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Abstract 

As the asymmetric communication environments (wireless, satellite, ...) emerges 

in recently years, there are increasing interests in studying the push-based client 

server models, in contrast to the traditional emphasis on pull-based systems. In a 

few previous papers, Professor Zdonik and his collaborators: Acharya and Franklin 

et al. [1, 2, 4], have proposed a novel push-based system, which they called "broadcast 

disks", and they have done software simulations to validate the performance of the 

proposed broadcast methods as well as to studying the performance of various cost 

based caching management policies. 

In this master's thesis, our purpose is mainly to run the experiments on a proto­

type system that consists of four pes with Pentium processors. The experimental 

results faithfully confirmed the conclusions drawn by simulation. 

This thesis has two main contributions: 

1. Derive the mathematics for designing the optimal broadcast page frequency, 

by solving a constraint optimization problem. We found that the optimal frequency 

of broadcast should be proportional to the square root of the access frequency 

averaged over all clients. 

2. Programming and experiments on the prototype system. The experiment 

largely confirm the advantages of the push-based system in the asymmetric com­

munication environments. 
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1 Introduction 

The past decade has witnessed an explosion in data communication through the 

growth in the Internet, cable networks, mobile computers and satellite commu­

nication. The advances in data communication together with the ever-growing 

computing power pose interesting challenges in evaluating traditional assumptions 

in designing large scale distributed systems. In a series of papersjL, 2, 3, 4], 

Acharya, Franklin and Zdonik have identified a set of emerging applications do­

mains, which they called the Asymmetric Communication Environments. In an 

asymmetric communication environment, the downstream communication capacity 

( from the servers to the clients) is much greater than the upstream communi­

cation capacity ( from the clients to the servers ). This asymmetry can often be 

caused by 1). bandwidth asymmetry in the physical network, an extreme example 

is the uni-directional communication from the server on the satellite to to mobile 

clients on the ground, or 2). by the unbalanced data volume up/down the channels. 

Examples of the asymmetric communication environment include: 1). wireless net­

works where the servers are stationary and the clients are mobile, 2). Information 

dispersal systems, such as stocks, traffic, weather, batter fields and so on. 

Furthermore, Acharya, Franklin and Zdonik have proposed a novel dissemination 

based approach for data distribution in the context of client-server systems, and 

they also proposed a new architecture called broadcast disks to address the data 

distribution issues in the asymmetric communication environment. In contrast to 

the traditional pull-based methods, the broadcast disks are push-based architecture, 

where a server repeatedly broadcast data through a communication channels, and 

the clients retrieve pages as they appear in the channels. The architecture of the 

broadcast disks is illustrated in figure 1. 

As shown in figure 1 [1], the design of the broadcast disks consists of two parts: 
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Server 
Communication Channel 

Figure 1 The architecture of the multiple broadcast disks- a push-based client-server system. 
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1). design of broadcast disks on the server side, and 2). cache management on the 

client side. 

1. Broadcast disks arrangement. One simplest way of designing the broad­

cast program is the so called fiat disk[l]. In this method, a single disk is adopted 

in the server, and all data pages are broadcast periodically at the same frequency. 

Thus if a client is missing a page, it has to wait half of the period on average to catch 

it from the broadcast channel. To improve the response time, a good broadcast sys­

tem must take into account the access frequencies of the pages in the database, so 

that the "popular" pages are broadcast more frequently. One underlying hypothesis 

is that the server knows the access pattern in advance, and this pattern is stable 

over a certain period of time. This assumption is valid when there is a large pop­

ulation of clients, where the statistics fluctuation is small according to some large 

deviation theory in statistics, for example, by law of large numbers. 

In section (2.1), we provide the mathematical analysis for designing the optimal 

broadcast frequency for each page, given the client access patterns. The conclusions 

are the followings. 

1. Each page should be broadcast periodically with zero variance in the inter­

arrival time. 

2.	 The broadcast frequency of each page should be proportional to the square 

root of the access frequency averaged over the client population. 

The broadcast disks system proposed by Acharya, Franklin and Zdonikjl] ad­

dressed these issues. They first discretized the broadcast spectrum into a finite 

number of frequency buckets. All pages in the same bucket are broadcast in the 

same speed. Intuitively, pages in the same frequency bucket are loaded in a disk, 

which spins at a certain frequency. As the total bandwidth is fixed, the pages in 

different disks inter-weaves carefully into the channel. 
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However, the broadcast frequency of each page was set to be equivalent to the 

demanding frequency, which is suboptimal according to our analysis in section (2.1). 

Nevertheless, the multi-disks system demonstrate better performance than the flat 

disk. 

2. Client cache management. Caching is a simple technique inherited from 

the hierarchic memory management in computer architecture. In a client-server 

DBMS system, the caching techniques is adopted in the client side to store the 

most frequently accessed pages in a cache in order to improve the response time in 

a given application. In a broadcast client-server system, the major purpose of the 

caching management is to overcome the deviation between 1). the page broadcasting 

frequency adopted by the server, and 2). the page access frequency of an individual 

client. 

As the client cache is much smaller than the size of the database in the server 

side, the major issue of research in the literature is the page replacement policy. In 

the new asymmetric communication environment, three kinds of page replacement 

policy are considered in [5]. 

1.	 Standard passive cache management policy, such as First In First Out (FIFO), 

Least Recently Used (LRU), and Least Frequently Used (LFU). In particular, 

LRU is chosen for comparison for ease of implementation. 

2. Cost based caching. Policy that accounts for the push-based communication. 

PIX, LIX and so on. In the broadcast disk systems, the cache policy should 

not only consider the access frequency of the client, but also take the broadcast 

frequency into account. Thus a few novel page replacement schemes have been 

proposed by Acharya etc[l]. Figure (2) displays the preference of pages for 

cache memory in a broadcast systems. 

3. Prefetching. Prefetching is a technique that the client requests a page ahead 
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of time. To do so, a client must sample every page in the channel and compute 

whether the page is prefetch-worthy. If yes, the new page will replace the least 

important page in cache. Thus the computation must be efficient in order to 

keep up with the broadcast speed. It can potentially improve the performance 

in two ways: 1). increasing the hit rate, 2). reducing the latency in a miss. 

Server 

Hot Cold 

~ 

0::r: 
~ 

I=: 
Q)..... ....... 
U 

"'d .......
 
0 
u 

2 1 

3 2 

Figure 2 The prioritiesof pages for cache memory in a broadcast system. The top priority is assigned to 
pages that are cold in the serverjchannel and hot in the client access frequency. The figure is modified 
from [5] 

The tasks of this master thesis is to evaluate the performance of the broadcast 

disks in a prototype system. The results of our experiments are plot in section (4). 

These results faithfully confirmed the major conclusions drawn in previous paper 

by Acharya, Franklin and Zdonik[l, 2, 3, 4]. Thus they validated that the simulated 

environment can characterize the properties of push-based systems. 

The thesis is organized as follows. We first discuss the mathematics in designing 

the broadcast programs in section (2.1). Then we briefly study the broadcast model 

for the server and the broadcast program in section (2.2), and the client models 
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and cache management policy in section (2.3). Section (3) describes the prototype 

system for experiments. Section (4) reports the experiment results. We conclude 

the thesis by a short discussion in section (5). 

2	 The Broadcast Disks: a Pushed-based Data 

Communication System 

We discuss the issues in structuring the broadcast disks in this section. We start 

with a mathematics study of the broadcast frequency selection, which is followed 

by discussion on the design of server and clients. 

2.1	 The mathematics in selecting broadcast frequency 

In this subsection, we derive two mathematical theorems for designing the optimal 

broadcast frequency in order to minimize the total response time at the clients. 

Fixing the bandwidth of the communication channel and the size of the database, 

the task of designing the broadcast disks system can be posed as an optimization 

problem, which allocates the bandwidth to the data pages in order to achieve opti­

mal response time. 

To fix notation, let M be the number of pages in the database, and K the total 

number of clients in the broadcast system. Let Fj i be the frequency at which the 

j-th client requests the i-th page, and I, be the broadcast frequency of page i at 

the server. 

When the broadcast system reaches its steady state, at each client the average 

waiting time for page i is simply ~ . t. Thus the total average waiting time for all 

client is 
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where F; = -k L:f,l f is the access frequency of page -i -averaged across the client 

population. 

Furthermore, as the bandwidth is fixed, we have 

!I +12+"'+fM =B 

with B being the total bandwidth of the channel. Therefore we pose the broadcast 

design as the following optimization problem: 

(!I,12, ..·,fM)* =argmin~i 

Subject to constraint !I + 12 + ... + fM = B 

Solving the above constrained optimization problem by Lagrange multipliers, 

we need to minimize 
M R M

L: ~ + A(L:Ji - B) 
i=l I, i=l 

Taking derivative over I, and setting it to zero, we obtain 

Plugging the above fi to the constraint equation to solve for A-the Lagrange mul­

tiplier, we have 

(1) 

Equation (1) tells us that 

Theorem 2.1 The broadcast frequency for each page should be proportional to the 

square root of the average access frequency. 
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In a more general case, one may assign different priority to different clients in 

calculating Fi , so that the access patterns of high priority client have bigger weights 

in the optimization criterion. 

The above conclusion is derived based on the assumption that each page is 

broadcast periodically, i.e. no variance in the inter-arrival time. To release this 

constraint, one may allow the variation in inter-arrival period. 

For example, page i is broadcast at interval zx., = L at time t, and one constraint 

is that 

L 
1 
L
T 

lit = Ii, 
k=l 

i.e, each page has a fixed broadcast frequency, and T is the time length that the 

system runs. 

Thus the generalized problem is to compute the optimal broadcast frequency 

lit, i = 1,2, ... , M, t = 1,2.... ,T to minimize the response time: 

1 M T F­
{fit, i = 1,2, ... , M, t = 1,2.... ,T}* = argmin T LL f.2. 

i=1 t=1 2t 

It is trivial to prove that 

lil = li2 = ... = [er 

that is 

Theorem 2.2 The variance of the broadcast frequency for each page should be zero. 

In a more general setting, we should take into account the cache management 

policy in the optimization problem, and it seems possible to analyze the performance 

explicitly using theories in discrete event stochastic systems. However, this study 

is beyond the scope of this master thesis. 
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2.2 Server: A Simplified Model for the Broadcasting Environment 

In real push-based communication systems, the number of clients can be very large, 

however, it is impractical in a laboratory to test a broadcast systems with thousands 

of computers running altogether. Indeed, there seems no need for such brute-force 

hardware simulation. Instead, the performance of the client population can be 

assessed through parameters in designing the server and clients. The parameters 

chosen in the simulator are 

1.	 A client in the testing system only access to a subset of the pages in the 

database. This reflects the fact that the server broadcast for many clients. 

2. Adding noise perturbations to the broadcast frequency, and thus create devi­

ations between the broadcast frequency and the demanding frequency. This 

reflects the fact that the server can only match the demand of a client partially. 

In summary, the server is modeled by the following 6 parameters. 

1.	 ServerDB Size - This is the total number of distinct pages in the database 

to broadcast. 

2.	 NumDisks = N - the is the number of disks in the server, and it reflects 

the precision of the server frequency in matching the client access frequency. 

The more disks we have, the more freedom we have in matching the access 

patterns. However, after a certain limit the improvement will become less and 

less as N grows. 

3.	 DiskSizei, i = 1,2 ..., N - these are the page numbers for each disk. 

4.	 ~ - the broadcast frequencies of the disks are assumed to be a linear model 

with ~ being the slope. As shown in figure (3) 
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5.	 Noise - this controls the degree of disagreement between the needs of the client 

and the server. When Noise = 0, the broadcast frequency is proportional to 

the access frequency of a client. Large Noise reflects the reality of mismatch 

between server and clients. For example, the access frequency of a client may 

change dynamically, and there are many clients in a system. 

6.	 Offset - This takes into account the effects of cache usage in the client side. 

If the client always keeps the hottest pages in its cache, then the server will 

move these pages to the slowest disk in order to save slots for other pages. 

The size of the offset is in general in the order of the cache size. It moves the 

Offset number of pages from the fastest disk to the slowest disk. 

+5Ll 

+4Ll 

+3Ll 

+2Ll 

+lLl 

... ... ... 
... ... 

... ... 
... 

... ... ... 
... ... ... ... 

fastest disk	 slowest disk 

Figure 3 The broadcast frequency is modeled as a linear equation as shown by the dashed-line, the 

speed of the broadcast disk increases f:1 each time from the slowest disk to the fastest disk. 

In summary, the broadcast pages are generated as follows. First sort the pages 

sequentially from hottest to coldest. Second, divide the queue into NumDisks 

disks. Third, shift the pages by Offset so that the hottest Offset pages is moved 

to the end of the queue. Fourth, for each page in the queue, a coin weighted by 

Noise is tossed. If based on the coin toss, this page i should swap. Then a disk 

d E {I, ... , N} is chosen at uniform distribution, page i is then switched with a 
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random page at disk d. Intuitively, this noise perturbation has larger impacts to 

the smaller disks, usually the faster disks. As each disk has a equal chance to be 

chosen, and the pages in the smaller disks are more likely to be switched. 

2.3 Clients: A Few Policies for Cache management 

As we have discussed in section (2.1), tuning the broadcast program will eventually 

reach a limit due to the fixed bandwidth. Thus improving the broadcast for any 

one access probability will hurt the performance of clients with different access 

probability! The way breaking the upper bound of performance is to exploit the 

local memory and disk of the client machines to cache pages from the broadcast 

channel. 

The clients are characterized by five parameters in the broadcast systems. 

1.	 CacheSize - this is the number of pages that a client can store in its memory. 

2. ThinkTime - this adjusts the requesting time of a client with the broadcast 

time unit of the server. It models the workload in the clients as well as the 

relative speeds of the CPUs of the client with respect to the server speed. 

3. AccessRange - a client access to only a subset of the database, this reflects 

the nature of sharing in a broadcast system. 

4.	 e- the demanding frequencies for pages in the access range is modeled by a 

Zipf function (i/N)O exponential function. As shown in figure (4), the larger 

the e is, the bigger the variations in the demanding frequencies. 

1It seems not precise to say that this is a zero-sum game as mentioned in [1]. The performance 

has an upper bound as specified in the theorem in section (2.1). Tuning the broadcast probability 

in the wrong way may hurt all clients with no gain but loss. 
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5.	 RegionSize - This is similar to the bucket size in deciding the broadcast 

frequency. In the client, pages in the access range are also divided into finite 

buckets. 
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Figure 4 The access frequency of the pages is modeled by a Zipf function F, <X iO. Thus () controls the 

gradients of the frequency variation. The larger the () is, the bigger variation the access frequencies 

have. When () = 0 it reduces to a flat pattern. 

In the traditional pull-based caching management, the clients always cache their 

hottest pages. However, as we demonstrated in simulation that this cache policy 

leads to poor performance in the new push-based systems. In the broadcast disks, 

pages are pushed at various periods, and thus all non cache resident pages are not 

equidistant from the clients. Thus it makes more sense for the a client to store 

those pages for which the local access probability is significantly greater than the 

page's frequency of broadcast. This leads to the "cost-based" page replacement 

policy in [1]. 

In summary, the broadcast disks are designed in two separate steps: First, fixing 

the average access frequency, determine the broadcast frequency for the server. 

Second, given the broadcast page frequencies, determine the cache management 

policy for the clients. It can be designed in the inverse order. First, one chooses 
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a cache management policy, secondly one chooses the broadcast program. For 

example, when a P-policy is adopted in the client, then an offset is used in the 

broadcast disks. 

In both cases, the system performance resulting from the two step design may 

not be optimal, but is still a very good solution in practice, given the current lack of 

theory in analyzing the cache management together with the broadcast frequency. 

In the performance evaluation experiments, we choose to compare the following 

cache management policies, which are defined in the following. 

1.	 Least Recently Used (LRU). LRU maintain a linked list of all the pages 

in a cache. When a page is called, it is moved to the top of the list. Once 

a page is missing, the client waits for the page to appear in the broadcast 

channel. Then the new page is again put on the top of the list, and the page 

at the bottom of the list is chosen as victim for replacement. 

2.	 P-policy. This policy simply saves the CacheSize pages whose access fre­

quency are the highest at the client. Of course, this assumes that we know 

exactly the access frequency in advance, which may not be practical. The 

offset in the broadcast program is in fact designed for this P-policy. In that 

case, it is still a two step separate design - first the cache management, second 

the broadcast policy. 

3.	 PIX (P Inverse X). Suppose a page is broadcast at frequency P, and a 

client request this page at frequency X. Thus we assign a cost C for each 

page at the cache. Firstly, C should be proportional to P, because if a page is 

easy to capture from the channel (high P), then it is costly to store it in the 

cache. Secondly, if a page is requested at low frequency (small X), then it is 

also costly to store. Thus one can choose C = P / X. This is the PIX policy. 

Therefore suppose the broadcast frequency P and the access frequency X are 
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known in advance for all the pages. A client can simply compute C for all 

pages in its access range, and store the CacheSize pages with least c. No page 

replacement is needed. It can be shown that the PIX policy is the optimal 

choice in the two-step designed systems. 

4.	 LIX-policy. Neither P nor PIX are implementable in practice, as the page 

access frequencies are, in practice, unavailable. Thus they can only serve as 

ideal cases for comparison in simulations. The LIX policy is an approximation 

to the PIX by estimating the access frequency on-line, and it is derived from 

LRU. Unlike LRU which maintains a single link of pages for replacement, LIX 

maintains a NumDisks short chains-each chain corresponds to a broadcast 

disk in the server side. However, the length of the short chains can vary over 

time, while their sum is fixed to be CacheSize. 2 The client keeps track of two 

values for each cache resident page. 1). Pj.Access I'rob initialized as zero, and 

2). pj.LastAccessTime to record the last time of access. Thus when a page 

Pj is accessed, the client program updates its access probability estimation by 

the following formulas. 

1 
pj.AccessProb = a T"	 " +(l-a)pj.AccessProb.

C urrent ime Pj' LastA ccessT ime 

where a = 0.25 is a decay factor. Then the program compute the cost 

lixj = Pj/pj.AccessProb for the pages at the end of each list. where Pj 

is the broadcast frequency of page j. When a page is hit, it is moved to the 

top of the corresponding list, and the page whose lix, is the smallest will 

be kicked out of the cache. Thus some lists may grow and some lists shrink 

dynamically in the process. 

5.	 L-policy. L is exactly like LIX, except that it assumes that Pj being constant. 

2Since a client's page range is only a subset of the database, a client may request no pages from 

some disks, then their corresponding cache lists have zero length. 
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6.	 Prefetching. Prefetch requests a page before it is actually accessed. Thus 

when a page is called, it may have resided in the cache. The advantage is 

obvious, as it reduces the waiting time. But as it uses up cache space, thus a 

trade-off has to be carefully considered between space and performance. 

7.	 PT: prefetch policy. This is a simple prefetching method which is based 

on two measures: 1). p: the page access probability at this client, 2). t: the 

time elapsed before the next broadcast for the page. This is similar to some 

highway sign that reads: "Next gas station, 50 miles" or "next exit 40 miles", 

when the driver sees such warning signs, she/he will consider if he needs to 

add gas or take a break in the current exit. Intuitively, a page has larger value 

for prefetching if p or t is larger. Thus the PT policy compute PTi = P * t 
for each page i. When a page passes by, a PTi is computed, and if it is larger 

than the PTj for a page in the current cache, page i will replace j in the cache. 

Note that the PT value for a page is changing dynamically, as t is changing 

all the time. 

8.	 APT. Like P and PIX, PT is impractical, as it needs to compute PT for 

all pages in the cache, which is too time consuming to sample the broadcast 

channel. Thus it can only be used as an optimal criterion for comparison. 

Instead, an approximative policy is proposed-the APT method. APT reduces 

the computational load by dividing the pages in the cache into blocks or 

regions, after sorting their probability of access. Thus it only considers the 

least important pages in each block as candidate of replacement. Therefore 

it reduces the computation to the order of NumBlock in contrast to the 

CacheSize in PT. 
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3 The Prototype System 

This prototype system is mainly motivated by the following reasons: 

•	 To validate the simulation results obtained by software simulations in previous 

publicationsjl , 2, 4]. It 

•	 To test the feasibility of the push-based system using off the shelf hardwares. 

•	 To test issues not addressed in the software simulation. 

The prototype system is configured as displayed in figure (5). It uses four pen­

tium based computers running Windows NT. One is used as server, and three are 

clients. The number of clients can be very large. The server was an Intel machine 

with 200 MHz pentium Pro processor and 96 MB of memory. The three clients had 

200 MHz pentium processors with 48MB of memory. The computers are connected 

through a 10 or 100 Mbit./sec ethernet. IP multi-cast was used for data delivery 

from the server to the clients. The programming was written in the C++ language. 

The detailed set-ups of the prototype system is refereed to [6]. 

In the prototype system, the client runs a loop requesting pages using a skewed 

Zipf distribution, and the server broadcasts pages at the maximum rate possible. 

The actual rate depends on the bandwidth and the overhead of the CPU in running 

other programs, such as the operating system. 

One main difference between the simulation and the prototype system is the mea­

sure of performance. In simulation[4]' the response time was measured in broadcast 

units. The server broadcasts at a rate determined by the clients. In the prototype 

system, the server doesn't know the client processing capabilities. Thus a slow 

client may have to drop pages from the channel due to overflow of the buffers. The 

response time was also measured in real time (seconds) in the prototype system 

that reflects the exact time costs including overheads. 
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Figure 5 The prototype system with 4 pes: one for server and three as clients. 

4 Experiments 

In this section, we briefly list some selected experiments. Since some of the other 

experiments were re-run by Rahul Bose and Swarup Acharya later on after adjusting 

some parameters, we choose not to discuss those experiments. For the experiment 

data below, they are mostly self-evident, and more detailed explanations are referred 

to Acharya's Ph.D thesis[5]. 

In general, the experiments on prototype system above faithfully reflect the 

conclusions drawn in the computer simulations, except that some implementation 

issues were not well foreseen in previous work].l]. Specifically, the results generated 

from the prototype system were found to be within a few percentage points of the 

previous simulation results. This testifies that the simulation results in [1] can be 

used to characterize a broadcast environment. 

Result I: Comparison between PIX and P. The results are plot in figures (6) and 
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(7). In this experiment we compare the P and PIX policies with varying Delta and 

noise, we record the response time in both real time(seconds) and in broadcast unit. 

Figure (6.c) shows the actual bandwidth during the experiment which is almost fixed 

at 7.7 MBits. Figure (6.a & b) show that the response time are the same for both 

P and PIX when no cache is used on the client side. Figure (7) plots the response 

time for PIX and P when cache size is 500 for the client. PIX outperforms P when 

Delta is not zero, i.e. the Broadcast disks beats the flat disk. 

Result II. The effects of cache sizes. The results for PT and PIX are plotted 

in figure (8). Since PT needs computational overhead in evaluating the priorities of 

each page in the cache, therefore the larger the cache, the longer time it costs. As a 

result, more pages is dropped as the cache size increases, see figure (8.c). Since PT 

maintains a better cache, it has a short response time even it drops more pages, see 

figure (8.a). PIX has a better cache hit rate than PT when cache size is small, and 

has a worse cache hit rate when cache size is large, see figure (8.d). 

Result III. The effects of Delta. The results are plotted in figures (9) and (10). 

Cache hit rate keeps the same while Delta increases, see figure (9.c). Response time 

decreases while Delta increases, see figure (9.c) and figure (10). Figure (9.a) shows 

the page dropping rates fluctuate between 0 to 0.011, which are very close to zero. 

Result IV. The effects of noise. The results are plotted in figures (11) and (12). 

Cache hit rates slightly decrease while noise increases, see figure (I I.c). Dropped 

pages increase while noise increases, see figure (11.a). Response time increases while 

noise increases, see figure (l1.d) & figure (12). 

Result V. Comparing PIX vs. PT vs. APT with noise changes. The results 

are plotted in figures (13) and (14). PIX has the best cache hit rate, APT has the 

worst cache hit rate regardless to the noise, see figure (13.c). PIX has the worst 

response time, PT has the best response time regardless of noise, see figure (13.d) 
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Figure 10 The effects of Delta (continue). 
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& figure (14). APT drops the most pages and PT drops least pages regardless of 

noise, see figure (13.a). 

Result VI. Comparing PIX vs. PT vs. APT with ~ changes. The results are 

plotted in figures (15) and (16). PIX has the best cache hit rate while APT has 

the worst cache hit rate regardless of Delta, see figure (15.c). PIX has the worst 

response time while PT has the best response time regardless of ~, see figure (15.d) 

& figure (16). APT drops the most pages and PT drops least pages regardless of ~, 

see figure (15.a). PT takes the time to maintain a better cache, drops more pages, 

gets the best performance. APT drops the most pages, still outperforms the PIX. 

5 Conclusions 

Through the work of this thesis, I have learnt the broadcast disks system, and did ex­

periments on a prototype system. The research is of great values to my professional 

career. During the work, I also learn to formulate a problem using mathematical 

tool, and learn to compare various parameters and management policies carefully 

in order to draw firm conclusions. 

Technically, the performance of prototype system confirms the following conclu­

sions. 

1. Firstly, multiple broadcast disks in the push-based system is clearly better for 

the skewed page access frequency. 

2. Secondly,	 the push-based architecture profoundly change the cache manage­

ment concept in traditional pull-based systems. This was confirmed by the 

results that PIX/LIX out-performs the traditional LRU policy. 

3. Thirdly, prefetching indeed improves the performance. However, if the clients 

fails to keep up with the broadcast speed (page drops off due to extra load 
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Figure 14 The effects of noise sizes (continue). 
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Figure 16 The effects of Delta sizes, 
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for prefetching calculation), then the prefetching method PT was found to 

degraded below PIX in performance. 
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