














Three-Dimensional User Interfaces for Scientific Visualization 

interactive rates without hardware acceleration. 
Since the aperture technique defines a volume of space, it is possible that we may 

have multiple candidate objects for selection. In the event that more than one object lies 
inside the conic volume, we may either select all of the objects, or identify a single 
object for selection based on some criteria. In practice, there are a variety of 
mathematical tests to determine which of a number of objects to select. One possibility 
is to choose the object whose center point is closest to the base point of the intersection 
ray (either the viewpoint or location of the tracker, depending on the particular 
configuration in use). This method presents a problem, however, when a user attempts 
to select an object near the center of the aperture, but a closer object is partially inside 
the edge of the circle. In this case, both objects are candidates, but the second, closer 
one will be selected because it is closer to the viewpoint. 

Another possibility for choosing a single object among many potentially 
selectable objects, and one that appears to be the most intuitive, is to select the object 
closest to the ray passing through the center of the aperture circle. Note that this object 
may not be the closest object to the viewer. This method recognizes the user's intuition 
(backed up by anecdotal evidence in our user studies) that the more "centered" an 
object is in the aperture, the more likely that it will be selected. 

A third option is to select an object based on its apparent size (e.g. select the 
largest object in the aperture). In practice, this is not such a good option, since it may be 
difficult to select a small object next to a larger one. Also, if two objects of roughly the 
same size are at different distances from the viewpoint, their apparent size will, in a 
perspective projection, be very different as well. Using the size test to determine which 
object to select may work in this case, but a test based on distance would probably 
work just as well. As mentioned, in practice, we have found that the distance test is 
more appropriate than an apparent size test. 

Note that this technique is also subject to modification based on each user's 
dominant eye. 

6.1.2.7 Glove-Based Interface for Aperture 

Though we have not implemented it yet, we have designed a glove-based 
interface to the aperture technique which we feel is more natural than the two 
configurations described above. This technique utilizes the posture recognition 
software in our system to identify when the user has shaped her hand in a pinching 
posture. When this posture is recognized, the aperture geometry is drawn between the 
index finger and thumb. As with the first configuration of the basic aperture technique, 
the aperture is aligned with the film plane. Two advantages to this technique are that 
the user does not have to hold a prop, and also that the size of the aperture can be 
adjusted simply by moving one's fingers further apart or closer together. 

6.1.2.8 Orientation 

The orientation selection technique selects objects in an IVE by comparing the 
orientation of the tracker with the orientations of objects in the scene. Any objects 
which approximately match the orientation of the tracker are candidates for selection. 
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The inspiration for this technique was the observation that in the real world, when we 
attempt to grab an object with our hand and fingers, we first must configure our hand 
so that it conforms to the part of the object we reach for (e.g., the handle of a cup, the 
middle of a bar, etc.). At a very gross level, the task we perform is matching the 
orientation of our hand with that of the target object. We can approximate this with a 
simple mathematical test. 

According to this technique, the shape of an object plays a direct role in 
determining how it can be selected. In the UGA system, primitive objects initially have 
a canonical uniform scale. Given this property, the scale components of an object's 
current transformation matrix (CTM) can reveal information about it's shape. Long thin 
objects and flat objects can be easily identified by significant differences in their x, y 
and z scale components. Of course, objects which are long and thin but which are not 
aligned with a principal axis will not be so easily identified. In general, determining the 
shape of an object may be a harder, more subjective problem that involves at least an 
analysis of the object's geometry, and perhaps even some higher-level semantic 
knowledge about important features of the object (such as the handle of a cup or knob 
on a door). However, for some simple cases, we can get reasonable behavior under the 
current scheme. 

a b 

Figure 5: Orientation selection technique. For this technique the cursor geometry is a pair of
 
parallel plates which indicates the current orientation of the tracker. This cursor may be
 
used by itself or in conjunction with a VID such as the drumstick. a) shows the cursor
 

orientation that would select long, skinny objects like the bar of the object in the middle
 
of the figure. b) shows the cursor orientation that would select short, wide objects, like
 
the disc on the bar. The ball at the end of the bar presents something of a problem for
 
this selection technique. This can be remedied by adding a heuristic which identifies
 
uniformly-scaled objects and compares distance to the cursor rather thanorientation.
 

In our application, we tested this technique on the rake widget, which consists of 
a bar (a long thin cylinder), a slider on the bar (a flattened cylinder), and a ball at one 
end of the bar (a small sphere). We modified the geometry of the VID for this technique 
so that the orientation of the tracker was clearly represented (two parallel flat blocks 
placed side by side). As the user rotates the tracker, so does the cursor rotate and thus 
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indicate the kinds of objects that can be selected (Figures 5a and 5b). 
Note that if this selection technique uses only the relative orientations of the 

tracker and objects in the scene to determine which objects it will select, and not their 
respective positions, it can select objects that are a significant distance from the tracker 
(or even outside the view). In our initial tests, we found this behavior unnatural. To 
cope with this drawback, we added the requirement that the tracker had to be within 
some reasonable distance from an object in order to select it, regardless of the similarity 
between their respective orientations. Checking distances in this way may also be 
required in order to choose among multiple candidates for selection when the scene is 
crowded. 

The orientation of objects which are uniformly scaled, like the sphere at the end of 
the bar, is not readily apparent. In these cases, this selection technique uses only the 
distance measure to determine selectability. In this particular instance, a glove-based 
posture recognition interface might be more effective - the user would simply shape 
her hand to fit the desired object. Such an interface might compare the convex hulls of 
the user's hand and nearby objects and pick the one with the closest match. 

6.2 Manipulation 

Manipulation is a generic term which describes any of a number of ways to 
interactively modify the state of objects in a computer application. Manipulation in a 
3D graphics context includes applying affine transformations to objects, discrete actions 
such as pressing buttons or complex actions like gestures or speech acts which are 
interpreted by a user interface as modifications of primitive objects. The key concept is 
that manipulation implies interactivity, and that therefore a user interface can be 
characterized by the types of manipulations it requires one to perform. 

6.2.1 Direct vs. Indirect Manipulation 

Most types of manipulation in user interfaces can be categorized as either direct 
or indirect. In his classic article on the subject [37], Shneiderman explains that a direct 
manipulation user interface is one in which the human user is presented with a visual 
model of a problem domain, and that the interaction dialog includes "continuous 
display of the object of interest" and "rapid, incremental, reversible operations whose 
impact on the object of interest is immediately visible." This definition was proffered in 
1983,when the art of graphical user interface design was still in its infancy. It stands in 
stark contrast to indirect manipulation found in batch, menu or command-line 
interfaces which generally require users to maintain an abstract mental model of a 
problem that conforms to a specific specification language (e.g., the command 
keywords and syntax). Since this first definition of direct-manipulation, many others 
have presented their own versions. For example, Laurel [28] stresses that direct
manipulation interfaces present the "continuous representation of the potential for 
action." 

Direct-manipulation interfaces, when implemented well, give users a sense of 
being in control of the application, and reduce the cognitive distance between a user's 
intentions and the resulting physical actions she must take. By relying more heavily on 
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visual perception and cognition (through the use of icons and other graphical elements) 
than on abstract thought processes required by text-based command interfaces, direct
manipulation interfaces can help users be more productive. 

As we have experimented with different interaction techniques and widgets for 
3D graphics applications, subtle variations of direct-manipulation interfaces have 
emerged. In its basic form, users directly control the object of interest and there are no 
side-effects. This type of direct-manipulation occurs in a 2D or 3D graphics application, 
for instance, when a user drags a shape or geometric object across the canvas or from 
one point in space to another. If manipulating this object has additional effects on other 
objects in the environment, then it is itself a component of the user interface. In this 
case, though the user has directly manipulated the widget, she has also indirectly 
manipulated some other part of the environment. Thus, direct-manipulation interfaces 
often incorporate and rely on indirect manipulation. 

All of the widgets described below have significant direct and indirect 
manipulation elements. Some of the interaction techniques described earlier, however, 
do not provide a visual representation of themselves beside their effect on the scene. 
The use of predictive feedback, such as highlighting the object(s) that would be selected 
if the user pressed a button, for example, do provide a sense that the user is wielding a 
tool which can somehow modify the environment. 

Designing good direct-manipulation interfaces is a tricky business, and requires 
deep insight into the exact nature of the tasks for which they are developed. A well
designed direct-manipulation interface can greatly help task execution, but a poorly
designed one can actually be more difficult to use than a non-graphical, indirect
manipulation interface. Thus, direct-manipulation does not necessarily equate with 
ease of use [23]. 

6.2.2 Types of Manipulation in 3D Applications 

The most common types of manipulation tasks in 3D graphics applications are 
inherently geometric. That is, they involve changing the current transformation matrix 
(CTM) of 3D objects. Modeling, animation and scientific visualization applications all 
provide techniques for modifying the position, orientation and scale of objects, but the 
exact interaction techniques and widgets that one uses differ from application to 
application. Other attributes may also be manipulated, such as the color or 
transparency of an object, or higher-level attributes like the spacing of a gridded floor 
plane, or the number of streamlines on a rake in a scientific visualization application. 
However, whatever the parameter, a 3D user interface for modifying it almost always 
involves some kind of geometric manipulation. In the following sections, we discuss 
some of the widgets and techniques that we have developed for modifying parameters 
of 3D objects. 

6.2.3 Position and Orientation Techniques 

Positioning and orienting objects in 3D are two forms of manipulation that are 
widely used in 3D graphics applications. We designed the techniques described in the 
following sections for use with conventional desktop hardware: a 2D mouse and CRT. 
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Thus, these techniques aim to overcome many of the difficulties which result from 
using 20 devices for 30 interaction tasks. We have begun to use these same techniques 
in VR, and have found that while some are still useful, others must be (and have been) 
abandoned or at least significantly redesigned in order to be usable in VR. Finally, the 
selection techniques described above each suggest their own unique form of 
manipulation once an object has been selected. The final subsection below describes 
these manipulation techniques. 

6.2.3.1 Interactive Shadows 

When using desktop hardware, the default positioning technique in our system is 
direct-manipulation screen-aligned translation (objects move in the plane parallel to the 
screen plane). However, since this is a 20 mouse-based technique, the user must 
change the viewpoint to move objects in other planes. To move objects in three-space 
with the 20 mouse without changing the viewpoint, we have added "interactive 
shadow" widgets (Figure 6) to this environment. These shadow objects are generated 
for every 30 object, provide a valuable depth cue, and can be displayed on any axis
aligned plane. Further discussion of this tool is in [20]. Note that in the figure, the 
shadows on the floor plane do not contain all of the detail present in the widgets above 
them. This is done in part to decrease the number of polygons in the scene (since the 
shadow widgets are geometric copies of the widgets), but also because research has 
shown that human perception does not necessarily requires shadows to be exact [41]. 

Our initial attempts to use the shadow widgets as interactive tools in VR have 
been relatively unsuccessful. Since the input devices we use in VR provide the 
additional degrees of freedom that are lacking on the desktop, the shadows are no 
longer necessary as manipulation tools. They do, however, still provide a valuable 
depth cue. The major problems with the shadows as manipulation tools in VR is that 
they can be difficult to select, at least with the touch selection technique. Also, since the 
input device is not physically constrained to the same degrees of freedom as the 
shadow, users often feel disconcerted when the shadow does not exactly follow the 
position of their hand. We expect that the shadows may be somewhat more usable with 
the target and aperture techniques, and plan on testing this in the near future. 
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6.2.3.2 Object Handles 

Some geometry, such as the Shuttle's fuselage, can easily obscure the shadow 
widgets projected onto a floor or wall and thus render them unusable. To address this 
problem, we have implemented another technique for moving objects in 3D with a 20 
mouse, called "object handles" (Figure 7) [12]. With this technique, we attach three new 
objects (in our case, simple line segments) to the 3D object and align them with the 
principal axes of world coordinate system. Dragging one of these handles translates the 
3D object along the axis defined by that line. These widgets offer much of the same 
functionality as the "interactive shadows," but provide no depth cues. Their main 
advantage over shadows is that they are always attached to the 3D object. If the 3D 
object is visible, then so is the positioning widget. 
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Figure 7: Object handles. The object handles widget is attached to a probe. The purple line 
represents the current translation axis. 

These widgets also provide visual feedback to user actions in the form of 
projection lines and ghosting. A purple projection line", drawn when a user drags one 
of the three handles, indicates the widget's restricted degrees of freedom. Also, a 
ghosted copy of the handles widget is drawn in the starting location to indicate the 
distance that the widget has been moved. When the user has finished dragging the 
widget (indicated by a mouse up event), the projection lines and ghosted copy are both 
undrawn. 

6.2.3.3 Grid-Aligned Handles 

Both the shadow and object handle widgets use axes in the Cartesian coordinate 
space to help position objects more easily in 3D. We have also designed similar 
techniques which constrain the movement of a probe to features in the underlying 
computation grid. We have implemented a version of our object handles, called "grid

6. The projection line is light grey in our monochrome BOOM display. 
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aligned handles" (Figure 8) [19], which allow constrained translation along axes in the 
computational grid. With this technique, it is straightforward to move objects along the 
curved surfaces of a CFD object such as the leading edge of the Shuttle's wing. 

Figure 8: Grid-aligned object handles. The grid-aligned object handles widget is attached to 
a probe. 

The grid-aligned handles work by tracing out lines in the computation grid from 
the point in the grid closest to a given sample point. An added benefit of these widgets 
is that they provide a visual representation of the local structure of the grid in the area 
surrounding the sample point. Users may exploit this information to gain a better 
understanding of the dataset and the behavior of visualization techniques. 

Apart from its slightly different visual representation, this widget behaves 
identically to the object handles, complete with projection lines and ghosting. 

6.2.3.4 Data-Space Handles 

We have also developed some interaction techniques based on the actual data 
being visualized. For example, the vector probe widget (Figure 9) consists of a grey 
spherical sample point, an arrow representing the direction of the vector field at that 
point, and a disk representing the plane perpendicular to the vector. By dragging the 
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arrow component, the sample point can be moved along a streamline calculated at that 
point in the flow field. The disk is used to move the sample point perpendicular to the 
flow, allowing the user to explore nearby streamlines in the flow field. 

Figure 9: Data-space handles. The data-space handles on a point probe widget include a 
blue arrow and a reddish disk. 

When we use this same general probe widget to visualize scalar data, the vector 
component displays the gradient of a scalar field. Pulling the vector changes the value 
of the isosurface that passes through the sample point, and translating the red disk 
moves the sample point along the isosurface itself. Note that moving the disk does not 
change the level of the isosurface, just the initial seed point from which the isosurface is 
computed. Since we are using an interactive isosurface algorithm [33], moving the 
probe in this way allows us to explore different regions of a single isosurface. 

6.2.4 Direct Manipulation Visualization Techniques 

We have also explored other direct manipulation techniques for modifying the 
position of sample points in a dataset. Normally, one describes a streamline by 
specifying a sample point from which a path is calculated and integrating forward 
through the dataset. Streamlines may also be constructed by integrating backward 
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from a sample point. We have implemented a streamline which serves not only as a 
visualization tool, but also as an interactive positioning widget. By clicking anywhere 
on this direct manipulation streamline, we specify a new position for the sample point, 
represented by a small sphere, which describes it. We can then drag this sphere using 
any of the manipulation techniques described above and the streamline recalculates in 
real time, integrating both forward and backward by the appropriate amount to 
maintain the original length of the streamline. 

With this technique, users can manipulate a streamline very precisely in 
particular regions of interest that might otherwise be difficult to reach. For instance, if 
an interesting feature is observed at the very end of a given streamline, one can simply 
click on the streamline right near the feature and move it around with fine control. 
Without this ability, one can only modify the position of the sample point at the 
beginning of the streamline, where even small movements may cause very large 
changes in the streamline near the end. 

We have also applied this same technique to translate rakes of streamlines. In 
addition, rakes can be rotated and scaled about the new sample points. In our system, 
we use a separate mouse button to "twist" the rake about the selected streamline. This 
has the effect of keeping the picked streamline constant but modifying the neighboring 
streamlines. 

6.2.5 Manipulation after Selection in Virtual Reality 

Each of the selection techniques described earlier that we have designed for use in 
VR represents a unique method for selecting objects in a scene. However, selection is 
only one task in a dialog that a user holds with an application. After selecting an object, 
a user will often modify that object in some way, either by transforming it, or changing 
some other parameter such as its color or transparency, or, in the case of a scientific 
visualization application, perhaps the visualization technique it generates. We have 
implemented a set of transformation techniques to accompany the selection techniques 
described above that allow a user to modify the position and orientation of objects once 
they have been selected. 

The guiding principal behind these manipulation techniques is known as the 
principal of least surprise. This principal states very simply that what actually happens 
as a user interacts with a system is exactly what the user expects to happen. In the case 
of the selection techniques, an object has some relationship with the user's hand (the 
cursor in the IVE) at the time of selection (e.g., the button press). During the subsequent 
manipulation, this relationship should be maintained as closely as possible. One way to 
look at this is from the point of view of the tracker device which, like any other 3D 
object in an lVE, has its own coordinate system. At the moment of selection, we can 
determine where in this coordinate system a selected object lies, and maintain this 
relative position and orientation throughout the following manipulation. 

Unfortunately, exactly maintaining this relationship is not always possible. When 
the selected object is itself constrained to move only along a single axis or in a plane, 
we must project the position and orientation of the tracker onto this lower-dimensional 
space. The most obvious way to do this is to find the closest point in the constrained 
space to the reference position defined by the tracker. This approach seems to work 
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very well in our applications. 

6.3 Navigation 

To date, we have experimented with some navigation techniques both on the 
desktop and in VR, but have yet to fully explore the range of possible navigation 
interfaces. On the desktop, we mainly use a combination of techniques which are 
accessible via the right mouse button in conjunction with the shift and control keys on 
the keyboard. We use the right mouse button by itself for virtual sphere rotation about 
the center of the scene (the center point can change); with the shift key, we zoom in and 
out (by changing the size of the film plane); with the control key, we pan the camera in 
the plane parallel to the film plane; and by simultaneously depressing the shift and 
control keys and clicking on an object in the scene we focus the camera on that object 
(with a smooth animated sequence similar to that found in the Information Visualizer 
from Xerox [32]). In more recent work, we have developed an interface which affords 
these same controls, but without the use of the modifier keys (described in [45]). In this 
interface, the default behavior of the right mouse button is panning the camera. 
However, by pausing slightly after clicking the right mouse button, we get a 
combination of zoom and pan in which left-right motions map to zoom, up-down to 
pan/. 

In our virtual reality application, we exploit the built-in degrees of freedom of the 
BOOM to provide most of the navigation. In most cases, this suffices because the 
majority of the objects that we interact with are at close range. In case we need to move 
beyond the somewhat limited range of the BOOM, however, we use the two buttons to 
"fly" forward and backward along the viewing axis. Generally, we "fly" at some 
constant velocity, but we have experimented with using an acceleration constant as 
well so that we can travel larger distances more quickly. We have yet to perform formal 
evaluations of any of these techniques, so we can not make conclusive statements about 
which techniques are better. We intend to explore this area of research further. 

6.4 Complex Widget Designs 

Each of the interaction techniques and widgets described so far was designed for 
a single purpose, such as modifying the position or orientation of an object, specifying 
which object in a scene is selected, or manipulating the viewpoint. We have also 
experimented with more complex, hybrid user interfaces which allow users to 
simultaneously visualize and modify multiple parameters of an object, including non
spatial quantities. 

As with the interfaces described so far, the design of a complex widget can be 
very different for desktop and VR applications. In our experience, the complex widgets 
that we designed for desktop use consist of many small, grabbable parts that are 
usually fairly easy to pick with a 2D mouse. In our preliminary trials with these same 
widgets in our IVE, we have found that it is very difficult to grab these small parts 
using the available input devices. This has led us to reconsider the design of the user 

7. Even though this means that we can only pan in one direction, this implementation seems to work well 
for the SKETCH application (it has yet to be supported by userstudies). 
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interface for lYE's. Part of this redesign included implementing the new techniques for 
selecting and manipulating widgets described above. In other cases we have either 
redesigned existing widgets, or decided to do away with them entirely in favor of other 
approaches. 

It is important to remember that though components of these widgets sometimes 
represent abstract quantities, they present these quantities in spatial terms. Thus, users 
may modify quantities by manipulating the position or orientation of the 3D widgets 
which represent them. In some cases, the positioning and orientation techniques 
described in the last section can be used, but more often, a widget is designed with 
built-in constraints so that components which represent scalar values, for instance, are 
constrained to translate along a single axis. If a quantity is bounded, the widget will 
likewise be constrained to move within appropriate physical limits. 

6.4.1 Generalized Probe 

The "generalized probe" that we have designed for our scientific visualization 
application provides a user interface to some of the parameters of the visualization 
techniques that we support. 

Table 1: 

Number Color Thft Streamline Isosurface 

Zero-dimensional Numerical Colored Single Tuft Single Single iso
(point) Probe Ball streamline surface 

One-dimensional Gradient Colored bar Rake of Rake of Rake of iso
(rake) rake tufts streamlines surfaces 

(onion) 

Two-dimensional 
(plane) 

Number 
plane 

Colored 
cutting 
plane 

Hedgehog Multiple 
rakes 

a 

Three-dimen
sional (volume) 

Numbered 
points in 
volume" 

Multiple 
cutting 

planes" 

Multiple 
hedgehogs 

Volume of 
streamlines? 

a 

a. Withpartial transparency, this optionmay providelocal volumerendering, thoughwe havenot imple
mentedit in our system. 

b. Works wellonly with a relatively low numberof samplepoints. 
c. Therehas been someresearch done on streamvolumes, but we havenot implemented this visualization 

technique in our system. 

Most of the visualization techniques we have implemented in our system are 
generated by sampling single points in a dataset, calculating scalar or vector values, 
and displaying some visual representation of the data. The positioning techniques 
described earlier are designed to help scientists quickly place these sample points in a 
dataset, but we also need methods for controlling collections of sample points as a 
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group. To address this need, we developed the notion of a generalized probe which can 
manifest itself as a zero-, one-, two or three-dimensional widget. This generalized 
probe widget (Figure 10) is used to define the initial sample points for a variety of 
visualization techniques including streamlines, rakes, hedgehogs, cutting planes and 
isosurfaces. The design of the probe widget also includes components for modifying 
parameters of these techniques. 

Table 1 shows the range of possible visualization tools that can be created using 
the generalized probe widget. Some of the entries correspond exactly to commonly 
used tools, such as the rake of streamlines, or the colored cutting plane. Other entries 
may require more esoteric visualization techniques to be useful. 

6.4.1.1 Zero-Dimensional Probe 

In its zero-dimensional form, this widget is a simple probe that samples a single 
point in the dataset. We use the probe with data-space handles (Section 6.2.3.4). From 
this point, we can choose to generate one of five visualization techniques: a number, 
color, tuft, streamline, or isosurface. Multiple visualization techniques can be generated 
simultaneously from a single sample point (though we have not yet devised a good 
user interface for controlling this functionality). Users may then use any of the 
positioning techniques described above to place this widget in the dataset. The direct
manipulation, "grab-anywhere" interaction technique described earlier (Section 6.2.4) 
applies only to the advected particle visualization technique. 

6.4.1.2 One-Dimensional Rake 

The one-dimensional widget is essentially the same as a rake tool commonly used 
in real wind tunnels (usually a steel pipe with holes drilled in it at intervals to generate 
smoke streams in an airflow). This widget produces a set of sample points at regular 
intervals in Cartesian space along a line; it can be translated and rotated freely and can 
be scaled along a single axis by translating the red ball at one end. Additionally, we 
supply a resolution handle, the orange disk, to change the distance between sample 
points. This resolution handle is free to move from one endpoint of the rake bar to the 
center of the bar. The distance between the handle and the endpoint determines the 
spacing between the sample points. One drawback to this method is that when the 
handle is moved close to the endpoint of the rake, very small movements up and down 
the bar can cause large changes in the number of streamlines. This non-linear behavior 
can be corrected by simply mapping the position of the resolution handle to a linear 
scale, but then one would lose the geometric correlation between the placement of the 
handle and the spacing between the sample points. In an IVE, this slider approach has 
a distinct drawback: Since the 6D tracker input device is not as stable as the 2D mouse 
on the desktop, noise from the tracker or user's hand can make it difficult to precisely 
set a specific number of sample points. Alternative interfaces, such as the dial menus 
described later (Section 6.4.2),may be better approaches for tasks like this. 
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Figure 10: Probes. Counterclockwise from left, the point probe with a streamline, 10 
probe with streamlines, 20 probe with tufts and 3D probe with color. Visualization 

techniques are colored by velocity of the vector field from blue (slow), through green, to 
red (fast). 

Again, any of the visualization techniques listed earlier can be generated from this 
set of sample points; advected particles produce the familiar rake of streamlines, the 
color technique produces a colored bar, and the isosurface produces an "onion"
multiple isosurfaces at different levels of the dataset. 

6.4.1.3 Two-Dimensional Plane 

The two-dimensional widget samples a set of points arranged in a regular planar 
grid (similar to the one-dimensional widget). This widget can be translated and rotated 
freely, and can be scaled independently in two dimensions, much like a 2D window in 
a desktop-style graphical user interface (Gill). Also, the resolution of this widget can be 
changed independently in each dimension. Note that we maintain continuity between 
the different probes by using the same visual language for these handles. As with the 
one-dimensional widget, the resolution handles exhibit non-linear behavior. 

Using the color technique with this widget produces a cutting plane; similarly, the 
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tufts produce a hedgehog. This widget can be confusing when the advected particle 
technique is chosen, especially if the sample points are very close together in both 
dimensions: the visual effect is something like a volume of streamlines, and is not very 
intelligible (this may be more useful with transparency or "stream volumes"). 
However, if we reduce the number of sample points in one dimension, say down to 
three, we effectively produce a widget which controls a set of three rakes as group. In 
this configuration (Figure 11),we have a useful tool once again. 

Figure 11: 2D probe with streamlines. Properly configured, the two-dimensional probe acts 
like a collection of one-dimensional probes which can be controlled in unison. 

6.4.1.4 Three-Dimensional Volume 

Finally, the three-dimensional widget generates a volume of sample points. It can 
be scaled in three dimensions and has resolution sliders for each dimension as well. 
Like the two-dimensional probe, this widget can produce very confusing visualizations 
if not parameterized correctly. However, by choosing the color technique and adjusting 
the resolution sliders so that there are lots of sample points in two dimensions and very 
few in the third, we can produce a set of cutting planes that can be moved around as a 
unit. One can imagine an alternate colored representation which utilizes volume 
textures, but we have not implemented this. This particular technique may be useful 
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for visualizing MRI data as well as fluid flows because it also has rich volumetric data 
Oust as fluid flows have regions of higher or lower pressure or temperatures, for 
example, MRI data contains areas of differing density). 

6.4.1.5 Interface to the Generalized Probe 

In our desktop application, we provide a set of 2D buttons outside of the 3D view 
for changing the probes from one dimension to another. When a probe changes 
dimension, it fades from one representation to the next, thus maintaining visual 
continuity. Another set of 2D buttons changes the visualization technique generated at 
each sample point. When multiple widgets are being displayed simultaneously, the 2D 
buttons only affect the last widget used. In this way, we can have many probes on the 
screen, each in a different configuration and producing a different visualization 
technique. 

6.4.2 Menus and Buttons 

Menus and buttons are standard components of 2D user interfaces for desktop 
applications, and are often used as an interface to abstract parameters or commands 
within an application. However, they introduce many problems when added to a user 
interface in an immersive environment. 2D menus do not necessarily face the viewer, 
making visibility difficult. Also, selection of menu items is generally made with a six
dimensional device even though the items are arranged in a 2D array. The benefits of 
menus and buttons are many, including the access they provide to changing the state of 
objects or the environment, or to making abstract commands that do not have explicitly 
visual semantics. Menus and buttons are ubiquitous in desktop Gill's because they are 
relatively compact and easy to learn and use. However, care must be taken when 
transferring standard 2D interface components like these into IVE applications. 

6.4.2.1 Menus and Buttons in IVE's 

A number of different types of menus have been implemented in IVE systems, 
including a hierarchical menu in the "virtual wind-tunnel" [6], a panel with popup 
menus in the 3DM application [7], "hands-free" menus [13], the menus on the virtual 
tricorder developed here at Brown [43], as well as spherical (daisy) and dial (ring) 
menus in HoloSketch [14] and JDCAD [29]. They all have problems, however. The 
hierarchical menus in the VWT were modeled after 2D menus. When drawn in the 3D 
scene, they appear oriented with the film plane and are quite large, usually taking up 

.most of the view, and thus obscure most of the virtual environment and the objects in it 
(thus violating one of our design rules)8. One chooses options from the menu by 
pointing at them with a laser-pointer style selection tool. Hierarchy navigation is also 
modeled after standard 2D menus and requires very good control over the pointer to 
do it effectively. 

8. It is possible to render thesemenustransparently (thoughthis is not done in the VWT). However, this 
approach is also problematic becausethe menu itemscan easilybe confusedwith geometry in the back
groundand can thusbecomedifficult to read. 
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The 3DM application developed at UNC is a rectangular array of 3D icons and 
popup menus that can be "attached" to the user in the virtual environment. When 
attached, it follows the user wherever she goes, and remains located near the waist line. 
It can be moved around freely, and even detached from the user and left behind. The 
3D icons represent tools, commands and toggles which are used to construct shapes or 
change the state of the environment. Apparently, it is quite easy to lose this panel in the 
IVE if the user detaches it. 

Darken's menus use speech-recognition techniques for selecting menu items in an 
IVE, and thus frees the user's hands for other tasks. However, as with many other 
menu systems, the text of the "hands-free" menus must be visible in the 3D 
environment at all times, and thus must occupy some part of the valuable screen space. 

6.4.2.2 Spherical Menus 

Spherical menus are inherently 3D structures and therefore show promise for IVE 
applications. They operate as follows: the items in the menu are distributed on the 
surface of a sphere (which itself is not necessarily visible) which is placed at the 
location of the user-controlled cursor in the virtual environment. The menu items 
become visible usually in response to a button event. By rotating the tracker in place (a 
6D tracker must be used for this kind of menu), users point at the desired item and 
release the button to activate it. However, it may be impossible to comfortably get at 
some of the items because it is very hard to rotate the tracker a full 3600 in a single 
motion. In JDCAD, a clutch mechanism was implemented to alleviate this problem. By 
pressing a button on the tracker, the user can temporarily suspend input from the 
tracker, rotate her hand into a more comfortable position, release the button, and 
continue pointing. One drawback of the technique is that after clutching, there is no 
longer correlation between the orientations of the tracker and the cursor in the IVE. 
Also, the interaction dialog becomes complicated by multiple button events. 

6.4.2.3 Dial Menus 

We have implemented a kind of dial menu (Figure 12) in our application that may 
be more useful than these other types of menus. Our dial menus are generally 
associated with specific objects in the 3D scene, such as 3D widgets like the rake, which 
have many parameters. As with conventional2D menus, only the root of a dial menu is 
initially visible. When the user clicks on the root, the associated menu items are drawn. 
Items are placed at intervals on a circle centered at the menu's root, and can either be 
text or graphic icons. Both visually and behaviorally, these menus are very similar to 
the "marking menus" developed by Kurtenbach and Buxton [27] and im~lementedin 
the Alias/Wavefront Studio Version 7 modeling and animation software. The main 
differences between the dial and marking menus are analogous to the differences 
between 2D and 3D widgets. Whereas marking menus are elements of a 2D interface, 
and behave similarly to pop-up menus, the dial menus coexist in a 3D environment 
with other geometry, and can be semantically attached to specific objects in the scene. 

9. "Marking menus"are an extension of the original "directional" piemenus[9], and, as Buxtonasserts, are 
superiorto linearpull-down or pop-upmenusbecausetheyexploitusers' spatialmemory. 
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Dial menus can be used either on the desktop with a 2D mouse or in an IVE with a 3D 
tracker. 

Unlike the marking menus, the user need not first select the object she wishes to 
modify before pulling up the menu - instead, these two operations are unified because 
some minimal geometry which represents the root of the dial menu is always visible as 
a component of the object that the menu is associated with. 

To activate a dial menu, the user presses a button on the mouse or tracker, then 
drags to the appropriate item. As with the marking menus, a line trace is left behind the 
cursor as visual feedback of the gesture being performed. Expert users who have 
retained a mental model of the physical layout of the menu can quickly make menu 
selections by performing the appropriate gestural movement without first waiting for 
the menu items to appear. The dial menus are hierarchical, and users may navigate 
both down and up the hierarchy. When the user releases the mouse or tracker button, 
the menu items and trace are undrawn and the chosen action (if any) is performed. 
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Figure 12:A sample dial menu. The root level menu on the left (a)has six items. Notice 
how related functions are placed on opposite sides of the dial (e.g., thick and thin lines). 

The circle at the center represents the 3D geometry which is always visible. This 
geometry could be text or an icon. The dotted lines extending outward from the center 

indicate the six regions of this menu. By moving the cursor into the region labeled, "# of 
streams", one of the two submenus on the right (b and c) is displayed with just the root 
of the parent menu (the rest of the items on the root menu are undrawn). The menu in 
the upper right (b) is a hierarchical submenu with additional items. The "up" item on 
this submenu allows navigation back up the hierarchy to the root (a). The menu in the 
lower right (c) is a virtual dial. In an IVE, by rotating the tracker about a single axis, a 

continuous range of values can be selected. Navigation back up the hierarchy is 
accomplished by moving the cursor back toward the root. 
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collection. We layout a grid of tape on the floor of the lab, at I-foot intervals, and place 
a plastic tripod with plumb line above each grid crossing. The plumb line is marked at 
I-foot intervals. This lets us place the sensor, carefully held level and grid-aligned, at 
each point of our 6 x 7 x 8 foot grid and record the position and orientation reported. 

Our own approach to interpolating data values is to first triangulate the domain 
of the function F, and then to estimate F by piecewise linear interpolation across this 
triangulation. 

We divide each cubical"cell" of the grid into five tetrahedra. For each 
tetrahedron, there is exactly one linear function of position that agrees with the 
observed values at the four corners, so the interpolation scheme is unambiguous. For 
this piecewise-linear interpolation scheme to succeed, the division into tetrahedra has 
to be a triangulation of the entire cell array. 

In practice, our approach has yielded excellent results. Correlation between actual 
tracker position and the observed location of the cursor in the IVE is significantly better 
than without the calibration. 
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