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Three-Dimensional User Interfaces for Scientific Visualization 

Project Description 
The main goal of this project was to develop novel and productive user interfaces 

for creating and managing visualizations of computational fluid dynamics (CFD) 
datasets. The existing commercial software applications for CFD visualization 
(including [2][16][24]) are full-featured systems for visualizing and analyzing datasets, 
but are all dominated by two-dimensional user interfaces that can complicate certain 
3D operations. In contrast, our approach has been to develop user interface tools that 
exist within the same three-dimensional space as the data being visualized. We feel that 
this approach yields more intuitive user interfaces for tasks which are inherently 3D, 
thus reducing the cognitive distance between a user's intentions and actions. Building 
on our prior work in 3D user interfaces [12][19][38] and the Virtual Wind Tunnel 
project at NASA [6],we have implemented a series of interaction techniques and 3D 
widgets specifically tailored for scientific visualization tasks. The bulk of this work was 
done using conventional desktop hardware, but the most recent developments have 
focused on new interaction techniques which exploit unique characteristics of 
immersive virtual environments. The software for this research was written using our 
own comprehensive 3D graphics system. 

Accomplishments 
The research accomplishments of the past three years have centered on the 

designs and implementations of user interfaces for scientific visualization. To support 
this work, we first implemented a basic scientific visualization application 
development environment using the Graphics Group's own 3D graphics software 
system (UGA [44]) including the following visualization techniques: scalar and vector 
probes (with numerical, colored or tuft displays), streamlines and particle paths, 
isosurfaces and cutting planes (colored and tufts). Although commercial systems 
generally support many more visualization techniques than these, we feel that with our 
system we can experiment with a wide variety of user interface issues that directly 
relate to the general needs of the scientific visualization user community. Using this 
environment as a base, we have done the following: 

• Designed and implemented a variety of interaction techniques and widgets for 
desktop and virtual reality systems (Section 4.2) for
 
- selecting and placing probes in a dataset
 
- controlling parameters of common visualization techniques
 
- navigating through an environment
 

• Performed user and pilot studies to evaluate these user interface designs
 
- positioning (Section 10.1)
 
- selection tasks (Section 10.2)
 

• Formalized a methodology for the design of three dimensional user interfaces 
(Section 5) 

• Implemented two visualization techniques (Section 7)
 
- flux ball
 
- smoke ring
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• Implemented a system for graphically annotating fluid flows (Section 8) 
• Developed a time-critical scheduling algorithm for managing the computational 

resources required by typical scientific visualization applications (Section 9) 

The two new visualization techniques that we have implemented are described later in 
this document. The remainder of this report will describe each of the above items in 
more detail; some of these accomplishments have been presented at computer graphics 
and user interface conferences. 

3 Development Environment 

3.1 Software 

Over the course of this research, we have implemented two applications with 
which to experiment with user interfaces for scientific visualization tasks. These 
applications were written using our in-house graphics system, called the Unified 
Graphics Architecture (UGA) [44]. The first application was implemented in the FLESH 
programming language, an interpreted, object-oriented language developed by the 
Graphics Group. This language served as an interface to the underlying functionality of 
the UGA system. This first application, which we used for the majority of our user 
interface experiments on the desktop, was ideal for this kind of experimentation 
because one could rapidly prototype new interaction techniques and widgets. The 
downside of FLESH, however, was its poor performance when using it for anything 
but simple designs. 

The Graphics Group then implemented another system, called "trim-lite". This 
newer system is written in C++ and consists of a relatively small set of libraries which 
include classes for many of the same components of 3D graphics applications that the 
FLESH programming language supported, including geometric objects, cameras, lights 
and input devices. We chose C++ for this system because it afforded much higher 
performance than the interpreted FLESH language did. As our interface designs 
became more complex, we needed this increased performance to properly evaluate 
new interface designs. 

Applications written using the "trim-lite" libraries are compiled and thus run 
more efficiently than FLESH applications. As part of this grant, we added a library to 
"trim-lite" which performs all of the low-level scientific visualization functions of our 
prior application, and designed a framework in which we could continue our user 
interface experiments both on the desktop and in immersive virtual environments 
(IVE). The resulting application, which is still under rapid development, includes many 
of the user interface components of the earlier FLESH application. However, we have 
focused more strongly on implementing new techniques specifically tailored for virtual 
reality. 

We have tested our system with relatively simple (less than 500,000 points) steady­
flow datasets using both regular and curvilinear computation grids. The majority of 
our work has been done on a curvilinear dataset of airflow velocity (speed and 
direction) past the body of the Space Shuttle, though we have also used a number of 
other datasets including a rectilinear time-varying dataset of magma flows in the 
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Earth's mantle (courtesy of Brown's Geology department), and a rectilinear dataset of 
electrical potential in the human torso (courtesy of the University of Utah). 

3.2 Hardware 

On the desktop, we have used both conventional hardware (CRT and 2D mouse), 
and "fishtank virtual reality" hardware, including a Logitech 6D mouse and 
StereoGraphics LCD shutter glasses. 

In our VR lab, we primarily use a single Ascension Bird tracker for one-handed 
input in conjunction with a Binocular Omni-Orientation Monitor (BOOM) for head 
tracking and stereoscopic display. The tracker is equipped with three buttons for 
additional input. In its default configuration, the tracker controls the position of a 
simple 3D crosshair cursor in the virtual world. 

We also have a glove input device which can be used to input more complex data 
to the application such as postures and gestures of the hand. Though we have not yet 
used the glove directly within our scientific visualization application, we have 
developed the support software to recognize hand postures, and have considered a 
number of techniques which require this device. We discuss these techniques later in 
this document. 

4 3D Widgets and Interaction Techniques 
In the following sections, we will discuss the various user interface issues and 

designs that we have worked on over the course of this research. We begin with a few 
definitions, and present a taxonomy of 3D graphics application tasks, then discuss our 
user interface design methodology, and finish with descriptions of the specific 
interaction techniques and 3D widgets that we have implemented. 

4.1 Definitions 

A widget is an entity which possesses both geometry and behavior [12]. We define 
the geometry of a widget to be its visual appearance when rendered to an output 
device. The behavior of a widget represents its functional role in an application and 
defines both how it reacts to user interaction as well as how it affects aspects of the 
application environment when manipulated by a user. At this fundamental level, 2D 
and 3D widgets are identical. However, on a practical level, they differ in that 3D 
widgets exist in a 3D scene whereas 2D widgets exist within a 2D windowing 
environment. We do not consider 2D widgets that have a 3D "look" (typically achieved 
with drop shadows) to be true 3D widgets. 

According to this definition, a wide range of entities can be called widgets. In 
practice, we divide this spectrum into specific categories (Figure 1). At one extreme are 
widgets with geometry but no behavior. These entities, which we call "primitive 
objects", are the building blocks of virtual environments, and are defined by their 
geometric attributes (position, size, orientation, color, etc.). When modified by a user, 
there are no side effects in the surrounding environment. . 
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lots primitive 

"true" 
widgets 

none behavior lots 

Figure 1: The spectrum ofgeometry andbehavior in widgets. The ratio ofgeometry to behavior 
determines whether theobject is a primitive, an interaction technique, ora "true"widget witha 

combination ofboth geometry and behavior. 

At the other end of the spectrum are widgets with behavior but no geometry. The 
purpose of these entities, or "interaction techniques," is to translate raw user input 
(e.g., mouse deltas, button presses, etc.) into meaningful actions in a 3D scene. For 
example, an interaction technique for panning a camera in a desktop application 
converts 2D mouse deltas into transformations which are applied to the camera 
viewing a 3D scene. Likewise, an interaction technique for manipulating a 3D object 
converts mouse deltas into transformations which are applied to the object. Generally, 
the on!y feedback that an interaction technique supplies is its actual effect on the scene 
(e.g., the motion of the camera or object being manipulated). 

In the middle of the spectrum lie an array of "true" widgets which contain a more 
balanced mix of geometry and behavior. Like interaction techniques, the behavioral 
components of these widgets serve to transform raw user input into values which are 
meaningful to primitive objects. The geometry of a widget acts as a virtual input device 
through which we can indirectly modify attributes of an object that may be unnatural 
or impossible to access directly through a simpler interaction technique (further 
discussion of manipulation is in Section 6.2). 

Both interaction techniques and widgets can be used to modify spatial or non­
spatial parameters of primitive objects. Widgets with geometry are often designed to 
provide feedback to the user, though this is not always necessary. For example, the 
rake widget, described later, utilizes a one-dimensional slider to set the number of 
streamlines along its bar. The position of the slider simultaneously determines the 
distance between the streamlines on the bar and provides feedback to the user about 
this spatial quantity. 
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4.2 Taxonomy of Tasks
 

In interactive 3D graphics applications, tasks can be classified according to the 
following three categories: 

• selection (of objects) 
• manipulation (of objects, parameters, etc.) 
• navigation (of viewpoint) 

Most of the interaction techniques and widgets that we have implemented fall neatly 
into one of these categories. Section 6 describes the techniques that we have 
implemented for our scientific visualization application. 

This taxonomy expands on Robinett and Holloway's [36] presentation of the 
manually-controlled actions that may be implemented in an IVE which involve 
changing the location, orientation or scale of either an object in the IVE (manipulation) 
or the user herself (navigation). In Robinett's treatment, the selection task is implicitly 
included as part of manipulation. We have chosen to make selection a unique category 
because as with manipulation and navigation tasks, there are a wide variety of unique 
methods for performing this task. 

5 General Design Issues 
What follows is a description of some of the design issues that we have 

encountered in our exploration of 3D user interface development. In general, we try to 
adhere to a few rules of thumb when designing 3D widgets: 

• Don't mindlessly transfer 2D user interfaces into 3D environments. 
• Look to real world human-object interaction for inspiration. 
• Consider the characteristics of input and output devices. 
• Consider geometric properties of the application environment. 
• Widgets should be as non-intrusive as possible. 
• Provide adequate feedback to user. 
• Map widget's geometry and behavior to spatial quantities of function it controls. 
• Consider alternatives to geometric widgets when appropriate. 

The following few sections describes each of these rules in more detail. 

5.1 Don't Mindlessly Transfer 2D User Interfaces into 3D Environments 

2D and 3D user interfaces are very different from each other, not only in the 
geometry which defines their visual appearance, but also in their relationship with the 
underlying application. Most 2D graphical user interfaces (GUl's) are built on top of a 
relatively small set of fundamental primitives objects (windows, buttons, menus, 
sliders, etc.) and are controlled by pointing, clicking and dragging with a mouse. 2D 
interfaces for even wildly different applications are thus very similar to one another in 
their "look and feel". 
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In contrast, 3D interfaces, especiallr those for IVE's, potentially have more task­
and application-dependent components. This is because 3D interfaces exist within an 
environment which has many, if not all, of the degrees of freedom of the real world and 
thus affords more latitude for design than 2D environments. It is natural, therefore, to 
design specific tools for specific tasks in 3D applications, just as we build specialized 
tools for all manner of tasks in the real world. The components of 2D interfaces are 
more general in their applicability than many 3D widgets, and may find their place in 
3D applications, even IVE's. However, we must be careful not to simpl~ transfer 2D 
interfaces into 3D environments without considering the consequences . Instead, we 
should design 3D interfaces that exploit the unique characteristics of IVE's. Some of the 
following guidelines suggest ways to do this. 

5.2 Look to Real World Human-Object Interaction for Inspiration 

One of the most important guiding principles of user interface design, especially 
3D interface design, is derived from the observation that human beings are very adept 
at using tools in the real world to interact with objects in their environment. This ability 
to design and use tools for constructive (and destructive) tasks sets us apart from other 
animals, and should be exploited as much as possible by user interfaces for computer 
applications. When designing user interface techniques, we therefore attempt to 
identify techniques in humans' real-world interactions that are similar to the tasks we 
wish to perform on a computer. In some rare cases, we can exactly transfer a real-world 
technique into a virtual world, but more commonly, we must implement a 
metaphorical interpretation of the real-world technique. We are forced to do this partly 
because of limitations of input and output devices, but also because particular tasks in 
a computer application are not exactly like any real-world tasks. Often times, however, 
a metaphor becomes a very powerful tool of its own and allows us to perform tasks on 
the computer which would be impossible in a real-world setting. 

In general, we feel that the most successful user interface techniques are those that 
can be related in some way to human experience of the real world. Certainly, the 
computer is a relatively new tool in human experience, and thus presents new 
possibilities for interaction that were not conceivable with previous instruments. In 
some cases, therefore, people must learn new skills for interacting with computers that 
they would not otherwise have acquired (e.g., using a mouse). However, by 
recognizing peoples' familiarity with other tools in the real world, we can facilitate the 
learning of new tools on the computer. 

Many of the interaction techniques and widgets that are described later in this 
document are derived from observations of real-world tools and human interactions. 
The other general design issues discussed below reflect some of the factors we must 
consider when transferring these real-world situations into user interfaces. 

1. Despite their tendency toward application-dependence, there are still commonalities among 3D inter­
faces, as listed in the taxonomy in Section4.2. Manipulation taskscanbe further brokendown into the 
affine transformations - (constrained) translation, (constrained) rotationand (constrained) scaling­
whichare used in application-specific widgets. 

2. Menus, for example, are a stapleof 2D interfaces, but, as discussedlater (Section 6.4.2.1),are problem­
atic in lYE's. 
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5.3 Consider Characteristics of Input and Output Devices
 

Input and output devices playa crucial role in user interfaces because they are the 
primary channels through which human-computer interaction occurs. Without these 
devices, there is no communication between the human user and the computer 
application. Furthermore, each input and output device has its own particular 
characteristics which define how the device is used by a human and therefore what 
kind of interaction dialog can take place. For example, 2D mice have one or more 
buttons which produce discrete events, as well as a mechanism for producing data 
about relative location. This device was designed for so-called "point-and-click" 
interfaces, and is therefore difficult to adapt to other interaction paradigms. Certainly, 
mice have been used for gestural interfaces which push the boundaries of event-based 
point-and-click designs, but these are still two-dimensional in nature. Also, mice have 
been used in some research systems as continuous input devices, providing input to 
analytic functions within an application [15]. 

2D mice are often used to supply data for interaction techniques in 3D 
applications, but only when the techniques require just two input values. Since it is 
impossible to specify full three-dimensional motion with a 2D mouse, the interaction 
techniques in software must map the two-dimensional input onto some 2D subset of 
the 3D environment (e.g., translating an object in a plane). In many cases, it may be 
more appropriate to use a 3D device for this kind of task. 

As a general rule, a given input device can only specify as many (or fewer) 
degrees of freedom as it supports. This fact may seem obvious, but it has important 
consequences on the design of user interfaces, especially those that support a variety of 
input and output devices. Specifically, any application which intends to support 
multiple types of devices must include interaction techniques and widgets which are 
appropriate for all of them. For example, one of the user studies we conducted (Section 
10.1) showed that the interactive shadow widgets were difficult to use in desktop VR 
because subjects had a hard time using an input device with six degrees of freedom 
(only three positional) to manipulate an object with only two degrees of freedom. One 
solution to this problem is to only allow manipulation of the shadow widgets in the 
desktop environment with the 2D mouse. The shadows may still be displayed in an 
lYE, but they may not be interactive. However, if the shadows themselves serve 
another purpose, such as controlling the positions of light sources in the environment, 
then it would once again be advantageous to manipulate them in the WE. 

Output devices also impose constraints on the user interface. On the desktop, 
CRT's have a limited number of pixels with which to display interface components. 
Text must not be so small as to be illegible; widgets must neither be so large that they 
leave no room for the rest of the interface, nor so small that they are invisible to the 
user. VR output devices such as the BOOM and other head-mounted disflays also have 
limited resolution and impose similar constraints on interfaces for WE's . However, 
since IVE interfaces typically enable users to navigate through the 3D environment, it is 

3. In fact, today's head-mounted displays typically haveverylow resolution (640x480 pixels)compared 
with standard workstation screens (l280xlO24 pixels), rendering users legallyblind.Exceptions include 
the BOOM (which is technically a "head-coupled" displaybecauseit is not attachedto the user's head), 
and someotherhigh-enddisplays. 
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possible to get closer to 3D widgets to get a better look at fine details. 

5.4 Consider Geometric Properties of the Application Environment 

One of the factors that makes 3D interface design more complicated than 2D 
design is that since a 3D interface resides in an environment which can be viewed from 
arbitrary viewpoints, it must be designed so that it is still useful from any point of 
view. Also, unlike 2D user interfaces, which must fit within the physical dimensions of 
a CRT screen, a 3D interface can exist anywhere within an infinite 3D volume. As a 
result, the interface designer can hot take it for granted that the 3D interface will 
necessarily be visible at all times. Certainly, a similar problem exists in a 2D desktop 
windowing environment when windows obscure one another, but the techniques one 
uses to navigate through the interface and find a particular component are different in 
3D. In 2D, the number of pixels on a screen defines geometric boundaries within which 
the user interface components must fall, so a widget must be on the desktop. In 3D, the 
widget could be anywhere in a potentially very large volume. 

In practice, IVE applications usually confine themselves to some finite region. For 
instance, in our scientific visualization application, we only interact within a relatively 
small region defined by the extent of the CFD dataset. Thus, the interface designer need 
not worry about users "leaving the interface behind" in another non-visible part of the 
IVEbecause the entire world is always visible (if not obscured by other objects in the 
scene, of course). In more complex environments composed of "rooms" ([9]), for 
example, this becomes more of an issue. 

Even in relatively well-contained NE's, however, user interface designers must 
consider the scale of the environment. In our application, for instance, we can read in 
many different kinds of datasets of all different sizes and scales, so the user interface 
must be able to adapt. It would be pointless to use a 3D widget that measured three 
inches long in a dataset the size of a one-inch cube. The obvious solutions are to either 
scale up the dataset, or reduce the scale of the widgets. In the case of a curvilinear 
dataset, however, there are data at many different scales within the same dataset, 
suggesting that the user interface must be able to dynamically change scale depending 
on its location in the scene. We have only begun to explore the problems that this kind 
of interface presents. 

5.5 Widgets should be as Non-Intrusive as Possible 

Since the primitive objects in a 3D scene are often the most important 
components, they must be visible at all times and not obscured by interface geometry. 
In a scientific visualization application, this is especially true of the visualization 
primitives (streamlines, cutting planes, etc.). As shown in the user interfaces described 
later on, we often choose to draw our 3D widgets in wireframe. This reflects a 
conscious attempt on our part to make the necessary geometry of the widgets less 
intrusive. In addition to wireframe rendering, we try to make widgets as small as 
possible. However, as the size of a widget decreases, it can become more difficult to see 
or pick it in order to manipulate it. A balance must therefore be met so that the 
interface is usable in a majority of the foreseeable cases. 

In the desktop version of our application, we designed the widgets with this 

PageS 



Three-Dimensional User Interfaces for Scientific Visualization 

balance in mind. Of course, in any perspective projection of a scene, it is always 
possible that a given object will be so far from the viewpoint that it is not pickable 
(though in an IVE, we use a selection technique, described later, which virtually 
eliminates this possibility). 

Both pickability and visual appearance of the 3D user interface components are 
extremely important issues in IVE applications as well. As we have migrated the 3D 
widgets into a fully immersive environment, we have found that some of them are very 
difficult to use without significant redesign of either the widgets themselves, or, as will 
be discussed later, the interaction techniques used to select and manipulate them. For 
example, some of the components of the generalized probe widgets, such as the 
resolution and scale handles, were initially nearly impossible to select in our IVE 
because they were designed for a mouse-based system. Our evaluations of selection 
techniques through user studies for IVE's have shown that selection techniques 
designed specifically for virtual environments can make it easier to pick small objects. 

5.6 Provide Adequate Feedback to the User 

Feedback to the user is an essential component of a good user interface, and must 
be incorporated in the design of any interaction technique or widget. Deciding on the 
exact nature of this feedback is an important part of user interface design. For example, 
simple tricks like predictive highlighting so that the user knows what will happen 
when she clicks or releases the mouse button can only help usability. There are other 
more subtle feedback mechanisms, though, which are very important to implement 
correctly in 3D interfaces. On both the desktop and in VR, for example, we have found 
that it is very important to maintain correlation between the cursor and the object being 
manipulated. When moving objects in the real world with our hands, we maintain 
contact with the object until we let go of it. On the computer, we cannot touch objects 
without haptic devices, but we can maintain the illusion that we are directly 
manipulating objects by providing visual feedback which suggests the contact 
relationship between our input device and the object of interest. 

Though feedback is sometimes discrete, it often takes the form of a continuous 
loop in our user interfaces. That is, for example, the user thinks to move an object to the 
left, so she drags the mouse to the left. She then sees the object move to the left, thus 
confirming the validity of her action. Based on this positive feedback, she continues to 
move the mouse to the left until she has placed the object at its destination. Ideally, the 
feedback loop has a very high frequency, thus reducing the cognitive load on the user. 
Maintaining physical correlation between a cursor and object being manipulated 
increases the frequency of the feedback loop because it provides positive feedback. An 
example of negative feedback would be an interface which moved an object up and 
down in response to left-right mouse motions". The performance of the application 

4. Unfortunately however, this kind of behavioris typicalof 2D user interfaces for 3D applications. For 
example, moving a 3D objectalong thex axis is oftenaccomplished by manipulating a ID sliderwhich is 
most likelynot alignedwith the x axis. As a result, usersmust devote significant cognitive effort to corre­
late their inputwith the visibleeffects on the 3D scene. Moreover, usersmaynot be able to predictwhich 
direction on the screenan objectwill move in response to theslidermanipulation unlessadditional inter­
face components are available whichdisplay the currentorientation of the scene, for example. 
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obviously plays a critical role in providing high-frequency feedback to the user (this 
fact in part motivated our switch from FLESH to "trim-lite"). 

5.7	 Map Widget's Geometry and Behavior to Spatial Quantities of Func­
tion it Controls 

Typically, widgets are used to visualize and modify specific properties of an 
primitive object or to control parameters of abstract functions. We generally attempt to 
design a widget so that the degrees of freedom of its manipulable components match 
the properties or parameters it controls. For instance, a widget for translating objects 
along a single axis in space should itself be constrained to move only along that axis. If 
it behaved otherwise, it would be misleading. Similarly, a widget to control a single 
scalar parameter of a function might also be constrained to translate along or rotate 
about a single axis (like a physical slider or dial). 

Not only should a widget have the same degrees of freedom as the parameters it 
controls, but it should also, whenever possible, be designed so that its visual 
appearance matches the qualities of the parameter, and change its own appearance 
(position, size, color, etc.) along with the changing parameter. For example, the 
geometry of a widget which controls the size of a sphere of influence might be a bar 
whose length is the radius of the sphere. Changing the length of the bar modifies the 
radius of the sphere. In the rake widget described later, a one-dimensional slider 
controls the number of streamlines that the rake emits. We chose to represent this slider 
with the geometry of a cylinder in order to reflects the one-dimensional parameter it 
controls. In our design, the position of the slider on the rake relative to one end of the 
rake determines the spacing between the streamlines. 

5.8	 Consider Alternatives to Geometric Widgets when Appropriate 

Still other research in the group has focused on developing gesture-based user 
interfaces for controlling 3D environments. The Graphics Group developed an 
application, called SKETCH [45],which uses these techniques to facilitate rapid 
construction of 3D models from simple sketched gestures. This application currently 
works with either a 2D mouse or tablet. To date, we have not applied this gestural 
interface research to the scientific visualization application, but we may consider doing 
so in the future. For example, using a sketch-style interface, scientists could quickly 
instantiate new widgets in a dataset by roughly sketching their salient geometric 
features into the 3D scene. 

Eliminating the geometry of widgets from the scene is likely to be a good thing in 
some cases, but we must be sure not to lose their functionality in the process. Also, we 
must be wary not to misuse gesture-based interfaces when more traditional geometric 
widgets might be more effective. 

6	 Implementations 

The following sections describe implementations of the user interfaces that we 
have experimented with over the course of this research. When appropriate, we discuss 
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how particular design decisions were made, and how these designs relate to the 
methodology described above. The first three sections address each of the tasks 
outlined in the taxonomy above. The final section on complex widgets describes some 
user interface designs for controlling abstract parameters of an application 
environment. These widgets require users to combine the selection and manipulation 
tasks to form a dialog with the interface. 

6.1 Selection 

Selection is one of the fundamental tasks in any interactive graphics application. 
Through selection, users indicate which objects they are interacting with and specify 
which parameters they wish to view or modify. The method used to select an object, 
however, differs greatly depending on the type of input and output devices at hand 
and the application itself. We have implemented a variety of techniques for both 
desktop and VR systems. 

6.1.1 Desktop 

There are a variety of configurations of input and output devices for desktop 
systems, ranging from the conventional CRT and 2D mouse combination, to more 
elaborate stereo displays and 3D input devices. Selection techniques for the latter will 
be discussed in the next section since many of the issues are the same. 

When using conventional desktop hardware (2D mouse input and standard CRT 
output), the method we usually utilize for selection is ray intersection. We construct a 
ray based at the focal point (viewpoint) of the camera through the point on the film 
plane which corresponds to the position of the 2D mouse cursor. By testing for 
intersections between this ray and all of the geometry in the scene, we can determine 
which object the mouse cursor was "over" in the 2D projection of the scene, and select 
that object (usually in response to a button press). We have found that this technique is 
very effective on the desktop because from a perceptual point of view, it emulates the 
"point and click" behavior of 2D desktop windowing systems. Consequently, this is a 
general method of selection for desktop applications that have both 2D and 3D 
components. Also, since the mouse is a virtually noiseless and thus very precise input 
device, we are able to select very small objects which project to only a few pixels on the 
screen. As we will see, this is not the case for IVE input devices. 

6.1.2 Virtual Reality 

Just as on the desktop, selection techniques are used in IVE's to specify which 
object(s) in the environment the user wishes to interact with. In the real 3D world, of 
course, people "select" objects by touching them with their hands, or indicate a 
particular object in the distance by pointing in its general direction. When designing 
and implementing selection techniques for virtual reality applications, we can look to 
this real world human behavior for inspiration. However, in VR applications, the 
selection task is complicated by a number of factors, including limitations imposed by 
input and output devices as well as by software techniques. 
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In VR, user actions are mediated by input and output devices which are often 
imprecise and which either lack or distort perceptual cues that we take for granted in 
the real world such as haptic feedback, stereopsis, field of view, texture (both visual 
and tactile), and sound. Display devices like the BOOM provide stereoscopic views, but 
some people are not able to resolve depth from this type of display. Other head­
mounted display devices typically provide fairly low-resolution images, making it 
difficult to resolve small objects. Magnetic 6D trackers introduce problems as well. 
First, they are not always accurate in many real environments because they are 
adversely affected by metallic objects and electronic devices in the physical 
environment. This can cause significant registration error between the actual and 
displayed position of the tracker. A number of techniques have been proposed and 
implemented to correct for static distortions (those that do not change significantly 
over time) of this type [5][13][17], including a method developed here at Brown [18] 
(see Appendix A for a discussion of these methods). 

Secondly, the data reported by magnetic trackers is somewhat noisy, so even 
when they are held perfectly still, the 3D cursor in the scene appears to randomly jump 
around. The magnitude of this noise in our tracker is approximately 0.1". The 
combination of hardware and software used to convert magnetic fields into position 
and orientation values that can be used by our software introduces lag into the system. 
This results in a delay between the actual tracker movement and the display update in 
the lYE. As shown in [30], lag contributes significantly to error. 

On the software side, the selection tests used by most virtual reality applications 
consist of precise, mathematical tests (e.g., ray intersection or point enclosure). While 
we have found that these seem to work well for desktop applications, they are not 
nearly as successful in IVE's. As our pilot studies have shown, this is in part due to the 
physical limitations of the tracking and display hardware we use. However, there may 
also be more subtle phenomena at work. For example, since IVE's strive to provide an 
experience which mimics many of the perceptual qualities of our real-world experience 
(including stereopsis, wide field of view, etc.), users of IVE applications may thus 
presume that they can interact with objects in an IVE in the same way that they interact 
with objects in the real world. Unfortunately, computers are not yet adept at inferring 
user intentions exclusively from the kind of vague indications which humans are 
accustomed to using for communicating with one another in the real world (pointing, 
gesturing and speaking, for example). As a result, designing effective selection 
techniques for VR applications is a tricky process. Our general design methodology has 
been to look to the real world for examples of how people select, indicate or 
manipulate objects, and transfer qualities of these interactions into software techniques 
in an IVE. Often, the resulting interaction technique in an IVE is very different from its 
real world source since the software technique must both cope with limitations of the 
hardware devices, as well as exploit the "magical" properties of an IVE (such as the 
ability to manipulate objects at great distance, which can not easily be done in the real 
world). 

In the following sections, we will describe the most successful of the techniques 
that we have implemented. We are also conducting informal user studies of these 
techniques which are helping to guide our designs. These studies are discussed in a 
later section of this report. 
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6.1.2.1 Virtual Input Devices and Physical Props 

A virtual input device in an NE is analogous to the mouse cursor on the desktop. 
It is a piece of geometry which represents the state of the input device(s) currently 
being used. In the case of a single 3D tracker input device, the virtual input device 
(VID) might be a simple crosshair cursor (Figure 2a). Generally, the appearance of a 
VID depends on a number of factors, including the type of physical input device, the 
task it is being used for, and any physical modifications that have been made to the 
device itself (props). Some of the selection and manipulation techniques that we have 
implemented were motivated by observations of how people operate with tools in the 
real world and are implemented with these metaphors in mind. Therefore, when we 
have felt it appropriate, we have used props to emphasize the metaphor. In other 
research [21], props have been shown to aid users' understanding of user interfaces for 
virtual reality applications. 

We make use of a number of different props in our lab, including a drumstick and 
a ski pole handle. We modify the geometry of the VID to suggest the shape of the prop 
(Figures 2b and 2c). Though this is not strictly necessary, it is often helpful because a 
user can more easily correlate what she sees in the NE with the physical sensations she 
perceives of the actual object in her hand. 

a b c 

Figure 2: Three types of virtual input devices. a) a simple crosshair cursor; b) a cone (used 
with the drumstick); c) a cylinder (used with the ski pole handle) 

6.1.2.2 Touch 

In terms of borrowing ideas from the real world, this might be considered the 
most straightforward selection technique since humans are very familiar with touching 
objects first in order to manipulate them. From an implementation point of view, the 
input to this technique is also fairly simple, requiring only a 3D position (e.g., from a 
tracker) and a means of signaling to the application when to select an object (e.g., a 
button press, voice command, etc.). We have implemented two variations of the touch 
selection technique in our system. In the first, the position of the tracker determines the 
placement of the 3D cursor used for the selection test. When the 3D cursor is placed 
inside the geometric boundary of an object, that object can be selected by pressing a 
button on the tracker. We may use other input methods such as speech recognition to 
replace the button as a way for the user to signal selection. This technique is similar to 
touching objects in the real world, except that there is no haptic feedback (i.e., subjects 
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can not feel the object in the virtual world). One drawback of this technique is that it 
requires that the desired object be within reach. If the object is out of reach, then the 
subject must first navigate to the vicinity of that object in order to select it, and the 
selection task thus becomes a two-step process. 

The second variation was inspired by observations of glass blowers who 
manipulate objects at a distance with long sticks so as not to be burnt by the hot glass. 
In our implementation, we use the drumstick prop, which emulates the.glass blower's 
tool, and place the 3D cursor at the end of the corresponding VID in the virtual 
environment. Using the drumstick increases the distance from the user that objects can 
be selected, but may make it more difficult to select objects at close range due to the 
awkwardness of holding the stick in these positions. It is still not clear which of these 
techniques is better overall, but they clearly each have particular strengths and 
weaknesses. User studies will, of course, help to determine which approaches are better. 

Note that due to noise in the position values reported by the tracker, coupled with 
normal jitter in the user's hand, the VID in this technique (and in others) appears to 
jump around even when attempting to hold it perfectly still. This phenomenon 
indicates that objects must be larger than some minimum size in order to be selectable 
with this technique (or that the technique itself must be modified). The pilot studies 
described later attempt to define this threshold. In the second variation, since the 
orientation of the tracker influences the position of the end point of the VID which is 
used for the selection test, this technique is susceptible to errors from noise in the 
orientation of the tracker as well as positional noise. In practice, these factors present 
severe usability problems which we have attempted to alleviate by modifying the 
technique (see the technique described in the next section). 

Testing whether a given input point is within the geometric boundary of an object 
can be computationally very complex. To reduce this complexity, we can use a 
simplified geometric representation for objects in the selection test. In our first 
implementation, we used a sphere scaled to the 3D extent of the object. With this 
approximation, a simple analytic test could determine roughly when the cursor was in 
the vicinity of the target object. However, this simplified technique posed problems 
when the actual geometry of the visible object was very different from a sphere (e.g., if 
the object is convex). Currently, we are using a polygonal collision detection system 
called "I-Collide" developed at UNC, Chapel Hill [11], which can accurately detect 
exact collisions between a VID (represented by a geometric object) and the objects in 
the scene at interactive rates. 

6.1.2.3 Touch Plus Intersection Ray 

In our evaluations of the touch method described above, we found that even 
though it seems like a very natural technique, and seemed to work fine for selecting 
large objects, it is nearly impossible to use it to select small or narrow objects. The exact 
minimum size depends on a number of factors which we have attempted to quantify in 
our user studies described later. We have augmented the touch technique to remedy 
this shortcoming. In the basic technique, we simply test whether the cursor is inside the 
geometric boundary of each object (using either the simple spherical test or the true 
collision detection method). Due to the noise in the tracker and instability in the user's 
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hand, this technique is extremely susceptible to the effects of temporal aliasing. Since 
there is no haptic feedback in this system to alert the user that she has touched a given 
object, the VID is allowed to pass through any objects. If the frame rate is not 
sufficient!y high, or if the noise in the tracker and user's hand is significant compared 
with the size of the target object, there may be cases when the user feels that she has 
placed the cursor in the correct position, but still can not select the object. This situation 
most often occurs when at time i, the cursor is either inside the object or just to one side 
of it (Figure 3). Then, at time t+1, the cursor has passed either outside the boundary of 
the object or to the opposite side. In the touch technique, when the button is pressed at 
time t+1, the selection test obviously failss (it can still succeed in some cases if the 
approximate spherical test is used). However, if we consider the line segment between 
the sample point at time t and the position of the tracker at time t+ t we can determine 
which object the cursor passed through by looking for intersections between this line 
segment and all of the objects in the scene. When the button is pressed at time t+1, we 
select the appropriate object. 

a 

intersection 
point 

.,+ 
.I .'I .'. -.. . -
...b + 

time t time t+1 time t+2 

Figure 3: Augmenting the touch selection technique. At time i, the cursor is either inside the 
geometric boundary of an object (a), or just to one side (b). At time t+1, the cursor is 
outside the object (a), or on the opposite side (b). Finally, at time t+2, the cursor may 
have entered a second object (c). The dotted line segments in b and c are tested for 

intersection with the object. 

Adding this heuristic does not by itself quite make a successful technique because 
if the user waits until time t+2 before pressing the button (which is likely considering 
each frame is displayed for less than 0.1 second), then the line segment between the 
two sample points may not intersect any objects. We have thought of two possible 
solutions to this problem. First is to "remember" the last object that was intersected for 
some time interval (1/2 to one second) during which any button press will select that 

5. It is also possible that at time 1+1, the cursor has entered the boundary of an adjacent object, in which 
case, that object would be selected instead of the intended one. 
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object. This method would still fail if the time between frame updates was longer than 
the memory interval. This will not occur in an IVE because the frame rate must be 
higher than 10 Hz. 

Second, we might use a spatial measure to determine which object to 
"remember." That is, until the cursor travels more than a certain distance away from 
the last intersection point, a button press will select the last object that the cursor 
passed through. Of course, both the length of the time interval and distance travelled 
by the cursor should be determined by user studies. While we have not yet determined 
the optimal parameters, our pilot studies do indicate that the addition of these 
heuristics greatly improves the usability of the touch technique. 

6.1.2.4 Laser Pointer 

This technique gets its name from real laser pointers which are used in darkened 
rooms to point out distant objects. It uses ray intersection to perform selection similar 
to the desktop selection technique described earlier. In this technique, however, the 
base point and direction of the selection ray are determined by the position and 
orientation of the tracker, respectively. The ray points down one of the principal axes of 
the tracker's coordinate system (we have chosen the z axis). We generally use this 
technique with the drumstick prop, holding it as if it were a laser pointer. The physical 
prop reinforces this metaphor. 

In our pilot studies, we found that this technique, though easily learned, 
presented severe problems when trying to select small objects even at close range. The 
noise from the device coupled with the inherent instability in one's hand causes the 
direction of the intersection ray to fluctuate by as much as ±5 degrees. At a distance of 
three feet, this error amounts to 6.25 inches, suggesting that objects any smaller than 
this are effectively unselectable at this distance. The techniques we describe below 
introduce methods to reduce the adverse effects of tracker and hand noise. 

6.1.2.5 Target (Laser Pointer from Eye> 

The target technique is also based on ray intersection, but borrows even more 
from the 2D desktop techniques than the laser pointer. In this technique, we cast a ray 
from the viewpoint, controlled by the position of the user's head, through the 3D 
cursor in the IVE, determined by the position of the tracker. This technique was 
inspired by and is similar to looking at a target through the sight on the barrel of a gun, 
or to holding up one's thumb to measure the size of a distant object. Although there is 
still noise in the position of the tracker, and jitter in the user's head and hand, we have 
observed in our pilot studies that the distance between the head and hand, which 
determine the basepoint and direction of the intersection ray, respectively, do in fact 
reduce the overall error in this technique (compared with the laser pointer which is 
adversely affected by both positional and rotational noise in the tracker). Given the 
absence of haptic feedback in our system, users may also find it more "natural" to 
select objects from their point of view than from their hand (this may be similar to the 
decreased accuracy of shooting a firearm "from the hip" compared with using the sight 
on the barrel). 
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When using this technique, we must also consider the fact that a stereoscopic 
image of a scene is produced from two separate eye points (cameras) simultaneously 
that are positioned side by side to match the physical configuration of the human eyes. 
Since the base point of the intersection ray in this technique is controlled by an eye 
point, we must decide which eye point to use. We know that most people have a so­
called "dominant" eye which they favor over the other when performing tasks in 
which a single point of view is required. A simple test can determine which eye is 
dominant, and we can adjust the technique appropriately. 

6.1.2.6 Aperture 

This technique augments the target technique with an additional feature to help 
alleviate the adverse effects of error from noise. The visual representation of this 
technique consists of a circular aperture centered on the cursor point which is marked 
with a crosshair (Figure 4a). We have experimented with two uses of the aperture. The 
first (Figure 4c) places the aperture at the location of the 3D cursor, and aligns it with 
the film plane of the camera viewing the scene. As with the target method described 
above, a user places the aperture "over" the object(s) she wishes to select, then presses 
the button on the tracker. This configuration can be used with or without the drumstick 
prop, and the VID is modified appropriately. 
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Figure 4: The aperture technique. a) The basic aperture geometry. b)Small circles represent the 
positions of intersection rays cast through the center of the aperture and representative 

points on the perimeter. c) The conic volume described by the viewpoint and aperture. d) 
The conic volume described in the "flashlight" configuration. Both c and d are shown with 

the drumstick VID. In our implementation, the conic volume is semi-infinite. 

In the second configuration (Figure 4d) we use the drumstick prop and place the 
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aperture geometry at the end of the stick, but this time align it with the plane 
perpendicular to the axis defined by the stick (similar to the intersection ray in the laser 
pointer technique). 

In either configuration, the combination of a direction vector and the aperture 
circle defines a conic volume in space. In the first configuration, the apex of this cone is 
coincident with the eyepoint of the viewer. Any object which appears from the user's 
point of view to be inside the circular aperture can potentially be selected. In the 
second configuration, the effect is more like a flashlight sweeping through a region of 
space; any object "illuminated" by the flashlight is potentially selectable. A similar 
technique using the flashlight metaphor was implemented by Liang [29] in the MR 
Toolkit system, but the from-eye version was not implemented. 

The radius of the cone can be easily modified in the first configuration simply by 
drawing the VID closer to or further from one's eye. In the "flashlight" configuration, 
however, an external control is needed to change the radius of the aperture circle. 
Currently, we adjust this parameter from a command line interface, but we have 
envisioned a number of possibly more attractive possibilities including using voice 
recognition, a hardware dial on the physical input device, or twisting the stick around 
its long axis (the central axis of the conic volume). We did try this last technique, but 
quickly discarded it after we found it very difficult to continue pointing the stick in the 
same direction while twisting it. 

Intuitively, the objects that the aperture-based techniques should select are those 
that fall within the conic volume. This can be expressed as a test for intersections 
between the conic volume and all of the objects in the scene. We have tried the 
following techniques: 

• Ray intersection from the base point through center of aperture (by itself, this is a 
degenerate case equivalent to the laser pointer or target techniques). 

• Ray intersection from the base point through representative points on the aperture 
circle (Figure 4b). 

• Project vertices and edges of objects in the scene onto the plane defined by the 
aperture circle. 

• Using I-Collide to detect interpenetration of the conic volume with the objects in 
the scene. 

l-Collide obviously is the technique of choice because it returns an exact solution, 
though in some complex scenes (e.g., with isosurfaces), it may be too slow because of 
the large number of polygons. In most of the simple scenes we have used it in, 
however, l-Collide seems to work very well and at interactive rates. 

The first two tests above use the same ray intersection tests that the laser pointer 
and target techniques use. Computationally, ray intersection is inexpensive compared 
with projecting vertices and edges of objects in the scene onto a plane, but can easily 
miss objects that do lie within the boundary of the aperture circle and thus should be 
selected. The vertex and edge projection tests reduce the 3D intersection test to a 2D 
problem. Once the vertices and edges are projected onto a plane, we need only 
determine whether they fall within the circle. However, this technique is 
computationally very expensive and currently can not be used in complex scenes at 
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interactive rates without hardware acceleration. 
Since the aperture technique defines a volume of space, it is possible that we may 

have multiple candidate objects for selection. In the event that more than one object lies 
inside the conic volume, we may either select all of the objects, or identify a single 
object for selection based on some criteria. In practice, there are a variety of 
mathematical tests to determine which of a number of objects to select. One possibility 
is to choose the object whose center point is closest to the base point of the intersection 
ray (either the viewpoint or location of the tracker, depending on the particular 
configuration in use). This method presents a problem, however, when a user attempts 
to select an object near the center of the aperture, but a closer object is partially inside 
the edge of the circle. In this case, both objects are candidates, but the second, closer 
one will be selected because it is closer to the viewpoint. 

Another possibility for choosing a single object among many potentially 
selectable objects, and one that appears to be the most intuitive, is to select the object 
closest to the ray passing through the center of the aperture circle. Note that this object 
may not be the closest object to the viewer. This method recognizes the user's intuition 
(backed up by anecdotal evidence in our user studies) that the more "centered" an 
object is in the aperture, the more likely that it will be selected. 

A third option is to select an object based on its apparent size (e.g. select the 
largest object in the aperture). In practice, this is not such a good option, since it may be 
difficult to select a small object next to a larger one. Also, if two objects of roughly the 
same size are at different distances from the viewpoint, their apparent size will, in a 
perspective projection, be very different as well. Using the size test to determine which 
object to select may work in this case, but a test based on distance would probably 
work just as well. As mentioned, in practice, we have found that the distance test is 
more appropriate than an apparent size test. 

Note that this technique is also subject to modification based on each user's 
dominant eye. 

6.1.2.7 Glove-Based Interface for Aperture 

Though we have not implemented it yet, we have designed a glove-based 
interface to the aperture technique which we feel is more natural than the two 
configurations described above. This technique utilizes the posture recognition 
software in our system to identify when the user has shaped her hand in a pinching 
posture. When this posture is recognized, the aperture geometry is drawn between the 
index finger and thumb. As with the first configuration of the basic aperture technique, 
the aperture is aligned with the film plane. Two advantages to this technique are that 
the user does not have to hold a prop, and also that the size of the aperture can be 
adjusted simply by moving one's fingers further apart or closer together. 

6.1.2.8 Orientation 

The orientation selection technique selects objects in an IVE by comparing the 
orientation of the tracker with the orientations of objects in the scene. Any objects 
which approximately match the orientation of the tracker are candidates for selection. 
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The inspiration for this technique was the observation that in the real world, when we 
attempt to grab an object with our hand and fingers, we first must configure our hand 
so that it conforms to the part of the object we reach for (e.g., the handle of a cup, the 
middle of a bar, etc.). At a very gross level, the task we perform is matching the 
orientation of our hand with that of the target object. We can approximate this with a 
simple mathematical test. 

According to this technique, the shape of an object plays a direct role in 
determining how it can be selected. In the UGA system, primitive objects initially have 
a canonical uniform scale. Given this property, the scale components of an object's 
current transformation matrix (CTM) can reveal information about it's shape. Long thin 
objects and flat objects can be easily identified by significant differences in their x, y 
and z scale components. Of course, objects which are long and thin but which are not 
aligned with a principal axis will not be so easily identified. In general, determining the 
shape of an object may be a harder, more subjective problem that involves at least an 
analysis of the object's geometry, and perhaps even some higher-level semantic 
knowledge about important features of the object (such as the handle of a cup or knob 
on a door). However, for some simple cases, we can get reasonable behavior under the 
current scheme. 

a b 

Figure 5: Orientation selection technique. For this technique the cursor geometry is a pair of
 
parallel plates which indicates the current orientation of the tracker. This cursor may be
 
used by itself or in conjunction with a VID such as the drumstick. a) shows the cursor
 

orientation that would select long, skinny objects like the bar of the object in the middle
 
of the figure. b) shows the cursor orientation that would select short, wide objects, like
 
the disc on the bar. The ball at the end of the bar presents something of a problem for
 
this selection technique. This can be remedied by adding a heuristic which identifies
 
uniformly-scaled objects and compares distance to the cursor rather thanorientation.
 

In our application, we tested this technique on the rake widget, which consists of 
a bar (a long thin cylinder), a slider on the bar (a flattened cylinder), and a ball at one 
end of the bar (a small sphere). We modified the geometry of the VID for this technique 
so that the orientation of the tracker was clearly represented (two parallel flat blocks 
placed side by side). As the user rotates the tracker, so does the cursor rotate and thus 
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indicate the kinds of objects that can be selected (Figures 5a and 5b). 
Note that if this selection technique uses only the relative orientations of the 

tracker and objects in the scene to determine which objects it will select, and not their 
respective positions, it can select objects that are a significant distance from the tracker 
(or even outside the view). In our initial tests, we found this behavior unnatural. To 
cope with this drawback, we added the requirement that the tracker had to be within 
some reasonable distance from an object in order to select it, regardless of the similarity 
between their respective orientations. Checking distances in this way may also be 
required in order to choose among multiple candidates for selection when the scene is 
crowded. 

The orientation of objects which are uniformly scaled, like the sphere at the end of 
the bar, is not readily apparent. In these cases, this selection technique uses only the 
distance measure to determine selectability. In this particular instance, a glove-based 
posture recognition interface might be more effective - the user would simply shape 
her hand to fit the desired object. Such an interface might compare the convex hulls of 
the user's hand and nearby objects and pick the one with the closest match. 

6.2 Manipulation 

Manipulation is a generic term which describes any of a number of ways to 
interactively modify the state of objects in a computer application. Manipulation in a 
3D graphics context includes applying affine transformations to objects, discrete actions 
such as pressing buttons or complex actions like gestures or speech acts which are 
interpreted by a user interface as modifications of primitive objects. The key concept is 
that manipulation implies interactivity, and that therefore a user interface can be 
characterized by the types of manipulations it requires one to perform. 

6.2.1 Direct vs. Indirect Manipulation 

Most types of manipulation in user interfaces can be categorized as either direct 
or indirect. In his classic article on the subject [37], Shneiderman explains that a direct 
manipulation user interface is one in which the human user is presented with a visual 
model of a problem domain, and that the interaction dialog includes "continuous 
display of the object of interest" and "rapid, incremental, reversible operations whose 
impact on the object of interest is immediately visible." This definition was proffered in 
1983,when the art of graphical user interface design was still in its infancy. It stands in 
stark contrast to indirect manipulation found in batch, menu or command-line 
interfaces which generally require users to maintain an abstract mental model of a 
problem that conforms to a specific specification language (e.g., the command 
keywords and syntax). Since this first definition of direct-manipulation, many others 
have presented their own versions. For example, Laurel [28] stresses that direct­
manipulation interfaces present the "continuous representation of the potential for 
action." 

Direct-manipulation interfaces, when implemented well, give users a sense of 
being in control of the application, and reduce the cognitive distance between a user's 
intentions and the resulting physical actions she must take. By relying more heavily on 
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visual perception and cognition (through the use of icons and other graphical elements) 
than on abstract thought processes required by text-based command interfaces, direct­
manipulation interfaces can help users be more productive. 

As we have experimented with different interaction techniques and widgets for 
3D graphics applications, subtle variations of direct-manipulation interfaces have 
emerged. In its basic form, users directly control the object of interest and there are no 
side-effects. This type of direct-manipulation occurs in a 2D or 3D graphics application, 
for instance, when a user drags a shape or geometric object across the canvas or from 
one point in space to another. If manipulating this object has additional effects on other 
objects in the environment, then it is itself a component of the user interface. In this 
case, though the user has directly manipulated the widget, she has also indirectly 
manipulated some other part of the environment. Thus, direct-manipulation interfaces 
often incorporate and rely on indirect manipulation. 

All of the widgets described below have significant direct and indirect 
manipulation elements. Some of the interaction techniques described earlier, however, 
do not provide a visual representation of themselves beside their effect on the scene. 
The use of predictive feedback, such as highlighting the object(s) that would be selected 
if the user pressed a button, for example, do provide a sense that the user is wielding a 
tool which can somehow modify the environment. 

Designing good direct-manipulation interfaces is a tricky business, and requires 
deep insight into the exact nature of the tasks for which they are developed. A well­
designed direct-manipulation interface can greatly help task execution, but a poorly­
designed one can actually be more difficult to use than a non-graphical, indirect­
manipulation interface. Thus, direct-manipulation does not necessarily equate with 
ease of use [23]. 

6.2.2 Types of Manipulation in 3D Applications 

The most common types of manipulation tasks in 3D graphics applications are 
inherently geometric. That is, they involve changing the current transformation matrix 
(CTM) of 3D objects. Modeling, animation and scientific visualization applications all 
provide techniques for modifying the position, orientation and scale of objects, but the 
exact interaction techniques and widgets that one uses differ from application to 
application. Other attributes may also be manipulated, such as the color or 
transparency of an object, or higher-level attributes like the spacing of a gridded floor 
plane, or the number of streamlines on a rake in a scientific visualization application. 
However, whatever the parameter, a 3D user interface for modifying it almost always 
involves some kind of geometric manipulation. In the following sections, we discuss 
some of the widgets and techniques that we have developed for modifying parameters 
of 3D objects. 

6.2.3 Position and Orientation Techniques 

Positioning and orienting objects in 3D are two forms of manipulation that are 
widely used in 3D graphics applications. We designed the techniques described in the 
following sections for use with conventional desktop hardware: a 2D mouse and CRT. 
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Thus, these techniques aim to overcome many of the difficulties which result from 
using 20 devices for 30 interaction tasks. We have begun to use these same techniques 
in VR, and have found that while some are still useful, others must be (and have been) 
abandoned or at least significantly redesigned in order to be usable in VR. Finally, the 
selection techniques described above each suggest their own unique form of 
manipulation once an object has been selected. The final subsection below describes 
these manipulation techniques. 

6.2.3.1 Interactive Shadows 

When using desktop hardware, the default positioning technique in our system is 
direct-manipulation screen-aligned translation (objects move in the plane parallel to the 
screen plane). However, since this is a 20 mouse-based technique, the user must 
change the viewpoint to move objects in other planes. To move objects in three-space 
with the 20 mouse without changing the viewpoint, we have added "interactive 
shadow" widgets (Figure 6) to this environment. These shadow objects are generated 
for every 30 object, provide a valuable depth cue, and can be displayed on any axis­
aligned plane. Further discussion of this tool is in [20]. Note that in the figure, the 
shadows on the floor plane do not contain all of the detail present in the widgets above 
them. This is done in part to decrease the number of polygons in the scene (since the 
shadow widgets are geometric copies of the widgets), but also because research has 
shown that human perception does not necessarily requires shadows to be exact [41]. 

Our initial attempts to use the shadow widgets as interactive tools in VR have 
been relatively unsuccessful. Since the input devices we use in VR provide the 
additional degrees of freedom that are lacking on the desktop, the shadows are no 
longer necessary as manipulation tools. They do, however, still provide a valuable 
depth cue. The major problems with the shadows as manipulation tools in VR is that 
they can be difficult to select, at least with the touch selection technique. Also, since the 
input device is not physically constrained to the same degrees of freedom as the 
shadow, users often feel disconcerted when the shadow does not exactly follow the 
position of their hand. We expect that the shadows may be somewhat more usable with 
the target and aperture techniques, and plan on testing this in the near future. 
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6.2.3.2 Object Handles 

Some geometry, such as the Shuttle's fuselage, can easily obscure the shadow 
widgets projected onto a floor or wall and thus render them unusable. To address this 
problem, we have implemented another technique for moving objects in 3D with a 20 
mouse, called "object handles" (Figure 7) [12]. With this technique, we attach three new 
objects (in our case, simple line segments) to the 3D object and align them with the 
principal axes of world coordinate system. Dragging one of these handles translates the 
3D object along the axis defined by that line. These widgets offer much of the same 
functionality as the "interactive shadows," but provide no depth cues. Their main 
advantage over shadows is that they are always attached to the 3D object. If the 3D 
object is visible, then so is the positioning widget. 
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Figure 7: Object handles. The object handles widget is attached to a probe. The purple line 
represents the current translation axis. 

These widgets also provide visual feedback to user actions in the form of 
projection lines and ghosting. A purple projection line", drawn when a user drags one 
of the three handles, indicates the widget's restricted degrees of freedom. Also, a 
ghosted copy of the handles widget is drawn in the starting location to indicate the 
distance that the widget has been moved. When the user has finished dragging the 
widget (indicated by a mouse up event), the projection lines and ghosted copy are both 
undrawn. 

6.2.3.3 Grid-Aligned Handles 

Both the shadow and object handle widgets use axes in the Cartesian coordinate 
space to help position objects more easily in 3D. We have also designed similar 
techniques which constrain the movement of a probe to features in the underlying 
computation grid. We have implemented a version of our object handles, called "grid­

6. The projection line is light grey in our monochrome BOOM display. 
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aligned handles" (Figure 8) [19], which allow constrained translation along axes in the 
computational grid. With this technique, it is straightforward to move objects along the 
curved surfaces of a CFD object such as the leading edge of the Shuttle's wing. 

Figure 8: Grid-aligned object handles. The grid-aligned object handles widget is attached to 
a probe. 

The grid-aligned handles work by tracing out lines in the computation grid from 
the point in the grid closest to a given sample point. An added benefit of these widgets 
is that they provide a visual representation of the local structure of the grid in the area 
surrounding the sample point. Users may exploit this information to gain a better 
understanding of the dataset and the behavior of visualization techniques. 

Apart from its slightly different visual representation, this widget behaves 
identically to the object handles, complete with projection lines and ghosting. 

6.2.3.4 Data-Space Handles 

We have also developed some interaction techniques based on the actual data 
being visualized. For example, the vector probe widget (Figure 9) consists of a grey 
spherical sample point, an arrow representing the direction of the vector field at that 
point, and a disk representing the plane perpendicular to the vector. By dragging the 
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arrow component, the sample point can be moved along a streamline calculated at that 
point in the flow field. The disk is used to move the sample point perpendicular to the 
flow, allowing the user to explore nearby streamlines in the flow field. 

Figure 9: Data-space handles. The data-space handles on a point probe widget include a 
blue arrow and a reddish disk. 

When we use this same general probe widget to visualize scalar data, the vector 
component displays the gradient of a scalar field. Pulling the vector changes the value 
of the isosurface that passes through the sample point, and translating the red disk 
moves the sample point along the isosurface itself. Note that moving the disk does not 
change the level of the isosurface, just the initial seed point from which the isosurface is 
computed. Since we are using an interactive isosurface algorithm [33], moving the 
probe in this way allows us to explore different regions of a single isosurface. 

6.2.4 Direct Manipulation Visualization Techniques 

We have also explored other direct manipulation techniques for modifying the 
position of sample points in a dataset. Normally, one describes a streamline by 
specifying a sample point from which a path is calculated and integrating forward 
through the dataset. Streamlines may also be constructed by integrating backward 
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from a sample point. We have implemented a streamline which serves not only as a 
visualization tool, but also as an interactive positioning widget. By clicking anywhere 
on this direct manipulation streamline, we specify a new position for the sample point, 
represented by a small sphere, which describes it. We can then drag this sphere using 
any of the manipulation techniques described above and the streamline recalculates in 
real time, integrating both forward and backward by the appropriate amount to 
maintain the original length of the streamline. 

With this technique, users can manipulate a streamline very precisely in 
particular regions of interest that might otherwise be difficult to reach. For instance, if 
an interesting feature is observed at the very end of a given streamline, one can simply 
click on the streamline right near the feature and move it around with fine control. 
Without this ability, one can only modify the position of the sample point at the 
beginning of the streamline, where even small movements may cause very large 
changes in the streamline near the end. 

We have also applied this same technique to translate rakes of streamlines. In 
addition, rakes can be rotated and scaled about the new sample points. In our system, 
we use a separate mouse button to "twist" the rake about the selected streamline. This 
has the effect of keeping the picked streamline constant but modifying the neighboring 
streamlines. 

6.2.5 Manipulation after Selection in Virtual Reality 

Each of the selection techniques described earlier that we have designed for use in 
VR represents a unique method for selecting objects in a scene. However, selection is 
only one task in a dialog that a user holds with an application. After selecting an object, 
a user will often modify that object in some way, either by transforming it, or changing 
some other parameter such as its color or transparency, or, in the case of a scientific 
visualization application, perhaps the visualization technique it generates. We have 
implemented a set of transformation techniques to accompany the selection techniques 
described above that allow a user to modify the position and orientation of objects once 
they have been selected. 

The guiding principal behind these manipulation techniques is known as the 
principal of least surprise. This principal states very simply that what actually happens 
as a user interacts with a system is exactly what the user expects to happen. In the case 
of the selection techniques, an object has some relationship with the user's hand (the 
cursor in the IVE) at the time of selection (e.g., the button press). During the subsequent 
manipulation, this relationship should be maintained as closely as possible. One way to 
look at this is from the point of view of the tracker device which, like any other 3D 
object in an lVE, has its own coordinate system. At the moment of selection, we can 
determine where in this coordinate system a selected object lies, and maintain this 
relative position and orientation throughout the following manipulation. 

Unfortunately, exactly maintaining this relationship is not always possible. When 
the selected object is itself constrained to move only along a single axis or in a plane, 
we must project the position and orientation of the tracker onto this lower-dimensional 
space. The most obvious way to do this is to find the closest point in the constrained 
space to the reference position defined by the tracker. This approach seems to work 
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very well in our applications. 

6.3 Navigation 

To date, we have experimented with some navigation techniques both on the 
desktop and in VR, but have yet to fully explore the range of possible navigation 
interfaces. On the desktop, we mainly use a combination of techniques which are 
accessible via the right mouse button in conjunction with the shift and control keys on 
the keyboard. We use the right mouse button by itself for virtual sphere rotation about 
the center of the scene (the center point can change); with the shift key, we zoom in and 
out (by changing the size of the film plane); with the control key, we pan the camera in 
the plane parallel to the film plane; and by simultaneously depressing the shift and 
control keys and clicking on an object in the scene we focus the camera on that object 
(with a smooth animated sequence similar to that found in the Information Visualizer 
from Xerox [32]). In more recent work, we have developed an interface which affords 
these same controls, but without the use of the modifier keys (described in [45]). In this 
interface, the default behavior of the right mouse button is panning the camera. 
However, by pausing slightly after clicking the right mouse button, we get a 
combination of zoom and pan in which left-right motions map to zoom, up-down to 
pan/. 

In our virtual reality application, we exploit the built-in degrees of freedom of the 
BOOM to provide most of the navigation. In most cases, this suffices because the 
majority of the objects that we interact with are at close range. In case we need to move 
beyond the somewhat limited range of the BOOM, however, we use the two buttons to 
"fly" forward and backward along the viewing axis. Generally, we "fly" at some 
constant velocity, but we have experimented with using an acceleration constant as 
well so that we can travel larger distances more quickly. We have yet to perform formal 
evaluations of any of these techniques, so we can not make conclusive statements about 
which techniques are better. We intend to explore this area of research further. 

6.4 Complex Widget Designs 

Each of the interaction techniques and widgets described so far was designed for 
a single purpose, such as modifying the position or orientation of an object, specifying 
which object in a scene is selected, or manipulating the viewpoint. We have also 
experimented with more complex, hybrid user interfaces which allow users to 
simultaneously visualize and modify multiple parameters of an object, including non­
spatial quantities. 

As with the interfaces described so far, the design of a complex widget can be 
very different for desktop and VR applications. In our experience, the complex widgets 
that we designed for desktop use consist of many small, grabbable parts that are 
usually fairly easy to pick with a 2D mouse. In our preliminary trials with these same 
widgets in our IVE, we have found that it is very difficult to grab these small parts 
using the available input devices. This has led us to reconsider the design of the user 

7. Even though this means that we can only pan in one direction, this implementation seems to work well 
for the SKETCH application (it has yet to be supported by userstudies). 
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interface for lYE's. Part of this redesign included implementing the new techniques for 
selecting and manipulating widgets described above. In other cases we have either 
redesigned existing widgets, or decided to do away with them entirely in favor of other 
approaches. 

It is important to remember that though components of these widgets sometimes 
represent abstract quantities, they present these quantities in spatial terms. Thus, users 
may modify quantities by manipulating the position or orientation of the 3D widgets 
which represent them. In some cases, the positioning and orientation techniques 
described in the last section can be used, but more often, a widget is designed with 
built-in constraints so that components which represent scalar values, for instance, are 
constrained to translate along a single axis. If a quantity is bounded, the widget will 
likewise be constrained to move within appropriate physical limits. 

6.4.1 Generalized Probe 

The "generalized probe" that we have designed for our scientific visualization 
application provides a user interface to some of the parameters of the visualization 
techniques that we support. 

Table 1: 

Number Color Thft Streamline Isosurface 

Zero-dimensional Numerical Colored Single Tuft Single Single iso­
(point) Probe Ball streamline surface 

One-dimensional Gradient Colored bar Rake of Rake of Rake of iso­
(rake) rake tufts streamlines surfaces 

(onion) 

Two-dimensional 
(plane) 

Number 
plane 

Colored 
cutting 
plane 

Hedgehog Multiple 
rakes 

a 

Three-dimen­
sional (volume) 

Numbered 
points in 
volume" 

Multiple 
cutting 

planes" 

Multiple 
hedgehogs 

Volume of 
streamlines? 

a 

a. Withpartial transparency, this optionmay providelocal volumerendering, thoughwe havenot imple­
mentedit in our system. 

b. Works wellonly with a relatively low numberof samplepoints. 
c. Therehas been someresearch done on streamvolumes, but we havenot implemented this visualization 

technique in our system. 

Most of the visualization techniques we have implemented in our system are 
generated by sampling single points in a dataset, calculating scalar or vector values, 
and displaying some visual representation of the data. The positioning techniques 
described earlier are designed to help scientists quickly place these sample points in a 
dataset, but we also need methods for controlling collections of sample points as a 
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group. To address this need, we developed the notion of a generalized probe which can 
manifest itself as a zero-, one-, two or three-dimensional widget. This generalized 
probe widget (Figure 10) is used to define the initial sample points for a variety of 
visualization techniques including streamlines, rakes, hedgehogs, cutting planes and 
isosurfaces. The design of the probe widget also includes components for modifying 
parameters of these techniques. 

Table 1 shows the range of possible visualization tools that can be created using 
the generalized probe widget. Some of the entries correspond exactly to commonly 
used tools, such as the rake of streamlines, or the colored cutting plane. Other entries 
may require more esoteric visualization techniques to be useful. 

6.4.1.1 Zero-Dimensional Probe 

In its zero-dimensional form, this widget is a simple probe that samples a single 
point in the dataset. We use the probe with data-space handles (Section 6.2.3.4). From 
this point, we can choose to generate one of five visualization techniques: a number, 
color, tuft, streamline, or isosurface. Multiple visualization techniques can be generated 
simultaneously from a single sample point (though we have not yet devised a good 
user interface for controlling this functionality). Users may then use any of the 
positioning techniques described above to place this widget in the dataset. The direct­
manipulation, "grab-anywhere" interaction technique described earlier (Section 6.2.4) 
applies only to the advected particle visualization technique. 

6.4.1.2 One-Dimensional Rake 

The one-dimensional widget is essentially the same as a rake tool commonly used 
in real wind tunnels (usually a steel pipe with holes drilled in it at intervals to generate 
smoke streams in an airflow). This widget produces a set of sample points at regular 
intervals in Cartesian space along a line; it can be translated and rotated freely and can 
be scaled along a single axis by translating the red ball at one end. Additionally, we 
supply a resolution handle, the orange disk, to change the distance between sample 
points. This resolution handle is free to move from one endpoint of the rake bar to the 
center of the bar. The distance between the handle and the endpoint determines the 
spacing between the sample points. One drawback to this method is that when the 
handle is moved close to the endpoint of the rake, very small movements up and down 
the bar can cause large changes in the number of streamlines. This non-linear behavior 
can be corrected by simply mapping the position of the resolution handle to a linear 
scale, but then one would lose the geometric correlation between the placement of the 
handle and the spacing between the sample points. In an IVE, this slider approach has 
a distinct drawback: Since the 6D tracker input device is not as stable as the 2D mouse 
on the desktop, noise from the tracker or user's hand can make it difficult to precisely 
set a specific number of sample points. Alternative interfaces, such as the dial menus 
described later (Section 6.4.2),may be better approaches for tasks like this. 
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Figure 10: Probes. Counterclockwise from left, the point probe with a streamline, 10 
probe with streamlines, 20 probe with tufts and 3D probe with color. Visualization 

techniques are colored by velocity of the vector field from blue (slow), through green, to 
red (fast). 

Again, any of the visualization techniques listed earlier can be generated from this 
set of sample points; advected particles produce the familiar rake of streamlines, the 
color technique produces a colored bar, and the isosurface produces an "onion"­
multiple isosurfaces at different levels of the dataset. 

6.4.1.3 Two-Dimensional Plane 

The two-dimensional widget samples a set of points arranged in a regular planar 
grid (similar to the one-dimensional widget). This widget can be translated and rotated 
freely, and can be scaled independently in two dimensions, much like a 2D window in 
a desktop-style graphical user interface (Gill). Also, the resolution of this widget can be 
changed independently in each dimension. Note that we maintain continuity between 
the different probes by using the same visual language for these handles. As with the 
one-dimensional widget, the resolution handles exhibit non-linear behavior. 

Using the color technique with this widget produces a cutting plane; similarly, the 
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tufts produce a hedgehog. This widget can be confusing when the advected particle 
technique is chosen, especially if the sample points are very close together in both 
dimensions: the visual effect is something like a volume of streamlines, and is not very 
intelligible (this may be more useful with transparency or "stream volumes"). 
However, if we reduce the number of sample points in one dimension, say down to 
three, we effectively produce a widget which controls a set of three rakes as group. In 
this configuration (Figure 11),we have a useful tool once again. 

Figure 11: 2D probe with streamlines. Properly configured, the two-dimensional probe acts 
like a collection of one-dimensional probes which can be controlled in unison. 

6.4.1.4 Three-Dimensional Volume 

Finally, the three-dimensional widget generates a volume of sample points. It can 
be scaled in three dimensions and has resolution sliders for each dimension as well. 
Like the two-dimensional probe, this widget can produce very confusing visualizations 
if not parameterized correctly. However, by choosing the color technique and adjusting 
the resolution sliders so that there are lots of sample points in two dimensions and very 
few in the third, we can produce a set of cutting planes that can be moved around as a 
unit. One can imagine an alternate colored representation which utilizes volume 
textures, but we have not implemented this. This particular technique may be useful 
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for visualizing MRI data as well as fluid flows because it also has rich volumetric data 
Oust as fluid flows have regions of higher or lower pressure or temperatures, for 
example, MRI data contains areas of differing density). 

6.4.1.5 Interface to the Generalized Probe 

In our desktop application, we provide a set of 2D buttons outside of the 3D view 
for changing the probes from one dimension to another. When a probe changes 
dimension, it fades from one representation to the next, thus maintaining visual 
continuity. Another set of 2D buttons changes the visualization technique generated at 
each sample point. When multiple widgets are being displayed simultaneously, the 2D 
buttons only affect the last widget used. In this way, we can have many probes on the 
screen, each in a different configuration and producing a different visualization 
technique. 

6.4.2 Menus and Buttons 

Menus and buttons are standard components of 2D user interfaces for desktop 
applications, and are often used as an interface to abstract parameters or commands 
within an application. However, they introduce many problems when added to a user 
interface in an immersive environment. 2D menus do not necessarily face the viewer, 
making visibility difficult. Also, selection of menu items is generally made with a six­
dimensional device even though the items are arranged in a 2D array. The benefits of 
menus and buttons are many, including the access they provide to changing the state of 
objects or the environment, or to making abstract commands that do not have explicitly 
visual semantics. Menus and buttons are ubiquitous in desktop Gill's because they are 
relatively compact and easy to learn and use. However, care must be taken when 
transferring standard 2D interface components like these into IVE applications. 

6.4.2.1 Menus and Buttons in IVE's 

A number of different types of menus have been implemented in IVE systems, 
including a hierarchical menu in the "virtual wind-tunnel" [6], a panel with popup 
menus in the 3DM application [7], "hands-free" menus [13], the menus on the virtual 
tricorder developed here at Brown [43], as well as spherical (daisy) and dial (ring) 
menus in HoloSketch [14] and JDCAD [29]. They all have problems, however. The 
hierarchical menus in the VWT were modeled after 2D menus. When drawn in the 3D 
scene, they appear oriented with the film plane and are quite large, usually taking up 

.most of the view, and thus obscure most of the virtual environment and the objects in it 
(thus violating one of our design rules)8. One chooses options from the menu by 
pointing at them with a laser-pointer style selection tool. Hierarchy navigation is also 
modeled after standard 2D menus and requires very good control over the pointer to 
do it effectively. 

8. It is possible to render thesemenustransparently (thoughthis is not done in the VWT). However, this 
approach is also problematic becausethe menu itemscan easilybe confusedwith geometry in the back­
groundand can thusbecomedifficult to read. 
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The 3DM application developed at UNC is a rectangular array of 3D icons and 
popup menus that can be "attached" to the user in the virtual environment. When 
attached, it follows the user wherever she goes, and remains located near the waist line. 
It can be moved around freely, and even detached from the user and left behind. The 
3D icons represent tools, commands and toggles which are used to construct shapes or 
change the state of the environment. Apparently, it is quite easy to lose this panel in the 
IVE if the user detaches it. 

Darken's menus use speech-recognition techniques for selecting menu items in an 
IVE, and thus frees the user's hands for other tasks. However, as with many other 
menu systems, the text of the "hands-free" menus must be visible in the 3D 
environment at all times, and thus must occupy some part of the valuable screen space. 

6.4.2.2 Spherical Menus 

Spherical menus are inherently 3D structures and therefore show promise for IVE 
applications. They operate as follows: the items in the menu are distributed on the 
surface of a sphere (which itself is not necessarily visible) which is placed at the 
location of the user-controlled cursor in the virtual environment. The menu items 
become visible usually in response to a button event. By rotating the tracker in place (a 
6D tracker must be used for this kind of menu), users point at the desired item and 
release the button to activate it. However, it may be impossible to comfortably get at 
some of the items because it is very hard to rotate the tracker a full 3600 in a single 
motion. In JDCAD, a clutch mechanism was implemented to alleviate this problem. By 
pressing a button on the tracker, the user can temporarily suspend input from the 
tracker, rotate her hand into a more comfortable position, release the button, and 
continue pointing. One drawback of the technique is that after clutching, there is no 
longer correlation between the orientations of the tracker and the cursor in the IVE. 
Also, the interaction dialog becomes complicated by multiple button events. 

6.4.2.3 Dial Menus 

We have implemented a kind of dial menu (Figure 12) in our application that may 
be more useful than these other types of menus. Our dial menus are generally 
associated with specific objects in the 3D scene, such as 3D widgets like the rake, which 
have many parameters. As with conventional2D menus, only the root of a dial menu is 
initially visible. When the user clicks on the root, the associated menu items are drawn. 
Items are placed at intervals on a circle centered at the menu's root, and can either be 
text or graphic icons. Both visually and behaviorally, these menus are very similar to 
the "marking menus" developed by Kurtenbach and Buxton [27] and im~lementedin 
the Alias/Wavefront Studio Version 7 modeling and animation software. The main 
differences between the dial and marking menus are analogous to the differences 
between 2D and 3D widgets. Whereas marking menus are elements of a 2D interface, 
and behave similarly to pop-up menus, the dial menus coexist in a 3D environment 
with other geometry, and can be semantically attached to specific objects in the scene. 

9. "Marking menus"are an extension of the original "directional" piemenus[9], and, as Buxtonasserts, are 
superiorto linearpull-down or pop-upmenusbecausetheyexploitusers' spatialmemory. 
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Dial menus can be used either on the desktop with a 2D mouse or in an IVE with a 3D 
tracker. 

Unlike the marking menus, the user need not first select the object she wishes to 
modify before pulling up the menu - instead, these two operations are unified because 
some minimal geometry which represents the root of the dial menu is always visible as 
a component of the object that the menu is associated with. 

To activate a dial menu, the user presses a button on the mouse or tracker, then 
drags to the appropriate item. As with the marking menus, a line trace is left behind the 
cursor as visual feedback of the gesture being performed. Expert users who have 
retained a mental model of the physical layout of the menu can quickly make menu 
selections by performing the appropriate gestural movement without first waiting for 
the menu items to appear. The dial menus are hierarchical, and users may navigate 
both down and up the hierarchy. When the user releases the mouse or tracker button, 
the menu items and trace are undrawn and the chosen action (if any) is performed. 
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Figure 12:A sample dial menu. The root level menu on the left (a)has six items. Notice 
how related functions are placed on opposite sides of the dial (e.g., thick and thin lines). 

The circle at the center represents the 3D geometry which is always visible. This 
geometry could be text or an icon. The dotted lines extending outward from the center 

indicate the six regions of this menu. By moving the cursor into the region labeled, "# of 
streams", one of the two submenus on the right (b and c) is displayed with just the root 
of the parent menu (the rest of the items on the root menu are undrawn). The menu in 
the upper right (b) is a hierarchical submenu with additional items. The "up" item on 
this submenu allows navigation back up the hierarchy to the root (a). The menu in the 
lower right (c) is a virtual dial. In an IVE, by rotating the tracker about a single axis, a 

continuous range of values can be selected. Navigation back up the hierarchy is 
accomplished by moving the cursor back toward the root. 
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collection. We layout a grid of tape on the floor of the lab, at I-foot intervals, and place 
a plastic tripod with plumb line above each grid crossing. The plumb line is marked at 
I-foot intervals. This lets us place the sensor, carefully held level and grid-aligned, at 
each point of our 6 x 7 x 8 foot grid and record the position and orientation reported. 

Our own approach to interpolating data values is to first triangulate the domain 
of the function F, and then to estimate F by piecewise linear interpolation across this 
triangulation. 

We divide each cubical"cell" of the grid into five tetrahedra. For each 
tetrahedron, there is exactly one linear function of position that agrees with the 
observed values at the four corners, so the interpolation scheme is unambiguous. For 
this piecewise-linear interpolation scheme to succeed, the division into tetrahedra has 
to be a triangulation of the entire cell array. 

In practice, our approach has yielded excellent results. Correlation between actual 
tracker position and the observed location of the cursor in the IVE is significantly better 
than without the calibration. 
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