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Abstract 

We describe a method for assembling sub-images of a single large image (too large to be photographedor 

scannedas a whole)into a coherentmosaicwithno prior informationabout theirplacementor adjacency. The 

technique is based on two assumptions: (1) that we have a fairly reliable image-registration subroutine, and 

(2) that the similaritymeasurement reportedby the image-registration algorithmis larger on average between 

twoproperlyregisteredimages than betweenimproperlyregisteredimages. 

We also showhow a modified version can be used to stitch togetherrandomimagesinto a kind of artistic 

collage. 
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Chapter 1 

Introduction 

Building image mosaics arises in multiple applications [3, 10, II], from scanning (in which large-format 

items are scanned in multiple small pieces and then reassembled in software), to environment mosaics (in 

which multiple photographs from a single center of projection are assembled into a single coherent whole), 

to microscope mosaics (in which multiple images of a sample, too large to see all at once, are recorded 

and then assembled into a coherent whole). There are two approaches to forming image mosaics. One is to 

gather the sample images in a regular fashion [8] and record the overlap information so that they can later be 

assembled into a whole [7]. There are microscope systems with stepper-motor controls for moving the sample 

table under the lens in two dimensions, a modest processor, and software to assemble the gathered images; 

these can cost $30,000 USD. In a traditional mosaic system, a user places the images in their approximate 

locations and the software then refines the positions to compose the whole [4, 10]. In the other approach, 

taken in our system, the software takes the input images in random order and determines and refines an 

overlap structure until a coherent whole evolves. We have applied this system to histological slices gathered 

under a high-power microscope (Figure 8.1), portions of a nautical chart gathered with a scanner (Figure 8.3), 

and (as a test of its robustness) to a set of photographs taken with a hand-held digital camera (Figure 8.4). 

Since our approach is tolerant of error in image registration, it can be used to improve the robustness of a 

traditional mosaic system. 

There are two essential components to our system. The first is an algorithm to determine optimal registra­

tions for pairs of images; the second is the heuristic for assembling these into a coherent whole. We assume 

that the image registration procedure can take any pair of images and return a transformation from one to 

the other (for example, "shift up by 10 pixels and right by 8") that describes an optimal matching between 

them for most imagepairs, and also return the resulting "image distance" between the images (see Appendix 

1 ). In the case of the microscope and scanner images, the transformation is always a translation': for the 

digital-camera images, the transformation is in general a projective transformation. Nonetheless, we used our 

translation-only matching algorithm and it managed to determine quite good matches. Our image-matching 

is done by a multi-scale algorithm (see Appendix 1), but any image-matching algorithm could replace it; as 

1We scanned the nautical chart being careful to rotate as little as possible. 
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there is an extensive research literature on this subject [5, 15] and previous image mosaic papers cover this 

topic extensively [13,8], we will not cover it in detail in this paper. 

The second essentialcomponentis the heuristic for determining a layout from an error-contaminated set 

of image matches. The heuristic must take the n(n- 1)/2 potential image overlaps and determinewhich are 

spurious (i.e., represent the best match between two pieces of the whole which do not in fact overlap), and 

which are salient (representoverlaps in the whole), and among the salient ones, for which pairs the image­

matcherhas determinedthe correct transformation. We assumethat for most salient image-pairs, the image­

matcher computes the correct transformation. We further assume that the image distance (see Appendix 1) 

for such a correctly-matched salient pair is less than the average image distance for spurious image-pairs. 

With these two assumptions, we take a collectionof input images and build a mosaic as describedbelow. 



Chapter 2 

Related work 

Some previous works concentrate on creating mosaics for 10 and 20 manifolds from known image adja­

cency information [to, 4}. Other works, although they do not require explicit input, derive such adjacency 

information from the time coherence of the input images [8}.Most of these works are based on minimizing 

the errors of the misalignment of neighboring image pairs. Shawhney et al. [9} recently proposed a global 

minimization stratergy, introducing the following target function for global alighnment : 

min L vari{I;(Pi(X))} + u\Area) (2.1) 
{P;} x 

Where 1; is ith source image, Pi the maps a point in the mosaic space to a point in the image i's space. They 

suggest a two steps approach for minimizing this function, step 1, local registration, a squence of neighboring 

video frames laid out using local optimal registration; step 2, global adjacency information is derived from 

the coarse layout and further optimization is performed to minimized the above equation. The problem with 

this heuristic approach is their method only works with video panoramas, where the time coherence of the 

input images help deriving initial layout the mosaic. 

Some work (e.g., [l}) has been done on a superficially similar problem that arises in nuclear magnet 

resonance imaging: reconstruction of a three-dimensional set of points from noisy distances between pairs 

of these points. This problem differs in several respects from our problem. As the authors point out, their 

alogrithm assume noise free input with no more than 50 percent of the data randomly corrupted. The input 

to our alogrithm are guesses of the image placement containing registration error. Our algorithm works even 

when the input consists of more than 90 percent corrupted data. The restriction of more than 50 percent 

correct input makes their algorithm impractical for image mosaic applications. 1 

1For mosaic on 2D manifolds, the total number of the input from pairwise image registration is n(n - 1)/2, where n is the total 
number of input images, while the number of non-corrupted input pairs is proportional to kn where k is the average connectivity of 
the layout graph (typically less than 8). The input associated with pairs that are not adjacent in the layout (the oracle) is corrupted. 
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Chapter 3 

Notation and Definitions 

Let {It, . . . ,In} be a set of n images, and L; be a mosaic of all the images. The function x", =L;(Xi) maps a 

point Xi in the image coordinates to the mosaic coordinates x",. A layout £, is a set of functions {LI' ... ,Ln} 

that describe the positioning the images in the mosaic. £, determines a graph we call the layout graph Gr. 

It has a node i for each image Ii; and there is an edge between node i and node j (i < j) if images I, and Ij 

overlap in the layout, and this edge is labeled by the transformation Tij that maps Xi to Xj. I We denote this 

map from layout £, to graph Gt. by the suggested U. 

Definition 1 We saythata cycle VI V2 ••• Vk in thegraphGt. is consistent ifthe composition of the translations 

T VI V2' T V2V3' ••• T Vk_ 1 Vt' T VkVI is the identity. A graphis consistent ifall its cyclesare consistent. 2 

A graph is consistent if all the cycles of a cycle basis are consistent. And the reconstruction of the mosaic 

from a consistent graph is unique up to congruent. 

The map U has a partial "inverse": if G is a connected graph whose edges are labeled by translations, 

and if G is consistent, then by placing one image Ii at some arbitrary location, say Xo, we can determine a 

placement of each other image Ij by finding a path {i, Vo, VI, ••• , Vk,j} that goes from ito j in G. The image Ij 

is then placed at Tvkj 0 ••• 0 TVO,VI 0 1i,voXo . This location is independent of the choice of path when the graph 

is consistent. This layout £,( G) of images has the property that the labeled, connected and consistent graph G 

is a subgraph of U(£'(G».The other edges of U(£'(G» (those not in G) are called spontaneous edges. 

We formalize the image mosaic problem as a minimization problem in the next few sections. 

'Ponnally, Tij = 4-'(1;)
 

2In the language of algebraic topology, we would say that the assignment of transformations satisfies the cocycle condition.
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Chapter 4 

The Heuristic 

It follows from definition I that any spanning tree is automatically consistent. We use this fact in our heuristic 

for mosaic assembly. The idea of the heuristic is as follows. Use image registration to guess, for every pair Ii 

and Ij of images, what transformation Tij correctly describes the relative positions of these images (assuming 

these images overlap). Each guess gives us an edge. At the same time, assign a cost cij to each edge that de­

pends on the image distance between the intersecting parts of Ii and Ij (see Appendix I). This cost reflects our 

confidence in the correctness of Tij: low confidence means high cost. Next, select a minimum-cost spanning 

tree T, construct the corresponding layout £(T), and then check the consistency of the corresponding layout 

graph U(£(T» by examining the spontaneous edges. Inconsistency in this graph indicates that some edge of 

the spanning tree has an incorrect transformation; we adjust the costs of the edges of the spanning tree, find 

the new minimum-cost spanning tree, and repeat. 

For the sake of efficiency of the iterative part of the heuristic, we assume the existence of a table that 

provides a rough estimate of the image distance between each pair of images when they are overlapped in 

any given way. In our program, this table was produced during the image registration part of the heuristic: for 

scaled-down versions I of B, and Rj , we tried all possible overlaps (discretized to 16-pixel steps in the original 

image), and recorded the image distance between the overlaps. By using this table during the iterative part of 

the heuristic, we avoid calls to the image-distance routine, although at the cost of some error. 

4.1 Testing Cycle Consistency. 

Before outlining the heuristic in greater detail, we describe a technique it uses to test cycle consistency. 

A cycle C = VI, V2,"" Vk induces a transformation Q = TVkoVI 0 TVk_I,Vk 0 T Vk_ 2,Vk_1 ••• T V2,V3 0 T V1,V2' Since 

there are errors in the transformations produced by the image matcher, even for a cycle consisting entirely 

of correctly-matched images, the transformation Q will differ somewhat from the identity-more for longer 

cycles. To test this consistency, we pick four points Pl,' .. , P4 at the corners of a unit square and compute 

1We used scalings of either 16 or 32 in each dimension 
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the consistency measure of the cycle as 

L:iIIPi - Q(Pi)II) 
cm(C) = exp ( - (length(C) _ l)d ' 

where d is a tuning constant and length(C) denotes the number of edges in the cycle C.2 

4.2 Forming the graph 

Image registration gives us a complete graph on n nodes. We prune this graph, retaining relatively few edges, 

before beginning the iterative part of the heuristic, in order to improve the efficiency of the latter. 

We begin by examining all triangles in the input graph for consistency; for each triple of images (i,j, k) 

we test the cycle (i,j, k) and if it's consistent enough (see below), we keep it. 

For triangles in the input graph, we chose the tuning constant d = 16 and used a threshold of t1 =0.5, 

so that a composite translation Q with a consistency measure of more than 0.5 has a cumulative error of no 

more than about 5.5 pixels. 

We initialize our graph G to consist of all nodes, together with all the edges of all the sufficiently consistent 

triangles. Thus G has in it many triples of images that overlap nicely. On the other hand, it's unlikely to be 

connected, and there are many edges in the input that are promising candidates for inclusion in the final result; 

we add several more of these to get a good starting point. 

In particular, for each node in G, we include the incident edge that has minimum cost. Furthermore, if the 

node has degree less than 4, we add incident edges until it has degree 4, adding in order of cost. The rationale 

for this is that in the output mosaic, we expect each image to be strongly matched with about four neighbors 

(above, below, left, and right), so we include some candidates for these matches. Finally, we assign a weight 

wij to each edge (i,j) of G; the weight wij is initialized to cij. 

We assume that the graph G thus obtained is connected. In practice, this has not been a problem; the 

graph G has always been connected in our examples. To be disconnected G would have to have, say, two 

components with no really "good" edges between them. This represents a failure of the image matcher in a 

particular and consistent way - it's provided two regions of a jigsaw puzzle and no hint about how they fit 

together. If, however, G were disconnected, we'd need to add edges until the problem was resolved. 

4.3 Iterative refinement 

We now describe the iterative part of the heuristic in greater detail. The goal of this part is a spanning tree T, 

formed from the edges obtained in the image-registration part, for which U(£,(T» is as consistent as possible, 

in a sense to be defined shortly. A final step, described in Section 4.5 takes this locally-consistent graph and 

creates a layout from it. 

Our basic approach is as follows: find the minimum-cost spanning tree T, and obtain the corresponding 

layout graph Gr. Examine the spontaneous edges of Gt: depending on whether the cycle formed by such an 

2In the case described in this paper, the vectors Pi - Q(Pi) are all the same; in more general situations, Q may be a projective 
transformation, in which case they may differ. 
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Figure 4.1: The graph shown determines the layout in blue; the true layout is in red; the discrepancy is due to 
image-registration error. The spontaneous edge EZ is inconsistent because of accumulated error in the cycle 
EDCBAXYZ. But once edge BX is added, the shorter cycle EDCBXYZ can be used, and the error is reduced to 
an acceptable level. Because edge BX is not perfectly consistent with AB and AX, there's no consistent way 
to draw the layout once BX is added. But BX serves as a sort of "strut" to make the structure more rigid and 
to mask the consistency ofAB and AX from spontaneous edges far from them (like EZ). 

edge with the tree T is consistent or not, decrease or increase the weight of the spanning-tree edges on the 

cycle. This will reward edges whose inclusion in the spanning tree leads to consistency, and punish edges 

whose inclusion leads to inconsistency. 

However, we must cope with the fact that even if the edges along a path of T are salient edges (they 

correspond to pairs of images that overlap in the large image), the transformations associated with these 

edges may not be precisely correct. Small errors in these transformations accumulate to produce large errors 

in the relative position of images whose nodes are distant in the spanning tree. Thus there are inconsistent 

cycles that would be consistent if the local transformations were precisely correct. 

We use a procedure TRICONSIST to help us overcome and correct local errors. This procedure iteratively 

selects edges to add to the spanning tree, obtaining a graph G*. Edges are added only if the cycles they form in 

G* are highly consistent. We derive the relative position of a pair of images B, and B, from the transformations 

on the shortest path in G* that connects nodes i and j. Since G* has more edges than T, shortest paths in G* 

tend to be much shorter than those in T, so there is less opportunity for small errors to accumulate. The 

procedure is given at the end of this section. 

The core loop. We now give pseudocode for the iterative part. 

O.UPDATEWEIGHTS(Gz. G*, T) 

1. repeat 

2. T t- MINWEIGHTSPANNINGTREE(G,W) 

3. GL = U(£(T)) 

4. G* t- TRICONSIST(GL, T) 

5. UPDATEWEIGHTS(Gz. G*, T) 

6. G t- GL 

7. until CHECKSTOP(GL) 

Note that in Step 6, we update G to be the graph GL obtained in Step 3. Thus the edges from which we 

select the minimum-weight spanning tree in the next iteration correspond to images that overlap in the current 

layout. 

Updating the weights. As we were examining spontaneous edges as candidates for inclusion in G*, some 

were consistent with the data in G* and some were not. An edge of G* may have been involved in multiple 

consistency tests; if most of those tests were successful, we'd like to believe that the edge is salient and that 
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its transformis correct.Ifmost were failures, we conjecturethat the edge is not salientor that its transformis 

incorrect. based on these conjectures, we decrease or increase the weight of the edge to increase or decrease 

its chanceof inclusionin the spanningtree found in the next iteration. 

To compute the weightupdate, the procedureuses the table describedat the beginningof this section. It 

accesses the table via the procedure100kup(C, e). This procedure takes a cycle C in the graph containing an 

edge e =(i,j) and computes the composition p of the transformations along the path C - e. It then obtains 

from the table the cost of overlapping B, and Bj according to the transformation nearest to p. In essence 

it asks "if the transformation on e matched perfectly with the rest of the transforms in E, what would the 

image-matching cost on e have been?'? 

O. UPDATEWEIGHTS(Gr" G*, T): 

1. Coreach edge ij E GL - G* 
2. find the shortest pathp in G* join vertices i.j, C f- P + (i,j) 

3. if cm(C) > tI, then cost f- Cij, C' t- C 

4. else cost f- lookup(C, V), C' t- C - {ij} 

5. if cost < CI 

6. Coreach edge (g, h) in C/, Cgh t- (1 - f)Cgh 

7. else 

8. Coreachedge(g,h)inC',cgh t- (1 +f)cgh 

Note that if the transformfor e was foundfrom a lookup, we don't change the cost on edge e, since that's the
 

cost of e with the transform that labels it.
 

The procedure TIuCONSIST(Gr, T) The procedurestarts by settingG* to consist of the edges in T. If there
 

is an edge e in Gr forming a trianglewith edges alreadyin G* , and if the triangleis highly consistentand its
 

total edge-weightis small, the edge e is added to G*. Step 7 lowers the weights of the edges in the triangle.
 

(The weightsof these edges wouldhavebeen loweredin UPDATEWEIGHTS but for their inclusionin G* .)
 

O. TRICONSIST(Gz., T ): 

1. G* f- T 

2. until stable 

3. Coreach triangle s = (i,j, k) in GL 

4. if two edges, say (i,}) and (j, k) of s are in G* 

5. if cm(s) > tz and mj + ~l: + Wkj < Co 

6. G* t- G* U (k,O 

7. lower the weights of all edges in the triangle s, 

Again, there are tuningconstants tz and Co in the code. We choose tz to accept translations of less than three 

pixels.WechooseCo by examiningthe costs of all n(n + 1)/2 pairs of imagesin the input, and, knowingthat 

the output images will have some average degree (typicallyabout 4), we look at the lowest 5n costs and use 

the largest of these as our threshold, so that we are likely to include any salientedges (edgescorresponding 

to overlap in the large image). 

Stopping. CheckStop checks whetherthe average cost, over all edgesof Gt, is belowsome thresholdt3. 

3We could actually invoke the image matcher on the images B; and Bj with the given transformation, but such invocations are costly 
and the lookup-table approach works well in practice. 
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4.4 Tuning 

There are several constants in the process that affect its performance; they influence bow consistent a triangle 

must be for admission to the grapb (d, t1), bow consistent (t2) it must be and bow costly (co) it may be before 

being added to the consistency grapb, bow consistent a cycle must be to affect the weights (t1 again), not 

to mention bow fast the weights sbould change/e). Our program is robust in the sense that e can be cbosen 

anywbere within a rather large interval without significantly affecting the results. 

4.5 Creating Output 

The grapb G is now locally consistent - small cycles in it bave very small pixel errors. But since there are 

multiple paths from one node to another, and they may not be consistent, we cannot simply apply I:- to G. We 

therefore treat G, with its edge labels, as a collection of constraints: if image B, is to be placed at location Xj, 

then for any edge (i,j) in G, we need Xj- TijXj = O. We assign some Xito the origin, and then this collection 

of constraints on the Xi bas a unique least-squares solution, which we compute. We now bave positions for 

all the images, and can lay them out. 

To actually create an output image, we must do something at the places wbere images overlap. We simply 

blend between any overlapping images: the weight Wi of the pixel Z; from image i is the sbortest distance 

from Z; to any border of image i, so that the image "fades out" in the blended result as we approacb its border. 

Thus the output pixel is 

(4.1) 



Chapter 5 

Art Image Blending 

In figure 8.2 we have created a collage of art images. Since these do not come from a single coherent whole, 

the assumptions of the heuristic are invalid; applied directly, it tends to place all the images atop one another, 

since a great many of them have a bright centerltop, and a dark border/bottom. We therefore did a little 

preselection as follows: 

We started with 212 images, and computed the pairwise overlaps/costs. We selected a subset of these 

images, including each image that matched very well with some other image. In the UPDATEWEIGHTS 

portion of the heuristic, we added a penalty for high-degree vertices so as to encourage "spreading out" of 

the images.' Moreover, we stopped the program early. Figure 8.2 is one of the layouts arising during the run. 

In this final collage, there are only about 20 images; as we created the final layout, we successively laid 

down the images. If laying down an image caused some pixel to be covered by more than four images, we 

skipped that image in the collage. This ad hoc method helped reduce the noise-and-clutter that comes from 

too many overlapping images. 

1For each edge of GL. we multiplied its weight by a linear function in the max degree of its endpoints. For a typical node of degree 
four, this represents about a 5% penalty. 
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Chapter 6 

Discussion 

Our heuristic is a kind of loose gradient search. Presumably with noisy enough input data, it can get locked 

in local extrema. Because for some image sets, there's no way to know where certain image-pieces fit­

they falsely match too many other pieces - there's no way in general to prove that a process for this sort of 

mosaicking converges to the "right" answer. 

The method works quickly and with surprisingly good results: we can assemble the chart images from 

the pairwise registration information in less than one second': a close examination of the results shows that 

even with the relatively rough scans of the original (the chart was wrinkled in some places, easy to see along 

the top edge), the registration is quite good. 

Two solid black images can be overlapped in many different ways, while two complicated and varied 

images typically admit at most one good registration. It has been suggested to us to use a weighting scheme 

in which the confidence of a potential image overlap depends on the variance of the two images. 

tFor 20 images, the entire registration process requires 90 rnins. on a 200MHz UltraSPARC; however, we typically register several 
pairs in parallel to speed up this process. 
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Chapter 7 

Generalization 

The heuristic described is for images that can be matched under translation. The same heuristic can be gen­

eralized to images that are extracted from a single composite entity but are related by transformations in a 

large group - all rigid motions, for example, or all projective transformations. The cocyle condition is still a 

necessary condition for consistency. Ofcourse, if the images are all from a common center ofprojection, then 

the composite image is spherical rather than planar, and it's important to treat it as such rather than trying to 

do a projection to a plane [14]. Fortunately, our process separates out the finding and stabilizing of the inter­

image transformations from the process of making an output image. As Szeliski points out [13], the general 

transformation between images taken with the same camera from the same point is a three-dimensional sub­

group of the projective group, so the possibility of searching that group for matches, just as we search the 2D 

translation group, is at least plausible. 

12 



Chapter 8 

Future work 

As most of the computational time is spent on image registration, one of future direction of this work is to cut 

down the image registration computation. Typically only Ten ( k typically less than 4 ) pairs of image registra­

tion is required to recontruction the mosaic, while we are registering n2 pairs. The following modification to 

the original algrithm should help reduce the registration cost. 

O.FeatureVector! 

1. seperate an image I into M by N blocks 

2. foreach block IJ of I 

3. VI =concatenate(VI,!eatureVec(II1J) 

where FEATUREVEC can be a series of statistics of the image block, such as the average value for each color 

channel, the density of the edge, and texture of the block, etc. The purpose of dividing an image into blocks is 

to increase the reliability of the feature vector representation of an image. Feature vectors are frequently used 

in image retrival and matching applications. One of the basic assumption of feature vectors is that they are 

a coarse image similarity measurement, which fit our purpose here for initialization of the graph. A second 

choice is to compute the lookup table from the start. However this computation, though more reliable, is also 

very expensive, because it gives the coarse global registration between all image pairs while the feature vector 

method only provides a single value that relates to the coarse registration. 

Now, instead of the registering image pairs, we compute the feature vector distance ( the inner product) 

between image pairs, and assign this distance to be the weight of the MINWEIGHTSPANNINGTREE compu­

tation. The legitimacy of this approach is that neighboring images of a mosaic in general will have similar 

image content and therefore closer feature vectors distance. Once we have a minimal spanning tree T, we 

then compute the global multiscale image registration between every pair of images represented of its edges 

and label each edge of the T with the optimal transformation associated with the lowest cost. From the min­

imal spanning tree T, we may compute the layout graph Gu which is consistent by default. For each edge 

of Gt. that is not in T, we compute the cost of the image pair under the derived transformation. The step is 

not a registration computation because the image pair transformation is known, therefore can be performed 

quickly. 

13 
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Wethencheck whether wemaystopat thistime.Ifnot,weprobably startedwitha wrongT andpopulated 

Gt. with wrongedges. One stratergy is to pick moreedges of low feature vectordistanceandperformglobal 

registration. Oncewehavemorethann-l edgeslabelledvia globalregistration, wemaycomputea spanning 

tree with respect to pairwise image cost instead of image feature-vector distance, wbich therefore leads to 

better accuracy. A second stratergy is to compute the local registration for edges of Gt. with bigh image 

cost. The rationalebebind this approacb is that the transformation labeling this edge may containtoo mucb 

cumulative error, which therefore leads to bigher image cost. Unfortunately the local registration does not 

savea significant amount of time overglobalregistration because of our multiscale approach. Nontheless, if 

the initial tree T is likely to be the right spanning tree of the embedded solutionand the registration error is 

bigh, the secondstrategy is preferable to the first one. 

Sucb a process can keep iteratinguntil we populate the grapb with sufficient number of edges. Wecan 

thenconstructthe lookuptableanduse our previous algorithm to continuefor futheriteration. 

Therefore, following algorithm wouldlike to be faster forcomputing a mosaic: 

O.fastMosaic 

1. Coreach image B, 

2. Vi = FEATUREVECTOR(Bi) 

4. Coreach image pair i,j 

5. approximate weight, w = dot(V;, lj) 

6. T f- MlNWEIGHTSPANNINGTREE(G,W) 

7. Coreach each ij of T 

8. compute the global registration between Bs,Bj 

9. label edge ij with the optimal transformation and its cost 

10.Gz. = U(£(D) 

11. foreach edge ij of GL 

12.if cost of edge ij is notlabelled, 

13. lookup edge ij cost for the labelled transformation 

14. CHECKSTOP(Gz.) 

15. until perform global registration for more than len edges 

16. compute lookup table 

17. Coreach edge ij that does not have a cost label yet 

18. set it cost and transformation based on the lookup table 

19. computeMosaic 
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Figure 8.1: A mosaic of histological microscope data. Boxed region has blending turned off to show seams. 
The left side is images without illumination adjustment. the right side is images adjusted by the method in 
Appendix 2. (20640 x 480 images) 

Figure 8.2: Art image 
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Figure 8.3: A nautical chart reassembled from scanned pieces. (36612 x 1008 images) 
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Figure 8.4: Handheld photographs of a building. These are not all taken from the same point of view, and no 
attempt was made to correct for rotation or keystoning. (12 1024 x 1536 images) 
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Appendix 1: Image Registration and Image Distance 

For pairwise image matching, we use a multiscale search scheme [2,4]. Given an image pair Ba and Bb, we 

first transform them into multiscale representations {~}, {B/,}, where superscript-s is the image scale, using 

a wavelet transform [6, 12]. At the coarsest representation c,which is typically the original image scaled down 

32 times, we compute the image distance dab(T~) for every integer displacement between the two images. 

We then find the five best matches (local minima of d) and refine them at the next resolution C + 1. To refine a 

matching position ~b ' we first convert it to the new scale and then search locally (typically in a 5 x 5 pixel 

region) for the transformation Tij+l that has the smallest image distance in this region. The refinement process 

stops at the highest resolution. 

To measure the image distance between two images, we use following equation: 

d t: _ ~ ~ (~(i,j) - B/,(i +r,j +y»)2 
ab( 00) - ~~ (w' _ x' + l)(hS - y" + 1) , 

I } 

where Tij = (r,y) is the relative image translation of B/, to ~, and w,hs is the image size at the scale 

s. Image distance is the average squared pixel difference for the overlap region. In practice, to increase the 

robustness of the registration, we require two images have an overlap area of at least 20% of the image area. 

If a transformation Tab leads to a smaller overlap area, we reset its associated distance dab(Tij) to a very large 

value to prevent it being a candidate for good matches. The image matcher finally returns the smallest image 

distance we encounter at the highest resolution and its associated transformation. 

Appendix 2: Microscopic image illumination adjument 

Microscopic images suffers from non-uniform illumination artifact, which affects the correctness of the im­

age registration. We have devoloped an automated method to adjust for the non-uniform illumination of the 

microscopic images. It has the advantage over earlier methods that the same region affected by different 

non-uniform illumination patterns has the same adjusted image. 

We first divide an image into multiple blocks. The block size is chosen so that it is much larger than the 

variation of the local image details, yet small with repect to the illumination variation. This is not a pair of 

contradictory requirements for high magnification microscopic images, since illumination varies at a much 

larger scale than the image details. Typical, for 640 x 480 images, block sizes anywhere between 32x32 and 

64X64 works well. 

For each image block I, we adjust its centroid of histogram to a fixed intensity hA by following equation. 

he hA 
fA =1>. x -:c 

lA 

where i~ is the histogram centroid of I: 
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The constanthe is the same for all images. We randomly pick one image from the input image set and 

choose its histogramcentriodto be he. This may create a problem for images with large changes in image 

foreground (at a scaleclose to that of the non-uniform illumination). In such cases, this methodremoves the 

foreground difference alongwith thenon-uniform illumination. 


