
.'.

BROWN UNIVERSITY
Department of Computer Science

Master's Project

CS-96-Ml

"A Heuristic Search For Linear

Programs with 0-1 Variables"

by

Hoog-Shen Wong

A Heuristic Search For Linear

Programs with 0-1 Variables

Hoong-Shen Wong

Department of Computer Science

Brown University

Providence, RI 02912, USA

August 29, 1995

A Heuristic Search For Linear Programs
with 0-1 Variables

Hoong-Shen Wong

Department of Computer Science

Brown University

Submitted in partial fulfillment of the requirements for the

Degree of Master of Science in the Department of Computer

Science at Brown University

August 1995

~~'~:lK
Professor Philip N. Klein

Advisor

Abstract

Solving a linear program with 0-1 constrained variables is an NP-complete
problem. Such linear programs have many practical uses in the area of
scheduling. This paper describes a heuristic-based method for finding feasi­
ble solutions to such linear programs. We will also provide the motivation
for attempting to find feasible solutions for such problems by showing how
several interesting scheduling problems can be formulated as linear programs
with 0-1 constrained variables.

Contents

1 Introduction 1

1.1 Problem definition 1

1.2 Exact Solutions .. · . 2

1.3 Other Approaches ... 2

1.4 Outline of Search Algorithm . .. 3

2 Motivation 5

2.1 Airplane Scheduling 5

2.2 Medical Residency Scheduling . · 8

2.3 Graph partitioning 9

3 Search Algorithm 11

3.1 Overview 11

3.2 Constraints 13

3.3 Search Values · .. 15

3.4 Data Structures 16

3.5 The Search 18

3.6 Non-Linear Objective Functions 22

4 Results 24

5 Analysis 28

5.1 Analysis of Results · 28

5.2 Limitations · .. 29

5.3 Conclusion · 30

6 Future Developments 31

A User Guide 33

A.I LSearch . 33

A.2 Geninit and Search 35

A.3 File Formats 36

A.3.I Format of Initial Conditions File 36

A.3.2 Format of Constraints File . 36

A.3.3 Format of Objective File 37

A.3.4 Format of Output File . . . 37

".

11

Chapter 1

Introduction

1.1 Problem definition

This paper serves to define a method for finding feasible solutions to linear
programs with 0-1 variables. Such linear programs may be defined in the
following manner:­

Find the assignments of values (1 or 0) to the variables in the vector X
in order to minimize the objective function Fo(X) subject to the constraints
Fi(X) ~ 0 for i ~ 1 where each Fi(X) is a linear function.

All linear programs can be easily reduced to the above form since Fi(X) :::;
o is equivalent to -Fi(X) ~ O. Moreover, maximization problems can also
be determined by minimizing -Fo(X) in cases where Fo(X) is the objective
function that needs to be maximized. Hence the above definition would
encompass all linear programs as long as the variables have only values of
either 1 or O.

1

1.2 Exact Solutions

The first question to answer before attempting to develop a heuristic ap­
proach to solving this problem is whether there exists an efficient approach
to determining the optimal solution.

Linear programs can be solved using variations of the Simplex method
which traverse the vertices of the polyhedron describing the constraints,
based on the property that the optimal solution lies on one of these ver­
tices. In the general case, the vertices are not guaranteed to have integral
values. However, (see [1] for a formal proof) a special case exists when a
matrix A is totally unimodular, i.e. each square submatrix of A has deter­
minant 0, +1, or -1. In such a case, for each integral vector b the polyhedron
{xix ~ O,Ax:::; b} has only integral vertices.

In the airplane scheduling problem I worked on, the constraint matrix
is totally unimodular, thus the solution vectors obtained from the Simplex
method are integral in value. It is possible to ensure that the solution vectors
contain only 1's and O's by adding additional constraints which constrain all
the variables to be between 0 and 1. The addition of such constraints will
not affect the total unimodularity of the constraints matrix.

However, not all linear programs have this property and thus in general
the vertices of the polyhedron may not have integral values.. This leads us
to the question of whether a general form of this problem may be efficiently
solved in polynomial time using some other approach? Unfortunately, as
shown by Garey and Johnson in [2], solving a linear program with 0-1 con­
strained variables is an NP-complete problem, hence there does not exist any
known polynomial time algorithm for finding the exact solution. In order to
deal with general forms of this problem, we need a much more robust search
algorithm.

1.3 Other Approaches

The easiest approach to solving this problem would be the use of brute force
searching. After all, a problem as limited as a linear program with 0-1 vari­
ables should not have that many solutions. Unfortunately, even in cases
where there are only about 100 variables, there are 1.27e+30 possible com­

2

binations to evaluate. Moreover, only a small fraction of these combinations
may actually be feasible solutions. Most of these combinations may not fit
into the given constraints. Such a search would thus be grossly inefficient.

We looked into a few alternative search methods such as genetic algo­
rithms and simulated annealing. The current implementations of such search
methods do not provide much ease of use with linear programs because prob­
lems have to be formulated in a manner which is understood by the program
performing the search. Such a formulation is time-consuming and different
heuristics need to be developed for different linear programs. Thus, even
though such algorithms may be more effective in searching, their implemen­
tations do not make them easy to use.

The point of this paper is to introduce an implementation of a search al­
gorithm based on a mix of heuristic techniques specifically for solving linear
programs with binary variables. Such an algorithm contains built-in heuris­
tics for dealing with slack in the constraints, the values of variables and the
objective function. Moreover, there is an efficient feasibility evaluator which
will keep track of the feasibility of generated solutions.

1.4 Outline of Search Algorithm

The approach which I will describe in this paper is based loosely on a method
for graph partitioning as described by Lin & Kernighan in [3] and simulated
annealing as described by S. Kirkpatrick, C. D. Gelatt, Jr., & M. Vecchi in
[4]. In order to understand how the search is performed, it is necessary to
take a different view of the assignment of values to the variables.

We can essentially look at the problem in the same way as a graph and
variables as nodes ofthe graph (the two terms will be used interchangeably).
In this manner, we can look at the problem as one of partitioning. We are
essentially trying to partition the nodes into two sets, 1 and 0, representing
the values assigned to the variables. The set of constraints specify which
partitions yield feasible solutions and which do not.

The search algorithm basically involves swapping nodes from one set to
the other set, moving the sets closer and closer to conforming to the con­
straints. In cases where we cannot find a feasible solution after several at­

3

tempts, the algorithm would then perform a random swap in an attempt
to get out of the local minima. After the sets are found to conform to the
constraints, there will be further optimizations in the form of swaps which
are used solely to enhance the value of the objective function.

>,

4

Chapter 2

Motivation

In order to appreciate the usefulness of a technique in finding feasible so­
lutions for linear programs with binary variables, it is necessary to look at
several examples of practical applications of such linear programs or slightly
more complicated programs with linear constraints and non-linear objective
functions. VVe have dealt with a few scheduling problems which can be easily
formulated in the above manner. Being able to find fairly good and feasi­
ble solutions in polynomial time will mean that we will be able to obtain
reasonable schedules for practical use.

2.1 Airplane Scheduling

I developed an interest in solving linearly constrained problems due to pre­
vious work in attempting to schedule airplanes for cleaning. In this case,
we were required to schedule individual airplanes for cleaning during a given
time period. The planes are to be cleaned at least once every 3 days at air­
ports where they are scheduled to visit. However, each airport has a limit
on the number of planes that can be cleaned during any particular cleaning
period and each airport has a different rate for cleaning airplanes. Thus, the

5

-w.

objective of the scheduling would be to minimize the cost of cleaning the
planes while ensuring that the capacity limit for each airport is observed and
the planes are cleaned frequently.

In order to solve this as a linear program, we have to take a view of the
cleaning opportunities which are available. Thus, if plane I can be cleaned
at airport J during time K, the triple (/, J, K) represents a cleaning op­
portunity. Each variable Xi,j,k that represents a cleaning opportunity can
be assigned either a value of 0 or 1. If a value of 1 is assigned, then plane
i would be cleaned at airport j during time k, otherwise it is not cleaned
during that given opportunity.

As I had stated earlier, it is necessary to satisfy the capacity limits in the
airports. I had made the assumption that for each airport, there is only one
cleaning period and the plane must be there the whole period to be cleaned.
As I shall explain later, this is not exactly what happens in reality, but it
is a good starting point because it makes the capacity limit much easier to
state in terms of constraints.

For each airport J and time period K, the following constraint has to be
met:

I: Xi,J,K ~ Cap(J, K)
I

where Cap(J, K) represents the capacity of airport J at time period K, and
i is the list of airplanes.

This works out nicely because if plane I is scheduled to be cleaned at
airport J during time K, then the variable XI,J,K will have a value of 1, thus
adding to the sum. Since each plane which will be cleaned at the particular
airport and time period will contribute 1 to the sum, thus the total number
of planes cleaned at J during time K will be given by

I:Xi,J,K
I

We also have to ensure that each plane is cleaned during the time period,
hence we add an additional constraint for each plane I:

I:XI,j,k ~ 1
j,k

6

This constraint ensures that for each airplane I, at least one of the clean­
ing opportunities will be assigned a value of 1, thus ensuring that the plane
is cleaned at least once during the time period.

Now we describe the objective function. We associate a certain cost with
each cleaning opportunity (i,j, k), which depends on the time from the last
cleaning to this opportunity as well as the actual cost of performing the clean­
ing. The calculated cost is denoted by C(i,j,k) , which may be manipulated
as necessary in order to obtain a fair estimation of the cost. (The process
of calculating the cost will not be described in detail here as it is not an
integral part of the problem.) Finally, we will obtain an objective function
to minimize as follows:

L C(i,j,k)X(i,j,k)
i,j,k

This is an extremely simple example of a scheduling problem because it
can be neatly defined as a linear program. Moreover, the constraint matrix
is totally unimodular, which meant that when this linear program is solved
through the use of the Simplex method, the variables will be assigned discrete
values, which in this case are either 1's or a's.

Unfortunately, the real problem we had to deal with was not so simple.
In reality, a cleaning opportunity exists for a plane as long as it stays at
an airport for at least two hours during the airport's cleaning period. Fur­
thermore, the capacity limit is not given by the total number of planes that
can be cleaned during the cleaning period, but how many cleaning crews
there are around, and thus how many planes can be cleaned at any point
in time. Thus, it is necessary to sub-divide the cleaning time period into
smaller intervals (15 minutes would be a fair estimate). Instead of using a
triple (i,j, k), we need a quadruple (i,j, k, 1) where 1represents the time pe­
riod when cleaning would start, i.e. 1=a refers to the first 15 minutes, 1= 1
refers to the next 15 minutes and so on. We also add additional constraints
to ensure that each plane is cleaned at most once during each airport/time
period.

"xL..J (l,J,K,I)-<1
I

In order to maintain the constraint imposed by the number of work crews,
we have to slice up time and and ensure that at any point in time, the number

7

of planes worked on is at most the number of work crews at that airport. Since
there is a two hour period in which crews worked on planes, crews working
on planes starting at period t would not be able to work on anything else
until time t + 8 where each unit of time represents 15 minutes. Hence, a
variable which has a value of 1 for time period t will affect all constraints
from t to t + 7. For each time period t, it would be necessary to introduce a
constraint which sums up all the variables for that airport/time-period from
time t - 7 to t to ensure that the work crews are not working on more than
one plane at a time.

2.2 Medical Residency Scheduling

Even though scheduling for residents in the medical program is also a schedul­
ing program, it is fairly different from the previous type of scheduling. While
the previous type of scheduling seems fairly straightforward and well suited
to formulation as a linear program, the scheduling required for medical resi­
dents is somewhat more complicated.

The scheduling was required for a group of 28 interns and another for
54-58 residents. Each resident does a different rotation each block - a block
being either 4 weeks, 6 weeks or 8 weeks. Some rotations are much harder
than others, so it is important that each resident gets a fair number of easy
versus hard rotations, and has the hard ones spaced out to avoid as much
burnout as possible. Some of the rotations are subspeciality consult services,
and if a resident has done a particular one one year, it is better that they do
not repeat it the next. Residents can make all sorts of preferences such as
when they want their vacations (which can only come out of some rotations
and not others), which consult services they want to do, particular times that
they need easier months (eg. during interview season if they will be applying
for a fellowship,) which hospitals they want to work at, etc., etc. Not all
requests are granted, but the goal is to get as close as possible. There are
constraints on who can do hard rotations in the beginning of the year as at
first we only trust 3rd year residents, and by early fall, only the best of the
2nd years.

As in the first scheduling problem, we can just create variables for each

8

triple (1, J, K) specifying that resident I is assigned rotation J during block K.
The hard constraints and preferences can be specified as part of the problem
similar to the plane scheduling problem as I will show later.

Many of the preferences and requirements of the problem can be formu­
lated as part of a linear program. The objective function would take into
account the unhappiness factor in assigning the different rotations, thus the
residents would be able to specify the happiness or unhappiness associated
with each assignment they obtained (for instance, each resident may have
up to 1000 points to spend on specifying which assignments would make
them happy and which assignments would make them unhappy). Thus, if a
resident I specified 100 points to bolster his/her chance of getting assigned
rotation J during block K, then -lOOX(I,J,K) will be added to the objective
function, thereby reducing the objective function if such an assignment is
made. The opposite (i.e. 100X(I,J,K)) would be added to the objective func­
tion in the case where the resident does not want to be assigned rotation J
during block K. In the case of rotations which cannot be assigned to particu­
lar residents, those are just not put into the problem definition, i.e. variables
are not created for such choices.

In this problem, we also had to spread the hard rotations across the
semester for each resident so that each resident does not get two hard rota­
tions in a row. Although this is a soft constraint, meaning that some resident
may get two hard rotations in a row if there was no other choice, we can make
it into a hard constraint in order to solve it as a linear program. We add con­
straints to limit the number of hard rotations for each resident in a certain
time period (maybe 8 - 10 weeks) to be 1. If we are unable to find a feasible
schedule with the chosen time period, we can reduce the time period, thus
increasing the probability of some residents getting two hard rotations in a
row and also the probability of obtaining a feasible schedule.

2.3 Graph partitioning

Graph partitioning is an example of a problem which cannot be easily for­
mulated in the form of a linear program with 0-1 variables. The problem to
be solved here is how to partition the set of nodes in a graph into two equally

9

numerous sets such that the sum of the weights of the edges between nodes
in different sets is minimal. In this case, we can formulate the problem as a
set of linear constraints with a non-linear objective function.

In this problem, each node will be made a variable which is assigned 1 if it
is in one set and 0 if it is in the other. There is only one equality constraint:
that the sum of all the variables is equal to half the number of nodes (which
is equivalent to two inequality constraints, the first stating that the sum of
all the variables is greater than half the number of nodes and another stating
that the sum is less than half the number of nodes.)

The entire problem of minimizing the weights of the edges would be en­
coded into the objective function. Each pair of nodes I,J which has an edge
will be added to the objective function multiplied with the weight of the
edge. Thus, the objective function will be:

LC(i,j)Xi(l- Xj) +C(i,j)(I- Xi)Xj
i,j

where i and j are the nodes and C(iJ) is the weight of the edge going from i
to j.

In the case where both nodes i and j are in the same set, Xi(1 - Xj) =
(1 - Xi)Xj = 0, so the weight of the edge will not be added to the objective
function. However, should the two nodes be in different sets, then either
X i (1 - Xj) or X j (1 - Xi) will be true but in no case will both be true. In
that case, the value C(i,j) will be added to the objective function. Hence the
objective function gives the sum of the weights of the edges to be removed
which is the value to minimize.

10

.•.

Chapter 3

Search Algorithm

3.1 Overview

In this section, I will give a description of how the search is performed. A
random starting point in the search space is generated by randomly assigning
either 1 or 0 to each variable. The search is then performed through a series
of swaps transforming the starting point into a feasible solution. Each swap
changes the value of a variable from either 1 to 0 or 0 to 1. It may be viewed
in the following manner: variables are treated like nodes in a graph and this
is similar to a partitioning problem. If a variable has a value of 0 it belongs
to one block of the partition, if it has a value of 1 it belongs to the other
block, thus a swap would basically be moving a variable from one block of
the partition to another (Note: this is only to facilitate understanding, the
implementation is slightly different).

There are two different concepts in use here: the value of the objective
function, and the value of the search function. The value of the search
function is basically a heuristic to determine how close a given solution is to
the desired minima and is used during the search cycles to order swaps.

At the beginning of each cycle of the search, each swappable variable

11

.z
~
~ Point of lowest search value
i:
til

~
(Starting point cpfnext search cycle)

Number of Swaps Made
l nix::.:

Figure 3.1: What happens during each Search Cycle

(how a variable is deemed swappable is discussed in Section 3.2) is placed
onto a priority queue according to how much the swaps would benefit the
search value. The best swaps would be made first, and as each"swap is made,
some variable may then be redesignated as unswappable, and thus removed
from the priority queue, and other variables which become swappable will be
placed onto the priority queue. After each variable is swapped in that cycle,
it is frozen and no longer swappable for that cycle, hence each variable can
only be swapped once in the cycle. The best search value is stored for that
cycle and if there was a improvement in the search value, we will reverse
the swapping to that point and unfreeze all the variables for swapping again
(See Figure 3.1). The search cycles are repeated again using the solution
which yielded the lowest search value as the starting point until there is no
improvement in the search value for the current cycle over the previous one.

At the final stage, if we have found a feasible solution, then we will
perform an optimizing cycle, whereby we will only consider the contribution
to the objective function of each variable, instead of the search value. This
will allow us to further improve the objective function, totally ignoring the
effects on the constraints except to maintain the feasibility of the solution. If
we have not found a feasible solution, the algorithm will take the constraint

12

with the most negative slack and randomly select one variable to swap (this
mayor may not increase the number of constraints which are over the limit)
and searching will continue from there. The current implementation of the
program makes just one random swap before giving up.

Since the class of problems we are trying to solve in this case is NP­
complete, there is no guarantee we will obtain the optimal answer. Generally,
we cannot even determine whether the answer we get is anywhere close to
optimal. Thus, it is usually useful to perform various searches starting at
different random locations and keeping track of the best feasible solution
obtained. In this case, we can manage a trade-off between time spent and
optimality of the solution. We can make more searches from different starting
locations and thus a better solution may be found if we have more time.

3.2 Constraints

(One of the purposes of the swaps in the algorithm is to transform the solution
\, to oue which will comply with the set of constraints. Whether a solution fits

the set of given constraints is determined by how much slack it has.

-100Xo + 14XI - 13X2 +X3 - 2X4 Minimize (3.1)

4 - 3Xo - Xl - X2 - X3 - X4 ~ 0 (3.2)

1- Xl - X 2 (3.3)~ °
-1 +2XI - X 4 (3.4)> °

Each constraint has a slack value associated with it. This slack value
is equivalent to the evaluated sum of the left-hand side of the inequality.
Table 3.1 shows the effect of a swap on the slack value of a constraint given
the coefficient of the variable in the constraint. If a constraint has a slack
value greater than or equal to 0, then the constraint has been met. To better
illustrate this point, take a look at a simple linear program described by the
objective function to be minimized, given in Equation 3.1 and the constraints
given by Inequalities 3.2 to 3.4. Given the assignments shown in Figure 3.2,
the slack values for the 3 constraints are 2,0,-2 respectively. Since -2 < 0,

13

Set 0 f:.:\

G 0J

G
Figure 3.2: Initial partitioning of the Set

Slack 1-+0 0-+1
Coeff
+ve t -l­
-ve -l­ t

Table 3.1: Effect of Swap on Slack Value of Constraint

constraint 3.4 is not met. Hence the given assignment does not satisfy the
set of constraints and so it does not represent a feasible solution.

The slack value plays a very important role in the search' process as we
want the search to move towards solutions which are more likely to be fea­
sible. Thus, swaps are made if and only if they do not increase the number
of constraints which are not met (except in the case of random swaps). For
constraints which are already over the limit, the swap must not reduce the
slack value any further. Table 3.2 and 3.3 show what types of swaps are
allowed and what types are not, based on the slack value of the constraint
and the coefficient of the variable in that constraint. In order for a variable
to qualify as swappable, it is necessary to be swappable in all constraints in
which its coefficient is not O. For instance for the given linear program, if
X 2 is in the 1 set and Xl is in the 0 set, then Xl would not be considered
swappable because swapping it would make the slack value of constraint 2
negative.

Essentially what these set of rules do is to ensure that throughout the
search process, the sum of the negative slack values of all the constraints will
be always be decreasing, i.e. searches are always proceeding closer towards
a feasible solution. This property of the search is particularly useful in the

'.

14

Slack in Constraint < Icoeffl ~ Icoeff/
Coeff
+ve Y Y
-ve N y

Table 3.2: Can a variable be changed from °-+ I?

case where the search has obtained a feasible solution. In such a case, future
swaps ,,\Till not destroy the feasibility of the solution.

3.3 Search Values

/	 In performing searches, we have to develop an effective heuristic for searching.
In this case, we use the concept of a search value, which tells us how well the
search is progressing.

In the current implementation, the search value of each swap is given
by the contribution of the variable to be swapped to the objective function
if a swap is performed plus the effect on the constraint multiplied by the
contribution to the objective function.

The effect of a swap on the constraint is determined by the minimum
slack value obtainable in that constraint. Swaps which do not decrease the
slack value have no constraint effect value. If the minimum slack value a con­
straint can have is positive or 0, it means that this constraint will always be
satisfied, thus swapping variables will never affect this constraint, hence such
constraints have no effect on the swappability of variables. These constraints
can be safely ignored in the search process. In the event where the maximum
slack of any constraint is less than 0, the set of constraints specified does not
have any valid solution, since the constraint can never be satisfied and the
search algorithm will terminate there. The only significant situation is when
the minimum slack value of a constraint is negative. The absolute value of
the slack value will be used to calculate the effect of a swap on the constraint.

15

Slack in Constraint < Icoeffl ~ Icoeffl
Coeff
+ve N y
-ve Y Y

Table 3.3: Can a variable be changed from 1 ---1- O?

3.4 Data Structures

A major design issue in the search algorithm is to ensure that the search
progresses smoothly without being bogged down in calculating and recalcu­
lating the different values required for assessing the feasibility and value of
the current solution. The Search Engine is designed to keep track of the
variables and data structures as shown in Figure 3.3. There are two priority
queues in the search engine used to maintain the order in which swaps are
to be made and also to efficiently find the constraint with the·most negative
slack in the event that a random swap is to be made. A modified version of
the priority queue is used in order to allow elements in it to have their key
values changed and their positions in the queue updated. The modification
is made through the use of an array to represent the queue. Nodes whose
key values are changed will then perform upheap or downheap depending on
which is necessary. The search engine will also need to keep track of the best
objective function obtained, the best search value obtained and the number
of constraints which are over the limit. This will tell the program whether
the current solution satisfies the set of constraints.

Prior to beginning with the search, the algorithm will be given the start­
ing assignments, the list of constraints and the objective function. The con­
straints are stored in the manner shown in Figure 3.4. Each constraint has a
constant value associated with it, as well as the amount of slack it has. For
each variable in the constraint, a pointer to it along with its coefficient is
added into a linked list in that constraint.

16

SEARCH ENGINE

CURRENI' OBJECTIVE FUNCTION

Figure 3.3: Data maintained by the Search Engine

(
\ Variables in the linear program are stored in the program as an array of

n elements, where n is the number of variables in the linear program. Each
element keeps track of its coefficient in the objective function. The value of
the objective function is given by

2: CiXi (3.5)

where Ci is the coefficient of variable i in the objective function and Xi is
the value of the ith variable.

Each variable has a list of pointers to constraints whose slacks would
be affected if a swap were to be made with this variable. This is used for
updating the slack value of all the constraints. Moreover, in order to keep
track of whether it is swappable, each variable keeps a number which tells
it how many constraints would not allow this variable to swap from 0 to 1,
as well as how many constraints would not allow this variable to swap from
1 to O. This is a very efficient manner of determining whether the variable
is swappable, because as each constraint's slack value is changed, those two
pieces of information in the variable can be updated as well. This minimizes
the actual processing required to determine whether a variable is swappable.

17

-~.

Constraint

Constant	 Coefficient Variable"

Coefficient Variable"

Coefficient Variable"

Coefficient Variable" •
Figure 3.4: Data Structures for storing Constraints

3.5 The	 Search

After reading in all the initial data, the search routine will cycle through
the list of constraints and determine how much slack each has. As the slack
value of the constraints are set, each variable will also be updated with the
number of constraints which would not allow swapping. The constraints are
placed into a modified priority queue sorted by their slack values, with the
constraint having the least slack (or biggest negative slack value) at the top
of the queue.

After all the initialization steps are performed, the search process begins
in earnest. At the beginning of each search cycle, all the variables are un­
frozen allowing for swapping to be done. All the swappable variables are
placed into a queue sorted in order of the contribution to the search value,
thus the variables which reduces the search value by the greatest value will
be swapped first.

The variables are then taken off the queue one at a time, and the variable
is swapped. As the swap is made, the change to the objective function is
calculated along with the change to the search value and the search engine
is updated with these new values. There is no necessity to recalculate either
the objective function or the search function. The change to the objective
function due to variable i being swapped can be calculated as follows:

18

8 . = { CoeffOOj (Xi) if swap is 0 to 1
00

J -Coeffooj(Xi) if swap is 1 to 0

The update of the search value is performed in the same manner as the
objective function. The current search value is not recalculated, only the
change is calculated. This is taken directly from the search value of the
swap.

After calculating the changes to the objective function and search value,
the search algorithm needs to update the slack values of all the constraints in
which the swapped variable has a non-zero coefficient. Each constraint has
its slack value changed by the following formula:

_ { -Coeff(Gj , Xi) if swap is 0 to 1
8s1ackvalue,Cj - Coeff(Gj , Xi) if swap is 1 to 0

where Gj is the jth constraint, Xi is the variable that is swapped and
Coeff(Gj ,Xi) is the coefficient of the variable Xi in the constraint Gj •

As the slack values of the different constraints are adjusted, the different
variables in the constraints have to be updated to ensure that they are keeping
track of whether they are swappable. This is done through two pieces of
information which tell it how many constraints would go over the limit if it
were swapped from 1 to 0 and vice versa. The search algorithm uses Table 3.2
and Table 3.3 in order to determine the effect of a swap. If the table disallows
swapping from 0 to 1, then the number of constraints which would go over
the limit during a swap from 0 to 1 would be increased by 1. The same is
done for swaps from 1 to 0 using the table. This is updated regardless of
what state the variable itself is in, i.e. even if the variable had a value of
1, the information for both types of swaps would be updated. It is done in
this manner in order to keep updating minimal. Thus, whether variable is
swappable from 0 to 1 is easily determined by checking whether the number
of constraint which will be broken during a swap from 0 to 1 is equal to 0
and vice versa for swaps in the other direction. A variable can be marked as
unswappable after being placed in the queue. In such a case, the proposed
swap will be ignored.

The change in slack values of the constraints are also propagated to the
queue used to keep track of which constraint has the highest negative slack

19

value. The slack value of the constraint being modified may change its posi­
tion in the queue and this is updated accordingly, thus effectively performing
dynamic sorting. In this case, we only need to know which constraint has the
highest negative slack value, hence this is an efficient manner to keep track
of that without resorting to deletions and insertions.

After all the accounting has be taken of, the search algorithm proceeds to
freeze the variable to ensure that it is swapped only once during this cycle.
Then the next best swap is taken off the top of the queue and the swap made
and the updating is performed once again. This continues until there are no
more swaps to be made. In a linear program with n variables, there are at
most n swaps that can be made during each cycle, thus each cycle is guaran­
teed to terminate at some point. Upon termination, the program determines
which is the best point in the search cycle to revert to by determining what
is the best search value obtained. Then, the variables are unswapped to the
solution ,'\!hich yielded the best search value. This is a lot more efficient than
keeping track of the best solution because in the latter case, we need to keep
track of the state of the data maintained by the search engine for the best
solution, which would require much more memory and take more time to
make a copy.

The search then starts from the best solution obtained in the previous
cycle and starts swapping allover again. If the search has been unable to
obtain a feasible solution and the current cycle has completed without any
improvement to the search value, then a random swap will be made and the
search will proceed from that point. If even after the random swap is made,
there is no improvement in the best search value obtained in the current
cycle, the search will terminate signifying that the solution is infeasible. In
the event that a feasible solution is found, the search will continue until the
current cycle is unable to obtain any improvement to the search value. In
the last round of search, an optimizing pass is performed. In this round,
the swaps are ranked according to only their contributions to the objective
function instead of their search values. Thus, changes to the slack values
of the constraints no longer has any effect, only the amount by which the
objective function can be reduced. This is useful because it is often possible
to obtain a better solution than the one obtained solely from the previous
few cycles just through that one cycle. It effectively exchanges excess slack
for a better objective function value.

The entire search process is shown as a flow of control diagram in Fig­

20

Search Value
better than last
cycle.

I Unfreeze all variables 1 I

•
r IMake a swap 1­I

+

Update the objective function

& Search Value

t
I Update the slacks of the Constraints I

•
I Update the swapability ofVariables I

J,
Update the Constraints Heap I I

II Update the•Swap Heap
I

+No mere variables to swap

iUnswap to best solution I

I

If here are
1nl re variables
to swap

If the solution iS~ ~ If the solution is
not feasible feasible If solution is ot feasible ,

and no mere ~andom swaps can (Optimize Objective I Unfreeze all variables II be madeI & Make a random swap Function I
I

Terminate with Terminate with
Feasible Solution Infeasible Solution

Figure 3.5: Search Sequence

21

ure 3.5. As shown earlier, each search cycle is guaranteed to terminate in at
most n swaps where n is the number of variables. The entire search process is
also guaranteed to terminate in one of two cases, either a feasible solution is
obtained or an infeasible solution is obtained. It is obvious there is a limit on
the improvement of the objective function (since variables can only be 1 or
0) and a limit on the slack value (since each constraint has a maximum and
minimum slack value). As the search value can only be improved through an
improvement in the objective function or the slack values of the constraints,
there is also a limit to how much the search value can be improved on. Hence
improvements in the search value will stop at a certain point, at which the
search may either terminate or make a random swap. However, as long as
there is a limit on the number of random swaps that can be made, the search
is guaranteed to terminate.

3.6 Non-Linear Objective Functions

In our implementation of the search algorithm, we attempted to implement
non-linear objective functions which will enable us to find solutions for prob­
lems which have linear constraints and non-linear objective functions. We
deal with a very small sub-set of non-linear objective functions, namelyob­
jective functions with terms made up of multiples of different variables such
as mXaXbXc'" (which we will refer to as conjunctive terms). We chose to
deal with only such a small sub-set because, as we have shown in Section 2.2
and Section 2.3, some problems are easier to solve using non-linear objective
functions in the above form.

Our current implementation does not deal entirely with the problem of
non-linear objective functions with only conjunctive terms, but it provides
some support for conjunctive terms.

The objective function is the sum given in Equation 3.5 plus the contri­
bution of the conjunctive terms. A conjunctive term will only contribute its
coefficient in the objective function to the objective function if every single
variable in that term has a value of 1. If even one of the variables in the con­
junctive term has a value of 0, then that conjunctive term will not contribute
anything to the objective function.

22

Each conjunctive term keeps a linked list of pointers to variables in it
and the coefficient of the term in the objective function. The update of the
objective function is done by keeping track of how many variables in that
term have a value of O. If a swap changes the number of zero variables
from 1 to 0, it means this conjunctive term starts to have an effect on the
objective function, thus the value of the coefficient of that term is added to
the objective function. If a swap changes the number of zero variables from
o to 1, then that means the conjunctive term no longer contributes to the
objective function, thus the change in the objective function is the negative
of the coefficient of the term in the objective function.

Although it is possible to perform searching on these types of problems
using our current implementation, the search does not use any heuristics
based on the conjunctive terms. The implemented heuristic takes into ac­
count only the linear constraints and expects a linear objective function.
Thus, the search is unlikely to be as efficient as for linear programs.

(

"

23

Chapter 4

Results

As a test of the ability of the algorithm to find fairly good answers, I ran
it on a set of linear programs which fitted the conditions in Section 1.2 and
thus optimal solutions could be found using the Simplex method.

The linear programs are basically derived from the airplanedeaning prob­
lem I had worked on. It is based on only the first portion of the problem
described in Section 2.1. Thus there is a linear objective function and there
are two types of constraints in the linear program. The two types of con­
straints specify that each plane has to be cleaned at least once in the given
time period, and the capacity limits of the airports have to observed.

Figure 4.1 to Figure 4.6 show the average best objective function value
graphed against the number of searches performed. A search in this case
refers to multiple searches from different random starting points until a fea­
sible solution is obtained. For each test set, we ran 1000 searches for fea­
sible solutions. We obtained the average best objective function value for
each value n on the X-Axis by taking the best value for each n-sequence of
searches and finding the average of those best values for each n.

'.

24

Ava-age Best Value

\
'­ "­

mTm150.00
~

149.00

148.00

147.00

146.00

145.00

144.00

J43.oo

142.00

141.00

140.00

139.00

138,00

)'57.00

136,00

m.oo
134.00

133,00

132,00

13Loo .Se.chs
2ll 40 60 80 100

Figure 4.1: Test Set 1 with solutions averaging 1.5% above optimum for 100
runs

(
Ava-age Best Value

mTm'
]74.00

\
'-..r-­

~

173.00

172.00

171.00

170.00

169.00

168,00

167.00

166.00

163.00

164.00

163,00 fSe_
162.00

2ll 40 60 80 100

Figure 4.2: Test Set 2 with solutions averaging 0.3% above optimum for 100
runs

25

Av~nge 8m. Value

164.00 'IFStSEr
OP'rtMALVAl

\
\.

........

--- -
..........

o 20 40 110 80 100

DE
163.00

162.00

161.00

1110.00

IS9.00

IS8.00

1S7.00

IS6.00

ISS.00

1S4.oo

IS3.00

IS2.oo

ISI.00

150.00

149.00

148.00

147.00

146.00

Figure 4.3: Test Set 3 with solutions averaging 2.9% above optimum for 100
runs

Averase Belt. VUlt:

140.00

139.00

138.00

137.00

136.00

13S.00

134.00
ISeoochoo

20 40 !O 80 100

mfSET
0J5'I'lIiiAl:"V

\
\
\.

....... -­ -

1S3.00

IS2.00

1SI.00

150.00

149.00

148.00

147.00

146.00

14S.00

144.00

143.00

142.00

141.00

=

Figure 4.4: Test Set 4 with solutions averaging 5.2% above optimum for 100
runs

26

Av«aae Beet Value

142.50

142.00

141.so

141.00

140.SO

140.00

139.so

139.00

138.so

138.00

131.so

131.00

136.so

136.00

13S.so

13S.OO

134.so

134.00

133.so

'Se.chcs

'itSfSET

=oP'l1MAL VAll

\
\
\
\

""­
---.......

r--­

I
2ll 40 "" 80 100

Figure 4.5: Test Set 5 with solutions averaging 2.2% above optimum for 100
runs

(

Av«age Beet Value

'JtSTU'I'
1S4.oo

\
\
"'­

-

~I:JE

IS3.oo

ISZ.oo

ISLoo

lSO.oo

149.00

148.00

147.00

146.00

14S.OO

144.00

143.00

142.00

141.00

140.00

139.00

138.00

137.00
Is.."",

2ll 40 "" 80 100

Figure 4.6: Test Set 6 with solutions averaging 5.8% above optimum for 100
runs

27

Chapter 5

Analysis

5.1 Analysis of Results

The results obtained in the previous chapter show that it is possible to obtain
a trade-off between number of cycles spent on the search and the optimality
of the solution obtained. As we spend perform more and more searches,
we tend to obtain better and better answers which are close to the optimal
solutions. As this is a heuristic approach, generally it may never reach the
optimum, but in most cases, a fairly good approximation may be sufficient.
However, it has to be noted from the tests we ran, that the search produces a
solution that is reasonably close to the optimal very quickly (after obtaining
about 20 feasible solutions) and further searches would only improve the
solution marginally.

The time taken for the searches vary widely depending on the number of
variables, the number of constraints, the number of variables which appear
together in over-constrained constraints and the trade-off between the slack
and objective function value in calculating the search value. On average,
some linear programs will take much longer than others. Of the 10 test sets I
have experimented on (on Spare lOs with 32Mb of real memory), the longest

>.

28

(
I
\

took an average of 115 seconds per search which produces a feasible solution,
while the shortest takes an average of 3 seconds for the same type of search.
Thus, it is likely to take less than 5 minutes to generate each feasible solution
and making hundreds of searches is a feasible option.

One way of coping with the huge number of searches is to perform searches
on parallel machines. Different search processes can be started on different
machines until a feasible solution is found. Thus the time taken to perform
10 searches on 10 different machines would be at most the worst case time
for one search.

5.2 Limitations

There are certain limitations in this algorithm. The most obvious one being
that we need to start at various random points in order to obtain even a
feasible solution to the problem. Unfortunately, in many cases it is not
possible to get to some solutions using this form of swapping. This is due to
the way each search cycle is performed and the flaws inherent in searching
only in the space of feasible solutions. As the best swap is made first, this
meant that it would affect the constraints and thus future swaps are restricted
by the earlier swaps in that cycle. Unfortunately, in most cases, certain swaps
which may have led to a feasible solution would not have been made because
by the time it was their turn to swap, they were no longer swappable.

Another fairly obvious limitation of such a search algorithm is the in­
ability to deal adequately with linear systems with constraints that specify
an equality. For instance, if a Fi(X) ~ c and Fi(X) :::; c are two valid
constraints. However, if the starting point is one in which both constraints
are met, then the search basically has no way of swapping out of there, since
swapping out of one constraint would cause the other to be broken. Hence, it
is difficult to deal with such a problem, which is the case with the graph par­
titioning problem. That is not to say the search algorithm will not be able to
deal with these types of problems, just not as effectively as with other types
of problems whereby swapping is a much more efficient approach. Since the
search rarely starts with a point which fits all the constraints, it would still
be able to performing some form of swapping to be able to get to a better

29

solution than purely random assignments.
The most significant limitation of this approach is similar to all other

heuristic approaches, i.e. there is no easy way of telling whether or not
there exists a feasible solution. Although pre-processing in the form of deter­
mining the maximum slack value of each constraint can be used to weed out
some problems without feasible solutions, there still exists many linearly con­
strained problems with no feasible solutions. Only through multiple search
failures is it possible to conclude with a high degree of certainty that there
is probably no feasible solution.

5.3 Conclusion

Even given its limitations, there are good signs from the results obtained
due to the speed in which it is able to obtain fairly good results. Moreover,
the optimality of the results can be time-dependent. If a better result is
desired and there is a lot of time available, it may be possible to just perform
search from different starting points and keeping track of the best result.
Otherwise, if the application is pressed for time and does not particularly
require absolute optimality, then fewer search runs may be made.

\

30

Chapter 6

Future Developments

There are several areas of development which would be nice to have in this
(search algorithm. The current implementation does not have the ability to

deal with linearly constrained problems with non-linear objective functions
efficiently. Even though the algorithm has several features which basically
allow for dealing with conjunctive terms in the objective functions, those
terms are not actually dealt with in terms of the developed heuristic. That
is, to say, the heuristic does not take into account the conjunctive terms
when performing swapping. As shown in the various sections on the medical
scheduling as well as graph partitioning, certain classes of problems have to
be specified in this form, thus it would be useful to be able to make use of
the conjunctive terms in the search.

There are several ideas I had with using the conjunctive terms in the
heuristics. This deals with both the search values as well as the objective
function. In the case of the search values, it would be fairly easy to assign
a certain value to each variable in a conjunctive term which depends on the
coefficient of the term in the objective function, as well as the number of
variables in that conjunctive term as shown in the following formula

coeff
value = k #Variables

31

where k is a constant which may be varied in order to signify the importance
of this component of the search value.

In the case of objective function values, it is a bit more complicated,
because at anyone point in time, we are considering only the effects of
one swap. This means that each swap will cause a change in the objective
function only if that variable is the last non-zero variable in that term that
is being swapped from 1 to 0, or all the variables in the term are 0 and one
is being swapped from 0 to 1.

This points out another another glaring limitation of the current approach
to search, which is due to my desire to keep the implementation as efficient
as possible. Each swap's search value depends solely on it being the next
swap performed. Ideally, it would be nice to be able to predict what would
happen for a series of swaps instead of just one swap. It would be possible
to incorporate some sort of combination swaps, such as two-swaps, where
changes in search values and objective function are dependent on both swaps
being performed one after another. This would result in O(n2) swaps per
search cycle if two-swaps were used, instead of at most n swaps. Of course,
the more swaps considered together, the better the result, but unfortunately
this would mean an exponential increase the number of swaps possible per
search cycle. However, all things considered, it still might be useful to con­
sider small number of swaps together in order to improve the performance of
the search algorithm.

32

Appendix A

User Guide

(
A.I LSearch

LSearch is an executable which performs the search procedures as explained
in this paper, proceeding with a given starting point. It can be executed in
the following manner:

sh> LSearch <initcond> <constraints> <objective> [output file]

The starting point of the search is specified to the search program in
the file initcond. The constraints are specified in the file constraints and
the objective function is specified in the file objective. The output file is an
optional argument which specifies the file to output the final solution to.
This file is written to when the program terminates, regardless of whether
the solution obtained is feasible or not.

LSearch outputs the state of the solution after each swap is made. Fig­
ure A.I shows the value of all the variables in the current solution. If a * is
placed in front of the solution, it means that the solution is a feasible one.
The number enclosed in the <> shows the number of constraints that are

'.

33

*01100010101100101001000111001000011001101011011010110100100100
100101001001101001010001010010101011101001011100101010011001011
0100110010<0>->

Figure A.I: Output of Solution State

CYCLE 2
Number of swaps attempted:70
Best Change to objective function so far:O
Best Change to objective function in this cycle:O
Number of steps to back-track:70
Number of actual swaps made:O
Search Function value:O
Number of constraints over:O

Figure A.2: Report at the end of each cycle

over the limit. Since this solution is feasible, it means that the number of
constraints over the limit has to be O. In other cases, it is possible to tell
how close we are to a feasible solution during the search.

At the end of each search cycle (shown in Figure A.2, a report is generated
which tells us among other things how many swaps were attempted and the
number of steps to backtrack. It also tells us whether a valid solution has
been found from the number of constraints over the limit as well as the
changes to the objective function obtained during this cycle.

At the end of the search, the program will output a final report. If the
solution given is infeasible, then there will be a line specifying it as such,
along with a line stating the number of constraints which are over the limit.
Otherwise, only the total number of search cycles performed are displayed
along with the best change to the objective function as well as the value of
the objective function upon termination.

34

FINAL REPORT
INFEASIBLE SOLUTION!!
Number of constraints over:1
Total cycles:6
Best Change:O
Objective Function:
220.29

Figure A.3: Final Report on Termination of Search with infeasible solution

A.2 Geninit and Search

The starting points of a search may be generated using a perl script called
geninit. It can be invoked as follows:

sh> geninit <num variables> <output file>

(The program will randomly assign values to each of the numvariables
variables and output the assignments to the output file. The rand~m as­
signment of values is based on an even probability of either 0 or 1 being
assigned.

As LSearch can only perform searching from one random starting point,
it is necessary to use a perl script for generating random starting points
and calling LSearch on that starting point. The script Search performs that
purpose. It can be invoked as follows:

sh> Search <#variables> <Constraints> <Objective> [output file]

The script will call on geninit in order to generate random starting points
for the given number of variables. It will then call LSearch in order to
perform search. It parses through the output generated by LSearch in order
to determine whether a feasible solution is generated. If a feasible solution
is generated, the script will then halt, displaying the best objective function
obtained. Otherwise, it will find another random starting point and start
searching again. If the output file is specified, the feasible solution will be
written to that file.

35

A.3 File Formats

A.3.1 Format of Initial Conditions File

This is a comment
The next line gives the number of variables in the problem
5

This is the initial values of the variables
The format is
variable_number:value

0:0

1:0

2:1
3:0
4:0

The variables can be specified to the program in any order, i.e. variable \

10 can be assigned before variable 1. Variables which are specified more than
once in the same initial conditions file will generate a warning and the last
value will be used. Variables with values that are not 1 or 0 will terminate
the program with an error message.

A.3.2 Format of Constraints File

This is a comment
The next two lines specify one constraint using \\ for line
breaking
4 - 3XO - X1 \\
- X2 - X3 - X4
Constraint 2
1 - X1 - X2
Constraint 3
-1 + 2X1 - X4

36

Constraints are specified in the form F(X) ~ 0 . Constraints can be specified
either in one line or with multiple lines joined using \ \. Spaces are optional.
Variables are specified in the form X n. There is a bit of pre-processing done
in order to determine whether a set of constraints yields any valid solutions.
The minimum and maximum slack values of each constraint is calculated. If
a constraint has a maximum slack value of less than 0, then no valid solution
exists.

A.3.3 Format of Objective File

This is a comment

-100XO

14Xl

-13X2

X3

(-2X4
20X1X4

Each term in the objective function is specified on a different line. All other
terms except for the first on the line are ignored. Conjunctive terms can
specified in the format cXiXjXk...

A.3.4 Format of Output File

The output file is in the same format as the initial conditions file without
any comments in it.

37

Bibliography

[1]	 Alexander Schrijver. Totally unimodular matrices:fundamental proper­

ties and examples, Theory of Linear and Integer Programming, pages

266-281, 1986.

[2]	 Michael R. Garey & David S. Johnson. Computers and Intractability:A

Guide to the Theory of NP-Completeness, page 245, 1979.

[3]	 B.W. Kernighan & S. Lin. An Efficient Heuristic Procedure for Partition­ /

ing Graphs The Bell System Technical Journal, pages 291-307, February
1970

[4]	 S. Kirkpatrick, C. D. Gelatt, Jr., & M. Vecchio Optimization by simu­

lated annealing. Science 220, pages 671-680, May 1983.

38

