
Automatic image mosaic assembly

by

DongbaiGuo

Sc. B., Shanghai JiaoTong University., 1994

Sc,M., Brown University, Engineering, 1998

A thesis submitted in partial fulfillment of the

requirements for the Degree of Master of Science

in the Department of Computer Science at Brown University

Providence, Rhode Island

May 1999

This thesis by DongbaiGuois accepted in its presentformby

theDepartment of Computer Science as satisfying the thesisrequirement

for the degree of Masterof Science.

Date

Approved by theGraduate Council

Date _
PederJ. Estrup

Dean of theGraduate Schooland Research

ii

Abstract

We describe a method for assembling sub-images of a single large image (too large to be photographedor

scannedas a whole)into a coherentmosaicwithno prior informationabout theirplacementor adjacency. The

technique is based on two assumptions: (1) that we have a fairly reliable image-registration subroutine, and

(2) that the similaritymeasurement reportedby the image-registration algorithmis larger on average between

twoproperlyregisteredimages than betweenimproperlyregisteredimages.

We also showhow a modified version can be used to stitch togetherrandomimagesinto a kind of artistic

collage.

iii

Contents

List of Figures v

1 Introduction 1

2 Related work 3

3 Notation and Definitions 4

4 The Heuristic 5

4.1 Testing CycleConsistency. 5

4.2 Forming the graph. 6

4.3 Iterativerefinement 6

4.4 Tuning 9

4.5 CreatingOutput . 9

5 Art Image Blending 10

6 Discussion 11

7 Generalization 12

8 Future work 13

Bibliography 18

iv

List of Figures

4.1	 The graph shown determines the layout in blue; the true layout is in red; the discrepancy is due

to image-registration error. The spontaneous edge EZ is inconsistent because of accumulated

error in the cycle EDCBAXYZ. But once edge BX is added, the shorter cycle EDCBXfZ can

be used, and the error is reduced to an acceptable level. Because edge BX is not perfectly

consistent with AB and AX, there's no consistent way to draw the layout once BX is added.

But BX serves as a sort of "strut" to make the structure more rigid and to mask the consistency

of AB and AX from spontaneous edges far from them (like EZ). 7

8.1	 A mosaic of histological microscope data. Boxed region has blending turned off to show

seams. The left side is images without illumination adjustment, the right side is images ad

justed by the method in Appendix 2. (20640 x 480 images) 15

8.2	 Art image .. 15

8.3	 A nautical chart reassembled from scanned pieces. (36612 x 1008 images) 16

8.4	 Handheld photographs of a building. These are not all taken from the same point of view, and

no attempt was made to correct for rotation or keystoning. (12 1024 x 1536 images) 17

v

Chapter 1

Introduction

Building image mosaics arises in multiple applications [3, 10, II], from scanning (in which large-format

items are scanned in multiple small pieces and then reassembled in software), to environment mosaics (in

which multiple photographs from a single center of projection are assembled into a single coherent whole),

to microscope mosaics (in which multiple images of a sample, too large to see all at once, are recorded

and then assembled into a coherent whole). There are two approaches to forming image mosaics. One is to

gather the sample images in a regular fashion [8] and record the overlap information so that they can later be

assembled into a whole [7]. There are microscope systems with stepper-motor controls for moving the sample

table under the lens in two dimensions, a modest processor, and software to assemble the gathered images;

these can cost $30,000 USD. In a traditional mosaic system, a user places the images in their approximate

locations and the software then refines the positions to compose the whole [4, 10]. In the other approach,

taken in our system, the software takes the input images in random order and determines and refines an

overlap structure until a coherent whole evolves. We have applied this system to histological slices gathered

under a high-power microscope (Figure 8.1), portions of a nautical chart gathered with a scanner (Figure 8.3),

and (as a test of its robustness) to a set of photographs taken with a hand-held digital camera (Figure 8.4).

Since our approach is tolerant of error in image registration, it can be used to improve the robustness of a

traditional mosaic system.

There are two essential components to our system. The first is an algorithm to determine optimal registra

tions for pairs of images; the second is the heuristic for assembling these into a coherent whole. We assume

that the image registration procedure can take any pair of images and return a transformation from one to

the other (for example, "shift up by 10 pixels and right by 8") that describes an optimal matching between

them for most imagepairs, and also return the resulting "image distance" between the images (see Appendix

1). In the case of the microscope and scanner images, the transformation is always a translation': for the

digital-camera images, the transformation is in general a projective transformation. Nonetheless, we used our

translation-only matching algorithm and it managed to determine quite good matches. Our image-matching

is done by a multi-scale algorithm (see Appendix 1), but any image-matching algorithm could replace it; as

1We scanned the nautical chart being careful to rotate as little as possible.

1

2

there is an extensive research literature on this subject [5, 15] and previous image mosaic papers cover this

topic extensively [13,8], we will not cover it in detail in this paper.

The second essentialcomponentis the heuristic for determining a layout from an error-contaminated set

of image matches. The heuristic must take the n(n- 1)/2 potential image overlaps and determinewhich are

spurious (i.e., represent the best match between two pieces of the whole which do not in fact overlap), and

which are salient (representoverlaps in the whole), and among the salient ones, for which pairs the image

matcherhas determinedthe correct transformation. We assumethat for most salient image-pairs, the image

matcher computes the correct transformation. We further assume that the image distance (see Appendix 1)

for such a correctly-matched salient pair is less than the average image distance for spurious image-pairs.

With these two assumptions, we take a collectionof input images and build a mosaic as describedbelow.

Chapter 2

Related work

Some previous works concentrate on creating mosaics for 10 and 20 manifolds from known image adja

cency information [to, 4}. Other works, although they do not require explicit input, derive such adjacency

information from the time coherence of the input images [8}.Most of these works are based on minimizing

the errors of the misalignment of neighboring image pairs. Shawhney et al. [9} recently proposed a global

minimization stratergy, introducing the following target function for global alighnment :

min L vari{I;(Pi(X))} + u\Area) (2.1)
{P;} x

Where 1; is ith source image, Pi the maps a point in the mosaic space to a point in the image i's space. They

suggest a two steps approach for minimizing this function, step 1, local registration, a squence of neighboring

video frames laid out using local optimal registration; step 2, global adjacency information is derived from

the coarse layout and further optimization is performed to minimized the above equation. The problem with

this heuristic approach is their method only works with video panoramas, where the time coherence of the

input images help deriving initial layout the mosaic.

Some work (e.g., [l}) has been done on a superficially similar problem that arises in nuclear magnet

resonance imaging: reconstruction of a three-dimensional set of points from noisy distances between pairs

of these points. This problem differs in several respects from our problem. As the authors point out, their

alogrithm assume noise free input with no more than 50 percent of the data randomly corrupted. The input

to our alogrithm are guesses of the image placement containing registration error. Our algorithm works even

when the input consists of more than 90 percent corrupted data. The restriction of more than 50 percent

correct input makes their algorithm impractical for image mosaic applications. 1

1For mosaic on 2D manifolds, the total number of the input from pairwise image registration is n(n - 1)/2, where n is the total
number of input images, while the number of non-corrupted input pairs is proportional to kn where k is the average connectivity of
the layout graph (typically less than 8). The input associated with pairs that are not adjacent in the layout (the oracle) is corrupted.

3

Chapter 3

Notation and Definitions

Let {It, . . . ,In} be a set of n images, and L; be a mosaic of all the images. The function x", =L;(Xi) maps a

point Xi in the image coordinates to the mosaic coordinates x",. A layout £, is a set of functions {LI' ... ,Ln}

that describe the positioning the images in the mosaic. £, determines a graph we call the layout graph Gr.

It has a node i for each image Ii; and there is an edge between node i and node j (i < j) if images I, and Ij

overlap in the layout, and this edge is labeled by the transformation Tij that maps Xi to Xj. I We denote this

map from layout £, to graph Gt. by the suggested U.

Definition 1 We saythata cycle VI V2 ••• Vk in thegraphGt. is consistent ifthe composition of the translations

T VI V2' T V2V3' ••• T Vk_ 1 Vt' T VkVI is the identity. A graphis consistent ifall its cyclesare consistent. 2

A graph is consistent if all the cycles of a cycle basis are consistent. And the reconstruction of the mosaic

from a consistent graph is unique up to congruent.

The map U has a partial "inverse": if G is a connected graph whose edges are labeled by translations,

and if G is consistent, then by placing one image Ii at some arbitrary location, say Xo, we can determine a

placement of each other image Ij by finding a path {i, Vo, VI, ••• , Vk,j} that goes from ito j in G. The image Ij

is then placed at Tvkj 0 ••• 0 TVO,VI 0 1i,voXo . This location is independent of the choice of path when the graph

is consistent. This layout £,(G) of images has the property that the labeled, connected and consistent graph G

is a subgraph of U(£'(G».The other edges of U(£'(G» (those not in G) are called spontaneous edges.

We formalize the image mosaic problem as a minimization problem in the next few sections.

'Ponnally, Tij = 4-'(1;)

2In the language of algebraic topology, we would say that the assignment of transformations satisfies the cocycle condition.

4

Chapter 4

The Heuristic

It follows from definition I that any spanning tree is automatically consistent. We use this fact in our heuristic

for mosaic assembly. The idea of the heuristic is as follows. Use image registration to guess, for every pair Ii

and Ij of images, what transformation Tij correctly describes the relative positions of these images (assuming

these images overlap). Each guess gives us an edge. At the same time, assign a cost cij to each edge that de

pends on the image distance between the intersecting parts of Ii and Ij (see Appendix I). This cost reflects our

confidence in the correctness of Tij: low confidence means high cost. Next, select a minimum-cost spanning

tree T, construct the corresponding layout £(T), and then check the consistency of the corresponding layout

graph U(£(T» by examining the spontaneous edges. Inconsistency in this graph indicates that some edge of

the spanning tree has an incorrect transformation; we adjust the costs of the edges of the spanning tree, find

the new minimum-cost spanning tree, and repeat.

For the sake of efficiency of the iterative part of the heuristic, we assume the existence of a table that

provides a rough estimate of the image distance between each pair of images when they are overlapped in

any given way. In our program, this table was produced during the image registration part of the heuristic: for

scaled-down versions I of B, and Rj , we tried all possible overlaps (discretized to 16-pixel steps in the original

image), and recorded the image distance between the overlaps. By using this table during the iterative part of

the heuristic, we avoid calls to the image-distance routine, although at the cost of some error.

4.1 Testing Cycle Consistency.

Before outlining the heuristic in greater detail, we describe a technique it uses to test cycle consistency.

A cycle C = VI, V2,"" Vk induces a transformation Q = TVkoVI 0 TVk_I,Vk 0 T Vk_ 2,Vk_1 ••• T V2,V3 0 T V1,V2' Since

there are errors in the transformations produced by the image matcher, even for a cycle consisting entirely

of correctly-matched images, the transformation Q will differ somewhat from the identity-more for longer

cycles. To test this consistency, we pick four points Pl,' .. , P4 at the corners of a unit square and compute

1We used scalings of either 16 or 32 in each dimension

5

6

the consistency measure of the cycle as

L:iIIPi - Q(Pi)II)
cm(C) = exp (- (length(C) _ l)d '

where d is a tuning constant and length(C) denotes the number of edges in the cycle C.2

4.2 Forming the graph

Image registration gives us a complete graph on n nodes. We prune this graph, retaining relatively few edges,

before beginning the iterative part of the heuristic, in order to improve the efficiency of the latter.

We begin by examining all triangles in the input graph for consistency; for each triple of images (i,j, k)

we test the cycle (i,j, k) and if it's consistent enough (see below), we keep it.

For triangles in the input graph, we chose the tuning constant d = 16 and used a threshold of t1 =0.5,

so that a composite translation Q with a consistency measure of more than 0.5 has a cumulative error of no

more than about 5.5 pixels.

We initialize our graph G to consist of all nodes, together with all the edges of all the sufficiently consistent

triangles. Thus G has in it many triples of images that overlap nicely. On the other hand, it's unlikely to be

connected, and there are many edges in the input that are promising candidates for inclusion in the final result;

we add several more of these to get a good starting point.

In particular, for each node in G, we include the incident edge that has minimum cost. Furthermore, if the

node has degree less than 4, we add incident edges until it has degree 4, adding in order of cost. The rationale

for this is that in the output mosaic, we expect each image to be strongly matched with about four neighbors

(above, below, left, and right), so we include some candidates for these matches. Finally, we assign a weight

wij to each edge (i,j) of G; the weight wij is initialized to cij.

We assume that the graph G thus obtained is connected. In practice, this has not been a problem; the

graph G has always been connected in our examples. To be disconnected G would have to have, say, two

components with no really "good" edges between them. This represents a failure of the image matcher in a

particular and consistent way - it's provided two regions of a jigsaw puzzle and no hint about how they fit

together. If, however, G were disconnected, we'd need to add edges until the problem was resolved.

4.3 Iterative refinement

We now describe the iterative part of the heuristic in greater detail. The goal of this part is a spanning tree T,

formed from the edges obtained in the image-registration part, for which U(£,(T» is as consistent as possible,

in a sense to be defined shortly. A final step, described in Section 4.5 takes this locally-consistent graph and

creates a layout from it.

Our basic approach is as follows: find the minimum-cost spanning tree T, and obtain the corresponding

layout graph Gr. Examine the spontaneous edges of Gt: depending on whether the cycle formed by such an

2In the case described in this paper, the vectors Pi - Q(Pi) are all the same; in more general situations, Q may be a projective
transformation, in which case they may differ.

7

Figure 4.1: The graph shown determines the layout in blue; the true layout is in red; the discrepancy is due to
image-registration error. The spontaneous edge EZ is inconsistent because of accumulated error in the cycle
EDCBAXYZ. But once edge BX is added, the shorter cycle EDCBXYZ can be used, and the error is reduced to
an acceptable level. Because edge BX is not perfectly consistent with AB and AX, there's no consistent way
to draw the layout once BX is added. But BX serves as a sort of "strut" to make the structure more rigid and
to mask the consistency ofAB and AX from spontaneous edges far from them (like EZ).

edge with the tree T is consistent or not, decrease or increase the weight of the spanning-tree edges on the

cycle. This will reward edges whose inclusion in the spanning tree leads to consistency, and punish edges

whose inclusion leads to inconsistency.

However, we must cope with the fact that even if the edges along a path of T are salient edges (they

correspond to pairs of images that overlap in the large image), the transformations associated with these

edges may not be precisely correct. Small errors in these transformations accumulate to produce large errors

in the relative position of images whose nodes are distant in the spanning tree. Thus there are inconsistent

cycles that would be consistent if the local transformations were precisely correct.

We use a procedure TRICONSIST to help us overcome and correct local errors. This procedure iteratively

selects edges to add to the spanning tree, obtaining a graph G*. Edges are added only if the cycles they form in

G* are highly consistent. We derive the relative position of a pair of images B, and B, from the transformations

on the shortest path in G* that connects nodes i and j. Since G* has more edges than T, shortest paths in G*

tend to be much shorter than those in T, so there is less opportunity for small errors to accumulate. The

procedure is given at the end of this section.

The core loop. We now give pseudocode for the iterative part.

O.UPDATEWEIGHTS(Gz. G*, T)

1. repeat

2. T t- MINWEIGHTSPANNINGTREE(G,W)

3. GL = U(£(T))

4. G* t- TRICONSIST(GL, T)

5. UPDATEWEIGHTS(Gz. G*, T)

6. G t- GL

7. until CHECKSTOP(GL)

Note that in Step 6, we update G to be the graph GL obtained in Step 3. Thus the edges from which we

select the minimum-weight spanning tree in the next iteration correspond to images that overlap in the current

layout.

Updating the weights. As we were examining spontaneous edges as candidates for inclusion in G*, some

were consistent with the data in G* and some were not. An edge of G* may have been involved in multiple

consistency tests; if most of those tests were successful, we'd like to believe that the edge is salient and that

8

its transformis correct.Ifmost were failures, we conjecturethat the edge is not salientor that its transformis

incorrect. based on these conjectures, we decrease or increase the weight of the edge to increase or decrease

its chanceof inclusionin the spanningtree found in the next iteration.

To compute the weightupdate, the procedureuses the table describedat the beginningof this section. It

accesses the table via the procedure100kup(C, e). This procedure takes a cycle C in the graph containing an

edge e =(i,j) and computes the composition p of the transformations along the path C - e. It then obtains

from the table the cost of overlapping B, and Bj according to the transformation nearest to p. In essence

it asks "if the transformation on e matched perfectly with the rest of the transforms in E, what would the

image-matching cost on e have been?'?

O. UPDATEWEIGHTS(Gr" G*, T):

1. Coreach edge ij E GL - G*
2. find the shortest pathp in G* join vertices i.j, C f- P + (i,j)

3. if cm(C) > tI, then cost f- Cij, C' t- C

4. else cost f- lookup(C, V), C' t- C - {ij}

5. if cost < CI

6. Coreach edge (g, h) in C/, Cgh t- (1 - f)Cgh

7. else

8. Coreachedge(g,h)inC',cgh t- (1 +f)cgh

Note that if the transformfor e was foundfrom a lookup, we don't change the cost on edge e, since that's the

cost of e with the transform that labels it.

The procedure TIuCONSIST(Gr, T) The procedurestarts by settingG* to consist of the edges in T. If there

is an edge e in Gr forming a trianglewith edges alreadyin G* , and if the triangleis highly consistentand its

total edge-weightis small, the edge e is added to G*. Step 7 lowers the weights of the edges in the triangle.

(The weightsof these edges wouldhavebeen loweredin UPDATEWEIGHTS but for their inclusionin G* .)

O. TRICONSIST(Gz., T):

1. G* f- T

2. until stable

3. Coreach triangle s = (i,j, k) in GL

4. if two edges, say (i,}) and (j, k) of s are in G*

5. if cm(s) > tz and mj + ~l: + Wkj < Co

6. G* t- G* U (k,O

7. lower the weights of all edges in the triangle s,

Again, there are tuningconstants tz and Co in the code. We choose tz to accept translations of less than three

pixels.WechooseCo by examiningthe costs of all n(n + 1)/2 pairs of imagesin the input, and, knowingthat

the output images will have some average degree (typicallyabout 4), we look at the lowest 5n costs and use

the largest of these as our threshold, so that we are likely to include any salientedges (edgescorresponding

to overlap in the large image).

Stopping. CheckStop checks whetherthe average cost, over all edgesof Gt, is belowsome thresholdt3.

3We could actually invoke the image matcher on the images B; and Bj with the given transformation, but such invocations are costly
and the lookup-table approach works well in practice.

9

4.4 Tuning

There are several constants in the process that affect its performance; they influence bow consistent a triangle

must be for admission to the grapb (d, t1), bow consistent (t2) it must be and bow costly (co) it may be before

being added to the consistency grapb, bow consistent a cycle must be to affect the weights (t1 again), not

to mention bow fast the weights sbould change/e). Our program is robust in the sense that e can be cbosen

anywbere within a rather large interval without significantly affecting the results.

4.5 Creating Output

The grapb G is now locally consistent - small cycles in it bave very small pixel errors. But since there are

multiple paths from one node to another, and they may not be consistent, we cannot simply apply I:- to G. We

therefore treat G, with its edge labels, as a collection of constraints: if image B, is to be placed at location Xj,

then for any edge (i,j) in G, we need Xj- TijXj = O. We assign some Xito the origin, and then this collection

of constraints on the Xi bas a unique least-squares solution, which we compute. We now bave positions for

all the images, and can lay them out.

To actually create an output image, we must do something at the places wbere images overlap. We simply

blend between any overlapping images: the weight Wi of the pixel Z; from image i is the sbortest distance

from Z; to any border of image i, so that the image "fades out" in the blended result as we approacb its border.

Thus the output pixel is

(4.1)

Chapter 5

Art Image Blending

In figure 8.2 we have created a collage of art images. Since these do not come from a single coherent whole,

the assumptions of the heuristic are invalid; applied directly, it tends to place all the images atop one another,

since a great many of them have a bright centerltop, and a dark border/bottom. We therefore did a little

preselection as follows:

We started with 212 images, and computed the pairwise overlaps/costs. We selected a subset of these

images, including each image that matched very well with some other image. In the UPDATEWEIGHTS

portion of the heuristic, we added a penalty for high-degree vertices so as to encourage "spreading out" of

the images.' Moreover, we stopped the program early. Figure 8.2 is one of the layouts arising during the run.

In this final collage, there are only about 20 images; as we created the final layout, we successively laid

down the images. If laying down an image caused some pixel to be covered by more than four images, we

skipped that image in the collage. This ad hoc method helped reduce the noise-and-clutter that comes from

too many overlapping images.

1For each edge of GL. we multiplied its weight by a linear function in the max degree of its endpoints. For a typical node of degree
four, this represents about a 5% penalty.

10

Chapter 6

Discussion

Our heuristic is a kind of loose gradient search. Presumably with noisy enough input data, it can get locked

in local extrema. Because for some image sets, there's no way to know where certain image-pieces fit

they falsely match too many other pieces - there's no way in general to prove that a process for this sort of

mosaicking converges to the "right" answer.

The method works quickly and with surprisingly good results: we can assemble the chart images from

the pairwise registration information in less than one second': a close examination of the results shows that

even with the relatively rough scans of the original (the chart was wrinkled in some places, easy to see along

the top edge), the registration is quite good.

Two solid black images can be overlapped in many different ways, while two complicated and varied

images typically admit at most one good registration. It has been suggested to us to use a weighting scheme

in which the confidence of a potential image overlap depends on the variance of the two images.

tFor 20 images, the entire registration process requires 90 rnins. on a 200MHz UltraSPARC; however, we typically register several
pairs in parallel to speed up this process.

11

Chapter 7

Generalization

The heuristic described is for images that can be matched under translation. The same heuristic can be gen

eralized to images that are extracted from a single composite entity but are related by transformations in a

large group - all rigid motions, for example, or all projective transformations. The cocyle condition is still a

necessary condition for consistency. Ofcourse, if the images are all from a common center ofprojection, then

the composite image is spherical rather than planar, and it's important to treat it as such rather than trying to

do a projection to a plane [14]. Fortunately, our process separates out the finding and stabilizing of the inter

image transformations from the process of making an output image. As Szeliski points out [13], the general

transformation between images taken with the same camera from the same point is a three-dimensional sub

group of the projective group, so the possibility of searching that group for matches, just as we search the 2D

translation group, is at least plausible.

12

Chapter 8

Future work

As most of the computational time is spent on image registration, one of future direction of this work is to cut

down the image registration computation. Typically only Ten (k typically less than 4) pairs of image registra

tion is required to recontruction the mosaic, while we are registering n2 pairs. The following modification to

the original algrithm should help reduce the registration cost.

O.FeatureVector!

1. seperate an image I into M by N blocks

2. foreach block IJ of I

3. VI =concatenate(VI,!eatureVec(II1J)

where FEATUREVEC can be a series of statistics of the image block, such as the average value for each color

channel, the density of the edge, and texture of the block, etc. The purpose of dividing an image into blocks is

to increase the reliability of the feature vector representation of an image. Feature vectors are frequently used

in image retrival and matching applications. One of the basic assumption of feature vectors is that they are

a coarse image similarity measurement, which fit our purpose here for initialization of the graph. A second

choice is to compute the lookup table from the start. However this computation, though more reliable, is also

very expensive, because it gives the coarse global registration between all image pairs while the feature vector

method only provides a single value that relates to the coarse registration.

Now, instead of the registering image pairs, we compute the feature vector distance (the inner product)

between image pairs, and assign this distance to be the weight of the MINWEIGHTSPANNINGTREE compu

tation. The legitimacy of this approach is that neighboring images of a mosaic in general will have similar

image content and therefore closer feature vectors distance. Once we have a minimal spanning tree T, we

then compute the global multiscale image registration between every pair of images represented of its edges

and label each edge of the T with the optimal transformation associated with the lowest cost. From the min

imal spanning tree T, we may compute the layout graph Gu which is consistent by default. For each edge

of Gt. that is not in T, we compute the cost of the image pair under the derived transformation. The step is

not a registration computation because the image pair transformation is known, therefore can be performed

quickly.

13

14

Wethencheck whether wemaystopat thistime.Ifnot,weprobably startedwitha wrongT andpopulated

Gt. with wrongedges. One stratergy is to pick moreedges of low feature vectordistanceandperformglobal

registration. Oncewehavemorethann-l edgeslabelledvia globalregistration, wemaycomputea spanning

tree with respect to pairwise image cost instead of image feature-vector distance, wbich therefore leads to

better accuracy. A second stratergy is to compute the local registration for edges of Gt. with bigh image

cost. The rationalebebind this approacb is that the transformation labeling this edge may containtoo mucb

cumulative error, which therefore leads to bigher image cost. Unfortunately the local registration does not

savea significant amount of time overglobalregistration because of our multiscale approach. Nontheless, if

the initial tree T is likely to be the right spanning tree of the embedded solutionand the registration error is

bigh, the secondstrategy is preferable to the first one.

Sucb a process can keep iteratinguntil we populate the grapb with sufficient number of edges. Wecan

thenconstructthe lookuptableanduse our previous algorithm to continuefor futheriteration.

Therefore, following algorithm wouldlike to be faster forcomputing a mosaic:

O.fastMosaic

1. Coreach image B,

2. Vi = FEATUREVECTOR(Bi)

4. Coreach image pair i,j

5. approximate weight, w = dot(V;, lj)

6. T f- MlNWEIGHTSPANNINGTREE(G,W)

7. Coreach each ij of T

8. compute the global registration between Bs,Bj

9. label edge ij with the optimal transformation and its cost

10.Gz. = U(£(D)

11. foreach edge ij of GL

12.if cost of edge ij is notlabelled,

13. lookup edge ij cost for the labelled transformation

14. CHECKSTOP(Gz.)

15. until perform global registration for more than len edges

16. compute lookup table

17. Coreach edge ij that does not have a cost label yet

18. set it cost and transformation based on the lookup table

19. computeMosaic

15

Figure 8.1: A mosaic of histological microscope data. Boxed region has blending turned off to show seams.
The left side is images without illumination adjustment. the right side is images adjusted by the method in
Appendix 2. (20640 x 480 images)

Figure 8.2: Art image

16

Figure 8.3: A nautical chart reassembled from scanned pieces. (36612 x 1008 images)

17

Figure 8.4: Handheld photographs of a building. These are not all taken from the same point of view, and no
attempt was made to correct for rotation or keystoning. (12 1024 x 1536 images)

Bibliography

[1] B. Berger, J. Kleinberg, and T. Leighton. Reconstructing a three-dimensional model with arbitrary errors. In In

Proceedings ofthe Twenty-Eighth Annual ACM Symposium on the Theory ofComputing, pp. 449-458, 1996.

[2]	 TJ. Cham and R. Cipolla. A statistical framework for long-range feature matching in uncalibrated image mosaicing.

CVPR98,pp. 441-447, 1998.

[3] S. E. Chen.	 Quicklime VR - an image-based approach to virtual environment navigation. In SIGGRAPH 95

Conference Proceedings, pp. 29-38, 1995.

[4] P. Dani and S. Chaudhwi.	 Automated assembling of images: Image montage preparation. PR, 28(3):431-445,

March 1995.

[5] E. DeCastro and C. Morandi. Registration of translated and rotated images using finite fourier transforms. PAMI,

9(5):700-703, September 1987.

[6] S. Mallat A theory for multiresolution signal decomposition: the wavelet representation. IEEE Pattern Anal. and

Machine Intell., 11(7):674-693,1989.

[7] D.L. Milgram. Adaptive techniques for photomosaicking. T'C, 26:1175-1180, 1977.

[8] S. Peleg and J. Herman. Panoramic mosaics by manifold projection. In CVPR97, pp. 338-343, 1997.

[9] H. Sawhney and R. Kumar. Robust video mosaicing through topology inference and local to global alignment	 In

ECCV98,European Conf. Computer Vision, volume 2, pp. 103-119, 1998.

[10]	 K. Schutte and A. Vossepoel. Accurate mosaicking of scanned maps, or how to generate a virtual aOscanner. In

ACSI95, volume 1, pp. 353-359, 1995.

[11] H.Y. Shum, M. Han, and R. Szeliski. Interactive construction of 3d models from panoramic mosaics. In CVPR98,

pp. 427-433, 1998.

[12]	 EJ. Stollnitz, T.D. DeRose, and D. H. Salesin. Wavelets for computer graphics: A primer. CGA, 15(3):75-85,

March 1995.

[13] Richard Szeliski and Heung-YeungShum. Creating full view panoramic mosaics and environmentmaps. In SIG

GRAPH 97 Conference Proceedings, pp. 251-258, 1997.

[14]	 Y.P. Tan, S.R. Kulkarni, and Pl. Ramadge. The instability of planar mosaicking. In Proceedings of the Tenth Yale

Workshop on Adaptive and Learning Systems,pp. 147-152,1998.

[15]	 I. Zoghiami, a.p. Faugeras, and R. Deriche. Using geometric comers to build a 2d mosaic from a set of images. In

CVPR97,pp. 420-425,1997.

18

19

Appendix 1: Image Registration and Image Distance

For pairwise image matching, we use a multiscale search scheme [2,4]. Given an image pair Ba and Bb, we

first transform them into multiscale representations {~}, {B/,}, where superscript-s is the image scale, using

a wavelet transform [6, 12]. At the coarsest representation c,which is typically the original image scaled down

32 times, we compute the image distance dab(T~) for every integer displacement between the two images.

We then find the five best matches (local minima of d) and refine them at the next resolution C + 1. To refine a

matching position ~b ' we first convert it to the new scale and then search locally (typically in a 5 x 5 pixel

region) for the transformation Tij+l that has the smallest image distance in this region. The refinement process

stops at the highest resolution.

To measure the image distance between two images, we use following equation:

d t: _ ~ ~ (~(i,j) - B/,(i +r,j +y»)2
ab(00) - ~~ (w' _ x' + l)(hS - y" + 1) ,

I }

where Tij = (r,y) is the relative image translation of B/, to ~, and w,hs is the image size at the scale

s. Image distance is the average squared pixel difference for the overlap region. In practice, to increase the

robustness of the registration, we require two images have an overlap area of at least 20% of the image area.

If a transformation Tab leads to a smaller overlap area, we reset its associated distance dab(Tij) to a very large

value to prevent it being a candidate for good matches. The image matcher finally returns the smallest image

distance we encounter at the highest resolution and its associated transformation.

Appendix 2: Microscopic image illumination adjument

Microscopic images suffers from non-uniform illumination artifact, which affects the correctness of the im

age registration. We have devoloped an automated method to adjust for the non-uniform illumination of the

microscopic images. It has the advantage over earlier methods that the same region affected by different

non-uniform illumination patterns has the same adjusted image.

We first divide an image into multiple blocks. The block size is chosen so that it is much larger than the

variation of the local image details, yet small with repect to the illumination variation. This is not a pair of

contradictory requirements for high magnification microscopic images, since illumination varies at a much

larger scale than the image details. Typical, for 640 x 480 images, block sizes anywhere between 32x32 and

64X64 works well.

For each image block I, we adjust its centroid of histogram to a fixed intensity hA by following equation.

he hA
fA =1>. x -:c

lA

where i~ is the histogram centroid of I:

20

The constanthe is the same for all images. We randomly pick one image from the input image set and

choose its histogramcentriodto be he. This may create a problem for images with large changes in image

foreground (at a scaleclose to that of the non-uniform illumination). In such cases, this methodremoves the

foreground difference alongwith thenon-uniform illumination.

