
; ;

New Java Technologies and a Java-based

Framework for Interactive lllustration

Development

Jeffrey Evan Beall

Department of Computer Science

Brown University

Submitted in partial fulfillment of the

requirements for the degree of Master of

Sciences in the Brown University

Department of Computer Science.

August 1997

,

rofessor John F. Hughes
Advisor

Table of Contents

1.0 Introduction 1

1.1 Document Overview 1

1.2 Notes to tile Reader 2

2.0 lBt~l~t~d ~()rlt ••• iI

2.1 Overview of Commercial Web-based Technologies 3

2.2 Recent Java and Interactive Illustration Efforts at Brown 5

3.0 Java Technologies: Concepts and Discussion 7

3.1 Some General Language Features 7

3.2 Abstract Windowing Toolkit 9

3.3 JavaBeans 12

4.0 ~~illl~t~llt ••••••••••.••.JL~

4.1 Time Models 15

4.2 Canvas Framework 19

4.3 Lightweight Components ., 27

5.0 Beanfitalk at ~ork ••..•.......••..•.••.••.••••.•....•...••.•••••••••.....•.....••.....29

6.0 Future ~ork 35

6.1 Extended Media Support 35

6.2 JavaBeans Integration 36

6.3 Industry Developments and Their Impact 37

7.0 Conclusions 39

8.0 ~~~()~I~(l~~I11;~ •••~()

9.0 16t~j[~Jr~Il~~~ ••~JL

10.0 Appendix A: Beandtalk Version History 43

http:�.......��..�.��.��.����.�....�...��.���������.....�.....��

1.0 Introduction

For many years, researchers and educators have been investigating techniques

for computer-based and computer-assisted learning. One such technique is known

as the interactive illustration. Briefly stated, an interactive illustration is a 2D or 3D

structured environment that pedagogically guides the user through a concept or set

of concepts to foster exploratory learning. Their scope can range from a small

responsive 2D diagram to a fully immersive and reactive 3D world. Until recently,

interactive illustrations were only feasible on expensive workstations found at uni­

versities, precluding wide audiences such as high school students who could benefit

from them. However, advances in consumer computing hardware and software tech­

nology are alleviating the problem, and interactive illustrations can now take advan­

tage of commodity computing platforms [5].

One of the main thrusts of current interactive illustration research is to explore

design issues in the context of the World Wide Web [26]. The Web, though still an

emerging technology itself, already has conventions for graphic design, interaction,

and navigation that must be followed in order to make effective Web-based illustra­

tions. Another research issue is choosing the appropriate illustration development

technology. The most prominent player in this realm is Java.

In two year's time, Java has gone from being a little toy on Web pages to becom­

ing a powerful language and platform in its own right. The latest version of Java,

the JDK1.l, now provides a full-featured set of tools for building applications on any

scale. However, the standard Java libraries are not designed specifically for illustra­

tion development and can potentially be awkward to use. Also, certain higher-level

design patterns that are useful in many different illustrations are not inherent in

these Java libraries. A combination of tools and design patterns for interactive illus­

tration development which build on Java's strengths would improve the development

process by letting developers focus more on content instead of supporting technology.

The BeanStalk component library and framework described in this document is such

a solution.

1.1 Document Overview

This document briefly reviews the other competing Web-based technologies for

1

interactive illustration development as well as some recent academic Java-based

projects at Brown University. Some of Java's features that are particularly relevant

to interactive illustration development are then covered. Following that is a detailed

discussion of the BeanStalk framework and component library. Finally, future work

in BeanStalk and the future of Java as an interactive illustration platform are dis­

cussed.

1.2 Notes to the Reader

This document assumes a certain level of knowledge about Java, object-oriented

programming, and user interface design. Readers should be familiar with terms

such as class, object, type, interface, inheritance, polymorphism, callback, and applet,

among others. One good source for learning about object-oriented techniques as

applied to Java is Java in a NutShell by Flanagan [12].

The code throughout the document is denoted in this constant-spaced font.

Classes, interfaces, and package names are denoted in this bold style. There are

also some coding conventions used in BeanStalk and the sample code. All interfaces

start with 'I' and all abstract classes start with 'N..

2

2.0 Related Work

2.1 Overview of Commercial Web-based Technologies

A number of competing Web-based technologies have emerged within the past

two years in addition to Java. Each has its strengths and weaknesses, and an appro­

priate niche in the marketplace. We will take a brieflook at some of the most promi­

nent technologies as they relate to interactive illustration development.

Shockwave

Shockwave is the Web viewer for Macromedia's Director multimedia production

software [9]. Director started out as a tool for creating simple animations, but has

grown over the years to become one of the most prominent multimedia development

environments available today. Its biggest appeal is that it does not initially require

programming knowledge to produce reasonably interesting material, although

extensive scripting in Lingo, its proprietary scripting language, becomes a necessity

for complex interaction and multimedia effects. Because of its initial simplicity and

artist-centered user interface, Director has become the de facto standard for author­

ing CD-ROM titles and other multimedia applications.

Because of the emerging potential of the Web as a multimedia platform, Macro­

media developed Shockwave as a plug-in for Web browsers which would be able to

play specially processed, or "shocked," Director animations. This is an easy way for

interactive multimedia content to be produced for the Web, although there are sev­

eral important drawbacks. First, since it is a plug-in, each browser has to have the

Shockwave plug-in installed before any Shockwave content can be viewed. A second

problem with Shockwave's plug-in nature is that a separate plug-in has to be devel­

oped for each computer platform, which rules out viewing content on less consumer­

relevant platforms such as UNIX. Another drawback is that Lingo is not a full-fea­

tured programming language and therefore does not easily support complex mathe­

matical calculations or services such as networking. Even with all of its problems,

Shockwave remains a popular platform for Web-based multimedia and is well suited

to simple interactive illustrations.

3

Liquid Motion Pro

Liquid Motion Pro was developed by a small company called DimensionX as a

way of creating Java-based multimedia content. The software would allow visual

authoring of content in a style similar to Director, and would generate a Java applet

as the final product. This is Liquid Motion Pro's large advantage over Shockwave, in

that its content could be viewed in any Java-enabled Web browser. The one draw­

back is that each applet generated by Liquid Motion Pro requires a proprietary Java­

based runtime engine in order to run, increasing applet download times. This situa­

tion may soon be fixed because Microsoft recently acquired DimensionX and will be

incorporating Liquid Motion Pro into its DirectX set of media libraries [25]. While

Windows users will benefit, this move does not alleviate the problem for the rest of

the Java platforms.

DirectAnimation

Microsoft has other multimedia content efforts underway besides Liquid Motion

Pro. In particular, Internet Explorer 4 (lE4) will incorporate Direct/snimation, a

Java- and scripting-based platform for 2D and 3D interactive content [10]. Direct­

Animation grew out of Microsoft's failed ActiveVRML technology, which in turn was

indirectly based on Sun's T-Bag interactive graphics system [11.], since the same

development team produced all three systems. DirectAnimation frames the content

authoring process in terms of time-based reactive behaviors, where simple behaviors

such as a numerical value changing over time can be composited into much larger

and more complex behaviors. Since the notion of time is integral to the system,

behaviors are independent of the system on which they execute. Time in DirectAni­

mation will pass at the same rate on a slow machine without graphics acceleration

and on a top-of-the-line machine with a 3D accelerator board. Another key concept is

all forms of media are equally important and can be easily combined. For example, a

button behavior could be rendered into an image behavior, which in turn is texture­

mapped onto a geometric object with motion behavior. When the image of the button

on the geometric object is clicked on, the original button's action behavior would be

triggered, just as though none of the other composited behaviors existed. Sound is

also a type of behavior, which can be attached to geometric objects and rendered in

the same way the 3D scene is rendered into a 2D image. This kind of unified media

integration is extremely powerful and allows for many interesting interactive illus­

4

tration possibilities.

The main drawbacks to developing content in DirectAnimation include its often­

cumbersome programming model, proprietary Windows-only software and hardware

technology, and a lack of an authoring environment. Even though it can be pro­

grammed in Java, DirectAnimation is deeply rooted in Windows, making it less

appealing for interactive illustration development since it is not cross-platform.

VRML

The Virtual Reality Modeling Language (VRML) started out in 1995 as a stan­

dard 3D static scene description file with the ability to attach document hyperlinks

to geometry. The latest incarnation now supports behaviors such as path-based ani­

mations, object picking, and 3D sound [28]. VRML is gaining momentum as the

standard for 3D on the Web, but as an interactive illustration development technol­

ogy it is lacking. VRML offers very limited 2D support and defining behaviors is a

complicated process. Either VRMLScript or JavaScript can be used inside the

VRML files, but neither is especially powerful. Java code can be used with VRML as

well, although like VRMLScript and JavaScript it is not well integrated into the rest

of the VRML scene description, appearing as though it was tacked on to the specifi­

cation. In general, VRML is much better suited for 3D scene description than com­

plex interaction and therefore is not a good general-purpose platform for illustration

development.

2.2 Recent Java and Interactive Illustration Efforts at Brown

A few years ago, the main platform for illustration development was the Trim

system, an interactive 3D graphics environment developed in the Brown Computer

Graphics Group. Trim relied on the 3D graphics hardware in the advanced worksta­

tions in the Computer Science department, making illustrations written with it very

unportable. Those developed at Brown could only run here or at other universities

with similar workstations, eliminating a vast potential audience for our work. When

Java became available around the summer of 1995, as an experiment we ported

some interactive illustrations of color perception that had originally been developed

in Trim and had later been ported to C++. The experiment was quite successful

because we had produced interactive illustrations that not only performed well in

Java but were now cross-platform and available to a wide audience. Our experiences

5

with these color perception illustrations became the subject for a paper [5]. One of

the conclusions drawn from this experience was that developing interactive illustra­

tions in a prototyping environment such as Trim and then porting to Java was a bet­

ter approach than developing in straight Java. While that may have been a valid

conclusion at the time, recent developments in Java have made the proprietary pro­

totyping environment stage unnecessary. Technologies such as JavaBeans [17] allow

for rapid prototyping within the Java environment. JavaBeans and other related

technologies will be discussed in the next chapter.

Another interactive illustration research development at Brown has been the for­

mation of a project group devoted to exploring the interactive illustration design pro­

cess. Some guidelines and preliminary results are discussed in detail in honors

theses resulting from project group experiences [6] [26]. The essential ideas from

these results are that graphic design of interactive illustrations is crucial to their

overall success and that a prototyping cycle with peer review greatly benefits the

design process. As was mentioned earlier, new Java technologies combined with

tools geared for illustrations have enormous potential to improve the illustration

production process.

Other innovative work involving Java has recently been done in Brown Computer

Science. A graphics and user interface toolkit, called Graphics Package CGP), has

been developed over several years as the core technology for Brown's introductory

Computer Science course. GP was originally developed for object-oriented Pascal [7].

It has been ported to C++ and was initially ported to Java for the color perception

illustrations. The latest version is a total rewrite and is designed to completely

encapsulate Java's Abstract Windowing Toolkit (AWn from the students. While this

approach is appropriate for a course designed to gently guide students through the

basics of object-oriented programming, GP sacrifices - or at least obscures - the

raw power and convenience of AWT in the process. As we will see in BeanStalk,

structures can be built on top of AWTthat not only make it easier to use but also

make AWT and other Java technologies readily available when necessary.

6

3.0 Java Technologies: Concepts and Discussion

Java offers many of the things people expect in a modern programming language:

objects, interfaces, run-time type information, automatic memory management,

security features, threading, and exceptions - to name a few. The "core" libraries

include graphics and user interface services, networking, utility data structures, and

applet services. The JDK 1.1 incorporates new technology such as JavaBeans, inner

classes, database connectivity, and object reflection and introspection. This palette

of features makes Java a powerful and full-featured application development lan­

guage, and is also well suited for interactive illustration development. We will

briefly examine some of these Java features to set the stage for the description of the

BeanStalk interactive illustration authoring toolkit.

3.1 Some General Language Features

Interfaces

Interfaces are one ofJava's most powerful features. An object's type is no longer

tied to its class, unlike in C++. One particularly interesting application of Java's

interfaces is the simulation of multiple inheritance. In Java, classes must inherit

from exactly one class (which is the class Object when nothing else is specified),

unlike C++. However, classes can implement arbitrarily many interfaces in addition

to extending one class and it is this feature that allows for multiple inheritance to be

simulated. Let's illustrate this with an example:

interface lBar {

void doBar();

}

class Bar implements lBar {

public void doBar() {

II some really exciting code goes here

}

}

class Foo {

public void doFoo() {

II more exciting code

}

7

}

class FooBar extends Foo implements rEar {

void doBar() {

bar_. doBar () ;

}

private rEar bar_ = new Bar();
}

In this example, we have the interface mar with one method and the class Bar

which implements it. We also have the class Foo which does not implement any­

thing but does define a method of its own. However, suppose we wanted to combine

the functionality ofFoo and Bar into one class. We cannot do this with class inher­

itance in Java, but interfaces provide a way around the problem. Since mar is an

interface, anything can implement it, including our new class FooBar which also

extends Foo. To simulate the multiple inheritance of Foo and Bar, FooBar simply

delegates the methods of mar to an instance of Bar. This is essentially what is hap­

pening in C++'s multiple inheritance, except this approach requires explicit delega­

tion instead of having the compiler automatically generate it.

Note that the need for this style of object composition has not gone unnoticed by

other developers or Sun itself The Object Aggregation and Delegation Model draft

specification is currently available at the JavaSoft website which outlines the pro­

posed addition to the Java APIs in an attempt to standardize this technique [1-].

Threads

Multi-threading support has been a part of Java from its beginning and is incor­

porated at all levels. Threads and synchronization are language features, not just

library add-ons as in C++. This makes developing threaded applications easy and

straightforward, although potential pitfalls such as deadlocks have not been

removed. Threads are particularly useful for lower-level constructs like asynchro­

nous and timed callbacks, and higher-level constructs like animation.

Inner Classes

Inner classes are a new feature in the JDK 1.1. Classes can now be nested inside

other classes, with the inner class given access to the outer class's members. Inner

classes can hide the fact that an outer class requires an additional class to imple­

8

..

ment its necessary behavior. This fact is particularly useful in conjunction with the

new AWT event model, described below. For further reading on inner classes and the

related anonymous class construct, refer to the inner classes specification [14:].

3.2 Abstract Windowing Toolkit

The Abstract Windowing Toolkit is a standard set of Java classes for graphical

user interfaces (GUn, input devices, and graphical output. Many aspects of the ini­

tial version of AWT were confusing and inconsistent. For example, the initial ver­

sion's event handling mechanisms were tightly coupled with AWT's inheritance

hierarchy, forcing application code and user interface code to mix together into one

confusing mess. (This lead to the nickname ''Awkward Windowing Toolkit.") Thanks

to extensive developer feedback, the JDK 1.1 AWT now has a much improved event

model which is designed to work with JavaBeans, another new Java technology in

the 1.1. Some of the most prominent AWT features are discussed below.

Component Model

The majority of AWT is a set of classes that provide the standard GUI compo­

nents that developers and users have come to expect in modern applications. They

include buttons, sliders, windows, menus, checkboxes, lists, and so on. AWT sup­

ports two notions of hierarchy: class inheritance and containment inheritance. At the

top of the AWT class inheritance is the Component class, from which all other com­

ponents inherit. One of these subclasses is Container, which has the added func­

tionality that it can contain other components. This is where the containment

inheritance comes in. In the case of an applet, any given component on the screen is

ultimately contained by the applet's container. Containers themselves can contain

other containers, allowing for deep nesting of components. Properties such as back­

ground colors can be passed down from a parent component to a child component as

well in this containment inheritance. Figure 3.1 shows the how object relationships

differ between class inheritance and containment inheritance.

9

Class Inheritance

Container Containment Inheritance

Figure 3.1: Class versus containment inheritance. In AWT, Canvas, Con­
tainer. and Button inherit from Component. At runtime, Container objects
can hold any Component object, including other containers.

Another aspect of the AWT component model is the mechanism behind their on­

screen representation. Being inherently visual, components are required to know

how to draw themselves. Therefore, each component has a "paint" method that gets

called when the component needs to be drawn to the screen (or offscreen buffer). The

caller of the paint method passes in a Graphics object, which is an abstract repre­

sentation of the component's operating system graphics context. Ifa developer

wants a general-purpose drawing area, the paint method on the Canvas should be

overridden. The creation of new kinds of components can also be done and is

described below.

10

Lightweight Components

In the old AWT, every component had a peer, which was a platform-specific imple­

mentation of the given component. For example, an AWTbutton under UNIX would

have a Motifbutton peer, an AWT button under Windows95 would have a Win32

button peer, etc. Peers were created behind the scenes by AWT and were not

intended to be manipulated directly. The peer architecture is why AWTis called the

Abstract Windowing Toolkit - components are created and manipulated in the

abstract, while the peers actually do the dirty work. This is also why AWT user

interfaces would look different on different platforms. Each platform would have its

own peer implementation, resulting in a different look-and-feel in the best case to

unacceptably different functionality in the worst case. Another problem was that

each peer had some amount of platform-specific resources devoted to it, which could

potentially bog down the host operating system or cause other quirks. These sorts of

problems, combined with the event handling mess in the JDK 1.0, caused many

developers to complain.

The peer architecture still exists in the JDK 1.1 but is hidden much further from

view. Peerless components, also known as lightweight components have been

designed to replace it [4:]. Lightweight components are a new addition to the JDK

which behave just like their peered counterparts, except they do not have any oper­

ating system resources associated with them. Instead of having their own graphics

contexts to draw in, they use the graphics context of the top-most peered, or heavy­

weight, container in the containment hierarchy. The main advantage behind light­

weight components is that they can have the same look-and-feel across platforms

since they are not explicitly tied to any operating system resources. As we will see in

BeanStalk, the user interfaces of interactive illustrations that use lightweight com­

ponents can have much better graphic design support than if regular components

were used.

Source and Listener Event Model

In addition to the component model, the JDK 1.1 overhauled the often-criticized

event handling modeL The following code example demonstrates the old style:

II --- the old way --- II

class MyButton extends Button {

public boolean action(Event event, Object data) {

11

II handle button event here and return true
}

}

Having to create a subclass of Button for every new button behavior could

become unwieldy for even moderately sized applications. While this approach was

not strictly necessary, the alternate was not much better. Instead of handling the

event inside the source as MyButton does, a subclassed component higher in the

containment hierarchy could listen for events from any of its children. The problem

in this case was that this parent component would need to handle the event per child

and per event type, creating a huge "if-then-else" mess. This model clearly needed

reworking.

The new approach decouples event handling from the event sources. AWT com­

ponents such as buttons are no longer in charge of their event handling and neither

are their parent containers. Event sources now notify any object that registers itself

as a listener of the specific event type that the source generates. The sources know

that a given object can listen to it because the object must implement an interface

that identifies itself as a listener. Sources can support event multicasting, so that a

single event can be delivered to arbitrarily many listeners.

For further information about the new AWT event model, refer to the documents

on AWT at the Java website [3].

3.3 JavaBeans

Visual authoring environments for user interface development and prototyping

have become prevalent over the past several years. Microsoft's VisualBasic [27] has

allowed many non-programmers to assemble "prefabricated components" into cus­

tom applications without much effort. VisualBasic uses the Component Object Model

(COM), Microsoft's technique for providing a uniform mechanism for objects to com­

municate. (COM grew out of Microsoft's Object Linking and Embedding (OLE) tech­

nology. Microsoft's ActiveX technology is simply a wrapper around the Distributed

Component Object Model (DCOM).) Since VisualBasic's components are all COM

objects, there is a standard way for them to interact with each other and therefore

the components can be manipulated within a visual authoring environment. The

main drawbacks to COM are that it is deeply rooted in the Win32 platform and the

objects themselves are stored in binary form, making them unportable across plat­

12

forms. Another big problem with COM is that the actual code that the visual author­

ing environments generate to make COM objects work together is so complicated

that it is almost unreadable by human beings. Even with these problems, COM is

arguably the most successful component object model to date because of the tremen­

dous support it gets from Microsoft.

Java initially did not have a component model (although its object model is sur­

prisingly similar to COM's). Based on extensive feedback from companies producing

commercial Java development environments and the Java community at large, Sun

created the JavaBeans specification [17]. The JavaBeans component model is very

similar to COM, except that it is based entirely in Java and is therefore cross-plat­

form. JavaBeans is the official component model for Java and has received wide­

spread support from both development environment developers and the community

at large. Many companies such as Lotus, IBM, and Netscape have pledged their full

support for JavaBeans and will be releasing JavaBeans components in the near

future.

Beans, as JavaBean components are also known, can be edited visually in Bean­

compliant visual authoring environments and support the new AWT event model.

(All AWT components are now Beans too.) To actually create a Bean from scratch,

the specification defines a number of naming conventions (the specification calls

.them "design patterns") to which the Bean should adhere. The Bean can then be

analyzed by a Bean-compliant environment to determine its properties and the kinds

of events it supports. Properties could be colors, labels, dimensions, positions, etc.,

all of which can be edited through the methods named with the standard Bean nam­

ing conventions.

JavaBeans can potentially offer many useful features to interactive illustration

developers. The visual authoring of GUI components could allow for rapid prototyp­

ing of illustration user interfaces. Also, prefabricated interactive illustration compo­

nents could be developed and reused from one project to the next. Since a Bean does

not necessarily have to be visual, these illustration Beans could be math engines,

data structures, or other useful constructs.

13

•

4.0 BeanStalk

While Java has reached a level of maturity that provides sufficient tools for creat­

ing compelling interactive illustrations, using those tools can be a complex process.

It is counter-productive for illustration developers to reinvent the wheel with each

new project. What is needed is a framework for building interactive illustrations ­

something that takes care oflower-level user interface and object design issues and

allows the developer to concentrate on the illustration's content. This was the major

motivation behind the development of BeanStalk. BeanStalk is designed to take

advantage of new Java features such as lightweight components, the JavaBeans

component model, and the new event model. Another design goal was to build a

lightweight layer on top of AWT so that developers can avoid AWTifthey choose too,

but can also have access to all of AWT's features when needed. A third goal was to

create a set of JavaBeans components for illustrations. While this last goal was not

met largely because of delays in commercial Beans development environments,

many classes were created that adhere to the Beans specification and therefore

should be easily turned into Beans at some point in the future. Finally; the overall

goal was to provide the means of creating interactive illustrations without too much

effort that were comparable to Director-style projects in their look and feel. For the

large part, BeanStalk achieved these goals.

We will begin our overview of BeanStalk with a simple applet. It creates a shape

in the applet that can be dragged around with the mouse.

package examplesi

import stalk.canvas.*i

import stalk.canvas.geom.*i

import stalk.time.*i

import java.applet.*i

import java.awt.*i

import java.util.*i

public class SimpleApplet extends Applet {

public void init() {

II creates and sets up the BeanStalk canvas
StalkCanvas canvas = new StalkCanvas()i

14

canvas.setSize(getSize());

canvas.setDoubleBuffered(true);

II adds the canvas to the applet

add (canvas) ;

II creates a canvas animator and adds the canvas to it

CanvasAnimator animator = new CanvasAnimator();

animator.addCanvas(canvas);

animator.start();

II creates and sets up a rectangle

StalkRectangle rect = new StalkRectangle();

rect.setFilled(true);

rect.setSize(2S, 2S);

rect.setLocation(SO, SO);

II adds the rectangle to the canvas for drawing and selection

canvas.addDrawable(rect);

canvas.addSelectable(rect);

II creates the selection adapter and adds it to the canvas

Vector selectables = canvas.getSelectables();

ASelectAdapter adapter = new

DraggableSelectAdapter(selectables);
canvas.addSelectAdapter(adapter);

}

}

The four basic elements to this example are the canvas, the canvas animator, the

shape, and the selection adapter. A shape is put in a canvas so that it can be drawn,

which in turn is constantly repainted by the animator. The selection adapter works

with the canvas and the shape to produce dragging behavior. While this applet does

nothing particularly useful as an interactive illustration, it shows some of the basic

relationships among BeanStalk objects.

The next several sections of the document describe the design and structure of

BeanStalk in detail.

4.1 Time Models

Time is a prominent feature of BeanStalk and manifests itselfin two main ways:

the animator and the time context. The classes and interfaces discussed in this sec­

tion are in the stalk.time package.

15

Animators

The Animator class provides a basic timed-callback mechanism. The class itself

is abstract and must be subclassed to provide the callback. This is done by overrid­

ing the sample () method on Animator. Animators are useful for when a specific

behavior has to happen repeatedly at a given time interval. Examples of this would

be evaluating the state of a dynamic simulation or refreshing a drawing area.

Here are the methods of the animator:

• getSampleRate()
Returns the sampling rate ofthe animator in milliseconds.

• isRunning ()
Returns the running status of the animator.

• sample ()
This must be overridden to supply the animator's behavior.

• setSampleRate(int)
Sets the sampling rate ofthe animator in milliseconds.

• start ()
Starts the animator.

• stop ()
Stops the animator.

Time Contexts

The abstract notion of a time context takes a different approach than the anima­

tor. Whereas the animator encapsulates time as a repeating behavior, the time con­

text encapsulates time as a state which other objects can query. Time, as a time

context sees it, is a linearly increasing function that begins at zero and goes to infin­

ity. There is no support for time before the beginning of time (e.g., any value of time

less than zero). Time increases at one unit per second unless otherwise altered.

In practice, the TimeContext class bases its notion of time on the system clock,

and cannot have an infinite time value. The class supports the following behaviors:

• getRate ()

16

Returns the rate of time passing.

• getTime ()
Returns the last sampled time value.

• moveTimeTo(float)
Moves current time to the specified point in time.

• sarnpleTime ()
Samples the current time.

• setRate(float)
Sets the rate of time passing.

The difference between getTime and sarnpleTime is subtle but important. To

get the most recently sampled value of time out of the time context, the getTime

method is called. To produce the new "current" time, the sarnpleTime method is

used. This way the current time can be sampled once and then accessed as many

times as necessary until the next time value is sampled. (Wewill see in the next sec­

tion an example of where this comes into play.) If their separate behaviors were

combined into one method, the caller of that method might not be able to get the

same time value twice out of the time context, which would be an issue when the

time context is passed around to many objects that should all get the same value of

time out of the context.

Certain situations exist where other objects need to know what the current time

is but should not be given arbitrary control over a time context. For these situations,

a time context can be seen simply as the lTimeContext interface, which only sup­

ports the ability to query the current time and rate of the context. If other objects

can only access the time context through this interface, then these objects are

restricted from attempting to reset time to zero or performing any other unwanted

modifications. The TimeContext class implements lTimeContext so it can be used

when an lTimeContext interface is called for. (This is also another reason to have

both getTime and sarnpleTime on the time context.) An additional advantage of

having this separate interface is that classes other than TimeContext could con­

ceivably implement the interface to allow time inquiries.

17

Using Time Contexts

Time contexts are useful in situations where a behavior implicitly performs over

time, without regard the actual value of time or how often that value changes. Let's

look at the example of a time-based quadratic function using a time context.

public float currentlnterpolationValue(ITimeContext timeCtx){
float currentTime = timeCtx.getTime()i
return (currentTime * currentTime)i

)

If time increases at a linear rate (which it is inclined to do), the value of the func­

tion will increase quadratically. Sampled at one second the value will be one, at two

seconds the value will be at four, and so on.

Now, let's alter our previous function so that it increases quadratically for the

first second, and then increases linearly from then on.

public float currentlnterpolationValue(ITimeContext timeCtx) {
float currentTime = timeCtx.getTime()i
if (currentTime <= 1.Of) {

return (currentTime * currentTime)i
) else {

return currentTimei

}

Our new function now alters its return value based on the current time. Let's

look at another example that bases its behavior on the current value of time.

public void doSomething(ITimeContext timeCtx) {
if (timeCtx.getTime() <= S.Of) {

doSomethingBefore()i
else {
doSomethingAfter()i

}

private void doSomethingBefore() { II some code ... }
private void doSomethingAfter() {II some different code ... }

In this example, we are no longer returning a value as a function of time.

Instead, the time context is used to determine what other function should be called

based on the current time.

18

r

As we can see from the examples in this section, time contexts can be used wher­

ever behavior is based on time. They're appropriate when we don't know a priori

what the time value will be or how often our methods that implement behavior will

be called. When the desired behavior requires the same thing to happen at very spe­

cifictime intervals, such as advancing through frames of a slideshow, the animator is

probably more appropriate.

Time contexts are mainly used in conjunction with BeanStalk canvases, where

they provide time services to items in the canvas. (More on this later.) In general, a

developer probably will not need to create one explicitly since a canvas creates one

when the canvas itself is constructed. When a time context is used with a canvas, it

does not need to be explicitly sampled either, so that complication is removed.

Utility Behaviors Using the Time Context

BeanStalk provides two simple time-varying behaviors in the stalk.time.tv

package which use the time context behavior model. The first is Envelope, which is

based on the notion of an envelope generator. (An envelope generator in this context

is a function that interpolates between a series of values. The inspiration for this

class came from envelope generators used in analog electronic music synthesis.) The

envelope is constructed by specifying various times in the envelope and the values

associated with those times. The value of the envelope is then specified by the fol­

lowing method:

• getValue(ITimeContext)
This returns the value ofthe envelope based on the time context.

As we can see, this is very much like the previous examples of time-based func­

tions. ColorEnvelope, the other class in the package, extends the idea of the enve­

lope to produce a new AWTcolor instead of just a value.

While BeanStalk only has these two time-varying behavior classes, the range of

possibilities for other behaviors is enormous. For example, a whole family of time­

varying interpolator functions would be very useful.

4.2 Canvas Framework

Drawing items onto the screen and allowing the user to interact with them is the

essence of interactive illustrations, so much of BeanStalk is devoted to supporting

19

these activities. This is accomplished through a framework that handles many of

the low level details of AWTwhile still allowing a wide range of functionality. There

are three main elements to the canvas framework: the canvases themselves, items

that are put into the canvas, and classes that let the user interact with the canvases.

The BeanStalk Canvases

BeanStalk offers two versions of its framework-enabled canvas: StalkCanvas

and LightWeightCanvas. They both support the same core functionality and only

differ in their parent class. StalkCanvas inherits fromjava.awt.Canvas whereas

LightWeightCanvas inherits from java.awt.Component. Both exist because

painting a StalkCanvas is more time-efficient since it has its own graphics

resource, while the LightWeightCanvas can support a see-through background.

The core functionality that these two canvases share comes from the IStalkCanvas

interface, which both implement:

•	 addDrawable(IDrawable)
Adds a drawable item to the canvas. The item's drawO method will be
called every time the canvas is repainted.

•	 addSelectable(ISelectable)

Adds a selectable item to the canvas.

•	 addSelectAdapter(ASelectAdapter)

Adds a select adapter to the canvas.

•	 getDrawables()
Returns the vector containing the canvas' drawable objects.

•	 getSelectables()
Returns the vector containing the canvas' selectable objects.

•	 getTimeContext()
Returns the canvas' time context.

•	 removeDrawable(IDrawable)

Removes a drawable item from the canvas.

•	 removeSelectable(IDrawable)

Removes a selectable item from the canvas.

•	 removeSelectAdapter(ASelectAdapter)

Removes a select adapter from the canvas.

20

• repaint ()
Repaints the contents of the canvas.

• setTimeContext(TimeContext)
This sets the time context of the canvas, defining the canvas' notion of time
passing.

Using the simulated multiple inheritance through delegation, both canvases con­

tain a StalkCanvasCore class, which itself implements IStalkCanvas, and dele­

gate to it when necessary. In addition, both classes have all of the methods of

java.awt.Component since both ultimately inherit from it. While each also has

some specific behavior such as double buffering, we will concentrate on the shared

behavior throughout this section.

Canvases have a default time context when they are created, but can use any

time context, allowing contexts to be shared between canvases.

The real added value of a BeanStalk canvas over a standard AWTcanvas is its

ability to manage the drawing and selection of graphical items. These items can be

anything as long as they implement certain interfaces (described below). Items are

added and removed through add/remove methods on the canvas. The entire set of

drawable or selectable items can be returned at once in the form of a Java Vector

using the getDrawables and getSelectables methods, respectively. This vector

is the same vector that the canvas stores internally, providing direct access how the

canvas stores the items. While this is a potentially dangerous violation of encapsula­

tion, it allows the items to be easily manipulated through the vector's methods.

The ordering of items in these vectors is important to how they are drawn and

selected. The canvas draws the items in ascending order, so the last item will be the

last thing drawn into the canvas. Selection also occurs in ascending order. We will

see further in the document how drawing and selection work.

Repainting the Canvas

The contents of the canvas can be painted in three ways. The most straightfor­

ward way is to simply call repaint on the canvas. This will draw all of the items

that the canvas currently knows about. However, the time context will not be sam­

pled, so the canvas won't show the effects of time moving forward.

A second way is to generate a CanvasUpdateEvent and pass it into the

updateCanvas method on the canvas, with time being resampled in this case. This

21

might seem like an awkward approach, but it is designed for the source/listener

event model. The canvases implement the CanvasUpdateListener interface so

that they could be added to sources that fire the canvas update events. Currently,

there are no classes in BeanStalk that are canvas update sources. Both the event

and listener classes are in the stalk.event package.

The third way to repaint a canvas is to create a CanvasAnimator and add the

canvas to it. The canvas animator inherits from Animator, and overrides the sam­

ple method to resample canvases' times contexts and repaint them. Arbitrarily

many canvases can be added to the same animator, ensuring that they all get

repainted synchronously.

Items in the Canvas

As was mentioned earlier, the main purpose of the BeanStalk canvases is to man­

age the drawing and selection of graphical items. For an item to be able to work with

a canvas, it must implement some, if not all, of the following interfaces: IDrawable,

ISelectable, IProbeable, lSelectNotifiable, IProbeNotifiable, IPositionable,
and ISizeable (all of which are defined in the stalk.canvas package). These inter­

faces are described in detail below.

The IDrawable Interface

This is the most basic of the canvas interfaces. Its purpose is to provide a stan­

dard way for objects to be drawn inside a BeanStalk. canvas. As far as the canvas is

concerned, the item can draw itself however it chooses.

• draw(Graphics, ITimeContext)
The method called when the implementor needs to draw itself.

This is the sole method in the interface. The method takes a graphics context to

draw into, and an interface to a time context so that time information can be used if

needed. For example, if the item wanted to use a color envelope to determine its

color, the draw method could ask the envelope for the color based on the time context

and then set the graphics context's foreground color appropriately. Having draw

take a Graphics object means that the implementor can use any of its extensive

graphics functionality.

The draw method also provides an example of a situation where accessing some­

22

thing through an interface versus accessing the object directly is advantageous. The

implementor of this method should not necessarily be able to change the current

time of the time context object, so the ITimeContext interface does not allow for

that.

Items are required to implement this interface in order to be drawn by a Bean­

Stalk canvas.

The ISelectable Interface

In addition to drawing items, a BeanStalk canvas manages the items that can be

selected by the user. These items must implement the ISelectable interface, which

supports the following methods:

• intersect (MouseEvent)
This performs an intersection test using the information supplied in the
mouse event object.

• isSelected ()
This method returns the selection state ofthe object.

• setSelected(boolean)
This sets the selection state of the object.

Item intersection is based on an AWTmouse event which contains the mouse's

location in the canvas. An item implementing this interface must know what its

intersection boundaries are in order to return whether or not it was intersected.

The selection state of an item is independent of its intersection status, although

we will see later how the two are used by BeanStalk for selection. Again, the imple­

mentor is responsible for defining what it means to be selected.

The IProbeable Interface

There are occasions when an item needs to demonstrate its ability to be select­

able without actually being selected. An example of this would be a draggable shape

in a canvas. It might not be immediately clear that the user could select this shape

to drag it, but having the shape change color when the mouse rolls over it would pro­

vide a good indication that the shape can do something. Probing an item provides

these means. The IProbeable interface provides the following methods to support

probing:

23

• isProbed ()
Returns the item's probed status.

• setProbed(boolean)
Sets the item's probed status.

Items are not required to implement this interface in order to be used with a

BeanStalk canvas.

The ISelectNotifiable Interface

Other objects would potentially like to know when an item in the canvas becomes

selected or deselected. The ISelectNotifiable interface provides a standard way for

listener objects to register themselves with selectable canvas items in order to be

notified of selection status changes. The methods on the interface are as follows:

• addSelectListener(SelectListener)
Adds a listener to the select notifier.

• notifySelect(boolean, int)
Notifies all listeners of the selection status of the item.

• removeSelectListener(SelectListener)
Removes a listener to the select notifier.

The notifySelect method takes a selection status and any modifier keys that

were relevant to the selection. The SelectListener and associated SelectEvent
classes are defined in the stalk.event package. Since the desired notification behav­

ior is both straightforward and invariant, implementors of this interface should not

need to recreate this behavior each time. Because of this, BeanStalk provides the

SelectNotifier class which implements ISelectNotifiable. Items that would like

this notification behavior can simply implement ISelectNotifiable and delegate to

an instance ofSelectNotifier. Once again, the simulation of multiple inheritance

through interfaces and delegation proves its usefulness.

Objects are not required to implement this interface in order to be used with a

BeanStalk canvas.

24

The IProbeNotifiable Interface

The IProbeNotifiable interface is the probing equivalent to selection notifica­

tion. It provides the following methods:

• addProbeListener(ProbeListener)
Adds a listener to the probe notifier:

• notifyProbing(boolean)
Notifies all listeners ofthe probe status ofthe item.

• removeProbeListener(ProbeListener)
Removes a listener to the probe notifiet:

The main difference between the two interfaces is that modifiers are not used as

part of probe notification. The ProbeListener, ProbeEvent, and ProbeNotifier

perform the same functions as their selection equivalents.

Objects are not required to implement this interface in order to be used with a

BeanStalk canvas.

The IPositionable Interface

This interface provides a standard way for items to be positioned inside a canvas.

The methods on IPositionable are as follows:

• getLocation ()
Returns the item's location.

• setLocation(int, int)
Another method to set the graphical item's position.

• setLocation(Point)
Sets the graphical item's position.

The method names and parameters match the equivalent methods on the AWT

Component class for continuity.

Objects are not required to implement this interface in order to be used with a

BeanStalk canvas.

The ISizeable Interface

This interface provides a standard way for item's dimensions to be set. The meth­

25

ods on ISizeable are as follows:

• getSize ()
Returns the item's dimensions.

• setSize(Dimension)
Used to set the graphical item's dimensions.

• setSize(int, int)
Another method to set the graphical item's dimensions.

Like the IPositionable interface, the method names and parameters of this

interface match the equivalent methods on the AWT Component class.

Objects are not required to implement this interface in order to be used with a

BeanStalk canvas.

Building Objects with the BeanStalk Canvas Interfaces

The canvas interfaces described above offer broad constraints for their implemen­

tors. If all an object requires is the ability to draw itself, then it simply implements

the IDrawable interface. On the other hand, if an object requires positioning, siz­

ing, selection, and selection notification on top of drawing, then all the interfaces

should be implemented. Since items like these are needed frequently, BeanStalk

provides the AShape class which implements all of the above behaviors except

drawing. The class must be subclassed in order to be drawn and intersected appro­

priately. StalkRectangle, StalkOval, StalkCanvasImage, SelectVec2 are Bean­

Stalk utility classes that all inherit from AShape. These classes are in the

stalk.canvas.geom package.

The IDrawable and lSelectable interfaces are well-suited for use in the Com­

posite design pattern [13]. For example, one object can be drawable and contain

other objects that are also drawable. When the draw method of the first object is

called, it can call draw on all of its drawables. Drawable and selectable objects can

be arbitrarily nested using the Composite pattern, allowing for complex scene

graphs in a BeanStalk canvas.

Selection Adapters

The ISelectable interface allows an object to be selected, but does not specify

how that actually happens. This is advantageous because selectable items should

26

not need to know every possible way they can be selected and deselected. If they did,

then each time a new way of selecting items was created every class that imple­

mented the interface would have to augment its implementation accordingly. (The

same holds true for the IProbeable interface.) Clearly that is an unacceptable

approach.

BeanStalk handles this situation by separating the selection process' from the

semantics of being selected. The semantics are left to the ISelectable implementa­

tion, whereas selection adapters handle the selection process. Selection adapters are

designed around the new AWT event handing model. All AWT components can reg­

ister mouse and mouse motion listeners. The components notify listeners of such

events as the mouse moving over a component, a mouse button being pressed, the

mouse being dragged while the button is down, etc. Various methods on the AWT

MouseListener and MouseMotionListener interfaces corresponding to the spe­

cificmouse action are called with an.instance of MouseEvent. Where the mouse is

and what it is doing are the building blocks of selection adapters.

ASelectAdapter is an abstract class that implements both MouseListener and

MouseMotionListener. By overriding specific methods from the AWT listeners,

the style of selection of selectable objects can be created. Select adapters can use the

fact that a selectable object could possibly also be probeable, positionable, and size­

able. The adapters can test to see if items implement any of these interfaces by

using the instanceof Java operator, and can modify their selection behavior

accordingly.

BeanStalk provides three kinds of select adapters which all inherit from ASe­

lectAdapter. ToggleSelectAdapter will toggle an item's selection status using

mouse clicks. RolloverSelectAdapter will select an item that is under the mouse.

DraggableSelectAdapter is the most complex of the adapters. It probes the select­

able items when the mouse rolls over them. When the mouse button is pressed

down, the items are deprobed and selected. Moving the mouse while the button is

down repositions the selected items. Finally, releasing the mouse button deselects

the items. To take advantage of the full capabilities ofDraggableSelectAdapter,

an object must implement ISelectable, IProbeable, and IPositionable.

4.3 Lightweight Components

BeanStalk provides a number of standard GUI lightweight components in the

27

stalk package. The main features of the package include a variety of image buttons,

a generic lightweight component and container, specialized applet and panel compo­

nents, and rollover help support. The specialized applet, StalkApplet, provides

double buffering support for all lightweight components contained within it.

28

5.0 BeanStalk at Work

We have now seen the range offeatures that BeanStalk supports. In this chapter

we will learn how to assemble BeanStalk classes into working applets and look at

some interactive illustrations that have been developed with it.

Creating a BeanStalk Applet with Time-varying Behavior

The following BeanStalk applet creates a number of ovals that oscillate sinusoi­

dally. The oscillation can be turned on and off using AWT buttons and adapter

classes.

package examples;

import stalk.canvas.*;

import stalk.canvas.geom.*;

import stalk.time.*;

import java.applet.*;

import java.awt.*;

import java.awt.event.*;

import java.util.*;

public class TimeBasedBehaviorsApplet extends Applet {

II the animator that repaints the canvas
CanvasAnimator animator_;

public void init() {

II creates and sets up the BeanStalk canvas

StalkCanvas canvas = new StalkCanvas();

canvas.setSize(300, 300);

canvas.setDoubleBuffered(true);

canvas.setBackground(Color.black) ;

II adds the canvas to the applet
add (canvas) ;

II creates a canvas animator and adds the canvas to it

animator_ = new CanvasAnimator();

animator_.addCanvas(canvas);

animator_.start();

II creates time-based animation object and adds it to canvas

29

SwayingShapes shapes = new SwayingShapes(canvas.getSize())i
canvas.addDrawable(shapes)i

II creates AWT button and adapter for starting the animator
Button startButton = new Button("Start")i
startButton.addActionListener(new StartButtonAdapter());
add(startButton)i

II creates AWT button and adapter for stopping animator
Button stopButton = new Button("StopN);
stopButton.addActionListener(new StopButtonAdapter());
add(stopButton);

}

II an adapter inner class used to start the canvas animator
private class StartButtonAdapter implements ActionListener {

public void actionPerformed(ActionEvent event) {
animator_.start();

}
}

II an adapter inner class used to stop the canvas animator
private class StopButtonAdapter implements ActionListener {

public void actionPerformed(ActionEvent event) {
animator_.stop();

}
}

}

1**
* This class encapsulates the behavior of swaying shapes. The
* shapes' positions are based on the time context, which is fed
* into the cosine function.
*1

class SwayingShapes implements IDrawable {

II used to know bounds for drawing shapes

private Dimension drawingAreaDim_;

II specifies number of shapes to be animated

public static final int NUM_SHAPES = 30;

II constucts the object

public SwayingShapes(Dimension drawingAreaDim) {

drawingAreaDim_ = drawingAreaDim;

}

30

II draws the shapes based on time and the cosine function
public void draw(Graphics g, ITimeContext timeCtx) {

final double phaseIncrement =Math.PI I (NUM_SHAPES 12)i
final double currentTime = timeCtx.getTime()i

g.setColor(Color.red)i

for (int i = Oi i < NUM_SHAPESi i++) {
int xOffset = (int) ((drawingAreaDim_.width I 3) *

Math.cos(currentTime +
(i * phaseIncrement)))i

int x = (drawingAreaDim_.width I 2) + xOffseti
int y = (drawingAreaDim_.height I NUM_SHAPES) * ii

g.fillOval(x, y, 10, 10) i

}

}

}

In this example, the shapes' behavior is a function of time and the cosine, but it

could be based on many other things as well. The time context provides a lot of flex­

ibility to animating drawable items.

Interactive Illustrations

Several interactive illustrations were developed this summer that used Bean­

Stalk. Most were done as part of the Web-based Academic Resources Project (WARP),

while one was done for a course on computational geometry.

A main goal of the WARP projects was to produce graphically intensive interac­

tive illustrations that were very user-friendly. To achieve this, the WARP applets

made extensive use of BeanStalk's lightweight components. One of the illustrations

demonstrates the concept offlipbook animation. It uses both the lightweight compo­

31

nents and the canvas framework to accomplish this.

Figure 5. 1: The f1ipbook WARP interactive illustration. The buttons and
framerate control are lightweight components, while the animation of the
girl is handled by a BeanStalk canvas and an associated animator.

Another WARP applet was designed to show how the halftoning process worked.

Like the :fl.ipbook interactive illustration, it used lightweight components for most of

the user interface. In a few cases the applet required components that were not in

BeanStalk but were in AWT. The two sets of components worked together without

32

any problems.

Figure 5.2: The WARP applet illustrating halftoning. The buttons and
folder tabs are BeanStalk components, while the text input areas for the
numbers are AWTcomponents. The halftoned image is displayed in a
BeanStalkcanvas.

The interactive illustration for the computational geometry course is designed to

demonstrate an algorithm that finds the shortest path between two points inside a

polygon that stays within the polygon's boundary. The illustration uses time con­

texts as animation playback engine. After the user has created the polygon and

placed the points within it, the entire algorithm is executed, creating and storing for

later playback the various graphical elements that show the algorithm in action.

Each one of these elements knows when in the course of the algorithm it was created

so that it can know when to draw itself. When the animation playback occurs, these

elements, which all implement IDrawable, show themselves at the appropriate

time based on the current time context. The algorithm playback can be controlled by

bars at the bottom of the applet. Clicking and dragging on a bar will move time

around based on the bar's position. When the bar is not being dragged, it moves

from left to right indicating the passing of time. Both the bar and the animation ele­

33

ments are using the same time context to produce their behavior.

Figure 5.3: The shortest-path illustration. This image shows a polygon
(in the shape ofa duck) being triangulated. The edges' color is based on
a ColorEnvelope, which in turn is based on a time context. The bars at
the bottom show the progress through the animation. Clicking and drag­
ging on them corresponds to moving the current time of the animation.

These examples show BeanStalk's potential to enable the production ofinterac­

tive illustrations with a strong focus on graphic design and provide some ideas for

future uses of BeanStalk. Further interactive illustration development will reveal

new ways of using the various classes as well as inevitable pitfalls to BeanStalk's

approach.

34

6.0 Future Work

Developments in the world of Java are constantly taking place and BeanStalk

has the potential to grow along with these changes. This chapter looks at some of

the most prominent developments in the Java landscape and their impact on Bean­

Stalk.

6.1 Extended Media Support

The upcoming Java Media and Communications libraries will bring much needed

media support and integration to Java. These libraries include enhanced 2D capa­

bilities, 3D support, video and audio playback, and enhanced sound support [23].

BeanStalk will immediately benefit from these libraries because of its close ties with

AWT.

Java 2D is the new library for extended graphics support in Java [18] and was co­

developed with Adobe, the industry leader in 2D rendering and imaging. New fea­

tures include alpha channels, color depth resolution, new color models, additional

graphics primitives, image filters, image compositing with alpha, anti-aliasing,

spline-based paths, clipping against paths, and stroke-based fonts, among others.

One of the key classes Java 2D provides is the Graphics2D class, which inherits

from AWT's Graphics class. This new class has methods which support many of the

features described above. To avoid having to rewrite AWT (and break a lot of code in

the process), the Java 2D designers decided that none of the methods for painting

components would change. The paint method would still have a Graphics object

as a parameter. The trick is that paint will actually now be receiving a

Graphics2D object, which works because it is a subclass of Graphics. Components

aware of Java 2D can simply downcast the graphics context into one of type

Graphics2D, allowing access to all ofits new features. Because BeanStalk light­

weight components and the IDrawable interface use the Graphics object, they can

easily be reworked to use Graphics2D, resulting in much more graphically complex

interactive illustrations.

The Java Media Player (JMP) APIs supports playback services of time-based

media such as audio and video [24]. BeanStalk's time context model was loosely

based on early versions of the JMP's notion of a timebase, which encapsulates the

35

system clock and supports time playback synchronization among players. While

JMP's time model is far more complex than BeanStalk's, the two can be made to

work together. The easiest way would be to create a time context wrapper around a

JMP timebase. When something accesses the getTime method on lTimeContext,

the wrapper implementation could get the current time out of the timebase. This

would let time-varying behaviors be synchronized with JMP media playback. For

example, an interactive illustration about the dot product could playa video segment

that narrates the effects of the dot product while a BeanStalk animation could

graphically show the effects. If the video were stopped and rewound, the animation

would stop and be reset to its beginning in correspondence with the video. Since the

JMP video player is itself a subclass of Component, it can be placed inside the

appletjust as if it were a lightweight component or standard AWT component. This

kind of tight integration of BeanStalk and JMP's advanced media services could pro-.

duce a new level of engaging interactive illustration content.

The most anticipated Java media library is Java 3D. It would give developers a

standardized, cross-platform way of performing 3D rendering, maintaining a scene

graph, and producing reactive behaviors [19]. These tools have enormous potential

for Java-based interactive illustrations, because content can now enter the 3D realm

without having to worry about the machine used for viewing (which is a major issue

with DirectAnimation). It is currently unclear how tightly integrated BeanStalk and

Java 3D could be. Java 3D does not support the kind of mixed-media integration

that DirectAnimation does, so it would not be possible to integrate a BeanStalk can­

vas into a Java 3D virtual environment. Experimenting with both will be the only

way to tell how well the two will work together.

6.2 JavaBeans Integration

BeanStalk's inspiration came from the promise of rapid prototyping of interactive

illustrations using JavaBeans in a visual authoring environment - hence the Bean

in BeanStalk. The idea was to provide a Bean component library especially tailored

to the needs of illustration developers so that they could focus on content creation

instead of software engineering busywork. While key players in the industry were

quick to endorse the JavaBeans component model, none of them at the time of this

writing have yet produced a solid, shippable product that fully supports Beans as

they are described in the JavaBeans specification. Because of this, BeanStalk was

36

not able to take on the Bean features that were originally intended for it. Still, Jav­

aBeans conventions were used in BeanStalk wherever possible with the hope that

someday they could be turned into Bean components. Once commercial JavaBeans

development environments become mature enough to allow developers to create,

test, and package Beans without ever having to resort to a command line tool, then

BeanStalk can begin to reveal its true nature. For the time being, interactive illus­

tration developers will have to use it in the traditional, non-visual approach to appli­

cation development.

6.3 Industry Developments and Their Impact

Lightweight components and JavaBeans are simple enough conceptually and not

even that innovative, but they could potentially change the way future generations

of applications are developed and viewed. If applications could be easily assembled

and have a consistent look-and-feel on any given hardware platform, then the indus­

try playing field could really be leveled. Developers and users would no longer be

tied to any given operating system and would immediately know how to use applica­

tions because they would look the same regardless of what they ran on. This is Sun's

vision of the future and they are producing the Java Foundation Classes (JFC) to

deliver on it [22].

JFC is a pure-Java layer that sits on top of AWT, making extensive use of its

lightweight component architecture. It provides many high-level components that

AWT itself does not, such as image buttons, tree views, and tab bars, to name a few.

All JFC components will also be Beans, making them available for visual authoring.

In many ways JFC's goals are similar to BeanStalk's. JFC completely encompasses

BeanStalk's lightweight components, although the canvas framework is still unique

to BeanStalk. JFC will fully use Java 2D for enhanced graphical effects in the same

way that BeanStalk could. Since JFC will be incorporated into the JDK 1.2, the

duplicated features in BeanStalk will become unnecessary and counter-productive

for illustration developers to use. JFC and the remaining aspects of BeanStalk have

potential to be a really powerful set of tools for illustration development, especially

when combined with a JavaBeans visual authoring environment.

The JFC faces tough competition because Microsoft is not about to stand by and

let Sun make the Windows platform irrelevant. Since the Java platform is increas­

ingly taking on the role of an operating system itself, Java and the JFC could very

37

easily lure developers (and therefore users) away from Windows. Microsoft's answer

to this problem has four aspects. First, they have chosen not to support the JFC and

other key libraries in the current and future JDKs, claiming that their licensing

agreements lets them do so. This is bad news for anyone who wants to use JFC com­

ponents because those applications are not guaranteed to run on all platforms. The

second aspect is that Microsoft is developing its own pure-Java higher-level compo­

nent library call the Application Foundation Classes WC). Now developers are

going to have to choose which completing set of components to base their applica­

tions on. This is further complicated by the third aspect, which is that Microsoft will

include AFC with every copy of Internet Explorer 4 (lE4) that it ships. Since IE4

will soon ship with every copy ofWindows98 and every copy of the Mac OS [2], the

once-unified Java platform will become fragmented into Microsoft and non-Microsoft

camps. The final aspect of Microsoft's plan is to lock Java developers into the Win32

API platform by allowing developers to make direct system calls from inside the

Java virtual machine. This technology, called J /Direct, completely bypasses all Java

class libraries, making the Java code totally unportable [16]. Microsoft's plan to turn

Java into a proprietary Windows technology is thorough and very effective.

Some might argue that all the current Java developments are forcing Java to rap­

idly evolve to a new level of maturity - something that everyone will benefit from.

While that may be true, the current situation presents a severe problem for all Java

developers, including those creating interactive illustrations. Do they embrace the

JFC and rule out a huge portion of the potential audience who will be using IE4? Do

they embrace AFC, or even J/Direct? Or do they ignore all the potential benefits of

the new libraries and write their own custom layers on top of AWT and other basic

Java libraries? There are no satisfactory answers to any of these questions.

38

7,,0 Conclusions

Even with its uncertain future, Java is still the best platform for illustration

development because of its extensive features and guaranteed audience. The open

question is which Java-based technologies are going to prove to be most useful for

the development community. The answer will likely be decided within a year's time

based on industry support and developer response.

BeanStalk is an example ofhow current Java technologies can be applied to make

the illustration authoring process easier and produce more compelling content.

BeanStalk's reliance on AWTis both an asset and a liability. It can take advantage

of AWT's numerous features but requires the developer to have a solid understand­

ing of how AWTworks. Therefore it is not ideal for introductory students who do not

have much experience with object-oriented program design. Visual authoring envi­

ronments that support JavaBeans may alleviate this problem by abstracting away

low-level AWT.

Ultimately; the most important part of interactive illustration development is

independent of the technology involved. Experience has shown that attention to

graphic design and other user interface issues early in the design process affects the

final outcome at least as much as the technology used to implement the illustration.

No amount of amazing technology can save a poorly designed interactive illustration.

39

8.0 Acknowledgments

I'd like to thank John Hughes for advising this project and seeing it through its

completion, Anne Spalter and Andy van Dam for providing useful guidance and

encouragement, Christine Waggoner, Scott Klemmer, and Mike Legrand for being

helpful beta testers and feedback providers, JeffWhite and Rosemary Simpson for

proof-reading, other members of the Brown Computer Graphics Group for conversa­

tions that contributed to the outcome of this project, and my parents for being the

main sponsors of this work.

40

9.0 References

[1]	 Aggregation and Delegation Specification (draft). http://splash. java­
soft. com/beans/glasgow .html, Sun Microsystems, 1997.

[2]	 Agreement Between Microsoft and Apple (press release). http://prod­
uct.info.apple.com/pr/press.releases/1997/q4/
970806 .pr. rel.microsoft. html, Apple Computer, 1997.

[3]	 AWT Enhancements in JDK1.l. http://java . sun. com/products/jdk/
1.1/docs/guide/awt/designspec/index.html, Sun Microsystems, 1997.

[4]	 AWT Lightweight UI Framework. http://www.javasoft.com/products/
jdk/l.1/docs/guide/awt/designspec/lightweights.html,Sun
Microsystems, 1997.

[5]	 Beall, J., Doppelt, A. and Hughes, J. "Developing and Interactive Illustration:
Using Java and the Web to Make It Worthwhile, "in 3D and the Internet:
Information, Images, and Interaction. Edited by Earnshaw, R., and Vince, J.,
Academic Press, London, 1997.

[6]	 Becker, S. Educational Interactive Illustrations. http: / /
www.cs.brown.edu/research/graphics/research/illus/thesis/
home .html, Computer Science Honors Thesis, Brown University, 1997.

[7]	 Conner, D., Niguidula, D. and van Dam, A. Object-Oriented Pascal: A Graphi­
cal Approach. Addison-Wesley, Reading, MA, 1995.

[8]	 Current Interactive Illustration Efforts in the Brown Computer Graphics
Group,http://www.cs.brown.edu/research/graphics/research/
illus/, Brown University, 1997.

[9]	 Director, http://www.macromedia.com/software/director/. Macrome­
dia, 1997.

[10]	 Direct Animation. http://www.microsoft.com/msdn/sdk/ inetsdk/
help / dxmedia / j axa/ , Microsoft, 1997.

[11]	 Elliott, C., Schechter, G., Yeung, R. and Abi-Ezzi, S. "T-BAG: A High Level
Framework for Interactive, Animated 3D Graphics Applications." SIGGRAPH
94 Proceedings, pp. 421-434, 1994.

{l2]	 Flanagan, D. Java in a Nutshell, Second Edition. O'Reilly & Associates, Inc.,
Cambridge,MA, 1997.

[13]	 Gamma, H., Helm, R., Johnson, R. and Vlissides, J. Design Patterns. Addison­
Wesley, Reading, MA, 1995.

[14]	 Inner Classes Specification. http://java.sun.com/products/jdk/l.l/
docs/guide/innerclasses/spec/innerclasses .doc .html, Sun Micro­
systems, 1997.

[15]	 Introduction to Application Foundation Classes. http : / /
www.microsoft.com/java/pre-sdk/afc/articlel.ht~Microsoft.

1997.
[16]	 J /Direct. http://www.microsoft.com/sitebuilder /features/jdi­

rect. asp, Microsoft, 1997.
[17]	 JavaBeans Specification, http://splash.javasoft . com/beans/

spec. html, Sun Microsystems, 1997.

41

[18]	 Java2D White Paper. ftp: / /java. sun. com/docs/java-media/
java2dwp .ps, Sun Microsystems, 1997.

[19]	 Java3DAPI Specification. http://java.sun.com/products/java­
media/3D/forDeve1opers/3Dguide/j3dTOC .doc .htm1, Sun Microsys­
terns, 1997.

[20]	 Java Development Kit 1.0.2, http://www.javasoft.com/products/jdk/
1 . 0 . 2/, Sun Microsystems, 1996.

[2l.] Java Development Kit 1.1.3, http://www.javasoft.com/products/jdk/
1 . 1/, Sun Microsystems, 1997.

[22]	 Java Foundation Classes, http://java.sun . com/products/j fc/
index. htm1, Sun Microsystems, 1997.

[23]	 Java Media and Communications Home Page, http : / / java. sun. com/
products/java-media/, Sun Microsystems, 1997.

[24]	 Java Media Player Guide, http://java . sun. com/products/java­
media/jmf/forDeve1opers/p1ayerguide/, Sun Microsystems, 1997.

[25]	 Liquid Motion Pro White Paper. http://www.microsoft.com/dimen­
sionx/ 1m/ info /whi tepaper . htm1, Microsoft, 1997.

[26]	 Trychin, S. Interactive Illustration Style Guides. http:/ /
www.cs.brown.edu/research/graphics/research/i11us/Sty1e­
Guide. htm1, Computer Science Honors Thesis, Brown University, 1997.

[27]	 VisualBasic 5.0 Professional Edition, http://www.microsoft.com/prod­
ucts/prodref/ 195_ov. htm, Microsoft, 1997.

[28]	 VRML97 Specification. http://www . vrm1. org/Specifications/
VRML97 /DIS/, VRML Consortium, 1997.

42

10.0 Appendix A: BeanStalk Version History

Version 1.07 - August 10, 1997

•	 Added the notion of a "time window" to AShape and modified all its subclasses to
use it.

•	 Added support for modifier keys to SelectEvent, ISelectable, and SelectNoti­
fier.

•	 Modified AShape and all of its children to support selection with modifiers.
•	 Modified CanvasAnimator so that would stopping it would freeze time on all of

the registered canvases' time contexts. Starting again would return the time con­
texts' rates to their original values.

•	 Changed the name of ISizable to ISizeable.

Version 1.06 - July 31, 1997

•	 Changed StalkApplet so that it could create Stalkfmage objects directly.
•	 Tweaked parameters and behavior of Envelope and ColorEnvelope.
•	 Changed constructors of SelectNotifier and ProbeNotifier to take an object

representing the source of the select and probe events, respectively.
•	 Changed name of ButtonSelectAdapter to ToggleSelectAdapter.
•	 Changed name of IntersectSelectAdapter to RolloverSelectAdapter.
•	 Added StalkCanvasImage class to the stalk.eanvas.geom package.
•	 Fixed HelpDisplay so that the help message actually appears under the mouse

like it's supposed to.

Version 1.05 - July 21, 1997

•	 Added selection policies to ASelectAdapter and updated DraggableSelect­
Adapter to support them.

•	 Added methods to add and remove select adapters to canvases. These make it
unnecessary to call the AWT methods for adding/removing listeners directly,
although that's certainly still supported.

•	 Added HelpDisplay and Helplnfo to the stalk package. These two classes pro­
vide a means to do rollover help on all components in an applet. If all the applet's
components are lightweight, then the rollover help can appear directly on top of
the components.

Version 1.04 - July 17, 1997

•	 Added LightWeightCanvas, a lightweight-component equivalent of StalkCan­

43

·,

vas, to BeanStalk. In place of double-buffering, this canvas supports transpar­
ency which allows the component behind the canvas to show through when this
feature is turned on. Dirty painting is still available, but only has meaning when
transparency is turned off.

•	 Created the IStalkCanvas interface to represent common functionality among
canvases. Also created StalkCanvasCore which implements the interface. Both
StalkCanvas and LightWeightCanvas implement the interface and contain a
core, delegating to it when appropriate. This is Java's alternate to multiple inher­
itance.

•	 Made Canvaaanlmator responsible for sampling time instead of StalkCanvas
(or its lightweight sibling). This means that ifa canvas is repainted by something
other than an animator (e.g., AWT when a window is exposed), it won't resample
time too. Also, made StalkCanvas.canvasUpdateO sample time before it
refreshes the canvas.

•	 Added the IProbeable interface to the stalk.canvas package. This allows a
standard way to graphical items in BeanStalk canvases to support "rollover"
functionality. (The spelling of this interface may leave something to be desired,
but hey, I was following convention.)

•	 Added the ISizable interface to the stalk.canvas package. This allows a stan­
dard way to graphical items in BeanStalk canvases to be resized.

•	 Extended DraggableSelectAdapter to work with probable items.
•	 Added a IProbeNotifiable and ProbeNotifier to the stalk.canvas package.

These are the rollover equivalents to ISelectNotifiable and SelectNotifier.
•	 Added more classes to the stalk.eanvas.geom package. In particular, the

AShape class provides many convenient behaviors one would like in a shape
used in a BeanStalk canvas.

•	 Returned StalkApplet to the library. All applets using BeanStalk and require
double buffering should use this instead ofjava.applet.Applet.

•	 Added StalkPanel as a heavyweight container with double-buffering and dirty
painting capabilities. This class is designed to be used in place of a StalkApplet
in a Java application.

•	 Removed double-buffering capabilities from StalkContainer since that function­
ality will now rest in the top-most component in the applet - namely StalkAp­
plet. This class is now useful for when you need a generic lightweight container.
All classes that previously inherited from this should inherit fromjava.awt.Con­
tainer instead because there is no gain in inheriting from it anymore.

Version 1.03 - July 15, 1997

•	 Added stalk.canvas.geom and stalk.time.tv packages for utility StalkCan­
vas geometry and time-varying behaviors, respectively.

•	 Fixed bug in StalkImage where the component had to be added immediately
after setting the image or else a NullPointerException would occur. (Thanks to
Scott for tracking that one down!) Also fixed similar problem in AlmageButton.

44

•	 Added lPositionable interface to stalk.canvas to provide a standard way for
items to be positioned in aStallcCanvas,

•	 Added RolloverToggleButton so that the button will highlight when the mouse
rolls over it.

•	 Reworked selection notification mechanisms. Before, something that inherited
from ASelectAdapter would be responsible for keeping track of all currently
selected and deselected items and broadcasting the changes. The new approach is
to have a lSelectNotifiable interface that an item can implement if it wants to
notify a listener of a change in its select status. In addition, the SelectNotifier
(which implements ISelectNotifiable) provides standard selection notification
mechanisms that an item can dispatch to when needed. Finally, the SelectEvent
has been modified to reflect these changes.

Version 1.02 - July 9, 1997

•	 Commented all BeanStalk classes followingjavadoc conventions.
•	 Removed StalkContainer.getlTimeContextO and StalkContainer.setl ­

TimeContext0 . These methods are more appropriate for StalkComPOnent,
where they already exist. On StalkComponent, removed the'!' from those
method names.

•	 Made AImageButton.getImagesO and AImageButton.setImagesO operate
on the actual image arrays instead of clones of them, as they did before.

•	 Changed the method names to add/remove/get drawable objects on StalkCan­
vas.

•	 Added support to add/remove/get lSelectable items on StalkCanvas.
•	 Added classes in the stalk.canvas and stalk.event packages to support selection

mechanisms for lSelectable objects.
•	 Changed functionality of TimeContext so that changing the rate of time would

only affect how quickly time would pass in the future instead ofscaling all of time
by the rate.

•	 Replaced TimeContext.resetO with TimeContext.moveTimeTo(ftoat time)
while maintaining the functionality of the old method (by passing in O.O£).

•	 Made StalkCanvas.getDrawablesO return the actual vector instead of a clone
of it, as it did before.

•	 Performed additional code reworking that does not affect functionality or APIs.

Version 1.01 - July 7, 1997

•	 Changed name of SmartCanvas to StalkCanvas.
•	 Added functionality to StalkCanvas so that the buffer can be made to not clear

itself before painting begins. (Called "dirty painting" in code and comments.)
Works with double-buffering too.

•	 Made ImageButton fire events oftypejava.awt.ActionEvent instead ofBut­

45

tonEvent.
•	 Removed ButtonEvent and ButtonEventListener from stalk.event package.
•	 Removed StalkApplet from BeanStalk library.
•	 Created AImageButton which is an abstract class that all image buttons inherit

from. All classes that inherit from it use java.awt.ActionEvent for event notifi­
cation.

•	 Created ToggleButton which inherits from AImageButton.
•	 Created RadioButton which inherits from ToggleButton.
•	 Created RadioButtonContainer from StalkContainer. Works in conjunction

with RadioButtonManager.
•	 Created RadioButtonManager to control radio-button interaction behavior for

objects of type RadioButton. Works in conjunction with RadioButtonCon­
tainer.

•	 Added some preliminary comments for a few classes. Full comments will appear
in next version.

Version 1.0 - June 30, 1997

•	 Released first version of BeanStalk packages, based on "alpha" versions of
classes.

46

