
, ·t .

Client-Server Performance Evaluation in

Pushed-based Systems

Jie Cui

Department of Computer Science

Brown University

Submitted in partial fulfillment of the requirements for the degree of Master of

Science in the Department of Computer Science at Brown University

November, 1998

, , '

Abstract

As the asymmetric communication environments (wireless, satellite, ...) emerges

in recently years, there are increasing interests in studying the push-based client

server models, in contrast to the traditional emphasis on pull-based systems. In a

few previous papers, Professor Zdonik and his collaborators: Acharya and Franklin

et al. [1, 2, 4], have proposed a novel push-based system, which they called "broadcast

disks", and they have done software simulations to validate the performance of the

proposed broadcast methods as well as to studying the performance of various cost

based caching management policies.

In this master's thesis, our purpose is mainly to run the experiments on a proto­

type system that consists of four pes with Pentium processors. The experimental

results faithfully confirmed the conclusions drawn by simulation.

This thesis has two main contributions:

1. Derive the mathematics for designing the optimal broadcast page frequency,

by solving a constraint optimization problem. We found that the optimal frequency

of broadcast should be proportional to the square root of the access frequency

averaged over all clients.

2. Programming and experiments on the prototype system. The experiment

largely confirm the advantages of the push-based system in the asymmetric com­

munication environments.

2

, .

Acknowledgments
I'd like to thank for professor Stanley Zdonik for encouraging me to participate

this research project, and for technical advice and his patience. I am also grateful

to Rahul Bose and Swarup Acharya for their discussion, advice, and assistance

throughout the experiments.

Through the work of this thesis, I have learnt the broadcast disks system, and

did experiments on a prototype system. The research is of great values to my

professional career. During the work, I also learn to formulate a problem using

mathematical tool, and learn to compare various parameters and management poli­

cies carefully in order to draw firm conclusions.

The research is supported by an ONR grant No. N00014-91-J-4085 and an Intel

gift to Professor Zdonik.

3

, ,

1 Introduction

The past decade has witnessed an explosion in data communication through the

growth in the Internet, cable networks, mobile computers and satellite commu­

nication. The advances in data communication together with the ever-growing

computing power pose interesting challenges in evaluating traditional assumptions

in designing large scale distributed systems. In a series of papersjL, 2, 3, 4],

Acharya, Franklin and Zdonik have identified a set of emerging applications do­

mains, which they called the Asymmetric Communication Environments. In an

asymmetric communication environment, the downstream communication capacity

(from the servers to the clients) is much greater than the upstream communi­

cation capacity (from the clients to the servers). This asymmetry can often be

caused by 1). bandwidth asymmetry in the physical network, an extreme example

is the uni-directional communication from the server on the satellite to to mobile

clients on the ground, or 2). by the unbalanced data volume up/down the channels.

Examples of the asymmetric communication environment include: 1). wireless net­

works where the servers are stationary and the clients are mobile, 2). Information

dispersal systems, such as stocks, traffic, weather, batter fields and so on.

Furthermore, Acharya, Franklin and Zdonik have proposed a novel dissemination

based approach for data distribution in the context of client-server systems, and

they also proposed a new architecture called broadcast disks to address the data

distribution issues in the asymmetric communication environment. In contrast to

the traditional pull-based methods, the broadcast disks are push-based architecture,

where a server repeatedly broadcast data through a communication channels, and

the clients retrieve pages as they appear in the channels. The architecture of the

broadcast disks is illustrated in figure 1.

As shown in figure 1 [1], the design of the broadcast disks consists of two parts:

4

, ,

Server
Communication Channel

Figure 1 The architecture of the multiple broadcast disks- a push-based client-server system.

5

, ,

1). design of broadcast disks on the server side, and 2). cache management on the

client side.

1. Broadcast disks arrangement. One simplest way of designing the broad­

cast program is the so called fiat disk[l]. In this method, a single disk is adopted

in the server, and all data pages are broadcast periodically at the same frequency.

Thus if a client is missing a page, it has to wait half of the period on average to catch

it from the broadcast channel. To improve the response time, a good broadcast sys­

tem must take into account the access frequencies of the pages in the database, so

that the "popular" pages are broadcast more frequently. One underlying hypothesis

is that the server knows the access pattern in advance, and this pattern is stable

over a certain period of time. This assumption is valid when there is a large pop­

ulation of clients, where the statistics fluctuation is small according to some large

deviation theory in statistics, for example, by law of large numbers.

In section (2.1), we provide the mathematical analysis for designing the optimal

broadcast frequency for each page, given the client access patterns. The conclusions

are the followings.

1. Each page should be broadcast periodically with zero variance in the inter­

arrival time.

2.	 The broadcast frequency of each page should be proportional to the square

root of the access frequency averaged over the client population.

The broadcast disks system proposed by Acharya, Franklin and Zdonikjl] ad­

dressed these issues. They first discretized the broadcast spectrum into a finite

number of frequency buckets. All pages in the same bucket are broadcast in the

same speed. Intuitively, pages in the same frequency bucket are loaded in a disk,

which spins at a certain frequency. As the total bandwidth is fixed, the pages in

different disks inter-weaves carefully into the channel.

6

, ,

However, the broadcast frequency of each page was set to be equivalent to the

demanding frequency, which is suboptimal according to our analysis in section (2.1).

Nevertheless, the multi-disks system demonstrate better performance than the flat

disk.

2. Client cache management. Caching is a simple technique inherited from

the hierarchic memory management in computer architecture. In a client-server

DBMS system, the caching techniques is adopted in the client side to store the

most frequently accessed pages in a cache in order to improve the response time in

a given application. In a broadcast client-server system, the major purpose of the

caching management is to overcome the deviation between 1). the page broadcasting

frequency adopted by the server, and 2). the page access frequency of an individual

client.

As the client cache is much smaller than the size of the database in the server

side, the major issue of research in the literature is the page replacement policy. In

the new asymmetric communication environment, three kinds of page replacement

policy are considered in [5].

1.	 Standard passive cache management policy, such as First In First Out (FIFO),

Least Recently Used (LRU), and Least Frequently Used (LFU). In particular,

LRU is chosen for comparison for ease of implementation.

2. Cost based caching. Policy that accounts for the push-based communication.

PIX, LIX and so on. In the broadcast disk systems, the cache policy should

not only consider the access frequency of the client, but also take the broadcast

frequency into account. Thus a few novel page replacement schemes have been

proposed by Acharya etc[l]. Figure (2) displays the preference of pages for

cache memory in a broadcast systems.

3. Prefetching. Prefetching is a technique that the client requests a page ahead

7

, ,

of time. To do so, a client must sample every page in the channel and compute

whether the page is prefetch-worthy. If yes, the new page will replace the least

important page in cache. Thus the computation must be efficient in order to

keep up with the broadcast speed. It can potentially improve the performance

in two ways: 1). increasing the hit rate, 2). reducing the latency in a miss.

Server

Hot Cold

~

0::r:
~

I=:
Q).....
U

"'d

0
u

2 1

3 2

Figure 2 The prioritiesof pages for cache memory in a broadcast system. The top priority is assigned to
pages that are cold in the serverjchannel and hot in the client access frequency. The figure is modified
from [5]

The tasks of this master thesis is to evaluate the performance of the broadcast

disks in a prototype system. The results of our experiments are plot in section (4).

These results faithfully confirmed the major conclusions drawn in previous paper

by Acharya, Franklin and Zdonik[l, 2, 3, 4]. Thus they validated that the simulated

environment can characterize the properties of push-based systems.

The thesis is organized as follows. We first discuss the mathematics in designing

the broadcast programs in section (2.1). Then we briefly study the broadcast model

for the server and the broadcast program in section (2.2), and the client models

8

, ,

and cache management policy in section (2.3). Section (3) describes the prototype

system for experiments. Section (4) reports the experiment results. We conclude

the thesis by a short discussion in section (5).

2	 The Broadcast Disks: a Pushed-based Data

Communication System

We discuss the issues in structuring the broadcast disks in this section. We start

with a mathematics study of the broadcast frequency selection, which is followed

by discussion on the design of server and clients.

2.1	 The mathematics in selecting broadcast frequency

In this subsection, we derive two mathematical theorems for designing the optimal

broadcast frequency in order to minimize the total response time at the clients.

Fixing the bandwidth of the communication channel and the size of the database,

the task of designing the broadcast disks system can be posed as an optimization

problem, which allocates the bandwidth to the data pages in order to achieve opti­

mal response time.

To fix notation, let M be the number of pages in the database, and K the total

number of clients in the broadcast system. Let Fj i be the frequency at which the

j-th client requests the i-th page, and I, be the broadcast frequency of page i at

the server.

When the broadcast system reaches its steady state, at each client the average

waiting time for page i is simply ~ . t. Thus the total average waiting time for all

client is

9

where F; = -k L:f,l f is the access frequency of page -i -averaged across the client

population.

Furthermore, as the bandwidth is fixed, we have

!I +12+"'+fM =B

with B being the total bandwidth of the channel. Therefore we pose the broadcast

design as the following optimization problem:

(!I,12, ..·,fM)* =argmin~i

Subject to constraint !I + 12 + ... + fM = B

Solving the above constrained optimization problem by Lagrange multipliers,

we need to minimize
M R M

L: ~ + A(L:Ji - B)
i=l I, i=l

Taking derivative over I, and setting it to zero, we obtain

Plugging the above fi to the constraint equation to solve for A-the Lagrange mul­

tiplier, we have

(1)

Equation (1) tells us that

Theorem 2.1 The broadcast frequency for each page should be proportional to the

square root of the average access frequency.

10

,)

In a more general case, one may assign different priority to different clients in

calculating Fi , so that the access patterns of high priority client have bigger weights

in the optimization criterion.

The above conclusion is derived based on the assumption that each page is

broadcast periodically, i.e. no variance in the inter-arrival time. To release this

constraint, one may allow the variation in inter-arrival period.

For example, page i is broadcast at interval zx., = L at time t, and one constraint

is that

L
1
L
T

lit = Ii,
k=l

i.e, each page has a fixed broadcast frequency, and T is the time length that the

system runs.

Thus the generalized problem is to compute the optimal broadcast frequency

lit, i = 1,2, ... , M, t = 1,2.... ,T to minimize the response time:

1 M T F­
{fit, i = 1,2, ... , M, t = 1,2.... ,T}* = argmin T LL f.2.

i=1 t=1 2t

It is trivial to prove that

lil = li2 = ... = [er

that is

Theorem 2.2 The variance of the broadcast frequency for each page should be zero.

In a more general setting, we should take into account the cache management

policy in the optimization problem, and it seems possible to analyze the performance

explicitly using theories in discrete event stochastic systems. However, this study

is beyond the scope of this master thesis.

11

2.2 Server: A Simplified Model for the Broadcasting Environment

In real push-based communication systems, the number of clients can be very large,

however, it is impractical in a laboratory to test a broadcast systems with thousands

of computers running altogether. Indeed, there seems no need for such brute-force

hardware simulation. Instead, the performance of the client population can be

assessed through parameters in designing the server and clients. The parameters

chosen in the simulator are

1.	 A client in the testing system only access to a subset of the pages in the

database. This reflects the fact that the server broadcast for many clients.

2. Adding noise perturbations to the broadcast frequency, and thus create devi­

ations between the broadcast frequency and the demanding frequency. This

reflects the fact that the server can only match the demand of a client partially.

In summary, the server is modeled by the following 6 parameters.

1.	 ServerDB Size - This is the total number of distinct pages in the database

to broadcast.

2.	 NumDisks = N - the is the number of disks in the server, and it reflects

the precision of the server frequency in matching the client access frequency.

The more disks we have, the more freedom we have in matching the access

patterns. However, after a certain limit the improvement will become less and

less as N grows.

3.	 DiskSizei, i = 1,2 ..., N - these are the page numbers for each disk.

4.	 ~ - the broadcast frequencies of the disks are assumed to be a linear model

with ~ being the slope. As shown in figure (3)

12

, .

5.	 Noise - this controls the degree of disagreement between the needs of the client

and the server. When Noise = 0, the broadcast frequency is proportional to

the access frequency of a client. Large Noise reflects the reality of mismatch

between server and clients. For example, the access frequency of a client may

change dynamically, and there are many clients in a system.

6.	 Offset - This takes into account the effects of cache usage in the client side.

If the client always keeps the hottest pages in its cache, then the server will

move these pages to the slowest disk in order to save slots for other pages.

The size of the offset is in general in the order of the cache size. It moves the

Offset number of pages from the fastest disk to the slowest disk.

+5Ll

+4Ll

+3Ll

+2Ll

+lLl

...
... ...

... ...
...

...
...

fastest disk	 slowest disk

Figure 3 The broadcast frequency is modeled as a linear equation as shown by the dashed-line, the

speed of the broadcast disk increases f:1 each time from the slowest disk to the fastest disk.

In summary, the broadcast pages are generated as follows. First sort the pages

sequentially from hottest to coldest. Second, divide the queue into NumDisks

disks. Third, shift the pages by Offset so that the hottest Offset pages is moved

to the end of the queue. Fourth, for each page in the queue, a coin weighted by

Noise is tossed. If based on the coin toss, this page i should swap. Then a disk

d E {I, ... , N} is chosen at uniform distribution, page i is then switched with a

13

, .

random page at disk d. Intuitively, this noise perturbation has larger impacts to

the smaller disks, usually the faster disks. As each disk has a equal chance to be

chosen, and the pages in the smaller disks are more likely to be switched.

2.3 Clients: A Few Policies for Cache management

As we have discussed in section (2.1), tuning the broadcast program will eventually

reach a limit due to the fixed bandwidth. Thus improving the broadcast for any

one access probability will hurt the performance of clients with different access

probability! The way breaking the upper bound of performance is to exploit the

local memory and disk of the client machines to cache pages from the broadcast

channel.

The clients are characterized by five parameters in the broadcast systems.

1.	 CacheSize - this is the number of pages that a client can store in its memory.

2. ThinkTime - this adjusts the requesting time of a client with the broadcast

time unit of the server. It models the workload in the clients as well as the

relative speeds of the CPUs of the client with respect to the server speed.

3. AccessRange - a client access to only a subset of the database, this reflects

the nature of sharing in a broadcast system.

4.	 e- the demanding frequencies for pages in the access range is modeled by a

Zipf function (i/N)O exponential function. As shown in figure (4), the larger

the e is, the bigger the variations in the demanding frequencies.

1It seems not precise to say that this is a zero-sum game as mentioned in [1]. The performance

has an upper bound as specified in the theorem in section (2.1). Tuning the broadcast probability

in the wrong way may hurt all clients with no gain but loss.

14

, .

5.	 RegionSize - This is similar to the bucket size in deciding the broadcast

frequency. In the client, pages in the access range are also divided into finite

buckets.

1/

/

/

8;1

8=2'
,

,,
,

.......

,,,
r
,

,

/

, , ,-,

8=0

V
---­

..... . . .~
V
---­ -. ..'

slowest page fastest page

Figure 4 The access frequency of the pages is modeled by a Zipf function F, <X iO. Thus () controls the

gradients of the frequency variation. The larger the () is, the bigger variation the access frequencies

have. When () = 0 it reduces to a flat pattern.

In the traditional pull-based caching management, the clients always cache their

hottest pages. However, as we demonstrated in simulation that this cache policy

leads to poor performance in the new push-based systems. In the broadcast disks,

pages are pushed at various periods, and thus all non cache resident pages are not

equidistant from the clients. Thus it makes more sense for the a client to store

those pages for which the local access probability is significantly greater than the

page's frequency of broadcast. This leads to the "cost-based" page replacement

policy in [1].

In summary, the broadcast disks are designed in two separate steps: First, fixing

the average access frequency, determine the broadcast frequency for the server.

Second, given the broadcast page frequencies, determine the cache management

policy for the clients. It can be designed in the inverse order. First, one chooses

15

· .

a cache management policy, secondly one chooses the broadcast program. For

example, when a P-policy is adopted in the client, then an offset is used in the

broadcast disks.

In both cases, the system performance resulting from the two step design may

not be optimal, but is still a very good solution in practice, given the current lack of

theory in analyzing the cache management together with the broadcast frequency.

In the performance evaluation experiments, we choose to compare the following

cache management policies, which are defined in the following.

1.	 Least Recently Used (LRU). LRU maintain a linked list of all the pages

in a cache. When a page is called, it is moved to the top of the list. Once

a page is missing, the client waits for the page to appear in the broadcast

channel. Then the new page is again put on the top of the list, and the page

at the bottom of the list is chosen as victim for replacement.

2.	 P-policy. This policy simply saves the CacheSize pages whose access fre­

quency are the highest at the client. Of course, this assumes that we know

exactly the access frequency in advance, which may not be practical. The

offset in the broadcast program is in fact designed for this P-policy. In that

case, it is still a two step separate design - first the cache management, second

the broadcast policy.

3.	 PIX (P Inverse X). Suppose a page is broadcast at frequency P, and a

client request this page at frequency X. Thus we assign a cost C for each

page at the cache. Firstly, C should be proportional to P, because if a page is

easy to capture from the channel (high P), then it is costly to store it in the

cache. Secondly, if a page is requested at low frequency (small X), then it is

also costly to store. Thus one can choose C = P / X. This is the PIX policy.

Therefore suppose the broadcast frequency P and the access frequency X are

16

, .

known in advance for all the pages. A client can simply compute C for all

pages in its access range, and store the CacheSize pages with least c. No page

replacement is needed. It can be shown that the PIX policy is the optimal

choice in the two-step designed systems.

4.	 LIX-policy. Neither P nor PIX are implementable in practice, as the page

access frequencies are, in practice, unavailable. Thus they can only serve as

ideal cases for comparison in simulations. The LIX policy is an approximation

to the PIX by estimating the access frequency on-line, and it is derived from

LRU. Unlike LRU which maintains a single link of pages for replacement, LIX

maintains a NumDisks short chains-each chain corresponds to a broadcast

disk in the server side. However, the length of the short chains can vary over

time, while their sum is fixed to be CacheSize. 2 The client keeps track of two

values for each cache resident page. 1). Pj.Access I'rob initialized as zero, and

2). pj.LastAccessTime to record the last time of access. Thus when a page

Pj is accessed, the client program updates its access probability estimation by

the following formulas.

1
pj.AccessProb = a T"	 " +(l-a)pj.AccessProb.

C urrent ime Pj' LastA ccessT ime

where a = 0.25 is a decay factor. Then the program compute the cost

lixj = Pj/pj.AccessProb for the pages at the end of each list. where Pj

is the broadcast frequency of page j. When a page is hit, it is moved to the

top of the corresponding list, and the page whose lix, is the smallest will

be kicked out of the cache. Thus some lists may grow and some lists shrink

dynamically in the process.

5.	 L-policy. L is exactly like LIX, except that it assumes that Pj being constant.

2Since a client's page range is only a subset of the database, a client may request no pages from

some disks, then their corresponding cache lists have zero length.

17

, .

6.	 Prefetching. Prefetch requests a page before it is actually accessed. Thus

when a page is called, it may have resided in the cache. The advantage is

obvious, as it reduces the waiting time. But as it uses up cache space, thus a

trade-off has to be carefully considered between space and performance.

7.	 PT: prefetch policy. This is a simple prefetching method which is based

on two measures: 1). p: the page access probability at this client, 2). t: the

time elapsed before the next broadcast for the page. This is similar to some

highway sign that reads: "Next gas station, 50 miles" or "next exit 40 miles",

when the driver sees such warning signs, she/he will consider if he needs to

add gas or take a break in the current exit. Intuitively, a page has larger value

for prefetching if p or t is larger. Thus the PT policy compute PTi = P * t
for each page i. When a page passes by, a PTi is computed, and if it is larger

than the PTj for a page in the current cache, page i will replace j in the cache.

Note that the PT value for a page is changing dynamically, as t is changing

all the time.

8.	 APT. Like P and PIX, PT is impractical, as it needs to compute PT for

all pages in the cache, which is too time consuming to sample the broadcast

channel. Thus it can only be used as an optimal criterion for comparison.

Instead, an approximative policy is proposed-the APT method. APT reduces

the computational load by dividing the pages in the cache into blocks or

regions, after sorting their probability of access. Thus it only considers the

least important pages in each block as candidate of replacement. Therefore

it reduces the computation to the order of NumBlock in contrast to the

CacheSize in PT.

18

3 The Prototype System

This prototype system is mainly motivated by the following reasons:

•	 To validate the simulation results obtained by software simulations in previous

publicationsjl , 2, 4]. It

•	 To test the feasibility of the push-based system using off the shelf hardwares.

•	 To test issues not addressed in the software simulation.

The prototype system is configured as displayed in figure (5). It uses four pen­

tium based computers running Windows NT. One is used as server, and three are

clients. The number of clients can be very large. The server was an Intel machine

with 200 MHz pentium Pro processor and 96 MB of memory. The three clients had

200 MHz pentium processors with 48MB of memory. The computers are connected

through a 10 or 100 Mbit./sec ethernet. IP multi-cast was used for data delivery

from the server to the clients. The programming was written in the C++ language.

The detailed set-ups of the prototype system is refereed to [6].

In the prototype system, the client runs a loop requesting pages using a skewed

Zipf distribution, and the server broadcasts pages at the maximum rate possible.

The actual rate depends on the bandwidth and the overhead of the CPU in running

other programs, such as the operating system.

One main difference between the simulation and the prototype system is the mea­

sure of performance. In simulation[4]' the response time was measured in broadcast

units. The server broadcasts at a rate determined by the clients. In the prototype

system, the server doesn't know the client processing capabilities. Thus a slow

client may have to drop pages from the channel due to overflow of the buffers. The

response time was also measured in real time (seconds) in the prototype system

that reflects the exact time costs including overheads.

19

, .

Client

Pentium I

o
-

Client

Pentium I

Client

Pentium I

Figure 5 The prototype system with 4 pes: one for server and three as clients.

4 Experiments

In this section, we briefly list some selected experiments. Since some of the other

experiments were re-run by Rahul Bose and Swarup Acharya later on after adjusting

some parameters, we choose not to discuss those experiments. For the experiment

data below, they are mostly self-evident, and more detailed explanations are referred

to Acharya's Ph.D thesis[5].

In general, the experiments on prototype system above faithfully reflect the

conclusions drawn in the computer simulations, except that some implementation

issues were not well foreseen in previous work].l]. Specifically, the results generated

from the prototype system were found to be within a few percentage points of the

previous simulation results. This testifies that the simulation results in [1] can be

used to characterize a broadcast environment.

Result I: Comparison between PIX and P. The results are plot in figures (6) and

20

, I

(7). In this experiment we compare the P and PIX policies with varying Delta and

noise, we record the response time in both real time(seconds) and in broadcast unit.

Figure (6.c) shows the actual bandwidth during the experiment which is almost fixed

at 7.7 MBits. Figure (6.a & b) show that the response time are the same for both

P and PIX when no cache is used on the client side. Figure (7) plots the response

time for PIX and P when cache size is 500 for the client. PIX outperforms P when

Delta is not zero, i.e. the Broadcast disks beats the flat disk.

Result II. The effects of cache sizes. The results for PT and PIX are plotted

in figure (8). Since PT needs computational overhead in evaluating the priorities of

each page in the cache, therefore the larger the cache, the longer time it costs. As a

result, more pages is dropped as the cache size increases, see figure (8.c). Since PT

maintains a better cache, it has a short response time even it drops more pages, see

figure (8.a). PIX has a better cache hit rate than PT when cache size is small, and

has a worse cache hit rate when cache size is large, see figure (8.d).

Result III. The effects of Delta. The results are plotted in figures (9) and (10).

Cache hit rate keeps the same while Delta increases, see figure (9.c). Response time

decreases while Delta increases, see figure (9.c) and figure (10). Figure (9.a) shows

the page dropping rates fluctuate between 0 to 0.011, which are very close to zero.

Result IV. The effects of noise. The results are plotted in figures (11) and (12).

Cache hit rates slightly decrease while noise increases, see figure (I I.c). Dropped

pages increase while noise increases, see figure (11.a). Response time increases while

noise increases, see figure (l1.d) & figure (12).

Result V. Comparing PIX vs. PT vs. APT with noise changes. The results

are plotted in figures (13) and (14). PIX has the best cache hit rate, APT has the

worst cache hit rate regardless to the noise, see figure (13.c). PIX has the worst

response time, PT has the best response time regardless of noise, see figure (13.d)

21

(j

"T1
oti'
c
ro
'"tv

tv I '1J

X
<
~

'1J

P Cache:500 Offsel:500 Theta:0.95 DBsize 5K pgsize 1K Cache:1 Offsel:O Theta:0.95 DBsize 5K pgsize 1K
i i

~~~-~~-r~;--;~~f;~~=
 
noise 0% ~ 

noise 15% ---~-_.
 

noise 30% ···0···
 
noise 45% ·····8·­

nnkp 600/0 ---b--­

2 3 4 
Delta 

Cache:1 Offsel:O Theta:0.95 DBsize 5K pgsize 1K 

~~~;~~~.-~1~:~~;_~=:~

noise 0% ~

noise 15% ...~_..

noise 30% ···0···

noise 45% ····e······

noise 60% ···b··

2 3 4
Delta

8

4
7

0 0 0

6

'iil
:5
.s
s:
:Q
;:
"0
C
<1l

CO

5

4

3

2

"bandwidth.dat" ~

'iil
'§
::::>

2000

tl
<1l
.g
~ 1500

~
>I' '" Ei= 1000

'" '" c
o
0­
:8 500
a:

2
Delta

3 4

0-'

0'
'" ~

'" E
i=
'" '" c
0
0­

'" '"a:

3

2.5

2

1.5

0.5

0
0

P Cache:500 Offset:500 Theta:0.95 DBsize 5K pgsize 1K
Q8

Q7
•.Q,..,.",

Q6
U
ID
~ Q5
ID
E
~ Q4n ID
00 ~~~i:~_=£:=:--c
0
~ Q3
00
ID
~

02	 noise 0% ---B---­
noise 15% ---)(i-_.
noise 30% ..·0Q1 noise 45%f)......

"'Tl noise 60% -·-b·_·
oti' 0c 0	 2 3 4
It>

-...J

lJ

X
t-.:>
C;.:> I

<
!"

700

lJ 600 n ~
0 :J
:J
e-t­
5'

1;;
co
o

500

c
~

u
co e 400
~ p.. ID
E 300
~
ID
00
C
0

200
o,
00
ID
~ 100

o

Delta

P Cache:500 Offset:500 Theta:0.95 DBsize 5K pgsize 1K

,&..,. ­

~

_k"

~~==--=~-=----::--
noise 0% ---B---­

noise 15% ---)(i-_.

noise 30% ..·0..

noise 45% f) ..

noise 60% -b ·

0.5

U
ID
~

0.4
ID
E

>l'
~
ID
00
C o
o,
00
ID
~

0.3

0.2

0.1

700

600
'c
§'

:J
1;; 500
o '" u

'" e 400
~ sr ID
E 300
~
ID
00
c 200
0
~
00
ID
~ 100

0

PIX Cache:500 Offset:500 Theta:0.95 DBsize 5K pgsize 1K

-~~~~r_-=~~-:=::'

noise 0% ---B---­

noise 15% ---)(i--­

noise 30% ..·0..·

noise 45% f) ..

noise 60% -b ·

2 3 4
Delta

PIX Cache:500 Offset:500 Theta:0.95 DBsize 5K pgsize 1K

"~l~~E~~~~;~=_::

noise 0% ---B---­

noise 15% ---)(i--­

noise 30% ..·0·

noise 45% _ f)_ ...
noise 60% -b ·

o 2 3 4 0 2 3
Delta Delta

4

DellaO OffselO Uniform 100MB Dbsize1 K, pgsize 5K, servercache 1K DellaO OffselO Uniform 100MB Dbsize1 K, pgsize 5K, server_cache 1K
80 I I I 500"", I Ii'

70

60

~
en 50
Q)
Cl

0­
1:::JCJ
'" 40
Q)
0­
0- 30e
0

20

"Tl
10oti"

c:
m 0

'\,
450

\\,\\en
"°E 400 -.

-,.y//,/X/"·//·'
::J
Oi 350
o '"

1:::J

e'" 300

@ 'x~~250
~ Q);1

E 2001 i=
1,1' Q)

enI c: 150 X--- _
0:'/
0­en
Q) 100//
a:

//,l
50 ~ PIX ~

PT ---~--. /
PIX~

PT ---~--.

O~ r03

-,

-,

U -,

Ci'

Q)

!!!­
Q)

E
i=
Q)
en
c:
0
0­en

025

0.2

0.15

'X-00
//x.-.,,,.,

"'X,
-,

'\,\
Q)

a:
0.1

-,

'\\

"\

0.05 ,
\\

PIX~ '\'-:.,
PT ---~--.

0'

co 0 250 500 750 1000 250 500 750 1000
cache size cache size --l

~
m
m DellaO OffselO Uniform 100MB Dbsize1 K, pgsize 5K, servercache 1K DellaO OffselO Uniform 100MB Dbsize1K, pgsize 5K, server_cache 1K (i)' 100 I I I _ '-))(0.4 , , , , Itv n

~ I
Ul

0
n 80
(\J

n
~
m ?i
N" .J!l
Ul 60
m ~
!" o, :E

Q)

J::: 40
o
o'"

20

0

//

/0//

,//

_-X/
~~

_--.Pr----K-·

0 250 500 750 1000 0 250 500 750 1000
cache size cache size

cjq0 o L-APT ...0-..
c 2 3(l) 0 1 2 3 4

Delta Delta so
--j
:::T"
(l) Cache: :500 Offsel::500 noise30% 10MB DBsize3K Server Cache1K Cache::500 Offset::500 noise30% 10MB DBsize3K ServecCache1 K

60

~ 50
Q)

Ii!
40o E

Q)
J::
() 30
<1l
()

20

10
"'Tl

Cache::500 Offsel::500 noise30% 10MB DBsize3K Server Cache1K
0.012 I I i 1­

··tJJ
0.01

~ 0.008
(J)
Q)
OJ
<1l
0- 0.006

~ -0
Q)
0­
0­e 0.004
0 /0.002 /PT~

PIX ---7«-_.
II,"

(l) M+ I ­~
CJl iD'

n
r+ 0.35
V1

0 ----,-,------c,X-- ------->< -7< _...... 0.3 u0 Q)

~ ~ 0.25
?' Q)

E

i=
 0.2c, Q)
(J)

c o
0­ 0.15
(J)

Q)

a:
0.1

PT~0.05 PIX ---7«-_.
APT ... 0-..

.l'l
:0
E
?!
'6o: .J:
-0
C
<1l
.0

7

6

5

4

3

2

I
A A

o I I , , I

2 3 4 o 2 3
Delta Delta

4

4

, .

cf.
o
C")
Q)
(J)

·0
c::
o
o
L{)

~
$
(5
o
o
L{)

Q)
..c::
~

/\'
I

\

\
 r :)

!
/ Cll

>k C\J~
Q)

c

;,
, ,t*cb: :

1-><1­
0..-0..

0..«

() '------'~_++_.l...-~----'---.l...------'---.l...-----J0
'V

o o o o 0 0
L{) o L{) o L{)
C") C\J

Figure 10 The effects of Delta (continue).

26

Cache::500 Offset::500 noise30% 10MB DBsize3K Server Cachel K	 Cache::500 Offset::500 noise30% 10MB DBsize3K Server CachelK
SOOt<> uu--h-n-m--u.h-h-h--h_h_h_h;t__ h_h h_h __;kmm__=_h ~

70 LJ

60

(J

$
~

:E
Q)

.I::
o

'" o

'if

30

40

50

20

"'Tl
oti·
c

10 PT~
PIX --X--·

APT ---D··

0.03 ,	 I 1- ­

0.025

?f: 0.02
00
Q)
Ol

a.'" 0_015
~ "0

Q)
a. a. e 0.01
0

0.005

___ ---------------~f----------
0

<D 15 30 45 60 0 15 30 45 60
...... noise	 noise
......

-l

::::r­
<D	 Cache::500 Offset::500 noise30% 10MB DBsize3K Server Cachel K Cache::500 Offset::500 noise30% 10MB DBsize3K Server_Cache1K

0.4 I	 I 1 ­ 7 I i I I I
A

tv I	 ~
<D

--J v

n 0.35 .i->:.... 6
Vl

1	
__-x-------------------x---­0 0.3

5U
~ Q)
0 0. _----x------­ 2'2­ 25 :0

til

tn· Q) -~------------- E 4E :cF 0.2 '6o, Q) cr

00
c ~ 3
0 ca. 0.15
00 .0'" Q)

2a:
0.1

0.05l PT ~
PIX ---K-·

o ~T ··H·· o I , , , ,

0 15 30 45 60 o 15 30 45 60
noise noise

, .

o o 0 o o o o L() 0 L() o L()
C') C\J C\J

~
Q)
..c
~ o
.... 1

~
Q)

(/)

~
C')
Q)
N

'Ci)
m
o
m
~
o

~ o
o
C')
Q)
CIl
'0
C

o
o
l:"l
Q5
CIl
::= o
o
o
l:"l
Q)
..c
~ o

,,,,,,,,,

\ x
\
\

\,,,,,,,,

~\
'\

~\
\\

o
<0

Q)
OCll
C') '0

C

L()

+*6, ,
[:

1-><1­
0...-0...

0...«

o

Figure 12 The effects of noise (continue).

28

0

·.

& figure (14). APT drops the most pages and PT drops least pages regardless of

noise, see figure (13.a).

Result VI. Comparing PIX vs. PT vs. APT with ~ changes. The results are

plotted in figures (15) and (16). PIX has the best cache hit rate while APT has

the worst cache hit rate regardless of Delta, see figure (15.c). PIX has the worst

response time while PT has the best response time regardless of ~, see figure (15.d)

& figure (16). APT drops the most pages and PT drops least pages regardless of ~,

see figure (15.a). PT takes the time to maintain a better cache, drops more pages,

gets the best performance. APT drops the most pages, still outperforms the PIX.

5 Conclusions

Through the work of this thesis, I have learnt the broadcast disks system, and did ex­

periments on a prototype system. The research is of great values to my professional

career. During the work, I also learn to formulate a problem using mathematical

tool, and learn to compare various parameters and management policies carefully

in order to draw firm conclusions.

Technically, the performance of prototype system confirms the following conclu­

sions.

1. Firstly, multiple broadcast disks in the push-based system is clearly better for

the skewed page access frequency.

2. Secondly,	 the push-based architecture profoundly change the cache manage­

ment concept in traditional pull-based systems. This was confirmed by the

results that PIX/LIX out-performs the traditional LRU policy.

3. Thirdly, prefetching indeed improves the performance. However, if the clients

fails to keep up with the broadcast speed (page drops off due to extra load

29

..

Cache::500 Offsel::500 noise30% 10MB DBsize3K Server Cache1K

::M ------------------ot------------------::B::.-_-.~::.-_-_~::.-.-.-::_-_~!~~:::.~:~:.-.:::.--:::~'

60

(')

~
OJ

lii
E
OJs:
o
Ol o

50

40

30

(l:>

20

"'Tl
aq"
e...,
ro
......
W

-I
::r
ro

10

0'
0

PT~
PIX ---~---

APT --.EJ--­
15 30

noise
45 60

0J
0 I

ro
~
n....
lJl

0....,
::J
0
li;"
lb

!:!?"
N ro
!" 0­

OJ
E
i=
OJ
en
c
8­
en
OJ
IT:

~
.e

Cache::500 Offsel::500 noise30% 10MB DBsize3K Server Cache1 K
Q14 , -

¥-:~~~
·n···· ~~ -····n-···

0.06

0.04

0.12

0.1 f-------­ ----X-----­

o.oak­
cr

0.02 f- PT ~
PIX ---K-'

APT .. -EJ-..

15 30
noise

45 60

Cache::500 Offsel::500 noise30% 10MB DBsize3K Server Cache1 K
0.3cp I I 1­

0.25 f­ .

;g­
o

en 0.2 f­ .
OJ
0>
Ol
o,
"C
OJ 0.15 f­ 0. .
o,
o,
e 0.1 f­ .
0

o 15

PT~
PIX ---K-­

a""'~-A.p.T--'-ocr-:--~----------

0.05

6045

~-_ ..._-_..~~::.~:::~-:~--::::~-::::~.~:::.~,,~
30

noise

Cache::500 Offsel::500 noise30% 10MB DBsize3K Server_Cache1 K

is~

16
0 0 0

14

2':c
E
"E
'5.:;:
"C
c
Ol
.c

12

10

a

6

4

2

0
0 15 30

noise
45 60

,/ ,----, A 0~ CD/l' '\..... L.TICD I.s::
C,.) !

:
I

,
CO
0 ,

i
,....1

CD
2:
CD

(J) L{)<I> "<tCD~
C')
CD \
N
'(ij * \,CD
0 \
CD
~ \0 CD oenQ<> C') '0
~ 0 C ~ ,0 ,C') ,,CD ,,en ,,'0 ,,C ,,0 ,,0 ,,LR
.;..; [I]< I>CD en ~ :l= +; ,

L{)

0 \
0 I '*0

I ,0
LR \ r-Xr­0; \ 0..-0...s:: 0..«
C,.)
CO ~/ r-e­

0
0 0 0 0 0 0 0

0 L{) 0 io 0 l!")

C') C\J C\J

0 /, L'

(Sl!Un lSeOpeOJS) aW!l esuodsejj

Figure 14 The effects of noise sizes (continue).

31

..

Cache::500 Offsel::500 noise30% 10MB DBsize3K Server Cache1K	 Cache::500 Offsel::500 noise30% 10MB DBsize3K Server Cache1K,":r\ ' , , ­80¥ --.-.::-:.-.--:6::.~~::::~~::.-.-.::::.-.8-.:::.-.-.::::.-.:::.-'-.:::8'-'-'-.::'-'-~::::-::::.::~
~70L

0.16 "
60

'i 0.14;g­
o 50 In 0.12Q) Q)

0>~ co
o, 0.140CO) >l' '0

Q)

E
Q)

s: o, 0.08o,

co

o 30 e··rtJo a 0.06

20
......-D n··
0.04 .

:::!1
PT~ PT~O''''(Jq 10l 0.02 _ PIX ---K-'

ro o L APT ···B···

PIX ---K-'c

o -A'PT---..-O:~·__ L'>.

N< 0	 2 3 4 o 1 2 3 4U1
Della	 Delta

-i
:::r
(D

(D Cache::500 Offsel::500 noise30% 10MB DBsize3K Server Cache1K Cache::500 Offsel::500 noise30% 10MB DBsize3K Server_Cache1 K
VJ ii)' 0.16 I I	 - I 18Iii I

n

........•....••.•...><:-------------------7(-------------------X-------------------

I

A

r-t­~ v
U>

16
Q, 0.14

14c:J 0.12
~ u Q) !!l 12tU !!l­ 0.1 :0!!!. Q)

N E .s 10
(D s:i= 0.08 '5~ cr0..­ .§ 8~

c '0o
o, 0.06
In 2

C

6Q)

a:
0.04

4

PT~ 20.02
PIX ---7(--.

APT ·..B .. o I I , , Io '------­ I

o	 2 3 4 o 2 3 4
Delta Delta

,....
Q)
s:
~
o
....1

~
Q)

en
~
C')
Q)

N

'CiS
CD
o
CD
~
o

o
~ o

C')
Q)
(J)

'0
C

o o
Lf1
~
(J)

:t= o
o o
Lf1
Q)
s:
~
o

fE
C')

,,,

\
:
\

r
\

i,
I

i
)K
:,
,I,
I ,I,,
,I,
,I,,

,

/f
,/ ,,:

,

ctl
C\J~

Q)

o

t; ,
, ,*dJ

I-XI­a..-a..
a..<t:

0
o o o o 0 0 0 o L() o L() 0 L()
C') C\J C\J

Figure 16 The effects of Delta sizes,

33

for prefetching calculation), then the prefetching method PT was found to

degraded below PIX in performance.

References

[1]	 S. Acharya, R. Alonso, M. Franklin, and S. Zdonik, "Broadcast Disks: data

management for asymmetric communication environments", Int'l Conf. on

Management of Data, pp 199-210, CA, 1995.

[2]	 S. Acharya, M. Franklin, and S. Zdonik, "Disseminating updates on broadcast

disks", Proc. of 22nd VLDB, september, 1996.

[3]	 S. Acharya, M. Franklin, and S. Zdonik, "Prefetching from a broadcast disk",

Proc. 12th Itii'l Conf. on Data Engineering, Feb. 1996.

[4]	 S. Acharya, M. Franklin, and S. Zdonik, "Balancing push and pull for data

broadcast", Proc. ACM SIGMOD, May, 1997.

[5]	 S. Acharya, Broadcast Disks: Dissemination-based Data Management for

Asymmetric Communication Environments. Ph.D Dissertation, Computer Sci­

ence Department, Brown University, 1998.

[6]	 R. Bose, Cache management in push-based systems, Master's Thesis, Brown

University, Providence, RI, 02912, Oct 1997.

[7]	 T. Bowen, G. Gopal, G. Herman, etc. "The Datacycle Architecture", CACM

35, (12), 1992.

[8]	 M. Carey, M. Franklin, M. Livny, E. Shekita, "Data caching tradeoffs in the

client-server DBMS architectures", Proc. ACM SIGMOD conf. , Denver, 1991.

[9]	 M. Franklin and M. Carey, "Client-server caching revisited", Proc. Int'l work­

shop on Distributed Object Management, August, 1992.

34

, ..

[10]	 D. Knuth, The Art of Computer Programming, Addison Wesley, 1981.

[11]	 Y. Wang and L. Rowe, "Cache consistency and concurrent control in a

client/server DBMS architecture", Proc. ACM SIGMOD Con]. Denver, June,

1991.

[12]	 S. Zdonik, M. Franklin, R. Alonso, and S. Acharya, "Are disks in the air just pie

in the sky?", IEEE workshop on Mobile Computing Systems and Applications,

CA, Dec. 1994.

35

