

v(t + ~t) = v(t) + a(t)~t

1
x(t + ~t) = x(t) + v(t)~t + 2a(t)~t2

where f is the external force, m is the mass, a is the acceleration, v is the velocity, x is

the position, t is the elapsed time, and ~t is the time step.

For orientation, on top of the initial orientation of the skeleton, we keyframe the addi

tional degree of rotation around each axis during each frame of animation. The skeleton's

subsequent orientation is computed by adding these additional degree of rotation onto its

existing orientation.

18

19

As mentioned in the previous section, moving the skeleton causes the SkeletonPoints to

move as well, which in turn changes the lengths of the springs. When a spring is not at

its rest length, it generates forces on the two nodal points connected to it. The spring's

original rest length, its spring constant, damping constant, and the relative velocities of the

two nodal points determine the amount of forces as shown in equation (3.2).

The forces cause acceleration on the VolumePoints. Using the same motion equations

described above for skeletons, each VolumePoint arrives at a new state with a new acceler

ation, velocity, and position for the next time step.

5.1.1 Rendering

One way to render the mesh using a mass spring model is to associate the vertices on the

mesh with certain nodal points in the mass spring system. When these nodal points change

their positions during the deformation process, the vertices would move accordingly. In

our single skeleton case, because the skin is nothing more than a geometric cube, we easily

pick nodal points that lie exactly on top of the skin and assign them as vertices of the

mesh. After each iteration of the simulation, the rendering engine draws the mesh based

on the calculated positions of these particular nodal points (Figure (3.1)). Because the

VolumePoints are point masses, orientation is omitted.

5.2 Reduced Degree of Freedom Model

The reduced degree of freedom (reduced DOF) model limits the deformation process using

nth order deformation functions. We adopted Witkin and Welch's algorithm [30] where we

characterize the deformation by a map from !R3 to !R3 while adding time dependence for

the purpose of animation. Specifically, if Xi is the location of a point on the undeformed

object, the location of the point on the deformed object is

(5.1)

where

Pi = w(xd

The function w converts an undeformed position in 1st order to nth order coordinate.

It does not depend on R or time. In our implementation, we chose w(xd = W(Xi, Yi,ii) to

be [Xi, Yi, ii, XiYi, Yiii, xiii, xr, Yr, if, 1]. The 3 x 10 matrix R transforms the undeformed Xi

into the deformed position Xi. R is defined to be

20

R(t + ~t) = R(t) + R(t)~t + ~R(t)~t2

and R(t) is defined to be

R(t + ~t) = R(t) + R(t)~t

and R(t) is equal to

R(t) = Q(t)M-1

In order to compute R, we first compute the constant symmetric mass matrix M

M= ~)mpiPn
i

where i represents all the mass points in the system. The generalized force Q given the

force fi applied to the world-space point Xi = Rpj is defined as

Q(t) = L fi(t)Pl
i

Because R is a map between deformed and undeformed object, the mass matrix M only

needs to be computed and inverted once. In other words, the set of undeformed points are

computed once during the initialization step, and used in equation (5.1) at the end of each

time step of the simulation. For the full derivation of these equations, refer to [30].

In the full character model, where the deformation is much more complex, a 3 x 10 2nd

order deformation matrix is no longer sufficient to describe the deformation process of the

entire character. Therefore we break down the character into separate body parts where

each part is described by its own 3 x 10 deformation matrix. To ensure the continuity

between body parts, the position of each nodal point between body parts is computed:

n

Xi = L Cb,i(RbPi) (5.2)
b=O

where Cb,i is the percentage computed during initialization described in equation (3.1)

for body part b and node i. Similarly, Rb denotes the deformation matrix for body part b.

In this equation, we define the sum of two points as the sum of each x, y, z component of

the points' coordinates.

21

5.2.1	 Rendering

Since the reduced DOF model is a space-warping technique, the rendering process requires

no extra algorithm. The vertices on the skin are deformed using equation (5.1) in the single

skeleton case, and equation (5.2) in the full-character model after the deformation matrices

are computed for each body part.

5.3	 Implicit Integration and Finite Element Method using

Approximate Continuum Model

Although Finite Element Methods (FEM) have traditionally been slow, they are still used

often for their stability and accuracy. The dynamic FEM equation is usually represented as

F = MU + CtJ + KU

where M, C, K are the mass, damping, and stiffness matrices respectively for the entire

object. F is the composite vector of equivalent applied forces, and U is the composite vector

of node displacements.

We have chosen the approach described by Baraff and Witkin [:I.]. In their algorithm,

they utilize implicit integration for solving the stiff differential equation described above.

The implicit integration technique requires the use of the backward Euler method. Similar to

the traditional forward Euler method, both approaches attempt to solve for a new position

x(t+~t) and a new velocity v(t+~t) given the current position x(t) and velocity v(t). To

compute the new state and velocity using an implicit technique, we first assume that the

change of position is the same as velocity, and write the differential equation as

(5.3)

where M-1 is the inverse of the mass matrix, and f(x, v) denotes the applied force. To

simplify notation, we define Xo = x(to), and Vo = v(to). We also define ~x = x(to + ~t)

x(to), and ~v = v(to + ~t) - v(to).

The Forward Euler method applied to equation (5.3) approximates ~x and ~v as

22

where fo is defined to be f(xo, vo). This approximation requires that flt be quite small

to ensure stability of the simulation. The backward Euler method appears similar, where

flx and flv are approximated as

(5.4)(~:) = M-1!(x:::~,vvo + b.v)) b.t (

The primary difference between the forward and backward Euler methods is that forward

Euler is based solely on conditions at time to while backward Euler starts from the output

state (xo + flx, Vo + flv) and uses a forward Euler step to run the system backward in time

to get to the state (xo, vo):

xo) (Xo + flx) ((vo + flv))
(Vo = Vo + flv· - flt M-1f(xo + flx, Vo + flv)

To find flx and flv requires that we solve for values of flx and flv that satisfy equation

(5.4). But rather than solving this nonlinear equation iteratively, we approximate the

function f using a first order Taylor series

of off(xo + flx, Vo + flv) = fo + AX flx + ov flv (5.5)

In this equation, *and *are Jacobian matrices describing the relationship between

force, position, and velocity respectively. However, because we only need to compute the

new states for movable points, i.e. VolumePoints and SurfacePoints, *and *has to be

broken down into four matrices:

of OXm oXs- [- -]AX su: u:
oX m oXs

[
olmof oVm oVs

ov su: -]u:
oVm oVs

where X m and V m denote the position and velocity of movable points, X s and Vs denote

those of the SkeletonPoints, t,« denotes the force applied on movable points, and I, denotes

the force applied on SkeletonPoints. We can safely ignore ~ and ~ because the Skele

tonPoints are moved rigidly and do not exert forces on themselves. %1: and :t: denote the

amount of forces acting on the SkeletonPoints due to the change in positions or velocities of

the movable points. Although these forces do exist, we are ignoring them because we would

23

like our SkeletonPoints to be transformed by the motion capture data, not dynamically

simulated.

We can decompose .6.x and .6.v:

and

In order to segregate the movable and non-movable points, we rewrite equation (5.5) as

.	 8im 8im 8im 8im
i(xo + .6.x, Vo + .6.v) = fo+ ~.6.xm + ~.6.vm + ~.6.xs + ~vs (5.6)

uXm uVm ox, UVs

Notice that this equation is not the mathematically equivalent of equation (5.5) because

we are omitting the terms ~f. and ~f• . We choose this approximation in order to achieve
UXm UVm

our desired effects.

The first unknown in equation (5.4) is the vector fo, which represents the total amount

of force acting on each nodal point at time to. Because VolumePoints and SurfacePoints'

position displacement and change in velocity between to and to+ .6.t depend strictly on the

springs, we can write the force equation for fo as

n	 n

£0 . = '"' k· ·(Ix· - x·l- r, .) Xi - Xj + '"' d· ·(v· - v·),3	 L...,; 2,3 2 3 2,3 I I L...,; 2,3 2 3
i=l Xi - Xj i=l

where i iterates through all springs attached to the nodal point. ri,j represents the rest

length of the spring that connects the two points i and j, ki,j the spring constant, ~,j the

damping constant, Vi and Vj the velocities of the two nodal points connected by the spring

i, j, and Xi and Xj the positions of the two nodal points.

To compute the elements in ~fm of equation (5.6), we differentiate the force equation
UXm

with respect to the position of each nodal point.

a!I,x a!I,x a!I,x a!I,x a!I,x
aXI,x aXI,y aXI,. aX2,x aX2,y
a/I,y a!I,y a!I,y a!I,y a!I,y
aXI,x aXI,y aXI,. aX2,x aX2,y

8im a!I,. a!I,. a!I,. a!I,. a!I,.= aXI,x aXI,y aXI,. aX2,x aX2,y8xm a!2,x a!2,x a!2,x a!2,x a!2,x
aXI,x aXI,y aXI,. aX2,x aX2,y

24

8fa,x = ~ k .(r ._1__ (Xi - xa)2 _ 1)
8x a,x ~ m m ILh V~3n~=1 V n

i=/=a

8fa,x _ k .(r .(xa - Xi)(Ya - Yb)) i =/= a8Xi,y - cz a~ N

where i iterates through all of nodal point a's neighboring nodal points. kai represents

the the spring constant of the spring connecting the nodal point a and i, and rai the length

of that spring. h represents the current spring length, and is calculated as

U: is derived similarly

8fa,x _ ~d .
- LJ

8va,x i=l
a~

8fa,x = 0
8va,y

8fa,x - d --- ab
8Vb,x

where dab is the damping constant of the spring between the two nodal points a, and b.

If a nodal point a is not directly connected to another nodal point b, the X, Y, z, entries
aof ~aa0., ~aaxo., ~aa and !!.h. would all be zeros. In our system, the highest connectivity of any

X a b Vo.
0. aVb

nodal point is 23, which makes both aalm and aalm symmetric and sparse matrices especially
Xm Vm

when the number of nodal points reaches 2,000 or above (as in the experiments described

in the results section) and the matrices have the dimension of approximately 6,000 x 6,000.

25

The last unknowns in equation (5.6) are terms including SkeletonPoints. ~xs and

~v s are vectors representing the change in position and velocity of the SkeletonPoints.

Computing aim and aim is similar to computing aim and aim except that aim and aimax. av. aXm aVm ax. av.
are not symmetric matrices. They have the dimension of 3n x 38 where 8 is the number of

SkeletonPoints and n is the number of movable points.

Substituting the force equation equation (5.6) into equation (5.4) yields:

~xm) (VOm+~vm)- ~t '
(~v - M-1(£ + aim ~x + aim ~v + aim ~x + aim ~v)

m 0 aXm m aVm max. S av. S

Taking the bottom row of this equation and substituting ~xm with the top row of the

same equation yields:

-l(aim (aim aim aim
~vm = ~tM fo + ~t~ VO,m + ~vm) + ~~vm + ~~xs + ~~vs)

uXm uVm ox, ou;

Let I denote the identity matrix, and regrouping:

(I - ~tM-l ~Im - ~t2M-l ~Im)~vm = ~tM-l(fo + ~t ~Imvo,m + Ofm ~xs + Ofm ~vs)
uVm uXm uXm otc; ou,

In our implementation, every nodal point has unit mass, therefore, our mass matrix M

is just the identity matrix. Substituting M-1 with I yields:

ai m 2 aim (aim aim aim(I - ~t~ - ~t ~)~vm = ~t fo + ~t~vo,m + ~~xs + ~~vs)
uVm uXm uXm ax, ou;

which we then solve for ~vm using the bi-conjugate gradient method described below.

Given ~vm, we then trivially compute

5.3.1 Bi-Conjugate Gradient

If we substitute

A = left hand side of equation (5.3), and b = right hand side of the same equation, and

x with ~vm, we arrive at the form

Ax=b

where A denotes a matrix, b a known vector, and x the unknown vector. Instead of

solving for x by inverting A, which is an expensive process, especially when the number

of nodal points is large, we can use approximation algorithms. The bi-conjugate gradient

function we adopted from [5] is a steepest decent method, and solves for the unknown x in

a fraction of time compared to inverting matrices.

26

5.3.2 Memory Issue

The matrices 881m and 881m each has the dimension 3n x 3n. In our simulation, the number
Vm Xm

of nodal points n could range upwards to approximately 40,000. Assuming that the matrices

are comprised of doubles, each matrix would require 56 gigabytes of memory. Thankfully,

because these matrices are both sparse and symmetric, we implemented some data struc

tures to store only the un-repeated non-zero elements. Although this compression slows

down the computation due to the searches and retrievals required by these data structures,

the trade off between speed and memory is necessary because of the limitation of hardware.

5.3.3 Speed-Ups

There are a few notable speedups that decrease processing time quite significantly. First

of all, since the matrices Z£: and Z!: are symmetric, the matrix multiplication process is

approximately halved. Second of all, 881m and 881m depend solely on the damping constant,
Vm v"

which remains unchanged throughout the simulation. Therefore, 881m and 881m only need to
Vm v"

be computed once during pre-processing.

Lastly, by breaking down the full character model into different body parts, we gain dra

matically in both speed and memory. For example, assume that the character is comprised

of 100 nodal points, and there are 10 body parts each of 10 nodal points, computing the

character as a whole would require the 881m and 881m matrices be of size 300 x 300 = 90,000.
V m Xm

However, if we compute each individual body part separately, the system would compute

10 matrices each of size 30 x 30 = 900, totaling 9,000, a savings of a factor of 10.

The downside to this optimization is that the effect generated by one nodal point's

change in displacement or velocity does not immediately affect the entire system. Instead,

it would require one extra time step for the effect to cross between boundaries of body

parts. In other words, by moving the nodal points in the right hand of the character would

require 7 time steps for the effect to travel through the upper arm, lower arm, torso, pelvis,

upper leg, lower leg, and into the right foot. However, if the character is computed as a

whole, the same move to the nodal point in the right hand would require only 1 time step

to achieve the same effect.

5.3.4 Rendering

Unlike the reduced DOF model, FEM does not warp space. Therefore the rendering step

requires the use of a mesh deformation technique such as tri-linear interpolation or low order

deformation. Tri-linear interpolation requires that each vertex on the skin be enclosed in a

27

set of movable points that define a volume. Then the position of the vertex is parameterized

within the volume and defined as a (u, v, w) Barycentric coordinate. When the positions of

the movable points change, the position of the vertex would change with them but stay in

the same (u, v, w) position within the volume.

We believe that using trilinear interpolation would create very high frequency defor

mation causing the possibility of self penetration or other artifacts. For the purpose of a

pleasing and continuous mesh, we chose to use the low order deformation technique where

we first collect the movements of all the nodal points in the system. Using that information,

we build a function that describes the deformation process as follows

X(t + b.t) = p(x) R (5.7)

where X(t + b.t) is a n x 3 matrix containing all deformed positions (in x, y, z) of all

the nodal points:

Xl YI Zl

X(t + b.t) =
X2

X3

Y2

Y3

Z2

Z3

and p(x) has the form of

Xly Xlz xl.,y Xl yz Xlxz XI",2 Xl y2 Xlz 2
(~l.

X2", X2y X2 z X2",y X2yz X2xz X22 X2 2 X22 z :)'" Y

p(X) is a n x 10 matrix where n is the number of nodal points, and R is the deformation

matrix. Assuming that the deformation is described with a 2nd order function, R becomes

a 10 x 3 matrix.

We rewrite equation (5.7) as

X(t + b.t) = p'(x) * r (5.8)

where x(t + b.t) is a vector of size 3n x 1, p'(x) is a matrix of size 3n x 30, and r is

a vector of size 30 x 1. Transforming x(t + b.t) from XU + b.t) requires putting all 3n

elements of X(t + b.t) into a vector. Similarly, transforming r from R requires putting 30

elements in R into the vector r. In order to multiply p' (x) to a vector of size 30 x 1 resulting

in another vector of size 3n x 1, p'(x) must have the dimension of 3n x 30. Padding p'(x)

from a n x 10 matrix into a 3n x 30 matrix, we add zeros into the original matrix as follows:

28

XIx 0 0 Xly 0 0

0 XIx 0 0 Xly 0

0 0 XIx 0 0 Xly

X2x 0 0 X2 y 0 0

0 X2x 0 0 X2 y 0

Equation (5.8) becomes a fitting problem where there are 3n number of equations but

30 unknowns. We use the least square fit approach to find r.

r = (p'(xf p'(x))-l p'(x) x(t + .6.t)

Once the 30 x 1 vector r is found, we rewrite it as a 3 x 10 matrix R again, and substitute

it into equation (5.1) to solve for the new positions of the vertices.

Chapter 6

Results

We tested the three systems: regular mass spring system, reduced DOF system, and the im

plicit integration system as described in Chapter 5 using different spring constants, damping

constants, forces, time steps, and sample rates. The results are plotted with time on the

x-axis, and total deformation on the y-axis. Total deformation is calculated as

n

d = L Iri -lil
i=l

where n denotes the total number of springs in the system, and ri and li denote the rest

length and current length of spring i respectively.

6.1 Cube Tests - Critically Damped

The forces applied in all test cases in this section are applied to the skeleton in the single

skeleton model for 0.05 seconds. After which time, the skeleton is stopped abruptly with

its velocity set to 0, then the skeleton is held to the same position for the remainder of

the simulation with a force in the y direction in order to counter gravity. Gravity in the

system is assumed to be -9.81mj82 in the y direction, and affects the skeleton as well as

each individual nodal point at all times.

In this section, we critically damp all of our systems using the equation

where de denotes the critical damping constant, and k denotes the spring constant.

When we alter the spring constant, we also change the damping constant to ensure a

critically damped system.

29

30

We first test the effects of modifying the stiffness of the system by fixing the sample

rate to 7 (per side of the cube), time step to 0.0005 seconds, and force to 2000 kgm/s2 ,

then we change the spring constant from 100 (Figure (6.1)) to 225 (Figure (6.2)). From

these two figures, we see that by increasing the stiffness by a factor of 2.25, the total

deformation decreases by approximately 30% throughout the simulation, but the general

shape of the deformation plots remains similar. Furthermore, although the three systems

perform just about the same, the reduced DOF system has the least amount of deformation.

We increase the sampling rate to 13 (per side of the cube), and run the tests with the

same parameters as described above. We get two similar graphs as figures (6.1) and (6.2)

shown in figures (6.3) and (6.4) except that the total deformation is about twice as much as

the ones with sampling rate of 7 for both the mass spring and implicit integration systems.

The total deformation of the reduced DOF system, however, does not change much.

Repeating the parameters used in creating figures (6.1), (6.2), (6.3), and (6.4), we gen

erate 4 more figures with the time step increased from 0.0005 to 0.005 (Figures (6.5), (6.6),

(6.7), and (6.8)). We see that in the cases where the spring constant is 100 (Figures (6.5)

(6.7)), the mass spring system and the implicit system are both stable, but the reduced

DOF system begins to be stressed out. The spikes in the graphs are the results of oscilla

tions of the volume similar to the reaction of a plasto-elastic object affected by an impulsive

force. If we let the simulation run a little bit longer when the spring constant is 100, we

see that eventually the reduced DOF system stabilizes (Figures (6.9) (6.10)). On the other

hand, in both instances where the spring constant is 225, the mass spring system and the

reduced DOF system both become unstable while the implicit integration system remains

intact. Again, if we let the simulation run a little longer, we see that the mass spring system

gains energy at an exponential rate, becoming unstable much faster than the reduced DOF

system (Figures (6.11) (6.12)).

When we further increase the time step to 0.01, the mass spring system and the reduced

DOF system continue to struggle, and the implicit integration model begins to reach its

limitation. With the sample rate set at 7 and spring constant at 100, the implicit inte

gration system seems to be stable as shown in figure (6.13). However, anywhere beyond

that configuration, the implicit integration system begins to fall apart (Figures (6.14) (6.15)

(6.16)).

31

6Or-----.------,------.--------,-------,

50

40

20

10

-'- -'- -'

mass spring -
reduced OOF

implicit integralion --

Oc.....,:::::.. --' --J

o 0.02 0.04 0.06 0.08 0.1
time

Figure 6.1: Sample Rate 7, Spring Constant 100, Damping Constant 10, Time Step 0.0005,
Force 2000

35

30

c: 25
o

J20
-8

~ 15

10

5

0.060.02 0.03 0.04 0.050.01
O'-"'-------'-__-'--_---'__-'--_---L__-'-_----'-__--'-_----'L-_--J

o

4Or----.---.------.--,----.----.------r---,-----r--...,

0.07 0.08 0.09 0.1
time

Figure 6.2: Sample Rate 7, Spring Constant 225, Damping Constant 15, Time Step 0.0005,
Force 2000

32

120 r-----,--,------,--,------,--,------,--,------:---r----,

100

80

40

20

___'_'==~"""-__'_-==

o 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
time

Figure 6.3: Sample Rate 13, Spring Constant 100, Damping Constant 10,
Time Step 0.0005, Force 2000

O~'""___'___L.__ __'___L.__ __'___L.__

0.01

8Or---,--,------r---,------r---.--------.----.------:r----,

70

60

l5 50

fa

E
S240
.gj

~30

20

10

0.06 0.07 0.08 0.09 0.1

Figure 6.4: Sample Rate 13, Spring Constant 225, Damping Constant 15,
Time Step 0.0005, Force 2000

0.01 0.02 0.03 0.04 0.05
lime

33

6Or-----,---r-----r---r----..---.------,--,-----,----,

50

40

20

------/..10
--+-----.:,.-~

v/

o "----_--'-__.l..-_-'-__.L-_----'-__.L-_----'-__--'-_----'__...J

o 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
lime

Figure 6.5: Sample Rate 7, Spring Constant 100, Damping Constant 10, Time Step 0.005,
Force 2000

8Or-----,---r-----r---r----..---.------,--,-----,-,----,

70

60

20

10

o "'-_--'-__.l..-_-'-__.L-_----'-__-'--_----'-__--'-_----'__...J

,. ,

I

o 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
time

Figure 6.6: Sample Rate 7, Spring Constant 225, Damping Constant 15, Time Step 0.005,
Force 2000

34

120

rr~~~~(~Sbn~~ -~
implicit integration -

100

8

~
!2
~

80

60

~
40 I
20

o ""'-_--'-__L..-_--'-__L..-_--'-__L..-_--'-__L..-_---'-_----'
o 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

time

Figure 6.7: Sample Rate 13, Spring Constant 100, Damping Constant 10, Time Step 0.005,
Force 2000

250 r----,----r----,----r----,----r----,----r----,--------,

200

8 150

j
~ 100

50

O=--_--'-__L..-_--'-__L..-_--'-__L..-_--'-__L..-_---'-_----'
o 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

time

Figure 6.8: Sample Rate 13, Spring Constant 225, Damping Constant 15, Time Step 0.005,
Force 2000

35

6Or----.--,------.--,-----.---,----,---....------,---,

50

40

20

10

0"------'----'-------'----'------'----'------'-----'------''-----'
o 0.02 0.04 0.06 0.08 0.12 0.14 0.16 0.18 0.2

Figure 6.9: Sample Rate 7, Spring Constant 100, Damping Constant 10, Time Step 0.005,
Force 2000 run for 2 seconds

120 r----.--,----.--,----.--,----.--,-----.------,
mass spring -

f0f!UC0.(j DOF
implicit integration -

100

60

40

20

lime
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Figure 6.10: Sample Rate 13, Spring Constant 100, Damping Constant 10,
Time Step 0.005, Force 2000 run for 2 seconds

36

200

r0.~~~~{f~ri~~ -

180 implicit integration -

180

140

s 120

~
,g	 100
~

~	 80

80 !
40

20

0.02 0.04 0.06 0.08 0.1 Q12 Q14 Q16 Q18 0.2
time

Figure 6.11: Sample Rate 7, Spring Constant 225, Damping Constant 15, Time Step 0.005,
Force 2000 run for 2 seconds

8OOr----,--r----,--r----,--r----,--r-----,---.------,

700

600

500e:
0

~
,g	 400
~

~
300

200

100

0

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

time

Figure 6.12: Sample Rate 7, Spring Constant 225, Damping Constant 15, Time Step 0.005,
Force 2000 run for 2 seconds

37

250
massspring -

reduced OOF
implicit integration -

200

1\
I \

I \
1 \

1 \i 150

I \
,g	 I \

1 \~
\~	 100

0.06 0.07 0.08 0.09
time

Figure 6.13: Sample Rate 7, Spring Constant 100, Damping Constant 10, Time Step 0.01,
Force 2000

500 r----.----,----,---,..------,,-----,------,---,-------,

50

450

400

350

i:

~

~	 200

150

100

mass spring -
(0rhlf;t"!r] OOF

implicit inlegration -~

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
lime

Figure 6.14: Sample Rate 7, Spring Constant 225, Damping Constant 15, Time Step 0.01,
Force 2000

38

6OOr-----r----.--,-----r----,-----.----r--,-------,

500

400

200

100

0.03 0.04 0.05 0.06 0.07 0.08 0.09
time

Figure 6.15: Sample Rate 13, Spring Constant 100, Damping Constant 10, Time Step 0.01,
Force 2000

1200 r-----r----,----,-------,r----,-----r--,-------,r-----,

1000

800

400

200

Ole::=-------I.__--'-__-'-__L-_---'-__--'-__-'-__L-_---.J

o 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
time

Figure 6.16: Sample Rate 13, Spring Constant 225, Damping Constant 15, Time Step 0.01,
Force 2000

39

We also experiment with doubling the force from 2000 kg m]s2 to 4000 kg m]s2. This

change does not alter the outcome of the tests except that the total deformation is approx

imately twice as high. The stability of each system does not seem to be affected by the

increase in force.

6.2 Cube Tests - Underdamped

We attempt to explore some other properties of the implicit integration system used on

underdamped models by gradually increasing the spring constant while holding the damp

ing constant the same. We then apply large amount of forces to the skeleton in a short

amount of time, simulating impulses. In the test cases that we created, we apply an im

pulse of 400,000 kg m]s2 in the first 0.025 seconds of the simulation, then another impulse

of -400,000 kg m/s2 in the immediate following 0.025 seconds. After the impulses have been

applied, the velocity of the skeleton is set to 0, and a force is applied to the skeleton to

counter gravity.

Figures (6.17), (6.18), (6.19), and (6.20) show the increase in the spring constant from

225, 500, 1000, to 5000 while holding the damping constant at 3. The amount of oscilla

tion increases in both the mass spring and reduced DOF systems as the spring constant

increases. The implicit integration system, however, remains relatively stable throughout

all the changes.

This test displays the property of implicit integration as described by Kass [6] where he

relates the implicit integration method to a filtering process. The effect of filtering smoothes

out the high frequency impulses and make the simulation more stable.

6.3 Speed

Although the implicit integration system out-performs the mass spring system and the

reduced DOF system in stability, it certainly has its drawbacks. The most obvious is the

amount of time required to compute each iteration of the simulation. Table [6.1] shows

the amount of time required to generate 1 second of animation (Figure (6.21)) using each

system in the single skeleton model with different sampling rate.

Table [6.2] shows the amount of time required to generate 1 second of animation using

the reduced DOF and implicit integration systems on the full character model (Figures

(6.22)(6.23)). Each system is sampled with 14,325 nodal points, and run with 0.00025

seconds as time step.

40

2()()()()
massspring -

roclucert OOF

18000 implicit intaqration -

18000

14000

6 12000

~
1()()()()

~
S
B 8000

/

8000
 /

/

4000

2000

0
0 0.01 0.02 0.03 0.04	 0.05 0.06 0.07 0.08 0.09 0.1

time

Figure 6.17: Sample Rate 7, Spring Constant 225, Damping Constant 3, Time Step 0.001
25000 r---,--,-----,----.-----,----.------,r-----,--,------,

2()()()()

c:
0 15000
.~

E
~
"0

]I
1()()()()B

5000

O'--=---'-__.L.-_----'-__-'-_----'__--'-_----''--_--'-__.L.-_---J

o	 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
lime

Figure 6.18: Sample Rate 7, Spring Constant 500, Damping Constant 3, Time Step 0.001

41

25000 r----,--,-----.---,------r--,-------,----.--:-r---,

20000

8 15000

J
~ 10000

5000

oL..-~__'___----'____'__----'-___'___----'-__.l..__ __'____L-_...J

o 0.01 0.02 0.03 0.04	 0.05 0.06 0.07 0.08 0.09 0.1
time

Figure 6.19: Sample Rate 7, Spring Constant 1000, Damping Constant 3, Time Step 0.001
35000

30000

25000

c:
.2
;;; 20000
E
~
]I 15000
B

10000

5000

0

mass spring -
n;rllJr.17rl DOF

implicit integration -

/--"-..
<.

0	 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
lime

Figure 6.20: Sample Rate 7, Spring Constant 5000, Damping Constant 3, Time Step 0.001

42

Figure 6.21: Deformed cube model (a) skin (b) skeleton and nodal points

43

Figure 6.22: Deformed human character model frame 176 (a) skin (b) skeletons and nodal
points

44

Figure 6.23: Deformed human character model frame 351 (a) skin (b) skeletons and nodal
points

45

•
"'I'
\:</

"
 -...,•.......

f\

r'·
,"•
 ..

....
'\

/\

.j

~;

"
 ,
It;

~

,, 1IlI ,t

"~" "" ''II

:-00.

"

•
(')

11

i"\n.. . 1\
•

,~' ...
"\'~
•

: It
~.it

,
,
•

"""1'.
,~ ..~!\

..." t ..,

I . ' ~

'"/1 J
,

•/1\• .~".
I'

~".

. , • •, I '<t.
i"

'If -1/'.'
"

).
~ ~

''i'''D;
"'~. _.., X..

•

'}~'

•

~~ '" ." ,

1
..
"". "-'1"

..,

-j

II

r

jl

.. IllI..
-:

fI"

I ~

Ir-

Figure 6.24: Sequence of animation

46

system sample rate = 7 sample rate = 13
Mass Spring 4.06 32.0274
Reduced DOF 3.8412 18.03968
Implicit Integration 53.8828 2236.01

Table 6.1: number of seconds required to generate 1 second of animation using time step of
0.001 with the cube model

system time
Reduced DOF 362.6972
Implicit Integration 35281.48

Table 6.2: number of seconds required to generate 1 second of animation using time step of
0.00025 with the full character model

1\
l\t

~.

"? l'
A !

t,
Figure 6.25: Sequence of animation continued

Chapter 7

Discussion

Although we have implemented three different deformation algorithms, our original goal of

automating the process of creating an animation sequence of a viscoelastic model remained

the same throughout. In our system, the only process that requires some amount of manual

labor lies in creating the skeleton. The skeleton selection process plays a vital role to the

stability of the simulation because it directly affects the amount of volume to be deformed.

Decreasing the sizes of skeletons means that the number of nodal points between the skele

tons and the surface is higher, which as the same effect as having higher sample rate, thus

requiring the numerical integrator to take smaller time steps. On the other hand, if the

skeletons are large, the number of movable points would decrease, limiting the amount of

deformation. Therefore, given a continuous mesh as input, the user must first generate

a suitable set of skeletons that is neither too small to potentially cause instability in the

system, nor too big such that the amount of viscoelastic behavior becomes diminished. We

approximated the skeletons as a collection of spheres scaled and stretched to resemble the

character (Figure 3.2), and we have demonstrated that this approximation is adequate for

accomplishing our goal.

7.1 Initialization

With the mesh and skeletons in place, the system takes the following as inputs:

• sample rate

• spring constant

• damping constant

47

48

• force description

Force description could either be motion capture data or key framed force information.

With these data, the system begins the simulation and rendering automatically. We first

sample the volume and identify the nodal points as VolumePoints, SurfacePoints, or Skele

tonPoints. Then springs are added to connect the nodal points creating lattices with angular

support". Depending on the positions of the nodal points, each nodal point is assigned to

one or more body parts based on its distances to the closest skeletons. Excess springs that

span between body parts are removed according to the heuristics described in the section

3.6. At this point, the initialization step is complete, and the system is ready to start the

animation and deformation process.

7.2 Stability Of The Deformation Models

The three deformation models that we implemented varied in stability and speed. From

figures (6.1), (6.2), (6.3), and (6.4), we can see that with a small enough time step and a

reasonable spring constant, all three models behave well. However, as the time step starts

to increase, the mass spring model and the reduced DOF model begin to buckle under the

stress. In figures (6.5) and (6.7), we notice that the reduced DOF model begin to show signs

of destabilizing. The high spikes in the graphs are caused by the oscillation of the volume,

which is similar to that of an underdamped system. The mass spring model, however, does

not exhibit signs before becoming unstable. Between figures (6.5) and (6.6), the model

transitions from being stable to exponentially gaining energy during the deformation. From

this point on, any further stress on the mass spring model and reduced DOF model such as

increasing time step or increasing spring constant only causes both models to destabilize in

a shorter amount of time. The implicit integration model, on the other hand, shows great

tolerance towards the changes in sample rate, time step, and spring constant. Only when

the time step reaches 0.01 seconds does the model begin to deteriorate {Figures (6.13)(6.14)

(6.15)(6.16)).

7.3 Speed Of The Deformation Models

The cost of having such stability in the implicit integration model is the speed of the

simulation. Table [6.1] shows the amount of time required by each system to generate 1

lThis is only for the full character model, the single skeleton model is connected differently as described
in section 3.4.

49

second of animation using different sample rates with the cube model. The increase in

the sample rate from 7 to 13 is approximately the same as increasing the number of nodal

points 8 times because the sample rate represents the number of samples along each axis

of the cube. The mass spring model shows that the computation time is O(n) where n is

the number of nodal points. The reduced DOF model, however, increases at a slower rate.

Unlike the mass spring model where the numerical integrator computes the position and

velocity of each individual nodal point (Section 5.1), the reduced DOF model computes

the deformation matrix once, and applies the matrix to the nodal points for computing the

positions and velocities making the simulation faster but less accurate (Section 5.2). From

our experience, the amount of computation time in the reduced DOF model is dominated

by the time required to generate the deformation matrix. Multiplying the matrix by n

3 x 1 position vectors requires much less time in comparison. In other words, although

the complexity of the reduced DOF model is the same as the mass spring model at O(n),

reduced DOF model is faster because the constant associated with n is smaller. Lastly,

the implicit integration model increases approximately 40 times in computation time as the

sample rate increases from 7 to 13 due to the growth in the matrices required by the system.

As described in section 5.3, such increase in the sample rate would increase the matrices

from (3 x 73) x (3 X 73) = 1,058,841 elements to (3 x 133) x (3 X 133) = 43,441,281 elements.

Because creating and multiplying these matrices is the primary cause of the computation

time required by the implicit integration model, as the matrices grow in order of n 2 , so does

the complexity of the model (O(n2)) .

Table [6.2] shows the amount of time required to generate 1 second of animation with the

character model. The reduced DOF model takes approximately 6 minutes, while the implicit

integration model would require 588 minutes, or 9.8 hours. The animation sequence shown

in section 6.3 lasts approximately 6 seconds, which translates to 36 minutes of simulation

time using the reduced DOF model, and 58.8 hours with the implicit integration model.

7.4 Future Work

7.4.1 Deformation Models

There are areas in our algorithm that we believe could be improved upon. First and

foremost, we have yet to test other deformation techniques that utilize the continuum model

such as O'Brien's [23] finite element method that describes deformation based on internal

energy. Using such continuum models might further increase the amount of computation

50

time, but could also increase the accuracy of the simulation.

7.4.2 Skeleton Generation

In order to make our entire system fully automated, we need to improve upon the skeleton

generation process. Teichmann and Teller [17] explored the possibility of assisted articula

tion of polygonal models using 3D Delaunay triangulation. In their system, a fair amount

of user intervention is still required to create an accurate skeleton to represent the model,

but it does offer the user the means to look at their mesh model while trying to generate the

skeleton. We believe that we could adopt the same technique and principle and create a tool

that would make our skeleton creation process equally interactive or even fully automated.

7.4.3 Collision Detection and Penetration Constraints

Our current system does not support collision detection or penetration constraints. These

are necessary tools in making the system more robust and accurate in simulating complex

environments. Although these features would further slow down the computation time, it

is unavoidable for simulating the interaction between the character and other objects in the

scene.

7.4.4 Sampling

The sampling technique used in our system currently relies on a 3D grid. This creates many

artifacts such as aliasing, under sampling, or over sampling. Ideally, the nodal points should

be connected in not just tetrahedrons, but equilateral tetrahedrons where all springs have

equal rest length and all neighboring nodal points are equally distanced apart. 3D meshing

of a volume using equilateral tetrahedron, however, is currently a difficult problem with

no clear solution. In our system, we believe we could relax the constraint of equilateral

tetrahedrons to approximate equilateral tetrahedrons using some relaxation technique on

the placement of nodal points and not lose too much accuracy in the simulation.

7.4.5 User Defined Constants

The three user defined constants in our system that critically control the results of the

deformation are the spring constant, the damping constant, and the time step. Currently,

finding the correct values of these constants is purely based on trial and error. If a particular

sequence of animation is not desirable in terms of stability or lack of viscoelastic behavior,

the user has to change the constants based on intuition and restart the simulation again.

51

Although the definition of "lack of viscoelastic behavior" is quite subjective, we believe

that we could still offer some tool that allows for a preview of the effects of some selected

constants. Animators then would not have to spend hours rendering and re-rendering

until the desired constants are found. Furthermore, we would also like give the option of

assigning specific springs different behaviors or constants to simulate layers similar to that

of the system created by Waters [18].

Chapter 8

Summary

The goal of this thesis is to animate a viscoelastic character model in an automated fashion.

We have demonstrated that by supplying the character model with a set of skeletons, we were

able to make the character dance in a physically plausible manner similar to that of £lubber.

Our approach represented the model using nodal points and springs, and applied three

different deformation techniques for the animation process. The deformation techniques

vary in speed, stability, and robustness, but each has its own strengths and weaknesses.

We tested the three deformation techniques using a simple cube model. The results

demonstrated that the mass spring model, although fast and easy to construct, varied

greatly in stability when the system parameters were modified slightly. The implicit inte

gration model, on the other hand, was very tolerant towards changes in parameters, but

suffered in performance as the number of nodal points increased. The reduced degree of

freedom model fit between the previous two models, sacrificing some accuracy such that it

is slightly faster than the mass spring model, but slightly less tolerant, and faster than the

implicit integration model, but not quite as stable.

Based on the fact that not one technique had a clear advantage over the other two, we

have essentially offered animators a set of tools for animating and simulating viscoelastic

models. These systems could be alternatives for the traditional manual keyframing and

space warping deformation methods because of their ease of use and speed. Depending on

the needs of the animator, a system could be selected to assist in the process of creating a

sequence of pleasing animation with the least amount of effort.

52

Bibliography

[1]	 D. Baraff and A. Witkin. Large steps in cloth simulation. In Computer Graphics Pro

ceedings, Annual Conference Series, Proceedings of SIGGRAPH 98. ACM SIGGRAPH

1998.

[2]	 L. Markosian, J. Cohen, T. Crulli, and J. Hughes. Skin: a constructive approach

to modeling free-form shapes. In Computer Graphics Proceedings, Annual Conference

Series, Proceedings of SIGGRAPH 99. ACM SIGGRAPH 1999.

[3]	 Vasiliki Chatzi. Integer-coordinate crystalline meshes. PhD thesis, Brown University

Department of Computer Science, 2000.

[4]	 George, P. L., Automatic mesh generation: Application to finite element methods,

John Wiley & Sons, 1991.

[5]	 Numerical Recipes in C.

[6]	 Kass, Michael, An introduction to physically based modeling: an introduction to con

tinuum dynamics for computer graphics, SIGGRAPH Course Notes, 1997.

[7]	 E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary topolog

ical meshes. Computer-Aided Design, 10:350-355, September 1978.

[8]	 Sarah F. Gibson and Brian Mirtich. A survey of deformable models in computer graph

ics. Technical Report TR-97-19, Mitsubishi Electric Research Laboratories, Cambridge,

MA, November 1997.

[9]	 A. Barr. Global and local deformations of solid primitives. In Computer Graphics Pro

ceedings, Annual Conference Series, Proceedings of SIGGRAPH 84, pages 21-30. ACM

SIGGRAPH 1984.

53

54

[10]	 T. Sederberg and S. Parry. Free-form deformation of solid geometric models. In Com

puter Graphics Proceedings, Annual Conference Series, Proceedings of SIGGRAPH 86,

pages 151-160. ACM SIGGRAPH 1986.

[11]	 S. Coquillart. Extending free-form deformation: a sculpting tool for 3D geometric

modeling. In Computer Graphics Proceedings, Annual Conference Series, Proceedings

of SIGGRAPH 90, pages 187-196. ACM SIGGRAPH 1990.

[12]	 S. Coquillart and P. Jancene. Animated free-form deformation: an interactive anima

tion technique. In Computer Graphics Proceedings, Annual Conference Series, Pro

ceedings of SIGGRAPH 91, pages 23-26. ACM SIGGRAPH 1991.

[13]	 W. Hsu, J. Hughes, and H. Kaufman. Direct manipulation of free-form deformations.

In Computer Graphics Proceedings, Annual Conference Series, Proceedings of SIG

GRAPH 92, pages 177-184. ACM SIGGRAPH 1992.

[14]	 R. MacCracken and K. Joy. Free-form deformations with lattices of arbitrary topology.

In Computer Graphics Proceedings, Annual Conference Series, Proceedings of SIG

GRAPH 96, pages 181-188. ACM SIGGRAPH 1996.

[15]	 J. Chadwick, D. Haumann, and R. Parent. Layered construction for deformable ani

mated characters. In Computer Graphics Proceedings, Annual Conference Series, Pro

ceedings of SIGGRAPH 89, pages 243-252. ACM SIGGRAPH 1989.

[16]	 X. Tu and D. Terzopoulos. Artificial fishes: physics, locomotion, perception, behavior.

In Computer Graphics Proceedings, Annual Conference Series, Proceedings of SIG

GRAPH 94, pages 43-50. ACM SIGGRAPH 1994.

[17]	 M. Teichmann and S. Teller. Assisted articulation of closed polygonal models. in Prof.

9th Eurographics Workshop on Animation and Simulation, July 1998.

[18]	 K. Waters. A muscle model for animating three-dimensional facial expression. In Com

puter Graphics Proceedings, Annual Conference Series, Proceedings of SIGGRAPH 87,

pages 17-24. ACM SIGGRAPH 1987.

[19]	 G. Celniker and D. Gossard. Deformable curve and surface finite elements for free-form

shape design. In Computer Graphics Proceedings, Annual Conference Series, Proceed

ings of SIGGRAPH 91. ACM SIGGRAPH 1991.

55

[20]	 J.P. Gourret, N. Magnenat-Thalmann, and D. Thalmann. Simulation of object and hu

man skin deformations in a grasping task. In Computer Graphics Proceedings, Annual

Conference Series, Proceedings of SIGGRAPH 89, pages 21-30. ACM SIGGRAPH

1989.

[21]	 D. Chen and D. Zeltzer. Pump it up: computer animation of a biomechanically based

model of muscle using the finite element method. In Computer Graphics Proceedings,

Annual Conference Series, Proceedings of SIGGRAPH 92, pages 89-98. ACM SIG

GRAPH 1992.

[22]	 M. Bra-Nielsen and S. Cotin. Real-time volumetric deformable models for surgery sim

ulation using finite elements and condensation. In Proceedings of Eurographics, volume

15, pages 57-66, 1996.

[23]	 J. O'Brien and J. Hodgins. Graphical Modeling and Animation of Brittle Fracture.

In Computer Graphics Proceedings, Annual Conference Series, Proceedings of SIG

GRAPH 99. ACM SIGGRAPH 1999.

[24]	 P. Faloutsos, M. van de Panne, and D. Terzopoulos. Dynamic animation synthesis

with free-form deformations. in IEEE Transactions on Visualization and Computer

Graphics, Volume 3, Number 3, pages 201-214, July-September 1997.

[25]	 M. Kass, A. Witkin, and D. Terzopoulos. Snakes: active contour models. International

J. Computer Vision, 1(4):321-332, 1987.

[26]	 D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically deformable models.

In Computer Graphics Proceedings, Annual Conference Series, Proceedings of SIG

GRAPH 87, pages 205-214. ACM SIGGRAPH 1987.

[27]	 D. Terzopoulos and A. Witkin. Physically based models with rigid and deformable

components. IEEE Computer Graphics and Applications, pages 41-51, November 1988.

[28]	 D. Terzopoulos and K. Fleischer. Modeling inelastic deformation: viscoelasticity, plas

ticity, fracture. In Computer Graphics Proceedings, Annual Conference Series, Pro

ceedings of SIGGRAPH 88, pages 269-278. ACM SIGGRAPH 1988.

[29]	 A. Pentland and J. Williams. Good vibrations: modal dynamics for graphics and ani

mation. In Computer Graphics Proceedings, Annual Conference Series, Proceedings of

SIGGRAPH 89, pages 215-222. ACM SIGGRAPH 1989.

56

[30]	 A. Witkin and W. Welch. Fast animation and control of nonrigid structures. In Com

puter Graphics Proceedings, Annual Conference Series, Proceedings of SIGGRAPH 90,

pages 243-252. ACM SIGGRAPH 1990.

[31]	 D. Baraff and A. Witkin. Dynamic simulation of non-penetrating flexible bodies.

In Computer Graphics Proceedings, Annual Conference Series, Proceedings of SIG

GRAPH 92, pages 303-308. ACM SIGGRAPH 1992.

