
BROWN UNIVERSITY

Department of Computer Science

Master's Project

CS-96-M8

"Optimizing Predicates in

Object-Oriented Queries"

by

Yung-Ming Chien

Master Project Report

Optimizing Predicates in

Object-Oriented Queries

Author: Yung-Ming Chien
Advisors: Marian H. Nodine

Stanley B. Zdonik

May/1996

Table of Contents

1. Introduction: Project Description 1

2. Overview of EPOQ •.••.••••••••••••••••••••....••••.••••••••.•••••..........•••••••• 1

3. Region Overview •••.•••••••••••••••••••••••••.•••••••••••..••••••••••••.••.•.•••••••••• 4

. . li'"31 "norma ze regIon . 4

3.2. "CNF" region 5

3.3. "Simplify AND" region 6

3.4. "Simplify OR" region 7

4. Transforming Rule to Conjunctive Normal Form •••••....•..•.•. 8

5. Description •••••••••.••••••••••••••••••••••••• 0 ••• 13

5.1. Normalize region 13

5.2. CNF region 15

5.3. "Simplify AND" region 19

5.4. "Simplify OR" region 22

6. Test Sample •••••••••••••••••••••••••••••••.••••••••••••••••••••••••••••••••••.••••••••• 24

7. Future Work 29

Appendix A •••.•••••.••••••••••••••••••••• A-I

Appendix C ••••••••••.••••••••••••.•••••••••••••••••••••.••••••••••••.•••••••••••••••••• C-l

Appendix D A script of the execution •••••••••••••••••••••.•••••••••••• D-l

[Reference] •••.••••••••••••••.••••••••••••••••••• 30

Appendix B ••••••••••••••.•••.•••••••••••••••••••••••••••••••.••.••••••••••••••••••••••• B-1

http:��������������.���.�������������������������������.��.�����������������������
http:������������.��.�
http:�.��.��������������������

Master Project Report

Optimizing Predicates in Object-Oriented Queries

Author: Yung-Ming Chien

Advisor: Marian H. Nodine

SISW86693

SeptJ1994....May/1996

1. Introduction: Project Description.

In my project, I am focusing on optimizing predicates in the EPOQ object-oriented
query optimizer. Since often more than one query plan could satisfy the same query, I
developed strategies to find more efficient query plans for evaluating predicates. Right
now, this project consists of the EPOQ regions: "normalize", "select", "apply", "andnot",
and "CNF'(also known as Conjunctive Normal Form). Under the "CNF' region, there are
two other regions: "Simplify AND" and "Simplify OR". I developed the "normalize",
"CNF', "Simplify AND", and "Simplify OR" regions. Section 3 is an overview of these
regions.

2. Overview of EPOQ.

In [1], Mitchell introduced an extensible architecture for a query optimizer in an
object-oriented database. It modularizes different query optimization strategies into sepa
rate optimization regions, and uses an overall control strategy to determine which regions
are applicable to a specific query, and in what order.

The EPOQ query optimizer takes a modular approach to optimization. It consists of a
tree of regions, each of which does a specific optimization task, called a "goal". A region
may attain its goal either by transforming the query itself or by calling different child
regions to transform it.

In each region, there are two major methods which are CustomApplicable and Custo
mAttain. These methods are used to interface between regions. CustomApplicable exam
ines an input EAT as to whether the EAT is of a form the region can process. It returns a
"bid" which indicates how much the region thinks it can improve the query. A parent
region will call CustomApplicable on all child regions that it has for this goal, then com
pare the bids to determine which will be best. It then calls CustomAttain on the best
region. CustomAttain does the actual transformation. It does the actual transformation of
the EAT. It is the core method of the region.

Queries in some object-oriented query language are parsed into an internal representa
tion based on the AQUA query language[l]. Initially, the optimizer will only be able to
parse AQUA queries into the internal representation, though we plan to look at other lan
guages as well in the future.

-Page 1

The internal representation of a query is passed from the parser to a top-level control
region for the optimizer itself. The top-level region does no optimization, but does pass the
query representation to other, appropriate regions which actually do the optimization
work. We support a tree of optimization regions, where each region coordinate the execu
tion of several subregions.!n this project, I implemented four subregions: "normalize"
region, "CNF' region, "Simplify AND" region, and "Simplify OR" region. Each of them
considers different specific optimizing cases. They are used to optimize predicates in an
object-oriented query.

Figure 2.1 is the snapshot of the current EPOQ regions. The flow of control is as fol
lows: The query representation is sent to the "Top" region. The "Top" region first sends
the query into "normalize" region to normalize the predicates. The normalized query is
returned to the "Top" region, which then sends it to the "Optimize" region. Thirdly, the
"Optimize" region decides which child is the best(based on some query traversal strategy
and the results of CustomApplicable) and sends the query into it. If the query is a select, it
is sent into the "select" region. Mter doing some transformations to bring the select predi
cates together, the query is sent into the "CNF' region to transform the query to CNF.
Then the "Simplify OR" is called to do some simplification and reordering. The conjunct
is then sent to the "SimpAND" region and do some simplification and reordering. The new
query is sent back to "CNF" region, "Select" region, and "Optimizer" region. If the query
contain "apply" operator, it is then sent to the "Apply" region. The new query is then sent
back to "Top" region, because the optimizer is done.

-Page 2

Fig. 2.1

Top

Optimizer

till(i)

Select Appl!:l

li>1E!

___________ 1

SimpAND

I
I

·~~""""".U""""""""""././.·""'U""»""""""""""~"""""""""""""""~"""""""")""""""""""""""""""''''.I'...v.l'.I'.I'.I'.I'.I'I'.I'''.I'"J"",,~.I'.I'.I'''''.I'.I'"".1'""""""""""".1'''.1'.1'.1'.1'.1'"",,.

Within the optimizer, a query is represented as an Extensible Annotated Tree(an EAT).
EATs were first developed for an optimizer for EQUAL queries[l].

An EAT is composed of alternating layers of function nodes and data nodes, connected
by labeled arcs. Data nodes represent data that is manipulated during the execution of the

-Page 3

query. It can represent either an object in the database(if it is a leaf in the EAT).; or an
object built by a query, subquery, or other function (if it is an internal node in the EAT).
The root of the EAT is a data node representing the result of the query. Function nodes
represent actions that can be taken on data. Its children represent the inputs to the function.
Thus, a function node always has at least one child node. A function node also always has
one parent data node, representing its output. Function nodes are represented by boxes
with the function name contained inside. Data nodes are represented by ovals with the data
type inside. Fig. 2.2 is the example of EAT, the AQUA query is 'apply(lambda(p)
p.name)(People)' .

: Set[String] data node

function node

: String People;Set[Person

p: Person

Fig. 2.2 Example of an EAT. The AQUA query is:

apply(lambda(x) p.name) (People)

3. Region Overview.

This section summarizes the regions which are implemented in my project. Section 3.1
describes the "normalize" region. Section 3.2 describes "CNF' region. Section 3.3
describes "Simplify AND" region. Section 3.4 describes the "Simplify OR" region.

3.1"normalize" region

• Purpose:

Eliminate NOT nodes where possible, keep variables for comparators on the left-hand
side, where possible. Also, convert obviously trivial comparisons to TRUE or FALSE

-Page 4

predicates.

• Overview:

Users specify a query in a way that is logical to them. But there may be some redun
dancy in the query. The "normalize" region tries to eliminate any redundancy in the predi
cate. Also, it puts simple (comparison) predicates in a normal form to simplify processing
later. Basically, this region does three things. First, if the predicate has a single "not" over
a comparison, then it deletes the "not" and change the sense of the compression. For
example, if the query looks like this:

select(lambda(x) not(x.stars != 4))(Hotels),

then after normalizing, the predicate will become this:

select(lambda(x) (x.stars =4))(Hotels).

Secondly, if the predicate is of the form (not(not p», then it deletes both "not"s. For
example, the input query is:

select(lambda(x) not (not (x. stars > 4)))(Hotels)

then after normalizing, the predicate is:

select(lambda(x) (x.stars > 4))(Hotels).

Thirdly, if there is a constant on the left-hand side of the predicate, then it changes it to
be the equivalent predicate with the constant on the right. For example,

select(lambda(x) 4 <= x.stars)(Hotels)

will be transformed to:

select(lambda(x) x.stars>=4)(Hotels)

This ensures that any predicate with one variable has that variable on the left-hand
side. This simplifies future processing, as later regions can assume that all variables and
path expressions for subpredicates that do comparisons are on the left, except when the
subpredicates compare two variables or path expressions.

3.2 "CNF" region.

• Purpose:

Transform the input query to Conjunctive Normal Form (CNF). A comparison involv
ing constants, variables, and path expressions in a boolean formula is an occurrence of a

-Page 5

variable or a path expression. Once the query is in CNF, use the 'Simplify OR' and 'Sim
plify AND' regions to optimize the conjuncts and disjuncts.

• Overview:

CNF, is also known as Conjunctive Normal Form. A comparison involving constants,
variables, and path expressions in a boolean formula is an occurrence of a variable or a
path expression. A boolean formula is in Conjunctive Normal Form if it is expressed as an
AND of clauses, each of which is the OR of one or more comparison involving constants,
variables, and path expressions. This region tries to normalize the input query to Conjunc
tive Normal Form. For example, the expression ((a AND b) OR c) is transformed to CNF,
it will be ((c OR a) AND (c OR b» The boolean operators AND and OR are separated. So,
if the input query is:

select (lambda(x) (x.stars!=2) AND (x. stars> =3) OR (x.stars<2)) (Hotels),

then when transformed to CNF it is:

select (lambda(x) (((x.stars<2) OR (x.stars> =3)) AND ((x.stars<2) OR (x.stars!=2)))
(Hotels).

After we got the CNF query, then each subquery is sent to the "Simplify OR" region to
be optimized individually. Then the whole new query into "Simplify AND" region to sim
plify and optimize the conjunct. Finally, we return the optimized predicate.

3.3 "Simplify AND" region

• Purpose:

Optimize predicates that are ANDed together. Eliminate redundancy, simplify the
predicates algebraically, and sort the predicates into rank order[2] for optimal execution
speed.

• Overview:

This region optimizes predicates that are ANDed together. It eliminates duplicate
predicates. It also simplifies the predicate algebraically by simplifying groups of predi
cates that are defined over the same path expression. Finally, once the predicate is simpli
fied, it orders the conjuncts in rank order[2] to optimize the time required to evaluate the
predicate. Rank order is using the "rank" to order the predicates. The "rank" is selectivity
minus one then divided by the cost.

(SELECTIVITY - I)
RANK = COST

The cost of invoking each selection predicate on a tuple is estimated through system
metadata. The selectivity of each selection predicate(Le. the percentage of tuples expected
to satisfy the predicate.) is similarly estimated and selections over a given relation are

-Page 6

ordered in ascending rank order. According to [2], this ordering is easily shown to be opti
mal for selections. The lower the selectivity of the predicate, the earlier we wish to apply
it, since it will filter out many tuples. Similarly, the cheaper the predicate, the earlier we
wish to apply it, since it doesn't cost much to evaluate it.

Examples of the "Simplify AND" region are as follows: if x.stars is an integer, and the
input query is:

select (lambda(x) x.stars>3 AND x.stars>4 AND x.stars<5) (Hotels),

then x.stars>3 and x.stars>4 can be reduced to x.stars>4. x.stars>4 AND x.stars<5 will
return FALSE. So when the example-query sent into "Simplify AND" region and after
sorting into rank order, it will return the new query:

select (lambda(x) false) (Hotels)

Give an example of rank ordering:

select (lambda(x) x.stars> =4 AND x.name = "Hilton") (Hotels)

is transformed to

select (lambda(x) x.name= "hilton" AND x.stars> =4) (Hotels)

because both subpredicates have the same cost, bur there are fewer hotels with the
name "Hilton" than there are 4 and 5 star hotels. Thus, it is more efficient to evaluate
"x.name=Hilton" first, because if it is false you don't even need to examine the number of
stars.

3.4 "Simplify OR" region

• Purpose:

Optimize predicates that are ORed together. Eliminate redundancy, simplify the
predicates algebraically, and sort the predicates into inverse rank order. Inverse rank order
is the opposite of the rank order specified in [2].

• Overview:

This region optimizes predicates that are ORed together. It operates in a similar way
to the "Simplify AND" region but uses different methods to simplify the predicate alge
braically. Also, once the predicate is simplified, it uses inverse rank to ensure optimal eval
uation speed. We use inverse rank for OR predicates because we want to evaluate the
subpredicates first that are most likely to be TRUE. Let's back to the example mentioning
in "CNF" region section:

select (lambda(x) (((x.stars<2) OR (x. stars> =3)) AND ((x.stars<2) OR (x.stars!=2)))

-Page 7

(Hotels),

then we sent the subqueries «x.stars<2) OR (x.stars>=3» and «x.stars<2) OR
(x.stars!=2» into "Simplify OR" region. «x.stars<2) OR (x.stars>=3» will transform to
(x.stars!= 2). «x.stars<2) OR (x.stars!=2» will transform to TRUE. So the new query
returning from "Simplify OR" region will be:

select (lambda (x) (x. stars != 2) AND true) (Hotels)

Then we send the new query we got from above procedure: «x.stars != 2) AND true)
sending into "Simplify AND" region, then we got the new, simplified query as following:

select (lambda(x) x.stars!= 2) (Hotels)

4. Transforming rule to Conjunctive Normal Form

In general, a boolean formula contains bunch of ANDs and ORs operators. A compar
ison involving constants, variables, and path expressions in a boolean formula is of a vari
able or a path expression on the variable. A boolean formula is in Conjunctive Normal
Form if it is expressed as an AND of clauses, each of which is the OR of one or more com
parison involving constants, variables, and path expressions. According [3], there are
some rules to transform the general boolean formula to CNF. These rules are sufficient to
transform the general boolean formula into CNF. Rule I to rule 6 are the transforming
rules to transform the EAT in CNF. Rule 7 to Rule 9 are the simplified rule to simplify the
EAT in CNF and we don't use the individual method to implement the rule8 and rule 9 but
they are handled by conditional statement. The Other cases are: (A and A) --> A and (A or
A)-->A. These are considered in Simplify AND(OR) region.

Rule 1: (A and B) and C --> C and (A and B)

-I>

-Page 8

(0.10 V) PU8 (;) .10 V) <--(0 PU8 ;» .10 V .£ alDlI

(g .10 V) .10 ;) <--;) .10 (g .10 V) :z alDlI

«(1.10 ;)) pUB V <--V pUB «(1.10 ;)) :s alDlI

t

«(0.10 g) pUB
(0.10 V)) pUB (3 .10 g)) pUB(3 .10 V) <--(0 pUB3) .10 (gpUBV): 9 atOll

Rule 7: (A and B) or (A and C) --> A and (B or C). If there are at least one
common predicate in both side, no matter what kind of order is, ie: (A
and C) or (B and C), OR (A and C) or (B and A).

~

Rule 8. A or (A and B) --> A and (1 or B) --> A

~ eb

-Page 12

Rule 9. A and (A or B) --> A or (1 and B) --> A

-I> eb

5. Description.

This section will describe the algorithm, data structure and implementation of each
region. There are four subsections: 5.1 Normalize region, 5.2 CNF region, 5.3 "Simplify
AND" region, and 5.4 "Simplify OR" region. Each subsection contains the purpose of the
region and when the region to be used. It also contains the class diagram, class description,
and pseudocode for each method. In here, these region inherited two superclass: RECon
trolRegion (Le. CNF region) and RELeafRegion (Le. "normalize", "Simplify AND", and
"Simplify OR" regions). REControlRegion and RELeafRegion are specified in [5]. A con
trol region can combine subregions and choose and branch to suitable subregions to opti
mize the query. The leaf region, transforms the query itself. For example, the "CNF"
region considers the general boolean-expression-query and reorganize it, then send this
query branch to "Simplify AND" and "Simplify OR" regions. "Simplify AND" ("Sim
plify OR") region which are leaf region only consider the cases which the predicates are
ANDed (ORed) together, and do not call any child regions while doing the simplification
and reordering.

5.1 Normalize region.

• Purpose of region:

Eliminate NOT nodes where possible, keep variables for comparators on left-hand
side, where possible. Also, convert obviously trivial comparisons to TRUE and FALSE
predicates.

• Class Description:

class SR_NormComp : public RELeafRegion

-Page 13

This is a class for "normalize" region. It is the only region that can attain the "normal
ize" goal. It provides some methods to normalize the queries. This is the first leaf region
and is called for every input query. It tries to eliminate some redundancy, fold NOT into
the function it negates, and standardize the predicate. For example: if a variable or path
expression is compared to a constant, the constant should be on the left. If there is a "not"
over the comparison operator, fold the not into the comparison. i.e.; not (a = b) --> (a != b).
If there are two "not"s in a row, just eliminate them, i.e., (not (not (a>b») --> (a>b).

Figure 5.1.1 is the GMT class diagram of class SR_NormComp.

Figure 5.1.1

REL.eafRegion

1\

SR NonnComp

+SR_NormCompO
+SR_NormComp(char " FileName)
+~SR_NormCompO
+CustomAchievable(const char" Goal):int
+CustomApplicable(RPFDArc " TheEat,const char" Goal):int
+CustomAttain(RPFDArc " TheEat,const char" Goal,WORD MaxReturnSize):REQuerySet"
-Normalize(RPFDArc " fdArc):RPFDArc"
-NormalizeNot(RPFDArc " fdArc):RPFDArc"
- OneNotPred(RPFDArc " fdArc):RPFDArc"
- TwoNotPred(RPFDArc " fdArc):RPFDArc"
- NormalizeCompOp(RPFDArc " fdArc):RPFDArc"
-CompareConst(RPFDArc" fdArc):RPFDArc"

I. Public Methods:

SR_NormCompO;

Constructor.

SR_NormComp(char * Filename);

This is the normal region constructor and expects the named file to be of the form

defined in [7].

-SR_NormCompO;

Destructor.

int CustomApplicable (RPFDArc* TheEat, const char * Goal);

This method examines the root function node. CustomApplicable always returns 5,

and this region will always be called.

REQuerySet* CustomAttain (RPFDArc* TheEat, const char* Goal, WORD

MaxRetumSize);

-Page 14

CustomAttain returns NULL if the query set is not applicable, Otherwise it returns a
query set with exactly one query, but that query is normalized. It calls the transforma
tion method (NormalizeO) to transform the input EAT and return the REQuerySet of
the transformed EAT.

II. Private Methods:

RPFDAre * Normalize(RPFDAre * fdAre);

This method works from the bottom up on the input EAT. First it normalizes the chil

dren, and splices in the normalized results. Then it does the following with the current

node:

If it is a not node, it normalizes it using NormalizeNot.

RPFDAre * NormalizeNot(RPFDAre * fdAre);
1. If it is a not node over another not node, using TwoNotPred.
2. If it is a not node over a COMPOP node, using OneNotPred.

RPFDAre * OneNotPred(RPFDAre * fdAre);

Changes the sense of the COMPOP and deletes the not node. For example, normalize

the query "not x <comparison> y" to "x <opposite comparison> y" exp: not x=y -->

x!=y.

RPFDAre * TwoNotPred(RPFDAre * fdAre);

Eliminates two "not" function nodes in a row. exp.: not not x=y --> x=y.

RPFDAre * NormalizeCompOp(RPFDAre * fdAre);
1. Replaces predicates that are obviously TRUE of FALSE. With the true or false pred
icate, this may cause the whole predicate to evaluate true or false. exp: x=x --> true,
x!=x -->false, x<=x -->true.
2. If the expression is compared to constant, put the constant on the right-hand side.
When both side are constant, Call CompareConst.

RPFDAre * CompareConst(RPFDAre * fdAre);

Replaces predicates that compare two constants with true or false predicates.

5.2 CNF region.

• Purpose of region:

Transform the input query to Conjunctive Normal Form (CNF). Once the predicate is
in CNF, for each subpredicate which is the OR of one or more comparisons involving con
stants, variables, and path expressions, call the "Simplify OR" region to simplify it and
reorder it for faster execution. Then call the "Simplify AND" region to simplify the whole
predicate and reorder the subpredicates for optimal execution.

• Class Description:

-Page 15

class SR_CNForm: public REControlRegion

This class contains methods to transform the input query to Conjunctive Normal
Form(CNF) and also branch to "SimplifyAND" and "Simplify OR" regions to simplify
and optimize the conjuncts and disjuncts. Right now this region is connected under the
"Select" region (see Fig. 2.1). When the root function node is "select", the input query is
first optimized, then the predicate is sent into "CNF" region to be transformed and opti
mized. Fig. 5.2.1 is the OMT class diagram of class SR_CNForm.

Fig. 5.2.1

REControlRegion

.6.,

SR CNFonn

+SR_CNFormO
+SR_CNForm(char x FileName)
+-SR_CNFormO
+CustomAchievable(const char x Goal):int
+CustomApplicable(RPFDArc x TheEat,const char x Goal):int
+CustomAttain(RPFDArc x TheEat,const char x Goal,WORD MaxReturnSize):REQuerySet"
- Traverse(RPFDArc theEat,char x defvar,int arcflag):RPFDArc"
-transfer2CNF(RPFDArc x theEat,char x defvar,int arcflag):RPFDArc"
- ToSimpOR(REQuerySet x ans_set,WORD MaxReturnSize):REQuerySet"
- ToSimpAND(RPFDArc " new_fdarc,char x defvar):REQuerySet X

-PatternOfCNF(RPFDArc " fdArc,char " defvar):RPFDArcx

- rule1 (RPFDArc x fdArc):RPFDArc"
-rule2(RPFDArc x fdArc):RPFDArc"
- rule3(RPFDArc " fdArc):RPFDArc"
- rule4(RPFDArc " fdArc):RPFDArc"
- rule5(RPFDArc " fdArc):RPFDArc"
- rule6(RPFDArc " fdArc):RPFDArc"
- rule7(RPFDArc " fdArc):RPFDArc x

I. Public Methods:

SR_CNFormO;
Constructor.
SR_CNForm(char * FileName);

This is the CNF region construstor and expects the named file to be of the form defined
in [7].
-SR_CNFormO;

Destructor.

int CustomAchievable (const char * Goal);

-Page 16

CustomAchievable always returns 1. This method makes sure this region is present.
int CustomApplieable (RPFDAre* TheEat, eonst ehar * Goal);
CustomApplicable returns 5 if the root function node is "and" or "or", and 0 other
wise.
REQuerySet* CustomAttain (RPFDAre* TheEat, eonst ehar* Goal, WORD

MaxRetumSize);
CustomAttain returns NULL if the query set is not applicable, Otherwise it returns a
query set with exactly one query, but that query is in CNF, and has been simplified and
reordered.

ll. Private Methods:

RPFDAre * Traverse(RPFDAre * theEat, ehar * defvar, int areflag);

Traverse the EAT from the bottom up, calling transfer2CNF at each "or" or "and"

node.

RPFDAre * transfer2CNF(RPFDAre * theEat, ehar * defvar, int areflag);

l.Check the input RPFDArc, if the current function is an "or" node that may be above

some "and" node. If so, call the PatternOfCNF. Otherwise, nothing needs to change,

because the EAT is already in CNF.

2. Recursively apply this procedure until all "or" nodes are under the "and" node.

RPFDAre * PattemOfCNF(RPFDAre * fdAre, ehar * defvar);
Input the RPFDArc and find out the matching pattern and transform to CNF

REQuerySet * ToSimpOR(REQuerySet * and_set, WORD MaxRetumSize);
After the input query transform to CNF, there are some clauses related by ANDs. Each
clause consists of one or more comparisons involving constants, variables, and path
expressions combined by ORs. So the "Simplify OR" region is called for each clause
to simplify the predicates.

REQuerySet * ToSimpAND(RPFDAre * new_fdare, WORD MaxReturnSize);
After the input query is transformed to CNF, there are some clauses related by ANDs.
So after branch to "Simplify OR" region, the new query is still in CNF, is then simpli
fied using the "Simplify AND" region.

RPFDAre * rulel(RPFDAre * fdAre);
((a*b)*c) --> (c*(a*b))

RPFDAre * rule2(RPFDAre * fdAre);
((a+b)+c) --> (c+(a+b))

RPFDAre * rule3(RPFDAre * fdAre, ehar * defvar);

(a+(c*d)) --> ((a+c)*(a+d))

RPFDAre * rule4(RPFDAre * fdAre, ehar * defvar);

-Page 17

«c*d)+a) --> (a+(c*d» --> rule3

RPFDArc * rule5(RPFDArc * fdArc);
«c+d)*a) --> (a*(c+d»

RPFDArc * rule6(RPFDArc * fdArc, char * defvar);
«a*b)+(c*d» --> «a+c)*«b+c)*«a+d)*(b+d»»

RPFDArc * rule7(RPFDArc * fdArc, char * defvar);
«a*b)+(a*c» --> (a*(b+c»

See section 4 for a better description of these rules.
• Algorithm Description:

Concept:
For each input query, we try to use some mathematical basis to modify and standardize

the input query. Conjunctive Normal Form is a usual method. The following part will
describe in detail algorithms for some important methods, and methods that require spe
cialized algorithm.

• REQuerySet* CustomAttain (RPFDArc* TheEat, const char* Goal, WORD)

Algorithm:

1. Read the input EAT.
2. Call "Traverse" method to transform the input EAT to CNF(Conjunctive Normal
Form).
3. Call "ToSimpOR" method to simplify each subquery.
4. Call "ToSimpAND" method to simplify the new query from step 4.
5. Return new EAT

• RPFDArc * Traverse(RPFDArc * theEat, char * defvar, int arcftag);

Algorithm:

Traverse(theEAT)
{

if(not leaf)

Traverse(left child);

Traverse(right child);

transfer2CNF(theEAT);

else

transfer2CNF(theEAT);

}

-Page 18

• RPFDArc * transfer2CNF(RPFDArc * theEat, char * defvar, int arcflag);

Algorithm:

1.Check the input EAT,

2.1f this is an "or" node above some "and" nodes, then call PattemOfCNFO method.

3. Else if the sub-EAT matches the transfonning rules(Section4), then call Patter
nOfCNFO method.
4. Else do nothing.
4. Recursively check the whole EAT tree until all the "or" nodes are relocated under all
the "and" nodes.
5. Return the new EAT.

• RPFDArc * PatternOfCNF(RPFDArc * fdArc, char * defvar);

Algorithm:

<1> Check the input arc --fdArc;
<2> If the root function node of fdArc is "or";

<2.1> If the left-child-function node is "or" and right-child-function is not
"and" or "or", then call rule20;

<2.2> If the right-child-function node is "and" and left-child-function is not
"and", then call rule30;

<2.3> If the right-child-function is not "and" and left-child-function is "and",
then call rule40;

<2.4> If both the right-child-function and left-child-function are "and", then
<2.4.1> If there exists the case match rule 7 of section 4, then call

rule70·
<3> If the root function node of fdArc if "and";

<3.1> If the left-child-function node is "and" and right-child-function is not
"and" or "or", then call rule10;

<3.2> If the left-child-function node is "or" and right-child-function is not
"and" or "or", then call rule50;

<4> Return the new arc;

We tested these rules using sixteen test queries. We present the results in section 6.

5.3 "Simplify AND" region.

• Purpose of region:

Optimize predicates with ANDed together. Eliminate redundancy, simplify the
predicates algebraically, and sort the predicates into rank order[2].

• Class Description:

-Page 19

class SR_SimpAND : public RELeafRegion

This region optimizes predicates that are ANDed together. This region is located under
the "CNF' region (see Fig. 2.1). When the root function node is "and", then this region get
called and do the transformation. It eliminates redundancy and also simplifies the predi
cate algebraically. Fig. 5.3.1 is the OMT class diagram of class SR_SimpAND.

Fig. 5.3.1

IRELeafRegion I

/\

SR SimpAND

+SR_SimpANDO

+SR_SimpAND(char x FileName)

+~SR_SimpANDO
+CustomAchievable(const char' Goal):int
+CustomApplicable(RPFDArc x TheEat,const chat x Goal):int
+CustomAttain(RPFDArc x TheEat,const char x Goal,WORD MaxReturnSize):REQuerySet X

- AlphSort(RPFunctionNode x func):REQuerySet X

-simpilfy(REQuerySet x Qset):REQuerySetX

_cond36(RPFDArc x Itheat,RPFDArc x Jtheat):RPFDArc x

I. Public Methods:

SR_SimpANDO;

Constructor.

SR_SimpAND(char * FileName);

Constructor. The filename must be a valid EPOQ region *.ini file [7].

-SR_SimpANDO;

Destructor.

int CustomAchievable (const char * Goal);

CustomAchievable always returns 1.

int CustomApplicable (RPFDArc* TheEat, const char * Goal);

CustomApplicable returns 5 if the root function node is "and", 0 otherwise.

REQuerySet* CustomAttain (RPFDArc* TheEat, const char* Goal, WORD

MaxReturnSize);

CustomAttain returns NULL if the query set is not applicable, Otherwise it returns a

query set with exactly one query, with the ANDed clauses of the predicate simplified

and reordered.

-Page 20

D. Private Methods:

REQuerySet * AlphSort(RPFunctionNode * func);

Store in the REQuerySet, then using Bubble sort to order the REQuerySet by alpha

betical order.

REQuerySet * simplify(REQuerySet * Qset);

If there are two predicates which left-hand-side are equal, then there will be 36 condi

tions to simplify the comparisons. Le.: X = A and X != B is false, if A=B.

RPFDArc * cond36(RPFDArc * Itheat, RPFDArc* Jtheat);

This tests the two input predicates to see if they satisfy one of the 36 conditions. It.

returns NULL if there are no changes, or the simplified EAT if the two predicates can

be algebraically combined into one. Please refer to the Appendix A for the details of

the 36 cases.

• Algorithm Description:

This region consider the query like this: (p1 and p2 and p3 and p4 and ...). Each sub
query(pl, p2, ...) can be: pl=(ql or q2 or q3 or..), but can contain no "AND" operators.
First step, sorts the input predicates(pl, p2, p3,...) in alphabetical order by bubble sort.
Secondly, compares each two of them to simplify and eliminate the redundancy. Thirdly, it
sorts the remaining predicates by rank. The skeleton of the algorithm is as follows:

INPUT: REQueryset, PI * P2 * P3 * P4 * ...* Pm

OUTPUT: REQueryset

<1> Sort the input predicates by alphabetical order based on the variable of
left-hand side, store them in PSet; name as R[l], R[2], R[3], R[4], ... ,
R[m]

<2> For any two items in R[] set.
<2.1> If the variable of left-hand side of the firstpred and second

pred are equal, then,
<2.1.1> Goto and check the 36 situations (refer to Appendix

A). if the pair was simplified, then
<2.1.1.1> If we got the true pred, then eliminate it;
<2.1.1.2> Else if we got the false pred. then break

and return false;
<2.1.1.3> Else store in the buffer.

<2.1.1.3.1> Uses the new predicate to com
pare with next item in R[], Go back
to step <2.1> and execute it recur
sively.

<2.1.1.3.2> After above steps, store the new
predicate into NPSet.

-Page 21

<2.2> ELSE pick up next two items in R[] set.
<3> Sort NPSet by rank[2];
<4> Return NPSet;

Appendix C contains the test results for the "Simplify AND" region. There are thirty
six conditions and some special cases when the right-hand side ia an integer. These results
show the algebraically simplified rules. Step 2.2 is based on these rules to simplify the
predicate algebraically.

5.4 "Simplify OR" region.

• Purpose of region:

Optimize predicates with ORed together. Eliminate redundancy, simplify the

predicates algebraically, and sort the predicates by inverse rank [2].

• Class Description:

class SR_SimpOR : public RELeafRegion

This region optimizes predicates that are ORed together. This region are located under
the "CNF" region (see Fig. 2.1). When the root function node is "or", then this region is
called. It eliminates redundancy and also simplifies the predicate algebraically. Fig. 5.4.1.
shows the OMT class diagram of class SR_SimpOR.

Fig. 5.4.1

IREL.eafRegion I

/\

SR SimpOR

+SR_SimpORO
+SR_SimpOR(char" FileName)
+~SR_SimpORO
+CustomAchievable(const char" Goal):int
+CustomApplicable(RPFDArc " TheEat,const chat" Goal):int
+CustomAttain(RPFDArc "TheEat,const char" Goal,WORD MaxReturnSize):REQuerySet"
- AlphSort(RPFunctionNode " func):REQuerySet"
- simpilfy(REQuerySet • Qset):REQuerySet"
- cond36(RPFDArc • Itheat,RPFDArc " Jtheat):RPFDArc"

-Page 22

I. Public Methods:

SR_SimpORO;

Constructor.

SR_SimpOR(char * FileName);

Constructor. The file name must be a valid EPOQ region .ini file.

-SR_SimpORO;

Destructor.

int CustomAchievable (const char * Goal);

CustomAchievable always returns 1.

int CustomApplicable (RPFDArc* TheEat, const char * Goal);

CustomApplicable returns 5 if the root function node is "or", 0 otherwise.

REQuerySet* CustomAttain (RPFDArc* TheEat, const char* Goal, WORD

MaxReturnSize);

CustomAttain returns NULL if the query set is not applicable, Otherwise it returns a

query set with the "or" clause simplified and reordered.

D. Private Methods:

REQuerySet * AlphSort(RPFunctionNode * func);

Store in the REQuerySet, then using Bubble sort, order the REQuerySet in alphabeti

cal order.

REQuerySet * simplify(REQuerySet * Qset);

Similar to simplify AND.

RPFDArc * cond36(RPFDArc * Itheat, RPFDArc* Jtheat);
This tests the two input predicates to see if they satisfy one of the 36 conditions. It
returns NULL if there are no changes, or the simplified EAT if the two predicates can
be algebraically combined into one. Please refer to the Appendix B for the details of
the 36 cases.

• Algorithm Description:

This region considers queries like this: (p 1 or p2 or p3 or p4 or ...). First it sorts the
input predicates(pl, p2, p3,...) in alphabetic order by bubble sort. Secondly, it compares
each two of them to simplify and eliminate the redundancy. Thirdly, it sorts the remaining
predicates by inverse rank. The skeleton of the algorithm is as follows:

INPUT: REQueryset, PI + P2 + P3 + P4 + ...+ Pm

OUTPUT: REQueryset

<1> Sort the input predicates by alphabetical order based on the variable
ofleft-hand side, store them in PSet; name as R[l], R[2], R[3], R[4], ... ,
R[m]

-Page 23

<2> For any two items in R[I set.
<2.1> If the variable of left-hand side of the firstpred and second

pred are equal, then,
<2.1.1> Goto and check the 36 situations (refer to Appen

dix B) ,and return simplify result (to be REQuery
Set);

<2.1.1.1> If we got the true pred, then break and
return true;

<2.1.1.2> Else if we got the false pred. then elimi
nate it;

<2.1.1.3> Else store the new in the buffer.
<2.1.1.3.1> Uses the new predicate to

compare with next item in R[], Go
back to step <2.1> and execute it
recursively.

<2.1.1.3.2> Mter above steps, store the
new predicate into NPSet.

<2.2> ELSE pick the next two items in R[] set.
<3> Sort NPSet by inverse rank[2];
<4> Return NPSet;

In Appendix C, lists the test results for the "Simplify OR" region. There are
thirty six conditions and some special cases when the right-hand side is an integer. These
results show the algebraically simplified rules. The step 2.2 is based on these rules to sim
plify the predicate algebraically.

6. Test Sample.

There are some samples to test our program can work as expecting. The first eight
examples are testing the rules of transformation of C.N.F. The other nine samples are test
ing not only the rules of transforming C.N.F., but also testing the "Simplify OR" and
"Simplify AND" region and some tricky cases. Mter these samples, The test samples of
"Simplify OR" and "Simplify AND" are listing in Appendix C. The following samples are
in the directory: "/pr%odb/epoq/ymc/query/jq*". A script with the execution of all these
samples is found in Appendix D.

Sample 1:
Input Query:

select(lambda(x)((x.address.city.name= "New York") AND (x.name="ADA ")) AND
(x.address.number=1910)) (Hotels)
Transforming Procedure:

This query tests the transforming Rule 1. After transforming to C.N.F., the new query
is also sent to "Simplify AND" region to be sorted by rank(sorts by decreasing probability
of evaluating to false).
Output Query:

select (lambda (x) ((x. name = "ADA") and ((x. address. city.name = "New York") and

-Page 24

(x.address.number = 1910)))) (Hotels)

Sample 2:
Input Query:

select(lambda(x)((x.address.city.name="New York") OR (x.name="ADA")) OR
(x.address.number=1910)) (Hotels)
Transforming Procedure:

This query tests the transforming Rule 2. After transforming to C.N.F., the new query
is also sent to "Simplify OR" region to be sorted by inverse rank(sorts by increasing prob
ability of evaluating to false).
Output Query:

select (lambda (x) ((x.address.city.name = "New York") or ((x.address.number =
1910) or (x.name = "ADA ")))) (Hotels)

Sample 3:
Input Query:

select(lambda(x)(x.address.city.name= "New York") OR ((x.name= "ADA") AND
(x. address.number=1910))) (Hotels)
Transforming Procedure:

This query tests the transforming Rule 3. After transforming to C.N.F., the new query
is also sent to "Simplify OR" and "Simplify AND" regions.
Output Query:

select (lambda (x) (((x.address.city.name = "New York") or (x. name = "ADA")) and
((x.address.city.name = "New York") or (x. address.number = 1910)))) (Hotels)

Sample 4:
Input Query:

select(lambda(x)((x.address.city.name= "New York") AND (x.name="ADA")) OR
(x.address.number=1910)) (Hotels)
Transforming Procedure:

This query tests the transforming Rule 4. After transforming to C.N.F., the new query
is also sent to "Simplify OR" region and "Simplify AND" region.
Output Query:

select (lambda (x) (((x.address.city.name = "New York") or (x.address.number =
1910)) and ((x. address.number =1910) or (x.name = "ADA")))) (Hotels)

Sample 5:
Input Query:

select(lambda(x)((x. address. city.name= "New York") OR (x. name="ADA")) AND
(x.address.number=1910)) (Hotels)
Transforming Procedure:

This query tests the transforming Rule 5. After transforming to C.N.F., the new query
is also sent to "Simplify OR" region and "Simplify AND" region.
Output Query:

select (lambda (x) ((x.address.number = 1910) and ((x. address. city.name = "New
York") or (x. name = "ADA")))) (Hotels)

-Page 25

Sample 6:
Input Query:

select(lambda(x)((x.address.city.name="New York") AND (x.name="ADA")) OR
((x.address.number=1910) AND (x.stars>=4))) (Hotels)
Transforming Procedure:

This query tests the transforming Rule 6. After transforming to C.N.F., the new query
is also sent to "Simplify OR" region and "Simplify AND" region.
Output Query:

select (lambda (x) (((x. stars >= 4) or (x. name = "ADA")) and (((x. address. city.name
= "New York") or (x.address.number =1910)) and (((x. address.number =1910) or
(x.name = "ADA ")) and ((x. address. city.name = "New York") or (x.stars >= 4))))))
(Hotels)

Sample 7:
Input Query:

select(lambda(x)((x.address.city.name= "New York") AND (x. name="ADA ")) OR
((x.address.number=1910) AND (x. address. city.name= "New York"))) (Hotels)
Transforming Procedure:

This query tests the transforming Rule 7. After transforming to C.N.F., the new query
is also sent to "Simplify OR" region and "Simplify AND" region.
Output Query:

select (lambda (x) ((x.address.city.name = "New York") and ((x. address.number =
1910) or (x.name = "ADA ")))) (Hotels)

Sample 8:
Input Query:

select(lambda(x)((x.address.number=5) OR ((x.name= "ADA") AND (x.address.num
ber=5)))) (Hotels)
Transforming Procedure:

This query tests the special case of Rule 3. According to the rule, we should get the
new query which only contains the common items, in here, is "x.address.number = 5".
Output Query:

select (lambda (x) (x.address.number =5)) (Hotels)

Sample 9:
Input Query:

select (lambda(x) ((x. stars!=3) AND (x. stars> =3)) AND (x.stars<5)) (Hotels)
Transforming Procedure:

1. Sends the input query into "CNF' region. This query fits the Rule 1, then after
transforming, the new query is: "«x.stars<5) AND «x.stars!=3) AND (x.stars>=3»)".

2. Sends the query into "Simplify AND" region, "«x.stars!=3) AND (x.stars>=3»"
will become "(x.stars>3)". Then "(x.stars<5) AND (x.stars>3)" will be "(x.stars=4)".
Output Query:

select (lambda (x) (x. stars =4)) (Hotels)

-Page 26

Sample 10:
Input Query:

select (lambda(x) ((x.stars!=3) OR (x.stars>=3)) OR (x.stars<5)) (Hotels)
Transforming Procedure:

1. Sends the input query into "CNF" region. This query fits the Rule 2, then after
transfonning, the new query is: "«x.stars<5) OR «x.stars!=3) OR (x.stars>=3»)".

2. Sends the query into "Simplify OR" region, "«x.stars!=3) OR (x.stars>=3»"
will become "true". Then "(x.stars<5) AND true" will be "true".
Output Query:

select (lambda (x) true) (Hotels)

Sample 11:
InputQuery:

select (lambda(x) (x.stars!=3) OR ((x.stars>=3) AND (x.stars<5))) (Hotels)
Transforming Procedure:

1. Sends the input query into "CNF' region. This query fits the Rule 3, so after trans
foming, the new query is: "«(x.stars!=3) OR (x.stars>=3» AND «x.stars !=3) OR
(x.stars<5»)".

2. Sends the transfomed query into "Simplify OR" region, "«x.stars!=3) OR
(x.stars>=3»" will become "true". "«x.stars!=3) OR (x.stars<5»" will be "true". So after
leaving "Simplify OR" region, we get the new query "true".

3. Checks the new query and notes that we don't need to send it to "Simplify AND"
region.
Output Query:

select (lambda (x) true) (Hotels)

Sample 12:
Input Query:

select (lambda(x) ((x.stars!=3) AND (x. stars>=3)) OR (x.stars<5)) (Hotels)
Transforming Procedure:

1. Sends the input query into "CNF" region. This query fits the Rule 4, so after trans
foming, the new query is: "«(x.stars<5) OR (x.stars!=3» AND «x.stars <5) OR
(x.stars>=3»)".

2. Sends the new query into "Simplify OR" region, "«x.stars!<5) OR (x.stars!=3»"
will become "true". "«x.stars<5) OR (x.stars>=3»" will be "true". So after leaving "Sim
plify OR" region, we get the new query "true".

3. Checks this new query and note that we don't need to send it to "Simplify
AND" region.
Output Query:

select (lambda (x) true) (Hotels)

Sample 13:
Input Query:

select (lambda(x) ((x.stars!=2) OR (x.stars>=3)) AND (x.stars<2)) (Hotels)
Transforming Procedure:

1. Sending the input query into "CNF" region. This query fits the Rule 5, so after trans

-Page 27

forming, the new query is: "«x.stars<2) AND «x.stars!=2) OR (x.stars>=3»)".
2. Sending the query into "Simplify OR" region, "«x.stars!=2) OR (x.stars>=3»"

will become "(x.stars!=2)". Then "«x.stars<2) AND (x.stars!=2»" will be
"(x.stars<2)".So after leaving "Simplify OR" region, we get the new query is
"(x.stars<2)".

3. Sends the new query to the "Simplify AND" region. Since there is only one predi
cate, the "Simplify AND" region will do nothing.
Output Query:

select (lambda (x) (x.stars < 2)) (Hotels)

Sample 14:
Input Query:

select (lambda(x) ((x.stars!=2) AND (x.stars<3)) OR ((x.stars!=3) AND (x.stars<4))
OR ((x. stars<=5) AND (x.stars>=2))) (Hotels)
Transforming Procedure:

1. This input query is D.N.F. (Disjunctive Normal Form). Mter sending into "CNF"
region, We got very huge query(24 predicates). Let's just analyze the D.N.F predicate to
check that we got the right out put, no matter you use C.N.F. or D.N.F. to standardize the
input query.

lao "«x.stars!=2) AND (x.stars<3»" will become "(x.stars<2)". "«x.stars!=3) AND
(x.stars<4»" will become "(x.stars<3)". "«x.stars<=5) AND (x.stars>=2»" will be the
same.

lb. So we got the new query:"(x.stars<2) OR (x.stars<3) OR (x.stars<=5 AND
x.stars>=2)". This new query can also be simplified as "(x.stars<3) OR (x.stars<=5 AND
x.stars>=2)". For further simplifying, it will be "(x.stars<=5)".
Output Query:

select (lambda (x) (x.stars <= 5)) (Hotels)

Sample 15:
Input Query:

select(lambda(x)((x.address.city.name= "New York") AND (x.name="ADA ")) OR
((x.address.city.name= "New York") AND (x.address.number=1910)) OR
((x.address.city.name="New York") AND (x.name="ADA"))) (Hotels)
Transforming Procedure:

1. In the "CNF" region, "«x.address.city.name="New York") AND (x.name="ADA"»
OR «x.address.city.name="New York") AND (x.address.number=191O»" fits the Rule 7.

2. So according to the transformation procedure, it will become as
"«x.address.city.name="New York") AND «x.name="ADA") OR (x.address.num
ber=191O»)". Then the query becomes "«(x.address.city.name="New York") AND
«x.name="ADA") OR (x.address.number=191O») OR«(x.address.city.name="New
York") AND (x.name="ADA"»).

3. The transformed query also fits the Rule 7. Then do it again. The new query is
"«(x.address.city.name = "New York") and «x.address.number = 1910) or (x.name =
"ADA"»). The duplicate predicate "(x.name="ADA")" is eliminated.

5. Sending the new query to "Simplify OR" and "Simplify AND" regions.
Output Query:

-Page 28

select (lambda (x) ((x.address.city.name = "New York") and ((x. address.number =
1910) or (x.name = "ADA")))) (Hotels)

Sample 16:

Input Query:

select(lambda(x)((((x.address.city.name= "New York") AND false) OR

(x.name="ADA") OR ((x.stars=4) AND (x.address.number=1910))))) (Hotels)

Transforming Procedure:

1. In "CNF" region, obviously "((x.address.city.name="New York") AND false)" will
be "false" in the CNF region (the CNF region will check the special cases when the left
leaf is true or false). Then "(false OR (x.name="ADA"))"will be "(x.name="ADA")" in
the CNF region. Mter organizing, the new query is "((x.name="ADA") OR ((x.stars=4)
AND (x.address.number=l91O»). This query fits Rule 3. Then transform it.

2. Sending the new query to "Simplify OR" and "Simplify AND" regions.

Output Query:

select (lambda (x) (((x. stars =4) or (x.name = "ADA")) and ((x. address.number =
1910) or (x.name = "ADA ")))) (Hotels)

7. Future Work.

In our implementation, the strategy of transformation the input query to C.N.F. is
working well. Almost every case is considered. We also attain the optimized query after
executing our procedures(please see section 3.). Some input queries(for example, sample
1 to simple 8) are reordered by their cost(also known as rank), and some of them(for
example, sample 9 to sample 14) are simplified by more precise expression. Everything
seems to be prefect. But we also find some problems need to be considered in the future.

Remember the sample 14, in section 3. Let's simplify the expression of that query as:
(A*B)+(C*D)+(E*F), in here "*,, means "and", "+" means "or", just like the generallogi
cal textbook. This is D.N.F. (Disjunctive Normal Form). When we got this input query and
try to transform it to C.N.F. We will get eight items(2*2*2=8) in our C.N.F. expression. As
our experiment, since we use postorder to sort the EAT tree, it won't take much time to
transform to C.N.F. The most expensive thing is to send each item to "Simplify OR" and
"Simplify AND" regions. If we have "DNF" region, we only need to send three
items((A*B), (C*D) ,and (E*F» to "Simplify AND" region and one to "Simplify OR"
region. But if we transform it to C.N.F., there are eight items sending to "Simplify OR"
region and one to "Simplify AND" region. It will takes some time to send and receive the
data between regions. On the other hand, if the input query is: (A+B)*(C+D)*(E+F) and
assuming we had "DNF" region, we got the similar problem. So we may want to find
some strategy to figure out the input query fits D.N.F. or C.N.F. transformation. This is
complicated when a query combines these two cases,
(A*B)+(C*D)+(E*F)+(G+H)*(I+J)*(K+L).

Considering the other question. Let's back to our example--sample 14. If we have the
"DNF' region, we don't need to transform if we send this query into the region. But after
sending to "Simplify AND" region and "Simplify OR" region, we get the new query
is:(x.stars<3) OR (x.stars<=5 AND x.stars>=2) and we can't simplify any more. But if we
input this query into our test module, we can get the simplest expression: (x.stars <= 5).

-Page 29

Since D.N.F. and C.N.F. are complementary, if there are some questions in one normal
form, another must have the same problems. These are tricky question and need to be con
sider in the future.

[References]

[1] Theodore W. Leung, Gail Mitchell, Bharathi Subramanian, Bennet Vance, Scott L. Van
denberg, ans Stanley B. Zdonik. The AQUA data model and algebra. Technical Report
CS-93-09, Brown University Department of Computer Science, March 1993.

[2] Joseph M. Hellerstein, Practical Predicate Placement, SIGMOD 94-5/94 Minneapolis,
Minnesota, USA.

[3] Epp, Susanna S., Discrete mathematics with applications, Belmont, Calif. : Wadsworth
Pub. Co., cl990.

[4] Gail Mitchell, Stanley B. Zdonik, and Umeshwar Dayal. An Architecture for Query Pro
cessing in Persistent Object Stores.. In Proc. of the 25th Hawaii Int'l Conf. on System Sci
ences, Jan. 1991.

[5] Marian H. Nodine, Farah B, Abbas, and Mitch Chemiack. The EPOQ Query Optimizer for
Objext-Oriented Databases Design Specification. Brown University, Oct., 1994

[6] Thomas H. Corman, Charles E. Leiserson, and Ronald L.Rivest, Introduction to Algo
rithms, The MIT press, Cambridge, Massachusetts, McGraw-Hill Book Company. 1994

[7] Laurent Hasson, EPOQ Regions New Design Specifications, Brown University, August
23, 1994.

-Page 30

Appendix A.

The following lists the detailed conditions used in the "Simplify AND" region to simplify the

query. There are 36 conditions and some special cases when the right hand sides are integers.

Table 1:

Input Comparing ICondition # Result
queries R.H.S.

1 X=A A=B X=A
X=B FALSEA!=B

2 X=A A=B X=A
X!=B FALSEA!=B

-

3 X=A A>=B

X>=B A<B

4 X=A A<=B
X<=B A>B

5 X=A A>B
X>B A<=B

6 X=A A<B
X<B A>=B

7 X!=A A=B
X=B A!=B

8 X!=A A=B
X!=B A!=B

X=A
FALSE

X=A
FALSE

X=A
FALSE

X=A
FALSE

FALSE
X=B

X!=A
THE SAME

9 X!=A	 A=B X>B
X>=B	 A>B THE SAME

A<B X>=B

10 X!=A A=B X<B

X<=B A>B X<=B

A<B
 THE SAME

11 X!=A A<=B X>B
X>B A>B THE SAME

.1•.1••

12 X!=A A>=B X<B

X<B A<B THE SAME

-A-l

Table 1:

Condition #
Input

queries
Comparing

R.H.S.
Result

•••li_ll_
13 X>=A A<=B X=B

X=B A>B FALSE

14 X>=A A=B X>A
X!=B A>B X>=A

A<B THE SAME

15 X>=A A>=B X>=A
X>=B A<B X>=B

16 X>=A A=B X=A
X<=B A<B THE SAME

A>B FALSE

17 X>=A A>B X>=A
X>B A<=B X>B

18 X>=A A>=B FALSE
X<B A<B THE SAME

MiiE'R"
i I I

19 X<=A
X=B

20 X<=A
X!=B

A>=B X=B
A<B FALSE

A=B X<A
A>B THE SAME
A<B X>=A

-
21 X<=A X=BIA=B

X>=B A<B FALSE
A>B THE SAME

22 X<=A A<=B X<=A
X<=B A>B X<=B

23 X<=A A<=B FALSE
X>B A>B THE SAME

-A-2

Table 1:

Condition #
Input

queries
Comparing

R.H.S.
Result

.1~I&~ii.iiii
I I i

X<B24	 X<=A A>=B
X<B A<B X<=A

A<B25	 X>A X=B
FALSEA>=BX=B

26	 X>A A>=B X>A
A<B THE SAMEX!=B

.1~.JE4.

27 IX>A I A<B IX>=B

X>=B	 A>=B X>A

28 X>A A>=B FALSE
X<=B A<B THE SAME

Eilil.ri.J.

I I i

29	 X>A A>=B X>A

X>B A<B X>B

30 X>A A>=B FALSE
X<B A<B THE SAME

•••, ,
31 X=B

FALSE
A>B
A<=B

X<A
X=B

32 X<A
X!=B

A<=B
A>B

X<A
THE SAME

••1••
-A-3

Table 1:

Condition #
Input

queries
Comparing

R.H.S.
Result

33 X<A
X>=B

A<=B
A>B

FALSE
THE SAME

••Ki.
34 X<A A<=B X<A

X<=B A>B X<=B

35 X<A A<=B FALSE
X>B A>B THE SAME

••••ii

36 X<A A<=B X<A

X<B A>B X<B

-A-4

Appendix B.
The following lists the detailed conditions used in the "Simplify OR" region to simplify the query.
There are 36 conditions and some special cases when the right hand sides are integers.

Table 1:

A<=B X<=B
A>B THE SAME

Condition # I Input Comparing I Result
queries R.H.S.

I

1 IX=A A=B X=A
X=B A!=B THE SAME

I

2 I X=A A=B TRUE
X!=B A!=B X!=B

3 Ix=A IA>=B IX>=B
X>=B

_
A<B THE SAME

••
4 X=A

X<=B

_ii.iii:•••

I I i

5 X=A X>=BIA=B
X>B A>B X>B

A<B THE SAME

6 X=A A=B X<=B
A<BX<B X<B

THE SAMEA>B

TRUE7 X!=A A=B
X=B A!=B X!=A

8 X!=A A=B X!=A
X!=B A!=B THE SAME

9 X!=A TRUEA>=B
A<B X!=AX>=B

10 X!=A A>B X!=A
X<=B TRUEA<=B

11 X!=A X!=AA<=B
A>B TRUEX>B

-B-l

Table 1:

Condition # I Input Comparing I Result
queries R.H.S.

12 ~A A>=B X!=A
X<B A<B TRUE

13 X>=A A<=B X>=A
X=B A>B THE SAME

••1••
I , ,

14 I X>=A
I X!=B

15 IX>=A
X>=B

I

16 IX>=A
X<=B

A>B X!=B
A<=B TRUE

A<=B X>=A
A>B X>=B

TRUEA<=B
A>B THE SAME

ifliI_i_
, i ,

17 X>=A A<=B X>=A
X>B A>B X>B

18 X>=A A<=B TRUE
X<B A>B THE SAME

_-_w_

i , ,

19	 X<=A A>=B X<=A
X=B A<B THE SAME

••,••
A>=B	 TRUE20	 X<=A

X!=B A<B	 X!=B

21 X<=A A>=B TRUE
X>=B A<B THE SAME

-B-2

Table 1:

Condition #
Input

queries
Comparing

R.H.S. Result

• fI•••a
i

A>=B X<=A
X<=B

22	 X<=A
, ,

A<B	 X<=B

23	 X<=A A>=B TRUE
X>B A<B THE SAME

.i•••

Iii

24 X<=A
X<B

A>=B
A<B

X<=A
X<B

25 X>A
X=B

A=B
A<B
A>B

X>=A
X>A
THE SAME

26 X>A
X!=B

A>=B
A<B

X!=B
TRUE

27 X>A
X>=B

A<B
A>=B

X>A
X>=B

28 X>A
X<=B

A<=B
A>B

TRUE
THE SAME

iE:~ ~~~ f!:,ilii

iii

29

30

31

X>A X>AA<=B
X>B A>B X>B

X>A A=B X!=A
X<B A>B THE SAME

A<B TRUE

X<A A=B X<=A
A>BX=B X<A
A<B THE SAME

X<A A<=B X!=B
X!=B A>B TRUE

32

-B-3

Table 1:

Condition #
Input

queries
Comparing

R.H.S.
Result

33 X<A
X>=B

A>=B
A<B

TRUE
THE SAME

.-=•••
34 X<A

X<=B

35 X<A
X>B

36 X<A
X<B

A>B

A<=B

A=B
A<B
A>B

A>=B
A<B

X<A
X<=B

X!=A
THE SAME
TRUE

X<A
X<B

-B-4

Appendix C.
A. The test results of "Simplify AND" region.
Note that the variable of left hand side must be
the same. "org" means the input query. The
next line following this one is the output.

org x=4 and x=4
x=4
org x=4 and x=5
false
org x=4 and x !=4
false
org x=4 and x !=5
x=4
org x=4 and x>=3
x=4
org x=4 and x>=5
false
org x=4 and x<=5
x=4
org x=4 and x<=3
false
org x=4 and x>3
x=4
org x=4 and x>4
false
org x=4 and x<5
x=4
org x=4 and x<4
false
org x!=4 and x=4
false
org x!=4 and x=3
x=3
org x!=4 and x!=4
x!=4
org x!=4 and xl=3
x!=4 and x!=3
org x!=4 and x>=4
x>4
org x!=4 and x>=3
x!=4 and x>=3
org x!=4 and x>=5
x>=5
org x!=4 and x<=4
x<4

org x!=4 and x<=3
x<=3
org x!=4 and x<=5
x!=4 and x<=5
org x !=4 and x>3
x>4
org x!=4.0 and x>3.0
x!=4.0 and x>3.0
org x!=4 and x>5
x>5
org x!=4 and x<3
x<3
org x!=4 and x<5
x<4
org xl=4.0 and x<5.0
x!=4.0 and x<5.0
org x>=4 and x=3
false
org x>=4 and x=5
x=5
org x>=4 and x!=4
x>4
org x>=4 and xl=3
x>=4
org x>=4 and x!=5
x>=4 and x!=5
org x>=4 and x>=3
x>=4
org x>=4 and x<=4
x=4
org x>=4 and x<=3
false
org x>=4 and x<=5
x>=4 and x<=5
org x>=4 and x>3
x>=4
org x>=4 and x>5
x>5
org x>=4 and x<3
false
org x>=4 and x<5
x=4
org x>=4.0 and x<5.0
x>=4.0 and x<5.0
org x>=4 and x<6
x>=4 andx<6

-C-l

org x<=4 and x=3
x=3
org x<=4 and x=5
false
org x<=4 and x!=4
x<4
org x<=4 and x!=3
x<=4 and x!=3
org x<=4 and x!=5
x<=4
org x<=4 and x>=4
x=4
org x<=4 and x>=3
x<=4 and x>=3
org x<=4 and x>=5
false
org x<=4 and x<=3
x<=3
org x<=4 and x<=5
x<=4
org x<=4 and x>5
false
org x<=4 and x>3
x=4
org x<=4.0 and x>3.0
x<=4.0 and x>3.0
org x<=4 and x>2
x<=4 and x>2
org x<=4 and x<3
x<3
org x<=4 and x<5
x<=4
org x>4 and x=5
x=5
org x>4 and x=3
false
org x>4 and x!=3
x>4
org x>4 and x!=5
x>5
org x>4.0 and x!=5.0
x>4.0 and x!=5.0
org x>4 and x>=5
x>=5
org x>4 and x>=3
x>4

org x>4 and x<=3
false
org x>4 and x<=5
x=5
org x>4.0 and x<=5.0
x>4.0 and x<=5.0
org x>4 and x<=6
x>4 and x<=6
org x>4 and x>3
x>4
org x>4 and x>5
x>5
org x>4 and x<3
false
org x>4 and x<5
false
org x>4.0 and x<5.0
x>4.0 and x<5.0
org x>4 and x<6
x=5
org x>4.0 and x<6.0
x>4.0 and x<6.0
org x>4 and x<7
x>4 and x<7
org x<4 and x=3
x=3
org x<4 and x=5
false
org x<4 and x!=3
x<3
org x<4.0 and x!=3.0
x<4.0 and x!=3.0
org x<4 and x!=5
x<4
org x<4 and x>=5
false
org x<4 and x>=3
x=3
org x<4.0 and x>=3.0
x<4.0 and x>=3.0
org x<4 and x>=2
x<4 and x>=2
org x<4 and x>5
false
org x<4 and x>3
false

org x<4.0 and x>3.0
x<4.0 and x>3.0
org x<4 and x>2
x=3
org x<4.0 and x>2.0
x<4.0 and x>2.0
org x<4 and x>l
x<4 andx>l
org x<4 and x<5
x<4
org x<4 and x<3
x<3

B. The test results of the "Simplify OR"
region. Note that the variable on the left hand
side must be the same. "org" means the input
query. The next line following this one is the
output.

org x=4 or x=4
x=4
org x=4 or x=3
x=40rx=3
org x=4 or x!=4
true
org x=4 or x!=3
x!=3
org x=4 or x>=3
x>=3
org x=4 or x>=5
x>=4
org x=4.0 or x>=5.0
x=4.0 or x>=5.0
org x=4 or x>=6
x=4 or x>=6
org x=4 or x<=5
x<=5
org x=4 or x<=3
x<=4
org x=4.0 or x<=3.0
x=4.0 or x<=3.0
org x=4 or x<=2
x=40rx<=2
org x=4 or x>4
x>=4
org x=4 or x>3

x>3
org x=4 or x>5
x=4 or x>5
org x=4 or x<4
x<=4
org x=4 or x<5
x<5
org x=4 or x<3
x=4 or x<3
org x!=4 or x=4
true
org x!=4 or x=3
x!=4
org x!=4 or x!=4
x!=4
org x!=4 or xl=3
x!=4 orx!=3
org x!=4 or x>=3
true
org x!=4 or x>=5
x!=4
org x!=4 or x<=5
true
org x!=4 or x<=3
x!=4
org x!=4 or x>5
x!=4
org x!=4 or x>3
true
org x!=4 or x<3
x!=4
org x!=4 or x<5
true
org x>=4 or x=5
x>=4
org x>=4 or x=3
x>=3
org x>=4.0 or x=3.0
x>=4.0 or x=3.0
org x>=4 or x=2
x>=40r x=2
org x>=4 or x!=5
true
org x>=4 or x!=3
x!=3
org x>=4 or x>=5

-C-3

x>=4
org x>=4 or x>=3
x>=3
org x>=4 or x<=5
true
org x>=4 or x<=3
true
org x>=4.0 or x<=3.0
x>=4.0 or x<=3.0
org x>=4 or x<=2
x>=4 orx<=2
org x>=4 or x>3
x>3
org x>=4 or x>5
x>=4
org x>=4 or x<5
true
org x>=4.0 or x<5.0
true
org x>=4 or x<3
x !=3
org x>=4.0 or x<3.0
x>=4.0 or x<3.0
org x>=4 or x<2
x>=4orx<2
org x<=4 or x=3
x<=4
org x<=4 or x=5
x<=5
org x<=4.0 or x=5.0
x<=4.0 or x=5.0
org x<=4 or x=6
x<=4orx=6
org x<=4 or x!=3
true
org x<=4 or x!=5
x!=5
org x<=4 or x>=3
true
org x<=4 or x>=5
true
org x<=4.0 or x>=5.0
x<=4.0 or x>=5.0
org x<=4 or x>=6
x<=4orx>=6
org x<=4 or x<=3

x<=4
org x<=4 or x<=5
x<=5
org x<=4 or x>3
true
org x<=4 or x>5
x !=5
org x<=4.0 or x>5.0
x<=4.0 or x>5.0
org x<=4 or x>6
x<=4 or x>6
org x<=4 or x<3
x<=4
org x<=4 or x<5
x<5
org x>4 or x=4
x>=4
org x>4 or x=5
x>4
org x>4 or x=3
x>4orx=3
org x>4 or x!=3
x!=3
org x>4 or x!=5
true
org x>4 or x>=5
x>4
org x>4 or x>=3
x>=3
org x>4 or x<=5
true
org x>4 or x<=3
x !=4
org x>4.0 or x<=3.0
x>4.0 or x<=3.0
org x>4 or x<=2
x>4orx<=2
org x>4 or x>5
x>4
org x>4 or x>3
x>3
org x>4 or x<4
x !=4
org x>4 or x<5
true
org x>4 or x<3

-C4

x>4 or x<3
org x<4 or x=4
x<=4
org x<4 or x=3
x<4
org x<4 or x=5
x<4 or x=5
org x<4 or x!=5
x!=5
org x<4 or x!=3
true
org x<4 or x>=3
true
org x<4 or x>=5
x !=4
org x<4.0 or x>=5.0
x<4.0 or x>=5.0
org x<4 or x>=6
x<4orx>=6
org x<4 or x<=5
x<=5
org x<4 or x<=3
x<4
org x<4 or x>4
x !=4
org x<4 or x>3
true
org x<4 or x>5
x<4 or x>5
org x<4 or x<3
x<4
org x<4 or x<5
x<5

-C-5

demo Wed May 15 12:23:16 1996 1

Appendix D. A script of the execution.

I. CNF region

Script started on Wed May 08 12:14:57 1996
fiddle:/u/ymc% epoq
fiddle:oodb/epoq/ymc% p

***************** G rOO V Y E P 0 Q *****************

*** Region 'Top' construction succeeded ***

*** Region 'Planner' construction succeeded ***

*** Region 'Optimizer' construction succeeded ***

*** Region 'Select' construction succeeded ***

*** Region 'Apply' construction succeeded ***

*** Region 'Normalize' construction succeeded ***

*** Region 'SimpAND' construction succeeded ***

***	 Region 'Simplify OR' construction succeeded
***	 Region 'CNF' construction succeeded ***
Successful plugging of NormComp on Top
Successful plugging of Optimizer on Top
Successful plugging of Select on Optimizer
Successful plugging of Apply on Optimizer
Successful plugging of CNForm on Select
Successful plugging of SimpAND on CNF
Successful plugging of SimpOR on CNF
0:	 Top

1-- 0: Normalize
1-- 1: Optimizer

1-- 0: Select

1 1-- 0: CNF

I 1-- 0: SimpAND

I 1-- 1: Simplify OR

1-- 1: Apply

Added Globals in file /pr%odb/epoq/ymc/SM/TravelSchema successfully.

Added Tuples in file /pr%odb/epoq/ymc/SM/TravelTuples successfully.

Added derived types in file /pr%odb/epoq/ymc/SM/DerivedTypes successfully.

Added global symbols in file /pr%odb/epoq/ymc/SM/TravelGlobals successfully.

//#### Query 1 #####//

select(lambda(x) ((x.address.city.name='New York') AND (x.name='ADA') AND (x.address.num
ber=1910») (Hotels)

Region Top Goal optimize. Input query is:
select (lambda (x) (((x.address.city.name 'New York') and (x.name 'ADA')) and (x.ad

dress.number = 1910))) (Hotels)

Branching for goal 'normalize': First, 1.
Region Normalize Goal normalize. Input query is:
select (lambda (x) (((x.address.city.name = 'New York') and (x.name 'ADA')) and (x.ad

dress.number = 1910))) (Hotels)

Region Normalize Goal normalize. Return queries are:

query 0: select (lambda (x) (((x.address.city.name = 'New York') and (x.name 'ADA"») a

nd (x.address.number = 1910»)) (Hotels)

Branching for goal 'optimize': First, 1.
Region Optimizer Goal optimize. Input query is:
select (lambda (x) (((x.address.city.name 'New York') and (x.name "ADA")) and (x.ad

dress .number = 1910))) (Hotels)

WARNING: Region 'Optimizer' does not know about goal 'address'
WARNING: Region 'Optimizer' does not know about goal 'city'
WARNING: Region 'Optimizer' does not know about goal 'name'

~IARHING : Region 'optimizer' does not know about goal
WARNING: Region 'Optimi zer' does not know about goal , narne I

WARNING: Region 'Optimizer' does not know about goal ,-,

WARNING: Region 'Optimizer' does not know about goal 'and'

WARNING: Region 'Optimizer' does not know about goal laddress'

WARNING: Region 'Optimi zer' does not know about goal 'number'

WARNING: Region 'Optimizer' does not know about goal
WARNING: Region 'Optimizer' does not know about goal 'and'

Branching for goal 'select' : First, 3.

Region Select Goal select. Input query is:

select (lambda (x) (((x.address.city.name = 'New York') and (x.name = 'ADA')) and (x.add

ress.number = 1910))) (Hotels)

SR-Select: did transforms

Branching for goal 'CNF': First, 3.

Region CNF Goal CNF. Input query is:

(((x.address.city.name = "New York') and (x.name 'ADA')) and (x.address.number 1910)

SR-CNForm customattain

entring rule1 -- (a*b)*c --> c*(a*b)

Input: (((x.address.city.name = "New York') and (x.name = "ADA'») and (x.address.number =

1910))
Output: ((x.address.number = 1910) and ((x.address.city.name = 'New York') and (x.name =
'ADA'»))
Branching for goal 'or': First, 3.
Region Simplify OR Goal or. Input query is:

(x.address.number = 1910)

Region Simplify OR Goal or. No return queries.

Branching for goal 'or': First, 3.
Region Simplify OR Goal or. Input query is:

(x.address.city.name = "New York')

Region Simplify OR Goal or. No return queries.

Branching for goal 'or': First, 3.
Region Simplify OR Goal or. Input query is:

(x.name = 'ADA')

Region Simplify OR Goal or. No return queries.

Branching for goal 'and': First, 3.
Region SimpAND Goal and. Input query is:

((x.address.number = 1910) and ((x.address.city.name "New York") and (x.name "ADA'))

SR_simpAND customattain

query 0: (x.name = 'ADA')

query 1: (x.address.city.name = "New York')

query 2: (x.address.number = 1910)

Region SimpAND Goal and. Return queries are:

query 0: ((x.name = 'ADA") and ((x.address.city.name 'New York') and (x.address.number

= 1910)))

Region CNF Goal CNF. Return queries are:

query 0: ((x.name = 'ADA') and ((x.address.city.name 'New York") and (x.address.number

= 1910))

Region Select Goal select. Return queries are:
querI 0: select (lambda (x) ((x.name = "ADA') and ((x.address.city.name "New York") and

(x.address.number = 1910)))) (Hotels)

Region Optimizer Goal optimize. Return queries are:
query 0: select (lambda (x) ((x.name = "ADA") and ((x.address.city.name "New York D

) and
(x.address.number = 1910)) (Hotels)

demo Wed May 15 12:23:16 1996 2

query 2: (x.name = "ADA")
Region Top Goal optimize. Return queries are, Region Simplify OR Goal or. Return queries are:
query 0, select (lambda (x) ((x.name = "ADA") and (x.address.city.name "New York") an query 0: (x.address.city.name = "New York") or «x.address.number 1910) or (x. name
d (x.address.number = 1910)))) (Hotels) ADA")))

Region CNF Goal CNF. Return queries are:
II •••• Query 2 •••• 11 query 0: (x.address.city.name = "New York") or ((x.address.number 1910) or (x.name

ADA'»)
select(lambda(x) «x.address.city.name="New York") OR (x.name="ADA")) OR (x.address.numbe
r=1910)) (Hotels) Region Select Goal select. Return queries are:

query 0: select (lambda (x) ((x.address.city.name "New York') or «x.address.number
Region Top Goal optimize. Input query is: 910) or (x.name = "ADA')))) (Hotels)
select (lambda (x) «(x.address.city.name "New York") or (x.name "ADA")) or (x.addr

ess.number = 1910)) (Hotels) Region Optimizer Goal optimize. Return queries are:
query 0: select (lambda (x) «x.address.city.name = "New York') or «x.address.number 1

Branching for goal 'normalize': First, 1. 910) or (x.name = 'ADA'»» (Hotels)
Region Normalize Goal normalize. Input query is:
select (lambda (x) «(x.address.city.name = "New York") or (x.name "ADA"») or (x.addr Region Top Goal optimize. Return queries are:

ess . number = 1910))) (Hotels) query 0: select (lambda (x) «x.address.city.name "New York") or «x.address.number 1
910) or (x.name = "ADA')))) (Hotels)

Region Normalize Goal normalize. Return queries are:
query 0: select (lambda (x) «(x.address.city.name = 'New York") or (x.name "ADA"» or

(x.address.number = 1910»)) (Hotels)	 II •••• Query 3 •••• 11

Branching for goal 'optimize': First, 1. select (lambda (x) (x. address. city.name= "New York") OR «x.name="ADA') AND (x.address.number
Region Optimizer Goal optimize. Input query is: =1910)) (Hotels)
select (lambda (x) «(x.address.city.name "New York") or (x.name "ADA")) or (x.addr

ess.number = 1910)) (Hotels) Region Top Goal optimize. Input query is:
select (lambda (x) «x.address.city.name = "New York") or «x.name "ADA') and (x.addre

WARNING: Region 'Optimizer' does not know about goal 'address' ss.number = 1910)))) (Hotels)
WARNING: Region 'Optimizer' does not know about goal 'city'

IWARNING: Region Optimi zer I does not know about goal 'name' Branching for goal 'normalize': First, 1.

WARNING: Region 'Optimizer' does not know about goal - Region Normalize Goal normalize. Input query is:

WARNING: Region 'Optimizer' does not know about goal 'name" select (lambda (x) «x.address.city.name = 'New York') or «x.name "ADA") and (x.addre

WARNING: Region / Optimizer' does not know about goal - ss.number = 1910»» (Hotels)

WARNING: Region ' Optimizer' does not know about goal 'or'

WARNING: Region 'Optimizer' does not know about goal 'address' Region Normalize Goal normalize. Return queries are:

WARNING: Region 'Optimizer' does not know about goal 'number' query 0: select (lambda (x) «x.address.city.name = "New York') or «x.name "ADA") and

,-,WARNING: Region 'Optimizer' does not know about goal (x.address.number = 1910)))) (Hotels)

WARNING: Region 'Optimizer' does not know about goal 'or'

Branching for goal 'select': First, 3. Branching for goal 'optimize': First, 1.

Region Select Goal select. Input query is: Region Optimizer Goal optimize. Input query is:

select (lambda (x) «(x.address.city.name = "New York") or (x. name "ADA')) or (x.addr select (lambda (x) «x.address.city.name = 'New York") or «x.name "ADA") and (x. addre

ess.number = 1910») (Hotels) ss.number = 1910»))) (Hotels)

ISR-Select: did transforms WARNING: Region Optimi zer' does not know about goal 'address'
Branching for goal 'CNF': First, 3. WARNING: Region ' Optimizer' does not know about goal 'city'
Region CNF Goal CNF. Input query is: WARNING: Region 'Optimizer' does not know about goal 'name'

,-,«(x.address.city.name = "New York") or (x.name 'ADA')) or (x.address.number 1910))	 WARNING: Region 'Optimi zer' does not know about goal

WARNING: Region Optimizer' does not know about goal 'name'
I

SR_CNForm customattain WARNING: Region 'Optimizer' does not know about goal
entring rule2 -- (a+b)+c --> c+(a+b) WARNING: Region ' Optimizer' does not know about goal 'address'

Input: « (x.address.city.name = "New York") or (x.name = 'ADA") or (x.address.number WARNING: Region 'Optimizer' does not know about goal 'number'

1910)) WARNING: Region 'Optimizer' does not know about goal
entring rule1 -- (a*b)*c --> c*(a*b) WARNING: Region 'Optimizer' does not know about goal 'and'

Input: «(x.address.city.name = "New York") or (x.name = 'ADA")) or (x.address.number = WARNING: Region 'Optimizer' does not know about goal 'or'

1910)) Branching for goal 'select' : First, 3.

Output: «x.address.number = 1910) or «x.address.city.name = 'New York') or (x.name Region Select Goal select. Input query is:

ADA"))) select (lambda (x) «x.address.city.name = "New York") or «x.name = 'ADA") and (x.addre

Output: «x.address.number = 1910) or «x.address.city.name = "New York") or (x.name ss.number = 1910)))) (Hotels)

ADA")))

Branching for goal 'or': First, 3. SR-Select: did transforms

Region Simplify OR Goal or. Input query is: Branching for goal 'CNF': First, 3.

«x.address.number = 1910) or «x.address.city.name = "New York") or (x.name = "ADA")))	 Region CNF Goal CNF. Input query is:
«x.address.city.name = "New York") or «x.name "ADA') and (x.address.number 1910))

query 0: (x.address.city.name = 'New York')
quer~ 1: (x.address.number = 1910) SR_CNFonn customattain

demo Wed May 15 12:23:16 1996 3

entring rule3 -- a+(c*d) --> (a+c)*(a+d)

Input: «x.address.city.name = 'New York') or (x.name = 'ADA") and (x.address.number = Region Normalize Goal normalize. Return queries are:

1910)) query 0: select (lambda (x) ((x. address. ci ty .name = "New York') and (x .name "ADA")) or

Output: «(x.address.city.name = 'New York') or (x.name = "ADA')) and «x.address.city.n (x.address.number = 1910») (Hotels)

ame = 'New York') or (x.address.number = 1910»)

Branching for goal 'or': First, 3. Branching for goal 'optimize': First, 1.

Region Simplify OR Goal or. Input query is: Region Optimizer Goal optimize. Input query is:

«x.address.city.name = 'New York') or (x.name = 'ADA') select (lambda (x) «(x.address.city.name 'New York") and (x.name "ADA'» or (x.addr
ess.number = 1910»)) (Hotels)

SR_SimpAND: :CustomAttain. Delaying until variable defined.
query 0: (x.address.city.name = 'New York') WARNING: Region 'Optimizer' does not know about goal 'address'
query 1: (x.name = 'ADA') WARNING: Region 'Optimizer' does not know about goal 'city'
Region Simplify OR Goal or. Return queries are: WARNING: Region 'Optimizer' does not know about goal 'narne'
query 0: «x.address.city.name = 'New York') or (x.name = 'ADA') WARNING: Region 'Optimizer' does not know about goal ,-,

WARNING: Region 'Optimizer' does not know about goal 'name'
,-,Branching for goal 'or': First, 3. WARNING: Region 'Optimizer' does not know about goal

Region Simplify OR Goal or. Input query is: WARNING: Region 'Optimizer' does not know about goal 'and'
«x.address.city.name = 'New York') or (x.address.number 1910)) WARNING: Region 'Optimizer' does not know about goal 'address'

WARNING: Region I Optimi zer' does not know about goal 'number'
,-,SR-SimpAND: :CustomAttain. Delaying until variable defined. WARNING: Region 'Optimizer' does not know about goal

query 0: (x.address.city.name = 'New York') WARNING: Region 'Optimizer' does not know about goal 'or'

query 1: (x.address.number = 1910) Branching for goal 'select': First, 3.

Region Simplify OR Goal or. Return queries are: Region Select Goal select. Input query is:

query 0: «x.address.city.name = "New York') or (x.address.number 1910)) select (lambda (x) «(x.address.city.name = 'New York') and (x.name = 'ADA')) or (x.addr

ess.number = 1910))) (Hotels)
Branching for goal 'and': First, 3.
Region SimpAND Goal and. Input query is: SR_Select: did transforms

«(x.address.city.name = 'New York') or (x.name 'ADA'» and «x.address.city.name Branching for goal 'CNF': First, 3.
New York') or (x.address.number = 1910)) Region CNF Goal CNF. Input query is:

«(x.address.city.name = "New York') and (x.name 'ADA"» or (x.address.number 1910))
SR_simpAND customattain
query 0: «x.address.city.name = 'New York') or (x.name = 'ADA'» SR-CNForm customattain
query 1: «x.address.city.name = 'New York') or (x.address.number = 1910) entring rule4 -- (c*d)+a --> a+(c*d) --> rule3
Region SimpAND Goal and. Return queries are: Input: «(x.address.city.name = 'New York') and (x.name = "ADA"» or (x.address.number
query 0: «(x.address.city.name = 'New York') or (x.name = 'ADA'» and «x.address.city. 1910))
name = 'New York') or (x.address.number = 1910») entring rulel -- (a*b)*c --> c*{a*b)

Input: ({(x.address.city.name = 'New York') and (x.name = 'ADA'») or (x.address.number =
Region CNF Goal CNF. Return queries are: 1910))
query 0: «(x.address.city.name = 'New York') or (x.name 'ADA') and «x.address.city. Output: «x.address.number = 1910) or «x.address.city.name = "New York") and (x.name = "
name = 'New York') or (x.address.number = 1910»)) ADA')))

entring rule3 -- a+(c*d) --> (a+c)*(a+d)
Region Select Goal select. Return queries are: Input: «x.address.number = 1910) or «x.address.city.name = 'New York") and (x.name = "A
query 0: select (lambda (x) «(x.address.city.name = 'New York') or (x.name = 'ADA'» an DA'))
d «x.address.city.name = 'New York') or (x.address.number = 1910»» (Hotels) Output: «(x.address.number = 1910) or (x.address.city.name = 'New York'») and «x.addres

s.number = 1910) or (x.name = "ADA')))
Region Optimizer Goal optimize. Return queries are: Output: «(x.address.number = 1910) or (x.address.city.name = "New York')) and «x.addres
query 0: select (lambda (x) «(x.address.city.name = 'New York') or (x.name = "ADA') an s.number = 1910) or (x.name = "ADA"»))
d «x.address.city.name = 'New York') or (x.address.number = 1910»)) (Hotels) Branching for goal 'or': First, 3.

Region Simplify OR Goal or. Input query is:
Region Top Goal optimize. Return queries are: «x.address.number = 1910) or (x.address.city.name = "New York"»
query 0: select (lambda (x) {«x.address.city.name = 'New York") or (x.name = 'ADA'») an
d «x.address.city.name = 'New York') or (x.address.number = 1910») (Hotels) SR_SimpAND: :CustomAttain. Delaying until variable defined.

query 0: (x.address.city.name = "New York")
query 1: (x.address.number = 1910)

IIIIII Query 4 IIIIII Region Simplify OR Goal or. Return queries are:
query 0: «x.address.city.name = "New York') or (x.address.number 1910))

select (lambda (x) «x.address.city.name="New York") AND (x.name="ADA")) OR (x.address.numb
er=I910)) (Hotels) Branching for goal 'or': First, 3.

Region Simplify OR Goal or. Input query is:
Region Top Goal optimize. Input query is: «x.address.number = 1910) or (x.name = "ADA"))
select (lambda (x) «(x.address.city.name "New York") and (x.name "ADA"» or (x. add

ress.number = 1910))) (Hotels) SR_SimpAND: :CustomAttain. Delaying until variable defined.
query 0: (x.address.number 1910)

Branching for goal 'normalize': First, 1. query 1: (x.name = "ADA")
Region Normalize Goal normalize. Input query is: Region Simplify OR Goal or. Return queries are:
select (lambda (x) «(x.address.city.name = "New York") and (x.name "ADA"» or (x.add query 0: «x.address.number = 1910) or (x.name = "ADA"))

ress.number = 1910»)) (Hotels)

demo Wed May 15 12:23:16 1996 4

Branching for goal 'and': First, 3.
Region SimpAND Goal and. Input query is:

«(x.address.city.name "New York") or (x.address.number 1910)) and «x.address.numb
er = 1910) or (x. name = "ADA")))

SR_simpAND customattain

query 0: «x.address.city.name = "New York") or (x.address.number = 1910))

query 1: «x.address.number = 1910) or (x.name = "ADA"))

Region SimpAND Goal and. Return queries are:

query 0: «(x.address.city.name = "New York") or (x.address.number = 1910)) and «x.addr

ess.number = 1910) or (x.name = "ADA")))

Region CNF Goal CNF. Return queries are:

query 0: «(x.address.city.name = "New York") or (x.address.number = 1910)) and «x.addr

ess.number = 1910) or (x.name = "ADA")))

Region Select Goal select. Return queries are:

query 0: select (lambda (x) «(x.address.city.name = "New York") or (x.address.number

1910)) and (x.address.number = 1910) or (x.name = "ADA")))) (Hotels)

Region Optimizer Goal optimize. Return queries are:

query 0: select (lambda (x) «(x.address.city.name = "New York") or (x.address.number

1910)) and «x.address.number = 1910) or (x.name = "ADA")))) (Hotels)

Region Top Goal optimize. Return queries are:

query 0: select (lambda (x) (((x.address.city.name = "New York") or (x.address.number

1910)) and «x.address.number = 1910) or (x.name = "ADA")))) (Hotels)

// •••• Query S •••• //

select (lambda (x) «x.address.city.name="New York") OR (x.name="ADA")) AND (x.address.numb

er=1910)) (Hotels)

Region Top Goal optimize. Input query is:
select (lambda (x) «((x.address.city.name "New York") or (x.name "ADA")) and (x.add

ress.number = 1910))) (Hotels)

Branching for goal 'normalize': First, 1.
Region Normalize Goal normalize. Input query is:
select (lambda (x) «(x.address.city.name = "New York") or (x.name "ADA')) and (x.add

ress.number = 1910))) (Hotels)

Region Normalize Goal normalize. Return queries are:

query 0: select (lambda (x) {«x.address.city.name = "New York") or (x.name "ADA")) an

d (x.address.number = 1910))) (Hotels)

Branching for goal 'optimize': First, 1.
Region Optimizer Goal optimize. Input query is:
select (lambda (x) «(x.address.city.name "New York") or (x.name "ADA")) and (x. add

ress.number = 1910))) (Hotels)

WARNING: Region 'Optimizer' does not know about goal 'address'

WARNING: Region 'Optimizer' does not know about goal 'city'

WARNING: Region 'Optimizer' does not know about goal 'name'

WARNING: Region 'Optimizer' does not know about goal

WARNING: Region 'Optimizer' does not know about goal 'name'

WARNING: Region 'Optimizer' does not know about goal

WARNING: Region 'Optimizer' does not know about goal 'or'

WARNING: Region 'Optimizer' does not know about goal 'address'

WARNING: Region 'Optimizer' does not know about goal 'number'

WARNING: Region 'Optimizer' does not know about goal

WARNING: Region 'Optimizer' does not know about goal 'and'

Branching for goal 'select': First, 3.

Region Select Goal select. Input query is:

select (lambda (x) ({{x.address.city.name "Hew York") or (x.name "ADA')) and (x. add

ress.number = 1910))) (Hotels)

SR_Select: did transforms

Branching for goal 'CNF': First, 3.

Region CNF Goal CNF. Input query is:

« (x.address.city.name = "New York") or (x.name "ADA")) and (x. address .number 1910))

SR_CNForm customattain

entring ruleS -- (c+d)*a --> a*(c+d)

Input: «{x.address.city.name = 'New York") or (x.name = 'ADA")) and (x.address.number

1910))

entring rule1 -- (a*b)*c --> c*(a*b)

Input: ({ (x.address.city.name = 'New York') or (x.name = 'ADA")) and (x.address.number =

1910))

Output: (x.address.number = 1910) and «x.address.city.name = "New York") or (x.name

ADA')))

Output: «x.address.number = 1910) and {(x.address.city.name = "New York') or (x.name

ADA")))

Branching for goal 'or': First, 3.

Region Simplify OR Goal or. Input query is:

(x.address.number = 1910)

Region Simplify OR Goal or. No return queries.

Branching for goal 'or': First, 3.
Region Simplify OR Goal or. Input query is:

{(x.address.city.name = "New York') or (x.name = 'ADA"))

SR-SimpAND: :CustomAttain. Delaying until variable defined.

query 0: (x.address.city.name = "New York')

query 1: (x.name = "ADA')

Region Simplify OR Goal or. Return queries are:

query 0: «x.address.city.name = "New York") or (x.name = "ADA"))

Branching for goal 'and': First, 3.
Region SimpAND Goal and. Input query is:

«x.address.number = 1910) and «x.address.city.name "New York') or (x.name 'ADA")))

SR_simpAND customattain

query 0: (x.address.number = 1910)

query 1: ({x.address.city.name = "New York') or (x.name = "ADA"))

Region SimpAND Goal and. Return queries are:

query 0: ({x.address.number = 1910) and ({x.address.city.name = "New York") or (x.name

'ADA")))

Region CNF Goal CNF. Return queries are:

query 0: «x.address.number = 1910) and «x.address.city.name "New York") or (x.name

"ADA")))

Region Select Goal select. Return queries are:

query 0: select (lambda (x) «x.address.number 1910) and «x.address.city.name "New Y

ork") or (x.name = "ADA')))) (Hotels)

Region Optimizer Goal optimize. Return queries are:

query 0: select (lambda (x) {(x.address.number = 1910) and «x.address.city.name "New Y

ork") or (x.name = "ADA')))) (Hotels)

Region Top Goal optimize. Return queries are:

query 0: select (lambda (x) {(x.address.number 1910) and {(x.address.city.name -New Y

ork') or (x.name = "ADA")))) (Hotels)

// •••• Query 6 •••• //

select (lambda (x) «x.address.city.name="New York") AND (x.name="ADA")) OR

((x.address.number=1910) N~D (x.stars>=4))) (Hotels)

Region Top Goal optimize. Input query is:

demo Wed May 15 12:23:16 1996 5

select (lambda (x) (((x.address.city.name = 'New York') and (x.name "ADA')) or ((x.ad query 0: ((x.address.number = 1910) or (x.name "ADA"))
dress.number = 1910) and (x.stars >= 4) i)) (Hotels)

Branching for goal 'or': First, 3.
Branching for goal 'normalize': First, 1. Region Simplify OR Goal or. Input query is:
Region Normalize Goal normalize. Input query is: ((x.address.city.name = 'New York") or (x.stars >= 4))
select (lambda (x) (((x.address.city.name = "New York') and (x.name "ADA'») or ((x.ad

dress.number = 1910) and (x.stars >= 4)))) (Hotels) SR_SimpAND: :CustomAttain. Delaying until variable defined.
query 0: (x.address.city.name = 'New York')

Region Normalize Goal normalize. Return queries are: query 1: (x.stars >= 4)
query 0: select (lambda (x) (((x.address.city.name = 'New York") and (x.name 'ADA'» 0 Region Simplify OR Goal or. Return queries are:
r «x.address.number = 1910) and (x.stars >= 4)) (Hotels) query 0: ((x.address.city.name = 'New York') or (x.stars >= 4)

Branching for goal 'optimize': First, 1. Branching for goal 'or': First, 3.
Region Optimizer Goal optimize. Input query is: Region Simplify OR Goal or. Input query is:
select (lambda (x) «((x.address.city.name 'New York') and (x.name "ADA')) or ((x.ad (x.name = 'ADA') or (x.stars >= 4)

dress.number = 1910) and (x.stars >= 4))) (Hotels)

\'!ARNING: Region 'Optimizer' does not know about goal 'address'
WARNING: Region 'Optimizer' does not know about goal 'city'
WARNING: Region 'optimizer' does not know about goal 'name'
WARNING: Region 'Optimizer' does not know about goal ,-,

WARNING: Region 'Optimizer' does not know about goal 'name'
WARNING: Region 'Optimizer' does not know about goal ,-,
WARNING: Region 'Optimizer' does not know about goal 'and'
WARNING: Region 'Optimizer' does not know about goal 'address'
WARNING: Region 'Optimizer' does not know about goal 'number'

,-,WARNING: Region 'Optimizer' does not know about goal
WARNING: Region 'Optimizer' does not know about goal stars'I

WARNING: Region 'Optimizer' does not know about goal '>='

WARNING: Region 'Optimizer' does not know about goal 'and'

WARNING: Region 'Optimizer' does not know about goal 'or'

Branching for goal 'select': First, 3.

Region Select Goal select. Input query is:

select (lambda (x) «(x.address.city.name = 'New York') and (x.name = 'ADA')) or ((x.ad

dress.number = 1910) and (x.stars >= 4)) (Hotels)

SR Select: did transforms

Branching for goal 'CNF': First, 3.

Region CNF Goal CNF. Input query is:

(((x.address.city.name = 'New York') and (x.name 'ADA'») or (x.address.number 1910
) and (x.stars >= 4»))

SR_CNForrn customattain
entring rule6 -- (a*b)+(c*d) --> (a+c)*«(b+c)*«a+d)*(b+d»)
Input: (((x.address.city.name = 'New York') and (x.name = 'ADA') or ((x.address.number
= 1910) and (x.stars >= 4))
Output: «(x.address.city.name = 'New York') or (x.address.number = 1910)) and «((x.name

= 'ADA') or (x.address.number = 1910)) and «(x.address.city.name = 'New York') or (x.s
tars >= 4» and ((x.name = 'ADA') or (x.stars >= 4»))))
Branching for goal 'or': First, 3.
Region Simplify OR Goal or. Input query is:

((x.address.city.name = 'New York') or (x.address.number = 1910))

SR_SimpAND: :CustomAttain. Delaying until variable defined.

query 0: (x.address.city.name = 'New York')

query 1: (x.address.number = 1910)

Region Simplify OR Goal or. Return queries are:

query 0: (x.address.city.name = 'New York') or (x.address.number 1910))

Branching for goal 'or': First, 3.
Region Simplify OR Goal or. Input query is:

((x.name = 'ADA') or (x.address.number = 1910))

SR_SimpAND: :CustomAttain. Delaying until variable defined.

que~J 0: (x.address.number 1910)

quer:r 1: (x. name = "ADA')

Region Simplify OR Goal or. Return queries are:

SR_SimpAND: :CustomAttain. Delaying until variable defined.

query 0: (x.stars >= 4)

query 1: (x.name = 'ADA')

Region Simplify OR Goal or. Return queries are:

query 0: ((x.stars >= 4) or (x.name = 'ADA'))

Branching for goal 'and': First, 3.

Region SimpAND Goal and. Input query is:

(((x.address.city.name = 'New York') or (x.address.number 1910)) and (((x.address.numb
er = 1910) or (x.name = 'ADA'») and (((x.address.city.name 'New York') or (x. stars >= 4
)) and (x.stars >= 4) or (x.name = "ADA')) I))

SR-simpAND customattain

query 0: (x.stars >= 4) or (x.name = 'ADA'»)

query 1: ((x.address.city.name = 'New York') or (x.address.number = 1910))

query 2: (x.address.number = 1910) or (x.name = 'ADA'))

query 3: «(x.address.city.name = 'New York') or (x.stars >= 4))

Region SimpAND Goal and. Return queries are:

query 0: (((x.stars >= 4) or (x.name = 'ADA')) and ((x.address.city.name = 'New York') 0

r (x.address.number = 1910)) and ((x.address.number = 1910) or (x.name = 'ADA')) and (x

.address.city.name = 'New York') or (x.stars >= 4»)))

Region CNF Goal CNF. Return queries are:

query 0: «((x.stars >= 4) or (x.name = 'ADA'») and (((x.address.city.name = 'New York") 0

r (x.address.number = 1910) and «((x.address.number = 1910) or (x.name = 'ADA')) and ((x

.address.city.name = 'New York') or (x.stars >= 4)))))

Region select Goal select. Return queries are:

query 0: select (lambda (x) «((x.stars >= 4) or (x.name = 'ADA'}) and «((x.address.city.n

arne = 'New York') or (x.address.number = 1910) and (((x.address.number = 1910) or (x.nam

e = 'ADA')) and «x.address.city.name = 'New York') or (x.stars >= 4}))) (Hotels)

Region optimizer Goal optimize. Return queries are:

query 0: select (lambda (x) (((x.stars >= 4) or (x.name = 'ADA')) and (((x.address.city.n

arne = 'New York') or (x.address.number = 1910)) and (((x.address.number = 1910) or (x.nam

e = 'ADA')) and ((x.address.city.name = 'New York') or (x.stars >= 4)))))) (Hotels)

Region Top Goal optimize. Return queries are:

query 0: select (lambda (x) «(x.stars >= 4) or (x.name = 'ADA')) and ((x.address.city.n

arne = 'New York') or (x.address.number = 1910)) and ((x.address.number = 1910) or (x.nam

e = 'ADA")) and ((x.address.city.name = "New York') or (x.stars >= 4)))))) (Hotels)

//#### Query 7 ####//

select(lambda(x) «x.address.city.name="New York') AND (x.name='ADA')) OR
((x.address.number=1910) AND (x.address.city.name='New York')}) (Hotels)

Region Top Goal optimize. Input query is:
select (lambda (x) (((x.address.city.name = "New York") and (x.name = 'ADA')) or ((x.add

ress.number = 1910) and (x.address.city.name = 'New York"}))) (Hotels)

demo Wed May 15 12:23:16 1996 6

Branching for goal 'normalize': First, 1.
Region Normalize Goal normalize. Input query is: SR_simpAND customattain
select (lambda (x) (((x.address.city.name = 'New York') and (x.name = "ADA")) or ((x.ad query 0: (x.address.city.name = "New York")

dress.number = 1910) and (x.address.city.name = 'New York')))) (Hotels) query 1: (x.address.number = 1910) or (x.name = "ADA'))
Region SimpAND Goal and. Return queries are:

Region Normalize Goal normalize. Return queries are: query 0: «(x.address.city.name = "New York") and ((x.address.number 1910) or (x.name
query 0: select (lambda (x) (((x.address.city.name = 'New York") and (x.name = 'ADA')) 0 "ADA")))
r «(x.address.number = 1910) and (x.address.city.name = 'New York')))) (Hotels)

Region CNF Goal CNF. Return queries are:
Branching for goal 'optimize': First, 1. query 0: (x.address.city.name = "New York') and ((x.address.number 1910) or (x.name
Region Optimizer Goal optimize. Input query is: "ADA")))
select (lambda (x) ((x.address.city.name = 'New York') and (x.name = 'ADA')) or ((x.ad

dress.number = 1910) and (x.address.city.name = 'New York')))) (Hotels) Region Select Goal select. Return queries are:
query 0: select (lambda (x) ((x.address.city.name "New York') and «(x.address.number

WARNING: Region 'Optimizer' does not know about goal 'address' 1910) or (x.name = 'ADA')))) (Hotels)
WARNING: Region 'Optimizer' does not know about goal 'city'
WARNING: Region 'Optimizer' does not know about goal 'name' Region Optimizer Goal optimize. Return queries are:

,-,WARNING: Region 'Optimizer' does not know about goal query 0: select (lambda (x) «x.address.city.name = "New York') and (x.address.number
WARNING: Region 'Optimizer' does not know about goal 'name' 1910) or (x.name = 'ADA')))) (Hotels)

,-,WARNING: Region 'Optimizer' does not know about goal

WARNING: Region 'Optimizer' does not know about goal 'and' Region Top Goal optimize. Return queries are:

WARNING: Region 'Optimizer' does not know about goal 'address' query 0: select (lambda (x) «(x.address.city.name 'New York') and «(x.address.number

WARNING: Region 'Optimizer' does not know about goal 'number' 1910) or (x.name = "ADA")))) (Hotels)

,-,WARNING: Region 'Optimizer' does not know about goal

WARNING: Region ' Optimizer' does not know about goal 'address'

WARNING: Region 'Optimizer' does not know about goal 'city' //#### Query S ####//

WARNING: Region 'Optimizer' does not know about goal 'name'

WARNING: Region 'Optimizer' does not know about goal - select (lambda (x) «x.address.number=5) OR «x.name='ADA') AND

WARNING: Region 'Optimizer' does not know about goal 'and' (x.address.number=5)))) (Hotels)

WARNING: Region 'Optimizer' does not know about goal 'or'

Branching for goal 'select': First, 3. Region Top Goal optimize. Input query is:

Region Select Goal select. Input query is: select (lambda (x) «x.address.number = 5) or «x.name 'ADA') and (x.address.number

select (lambda (x) «((x.address.city.name = 'New York') and (x.name = "ADA')) or «(x.ad 5)))) (Hotels)

dress.number = 1910) and (x.address.city.name = 'New York')))) (Hotels)
Branching for goal 'normalize': First, 1.

SR_Select: did transforms Region Normalize Goal normalize. Input query is:
Branching for goal 'CNF': First, 3. select (lambda (x) (x.address.number = 5) or ((x.name "ADA") and (x.address.number
Region CNF Goal CNF. Input query is: 5)))) (Hotels)

«(x.address.city.name = 'New York') and (x.name 'ADA')) or «(x.address.number 1910
) and (x.address.city.name = 'New York'))) Region Normalize Goal normalize. Return queries are:

query 0: select (lambda (x) «(x.address.number = 5) or «(x.name "ADA") and (x.address.n
SR_CNForm customattain umber = 5)))) (Hotels)
entring rule? -- (a*b)+(a*c) --> a*(b+c)
Input: «(x.address.city.name = 'New York') and (x.name = 'ADA')) or «x.address.number Branching for goal 'optimize': First, 1.
= 1910) and (x.address.city.name = 'New York'))) Region Optimizer Goal optimize. Input query is:
Output: «x.address.city.name = 'New York') and «x.name = 'ADA') or (x.address.number = select (lambda (x) ((x.address.number = 5) or ((x.name "ADA') and (x.address.number

1910))) 5)))) (Hotels)
Branching for goal 'or': First, 3.
Region Simplify OR Goal or. Input query is: WARNING: Region 'Optimizer' does not know about goal 'address'

I(x.address.city.name = 'New York') WARNING: Region Optimi zer' does not know about goal 'number'
,-,

IWARNING: Region Optimi zer I does not know about goal
Region Simplify OR Goal or. No return queries. WARNING: Region 'Optimizer' does not know about goal 'name'

WARNING: Region 'Optimizer' does not know about goal
Branching for goal 'or': First, 3. WARNING: Region 'Optimizer' does not know about goal 'address'
Region Simplify OR Goal or. Input query is: WARNING: Region 'Optimizer' does not know about goal 'number'

I((x.name = 'ADA') or (x.address.number = 1910)) WARNING: Region Optirni zer' does not know about goal
WARNING: Region J Optimi zer I does not know about goal 'and'

SR_SimpAND: :customAttain. Delaying until variable defined. WARNING: Region I Optimi zer I does not know about goal 'or'
query 0: (x.address.number 1910) Branching for goal 'select' : First, 3.
query 1: (x.name = 'ADA') Region Select Goal select. Input query is:
Region Simplify OR Goal or. Return queries are: select (lambda (x) «x.address.number = 5) or ((x.name = "ADA") and (x.address.number
query 0: «x.address.number = 1910) or (x.name = 'ADA')) 5)))) (Hotels)

Branching for goal 'and': First, 3. SR_Select: did transforms
Region SimpM1D Goal and. Input que~J is: Branching for goal 'CNF': First, 3.

((x. address.ci ty . name == -Hew York-) and (x. address . number 1910) or (x.name 'ADA")) Region CNF Goal CNF. Input quer.:f is:

demo Wed May 15 12:23:16 1996 7

«(x.address.number = 5) or «(x.name = 'ADA') and (x.address.number 5)))

SR_CNForm customattain

Branching for goal 'or': First, 3.

Region Simplify OR Goal or. Input query is:

(x.address.number = 5)

Region Simplify OR Goal or. No return queries.

Region CNF Goal CNF. Return queries are:

query 0: (x.address.number = 5)

Region Select Goal select. Return queries are:

query 0: select (lambda (x) (x.address.number = 5)) (Hotels)

Region Optimizer Goal optimize. Return queries are:

query 0: select (lambda (x) (x.address.number = 5)) (Hotels)

Region Top Goal optimize. Return queries are:

query 0: select (lambda (x) (x.address.number = 5)) (Hotels)

11**** Query 9 ****11
select (lambda(x) «x.stars!=3) AND (x.stars>=3)) AND (x.stars<5)) (Hotels)
Region Top Goal optimize. Input query is:
select (lambda (x) «(x.stars != 3) and (x.stars >= 3)) and (x.stars < 5))) (Hotels)

Branching for goal 'normalize': First, 1.
Region Normalize Goal normalize. Input query is:
select (lambda (x) « (x. stars != 3) and (x.stars >= 3)) and (x.stars < 5»)) (Hotels)

Region Normalize Goal normalize. Return queries are:

query 0: select (lambda (x) «(x.stars != 3) and (x.stars >= 3)) and (x.stars < 5))) (Ho

tels)

Branching for goal 'optimize': First, 1.
Region Optimizer Goal optimize. Input query is:
select (lambda (x) «(x.stars != 3) and (x.stars >= 3)) and (x.stars < 5») (Hotels)

WARNING: Region 'Optimizer' does not know about goal 'stars'
IWARNING: Region Optimi zer I does not know about goal ' ! ='

WARNING: Region 'optimizer' does not know about goal 'stars'
WARNING: Region 'Optimizer' does not know about goal '>='
WARNING: Region 'Optimizer' does not know about goal 'and'
WARNING: Region 'Optimizer' does not know about goal stars'I

WARNING: Region I Optimi zer' does not know about goal '<'

WARNING: Region ' Optimi zer' does not know about goal 'and'

Branching for goal 'select': First, 3.

Region Select Goal select. Input query is:

select (lambda (x) («x. stars != 3) and (x.stars >= 3») and (x.stars < 5))) (Hotels)

SR_Select: did transforms

Branching for goal 'CNF': First, 3.

Region CNF Goal CNF. Input query is:

«(x.stars != 3) and (x.stars >= 3)) and (x.stars < 5»

SR_CNForm customattain

entring rulel -- (a*b)*c --> c*(a*b)

Input: « (x.stars != 3) and (x.stars >= 3)) and (x.stars < 5»)

Output: «x.stars < 5) and «x.stars != 3) and (x.stars >= 3)))

Branching for goal 'or': First, 3.

Region Simplify OR Goal or. Input query is:

(x.stars < 5)

Region Simplify OR Goal or. Ho return queries.

Branching for goal 'or': First, 3.

Region Simplify OR Goal or. Input query is:

(x.stars != 3)

Region simplify OR Goal or. No return queries.

Branching for goal 'or': First, 3.

Region Simplify OR Goal or. Input query is:

(x.stars >= 3)

Region Simplify OR Goal or. No return queries.

Branching for goal 'and': First, 3.
Region SimpAND Goal and. Input query is:

«x.stars < 5) and «x.stars != 3) and (x.stars >= 3)))

SR_simpAND customattain

query 0: (x.stars = 4)

Region SimpAND Goal and. Return queries are:

query 0: (x.stars = 4)

Region CNF Goal CNF. Return queries are:

query 0: (x.stars = 4)

Region Select Goal select. Return queries are:

query 0: select (lambda (x) (x.stars = 4» (Hotels)

Region Optimizer Goal optimize. Return queries are:

query 0: select (lambda (x) (x.stars = 4)) (Hotels)

Region Top Goal optimize. Return queries are:

query 0: select (lambda (x) (x.stars = 4)) (Hotels)

11**** Query 10 ****11
select (lambda(x) «x.stars!=3) OR (x.stars>=3») OR (x.stars<5)) (Hotels)
Region Top Goal optimize. Input query is:
select (lambda (x) «(x.stars != 3) or (x.stars >= 3)) or (x.stars < 5))) (Hotels)

Branching for goal 'normalize': First, 1.
Region Normalize Goal normalize. Input query is:
select (lambda (x) « (x. stars != 3) or (x. stars >= 3)) or (x.stars < 5))) (Hotels)

Region Normalize Goal normalize. Return queries are:

query 0: select (lambda (x) «(x.stars != 3) or (x.stars >= 3) or (x.stars < 5))) (Hotel

s)

Branching for goal 'optimize': First, 1.
Region optimizer Goal optimize. Input query is:
select (lambda (x) « (x. stars != 3) or (x.stars >= 3)) or (x.stars < 5))) (Hotels)

IWARNING: Region 'Optimizer' does not know about goal stars I
WARNING: Region 'Optimizer' does not know about goal ' !='

WARNING: Region 'Optimizer' does not know about goal 'stars'

WARNING: Region 'Optimizer' does not know about goal '>='

WARNING: Region 'Optimizer' does not know about goal 'or'

WARNING: Region 'optimizer' does not know about goal 'stars'

WARNING: Region 'Optimizer' does not know about goal '<'

WARNING: Region 'Optimizer' does not know about goal 'or'

Branching for goal 'select': First, 3.

Region Select Goal select. Input query is:

select (lambda (x) «(x.stars != 3) or (x.stars >= 3)) or (x. stars < 5))) (Hotels)

SR_Select: did transforms

Branching for goal 'CNF': First, 3.

Region CNF Goal CNF. Input query is:

demo Wed May 15 12:23:16 1996 8

(((x.stars != 3) or (x.stars >= 3» or (x.stars < 5»

SR_CNForm cuscomattain
entring rule2 -- (a+b)+c --> c+(a+b)

Input: (((x.stars != 3) or (x.stars >= 3» or (x.stars < 5)

entring rulel -- (a*b)*c --> c*(a*b)

Input: (((x.stars != 3) or (x.stars >= 3» or (x.stars < 5»

Output: ((x.stars < 5) or ((x.stars != 3) or (x.stars >= 3»)

Output: ((x.stars < 5) or ((x.stars != 3) or (x.stars >= 3»)

Branching for goal 'or': First, 3.

Region Simplify OR Goal or. Input query is:

((x.stars < 5) or ((x.stars != 3) or (x.stars >= 3»)

query 0: true
Region Simplify OR Goal or. Return queries are:
query 0: true

Region CNF Goal CNF. Return queries are:
query 0: true

Region Select Goal select. Return queries are:
query 0: select (lambda (x) true) (Hotels)

Region Optimizer Goal optimize. Return queries are:
query 0: select (lambda (x) true) (Hotels)

Region Top Goal optimize. Return queries are:
query 0: select (lambda (x) true) (Hotels)

//#### Query 11 •••• //

select (lambda (x) (x.stars!=3) OR ((x.stars>=3) AND (x.stars<5») (Hotels)
Region Top Goal optimize. Input query is:
select (lambda (x) ((x.stars != 3) or ((x. stars >= 3) and (x.stars < 5»» (Hotels)

Branching for goal 'normalize': First, 1.
Region Normalize Goal normalize. Input query is:
select (lambda (x) ((x.stars != 3) or ((x.stars >= 3) and (x.stars < 5»» (Hotels)

Region Normalize Goal normalize. Return queries are:

query 0: select (lambda (x) ((x.stars != 3) or ((x.stars >= 3) and (x.stars < 5»» (Hot

els)

Branching for goal 'optimize': First, 1.
Region Optimizer Goal optimize. Input query is:
select (lambda (x) ((x.stars != 3) or ((x.stars >= 3) and (x.stars < 5»)) (Hotels)

WARNING: Region 'Optimizer' does not know about goal 'stars'
WARNING: Region 'Optimizer' does not know about goal I !='

WARNING: Region 'Optimizer' does not know about goal stars I1

WARNING: Region 'Optimizer' does not know about goal '>='

WARNING: Region 'Optimizer' does not know about goal ' stars'

WARNING: Region 'Optimizer' does not know about goal '<'

WARNING: Region 'Optimizer' does not know about goal 'and'

WARNING: Region 'Optimizer' does not know about goal 'or'

Branching for goal 'select' : First, 3.

Region Select Goal select. Input query is:

select (lambda (x) ((x.stars != 3) or ((x. stars >= 3) and (x.stars < 5)))) (Hotels)

SR_Select: did transforms

Branching for goal 'CNF': First, 3.

Region CNF Goal C~W. Input query is:

((x.stars != 3) or ((x.stars >= 3) and (x.stars < 5»)

SR_CNForm customattain

entring rule3 -- a+(c*d) --> (a+c)*(a+d)

Input: ((x.stars != 3) or ((x.stars >= 3) and (x.stars < 5»)

Output: (((x.stars != 3) or (x.stars >= 3» and ((x.stars != 3) or (x.stars < 5)}

Branching for goal 'or': First, 3.

Region Simplify OR Goal or. Input query is:

((x.stars != 3) or (x.stars >= 3»

SR_SimpAND: :CustomAttain. Delaying until variable defined.

query 0: true

Region Simplify OR Goal or. Return queries are:

query 0: true

Branching for goal 'or': First, 3.
Region Simplify OR Goal or. Input query is:

((x.stars != 3) or (x.stars < 5»

SR_SimpAND: :CustomAttain. Delaying until variable defined.

query 0: true

Region Simplify OR Goal or. Return queries are:

query 0: true

Region CNF Goal CNF. Return queries are:

query 0: true

Region Select Goal select. Return queries are:

query 0: select (lambda (x) true) (Hotels)

Region Optimizer Goal optimize. Return queries are:

query 0: select (lambda (x) true) (Hotels)

Region Top Goal optimize. Return queries are:

query 0: select (lambda (x) true) (Hotels)

// •••• Query 12 •••• //

select (lambda (x) ((x.stars!=3) AND (x.stars>=3)) OR (x.stars<5» (Hotels)
Region Top Goal optimize. Input query is:
select (lambda (x) (((x.stars != 3) and (x.stars >= 3)} or (x.stars < 5») (Hotels)

Branching for goal 'normalize': First, 1.
Region Normalize Goal normalize. Input query is:
select (lambda (x) (((x.stars != 3) and (x.stars >= 3» or (x.stars < 5))) (Hotels)

Region Normalize Goal normalize. Return queries are:

query 0: select (lambda (x) (((x.stars != 3) and (x.stars >= 3» or (x.stars < 5») (Hote

Is)

Branching for goal 'optimize': First, 1.
Region Optimizer Goal optimize. Input query is:
select (lambda (x) (((x. stars != 3) and (x.stars >= 3» or (x. stars < 5)) (Hotels)

WARNING: Region 'Optimizer' does not know about goal 'stars'

WARNING: Region 'Optimizer' does not know about goal '!;::'

WARNING: Region 1 Optimizer' does not know about goal 'stars'

WARNING: Region I Optimizer' does not know about goal '>='

WARNING: Region 'Optimizer' does not know about goal 'and'

WARNING: Region 'Optimizer' does not know about goal 'stars'

WARNING: Region 'Optimizer' does not know about goal '<'

WARNING: Region 'optimizer' does not know about goal 'or'

Branching for goal 'select': First, 3.

Region Select Goal select. Input query is:

select (lambda (x) «((x.stars != 3) and (x . stars >= 3» or (x.stars < 5») (Hotels)

SR_Select: did transforms

Branching for goal 'CNF': First, 3.

Region CNF Goal CoW. Input query is:

«((x.stars != 3) and (x.stars >= 3») or (x.stars < 5»)

demo Wed May 15 12:23:16 1996 9

SR_CNForm customattain

entring rule4 -- (c*d)+a --> a+(c*d) --> rule3

Input, «(x.stars != 3) and (x.stars >= 3)) or (x.stars < 5))

entring rule1 -- (a*b)*c --> c*(a*b)

Input: « (x.stars != 3) and (x.stars >= 3)) or (x.stars < 5))

Output: «x.stars < 5) or «x.stars != 3) and (x.stars >= 3)))

entring rule3 -- a+(c*d) --> (a+c)*(a+d)

Input, «x.stars < 5) or «x.stars != 3) and (x.stars >= 3)))

Output: «(x.stars < 5) or (x.stars != 3)) and «x.stars < 5) or (x.stars >= 3)))

Output: «(x.stars < 5) or (x.stars != 3)) and «x.stars < 5) or (x.stars >= 3)))

Branching for goal 'or': First, 3.

Region Simplify OR Goal or. Input query is:

«x.stars < 5) or (x.stars != 3))

SR_SimpAND, ,CustomAttain. Delaying until variable defined.

query 0, true

Region Simplify OR Goal or. Return queries are:

query 0: true

Branching for goal 'or': First, 3.
Region Simplify OR Goal or. Input query is:

«x.stars < 5) or (x.stars >= 3))

SR_SimpA}lD: :CustomAttain. Delaying until variable defined.

query 0: true

Region Simplify OR Goal or. Return queries are,

query 0: true

Region CNP Goal CNP. Return queries are:

query 0: true

Region Select Goal select. Return queries are,

query 0: select (lambda (x) true) (Hotels)

Region Optimizer Goal optimize. Return queries are,

query 0: select (lambda (x) true) (Hotels)

Region Top Goal optimize. Return queries are,

query 0, select (lambda (x) true) (Hotels)

Iliiii Query 13 iiiill

select (lambda (x) «x.stars!=2) OR (x.stars>=3)) AND (x.stars<2)) (Hotels)
Region Top Goal optimize. Input query is:
select (lambda (x) «(x.stars != 2) or (x.stars >= 3)) and (x.stars < 2))) (Hotels)

Branching for goal 'normalize', First, 1.
Region Normalize Goal normalize. Input query is:
select (lambda (x) «(x.stars != 2) or (x.stars >= 3)) and (x.stars < 2))) (Hotels)

Region Normalize Goal normalize. Return queries are:

query 0: select (lambda (x) «(x.stars != 2) or (x.stars >= 3)) and (x.stars < 2))) (Hot

els)

Branching for goal 'optimize': First, 1
Region Optimizer Goal optimize. Input query is:
select (lambda (x) «(x.stars != 2) or (x.stars >= 3)) and (x.stars < 2))) (Hotels)

WARNING: Region ' Optimizer' does not know about goal 'stars'
WARNING: Region I Optimi zer' does not know about goal ' !:::'
\"/ARNING: Region 'Optimizer' does not know about goal Istars'
WARNING: Region 'Optimizer' does not know about goal '>='
WARNING: Region 'Optimizer' does not know about goal 'or'

I'IIARNING: Region 'Optimizer' does not know about goal stars I
\"/ARNING: Region 'Optimizer' does not know about goal '<'

WARNING: Region 'Optimizer' does not know about goal 'and'
Branching for goal 'select': First, 3.
Region Select Goal select. Input query is:
select (lambda (x) « (x.stars != 2) or (x. stars >= 3)) and (x. stars < 2))) (Hotels)

SR_Select: did transforms

Branching for goal 'CNP', First, 3.

Region CNF Goal CNF. Input query is,

«(x.stars != 2) or (x.stars >= 3)) and (x.stars < 2))

SR-CNForm customattain

entring ruleS -- (c+d)*a --> a*(c+d)

Input: « (x.stars != 2) or (x.stars >= 3)) and (x.stars < 2))

entring rule1 -- (a*b)*c --> c*(a*b)

Input, «(x.stars != 2) or (x.stars >= 3)) and (x.stars < 2))

Output: «x.stars < 2) and «x.stars != 2) or (x.stars >= 3)))

Output: «x.stars < 2) and «x.stars != 2) or (x.stars >= 3)))

Branching for goal 'or': First, 3.

Region Simplify OR Goal or. Input query is,

(x. stars < 2)

Region Simplify OR Goal or. No return queries.

Branching for goal 'or': First, 3.
Region Simplify OR Goal or. Input query is:

«x.stars != 2) or (x.stars >= 3))

SR_SimpAND: :CustomAttain. Delaying until variable defined.

query 0: (x.stars != 2)

Region Simplify OR Goal or. Return queries are:

query 0: (x.stars != 2)

Branching for goal 'and': First, 3.

Region SimpAND Goal and. Input query is:

«x. stars < 2) and (x.stars != 2))

SR-simpAND customattain

query 0: (x.stars < 2)

Region SimpAND Goal and. Return queries are:

query 0: (x.stars < 2)

Region CNF Goal CNF. Return queries are:

query 0: (x.stars < 2)

Region Select Goal select. Return queries are:

query 0: select (lambda (x) (x. stars < 2)) (Hotels)

Region Optimizer Goal optimize. Return queries are:

query 0: select (lambda (x) (x.stars < 2)) (Hotels)

Region Top Goal optimize. Return queries are:

query 0: select (lambda (x) (x.stars < 2)) (Hotels)

Iliiii Query 14 iiiill

select (lambda (x) «x.stars!=2) AND (x.stars<3)) OR «x.stars!=3) AND

(x.stars<4)) OR «x.stars<=5) AND (x.stars>=2))) (Hotels)

Region Top Goal optimize. Input query is:

select (lambda (x) ««x.stars != 2) and (x.stars < 3)) or «x.stars != 3) and (x.stars

< 4))) or «x.stars <= 5) and (x.stars >= 2)))) (Hotels)

Branching for goal 'normalize': First, 1.
Region Normalize Goal normalize. Input query is:
select (lambda (x) ««x.stars != 2) and (x.stars < 3)) or «x.stars != 3) and (x.stars

< 4))) or «x.stars <= 5) and (x.stars >= 2)))) (Hotels)

demo Wed May 15 12:23:16 1996 10

Region Normalize Goal normalize. Return queries are: stars < 4) and «(x.stars < 3) or (x.stars < 4)))))

query 0: select (lambda (x) ((((x.stars != 2) and (x.stars < 3» or «x.stars != 3) and Output: ((x.stars <= 5) or ((x.stars < 3) or (x.stars != 3»)) and «x.stars <= 5) or «(

(x.stars < 4))) or «x.stars <= 5) and (x.stars >= 2) ») (Hotels) x.stars != 2) or (x.stars < 4)) and (x.stars < 3) or (x.stars < 4)))))

Output: « (x. stars <= 5) or ((x.stars < 3) or (x. stars != 3») and (x. stars <= 5) or « (
Branching for goal 'optimize': First, 1. x.stars != 2) or (x.stars < 4» and ((x.stars < 3) or (x.stars < 4)))
Region Optimizer Goal optimize. Input query is: entring rule3 -- a+(c*d) --> (a+c)*(a+d)
select (lambda (x) «((x.stars != 2) and (x.stars < 3» or (x.stars != 3) and (x.stars Input: «x. stars <= 5) or « (x. stars < 3) or (x.stars != 3) and ((x.stars != 2) or (x.s
< 4») or «x.stars <= 5) and (x.stars >= 2»» (Hotels) tars < 4» and «x.stars < 3) or (x.stars < 4»»)

Output: «((x. stars <= 5) or «x.stars < 3) or (x. stars != 3»)) and ((x. stars <= 5) or « (
WARNING: Region 'Optimizer' does not know about goal 'stars' x.stars != 2) or (x.stars < 4» and «x.stars < 3) or (x.stars < 4»»))
WARNING: Region 'Optimizer' does not know about goal '! =' entring rule3 -- a+(c*d) --> (a+c)*(a+d)
WARNING: Region 'Optimizer' does not know about goal stars' Input: «(x.stars <= 5) or «(x.stars != 2) or (x.stars < 4» and (x.stars < 3) or (x.staI

WARNING: Region 'Optimizer' does not know about goal '<' rs < 4»»

WARNING: Region 'Optimizer' does not know about goal 'and' Output: «(x.stars <= 5) or «x.stars != 2) or (x.stars < 4») and «x.stars <= 5) or «x

WARNING: Region 'Optimizer' does not know about goal 'stars' .stars < 3) or (x.stars < 4»))

WARNING: Region 'Optimizer' does not know about goal ' ! =' entring rule2 -- (a+b)+c --> c+(a+b)

WARNING: Region 'Optimizer' does not know about goal 'stars' Input: «(x.stars != 2) or (x.stars != 3») or (x.stars >= 2»

WARNING: Region 'Optimizer' does not know about goal '<' entring rule1 -- (a*b)*c --> c*(a*b)

WARNING: Region 'Optimizer' does not know about goal 'and' Input: ((x.stars != 2) or (x.stars != 3» or (x.stars >= 2»

WARNING: Region 'Optimizer' does not know about goal 'or' Output: «x.stars >= 2) or (x.stars != 2) or (x.stars != 3»)

WARNING: Region 'Optimizer' does not know about goal 'stars' Output: «x.stars >= 2) or (x.stars != 2) or (x.stars != 3))

WARNING: Region 'Optimizer' does not know about goal '<=' entring rule4 -- (c*d)+a --> a+(c*d) --> rule3

WARNING: Region 'Optimizer' does not know about goal Istars' Input: ««x.stars < 3) or (x.stars != 3») and « (x.stars != 2) or (x.stars < 4») and «x

WARNING: Region 'Optimizer' does not know about goal '>=' .stars < 3) or (x.stars < 4»» or (x.stars >= 2)

WARNING: Region 'Optimizer' does not know about goal 'and' entring rule1 -- (a*b)*c --> c*(a*b)

WARNING: Region 'Optimizer' does not know about goal 'or' Input: « «x. stars < 3) or (x.stars != 3» and « (x.stars != 2) or (x.stars < 4» and «x

Branching for goal I select' : First, 3. .stars < 3) or (x.stars < 4»» or (x.stars >= 2»

Region Select Goal select. Input query is: Output: «x. stars >= 2) or «((x.stars < 3) or (x. stars != 3» and « (x. stars != 2) or (x.

select (lambda (x) « ((x.stars != 2) and (x. stars < 3» or ((x. stars != 3) and (x. stars stars < 4» and «x.stars < 3) or (x.stars < 4»»)

< 4») or «x.stars <= 5) and (x.stars >= 2»» (Hotels) entring rule3 -- a+(c*d) --> (a+c)*(a+d)

Input: «x.stars >= 2) or «((x.stars < 3) or (x.stars != 3» and « (x.stars != 2) or (x.s
SR_Select: did transforms tars < 4» and «x.stars < 3) or (x.stars < 4» »))
Branching for goal 'CNF' : First, 3. Output: ((x.stars >= 2) or «x.stars < 3) or (x.stars != 3») and «x.stars >= 2) or «((
Region CNF Goal CNF. Input query is: x.stars != 2) or (x.stars < 4» and (x.stars < 3) or (x.stars < 4»»)

((((x. stars != 2) and (x.stars < 3» or «x. stars != 3) and (x.stars < 4») or ((x. star Output: «(x.stars >= 2) or (x.stars < 3) or (x.stars != 3») and «x.stars >= 2) or «(
s <= 5) and (x.stars >= 2») x.stars != 2) or (x.stars < 4» and (x.stars < 3) or (x.stars < 4»»))

entring rule3 -- a+(c*d) --> (a+c)*(a+d)
SR-CNForm customattain Input: (x. stars >= 2) or « (x. stars < 3) or (x.stars != 3» and ((x.stars != 2) or (x.s
entring rule6 -- (a*b)+(c*d) --> (a+c)*«b+c)*(a+d)*(b+d») tars < 4» and «x.stars < 3) or (x.stars < 4»»))
Input: «(x.stars != 2) and (x.stars < 3» or «x.stars != 3) and (x.stars < 4») Output: «((x.stars >= 2) or «x.stars < 3) or (x.stars != 3») and «x.stars >= 2) or «((
Output: « (x. stars != 2) or (x. stars != 3)) and « (x. stars < 3) or (x. stars != 3» and (x.stars != 2) or (x.stars < 4» and «(x.stars < 3) or (x.stars < 4»»)
«x.stars != 2) or (x.stars < 4» and (x.stars < 3) or (x.stars < 4»») entring rule3 -- a+(c*d) --> (a+c)*(a+d)

entring rule6 -- (a*b)+(c*d) --> (a+c)*«b+c)*«(a+d)*(b+d)) Input: «(x.stars >= 2) or (((x.stars != 2) or (x.stars < 4») and ((x.stars < 3) or (x.sta

Input: ((«x. stars != 2) or (x. stars != 3» and « (x. stars < 3) or (x.stars != 3) and (rs < 4»)

«x.stars != 2) or (x.stars < 4» and «x.stars < 3) or (x.stars < 4»») or «x.stars < Output: «((x.stars >= 2) or ((x.stars != 2) or (x.stars < 4») and «x.stars >= 2) or «x

= 5) and (x.stars >= 2)) .stars < 3) or (x.stars < 4»»

Output: ««x.stars != 2) or (x.stars != 3» or (x.stars <= 5» and ««(x.stars < 3) or Branching for goal 'or': First, 3.

(x.stars != 3») and «(x.stars != 2) or (x.stars < 4» and «x.stars < 3) or (x.stars < Region Simplify OR Goal or. Input query is:
4»» or (x.stars <= 5» and ««x.stars != 2) or (x.stars != 3» or (x.stars >= 2» an «x.stars <= 5) or ((x.stars != 2) or (x.stars != 3»)

d ««(x.stars < 3) or (x.stars != 3») and «(x.stars != 2) or (x.stars < 4» and «x.sta
rs < 3) or (x.stars < 4»» or (x.stars >= 2) »» SR_SimpAND: :CustomAttain. Delaying until variable defined.
entring rule2 -- (a+b)+c --> c+(a+b) query 0: true
Input: « (x.stars != 2) or (x.stars != 3» or (x. stars <= 5» Region Simplify OR Goal or. Return queries are:
entring rule1 -- (a*b)*c --> c*(a*b) query 0: true
Input: «(x.stars != 2) or (x.stars != 3) or (x.stars <= 5»
Output: (x.stars <= 5) or (x.stars != 2) or (x.stars != 3») Branching for goal 'or': First, 3.
Output: ((x.stars <= 5) or «x.stars != 2) or (x.stars != 3») Region Simplify OR Goal or. Input query is:
entring rule4 -- (c*d)+a --> a+(c*d) --> rule3 «x.stars <= 5) or «(x.stars < 3) or (x.stars != 3»)
Input: « (x. stars < 3) or (x.stars != 3) and « (x.stars != 2) or (x.stars < 4» and «
x.stars < 3) or (x.stars < 4»» or (x.stars <= 5» SR_SimpAND: :CustomAttain. Delaying until variable defined.
entring rule1 -- (a*b)*c --> c*(a*b) query 0: true
Input: « «x.stars < 3) or (x.stars != 3» and « (x.stars != 2) or (x.stars < 4) and « Region Simplify OR Goal or. Return queries are:
x.stars < 3) or (x.stars < 4)) or (x.stars <= 5) query 0: true
Output: «x.stars <= 5) or «(x.stars < 3) or (x.stars != 3») and ((x.stars != 2) or (x
.stars < 4» and «x.stars < 3) or (x.stars < 4»») Branching for goal 'or': First, 3.
entring rule3 -- a+(c*d) --> (a+c)*(a+d) Region Simplify OR Goal or. Input query is:
Input: ((x.stars <= 5) or (((x.stars < 3) or (x.stars != 3}) and (((x.stars != 2) or (x. «x.stars <= 5) or ((x.stars != 2) or (x.stars < 4))

demo Wed May 15 12:23:16 1996 11

quer.i 0: select (lambda (x) (x. stars <= 5)) (Hotels)
SR_SimpM1D: :customAttain. Delaying until variable defined.
query 0: true Region Top Goal optimize. Return queries are:
Region Simplify OR Goal or. Return queries are: query 0: select (lambda (x) (x.stars <= 5)) (Hotels)
query 0: true

Branching for goal 'or': First, 3. //#### Query 15 ####//
Region Simplify OR Goal or. Input query is:

(x.stars <= 5) or (x.stars < 3) or (x.stars < 4))) select (lambda (x) «x.address.city.name='New York") AND (x.name='ADA')) OR
«x.address.city.name='New York') AND (x.address.number=1910)) OR «x.address.city.name='

SR_SimpAND: :CustomAttain. Delaying until variable defined. New York') AND (x.name='ADA'))) (Hotels)
query 0: (x.stars <= 5)
Region Simplify OR Goal or. Return queries are: Region Top Goal optimize. Input query is:
query 0: (x.stars <= 5) select (lambda (x) «((x.address.city.name = 'New York') and (x.name = 'ADA')) or «x.ad

dress.city.name = 'New York') and (x.address.number = 1910))) or «x.address.city.name =
Branching for goal 'or': First, 3. 'New York') and (x.name = 'ADA')))) (Hotels)
Region Simplify OR Goal or. Input query is:

((x.stars >= 2) or «x.stars != 2) or (x.stars != 3))) Branching for goal 'normalize': First, 1.
Region Normalize Goal normalize. Input query is:

SR-SimpAND: :CustomAttain. Delaying until variable defined. select (lambda (x) ««x.address.city.name = 'New York") and (x.name = 'ADA")) or «(x.ad
query 0: true dress.city.name = "New York') and (x.address.number = 1910))) or (x.address.city.name =
Region Simplify OR Goal or. Return queries are: 'New York') and (x.name = 'ADA')))) (Hotels)
query 0: true

Region Normalize Goal normalize. Return queries are:
Branching for goal 'or': First, 3. query 0: select (lambda (x) ««x.address.city.name = "New York') and (x.name = 'ADA')) 0

Region Simplify OR Goal or. Input query is: r «x.address.city.name = 'New York') and (x.address.number = 1910))) or «x.address.city
((x.stars >= 2) or «x.stars < 3) or (x.stars != 3))) .name = "New York') and (x.name = 'ADA")))) (Hotels)

SR_SimpAND: :CustomAttain. Delaying until variable defined. Branching for goal 'optimize': First, 1.
query 0: true Region Optimizer Goal optimize. Input query is:
Region Simplify OR Goal or. Return queries are: select (lambda (x) (((x.address.city.name = 'New York') and (x.name = 'ADA')) or «x.ad
query 0: true dress.city.name = "New York') and (x.address.number = 1910))) or «x.address.city.name =

'New York') and (x.name = 'ADA')))) (Hotels)
Branching for goal 'or': First, 3.
Region Simplify OR Goal or. Input query is: WARNING: Region 'Optimizer' does not know about goal 'address'

((x.stars >= 2) or ((x.stars != 2) or (x.stars < 4))) WARNING: Region 'Optimizer' does not know about goal 'city'
WARNING: Region 'Optimizer' does not know about goal 'name'

SR-SimpAND: :CustomAttain. Delaying until variable defined. WARNING: Region 'Optimizer' does not know about goal
query 0: true WARNING: Region 'Optimizer' does not know about goal 'name'
Region Simplify OR Goal or. Return queries are: WARNING: Region 'Optimizer' does not know about goal
query 0: true WARNING: Region 'Optimizer' does not know about goal land'

WARNING: Region 'Optimizer' does not know about goal 'address'
Branching for goal 'or': First, 3. WARNING: Region 'Optimizer' does not know about goal 'city'
Region Simplify OR Goal or. Input query is: WARNING: Region 'Optimizer' does not know about goal 'narne'

((x.stars >= 2) or ((x.stars < 3) or (x.stars < 4))) WARNING: Region 'Optimizer' does not know about goal
WARNING: Region 'Optimizer' does not know about goal 'address'

SR_SimpAND: :CustomAttain. Delaying until variable defined. WARNING: Region 'Optimizer' does not know about goal 'number'
query 0: true WARNING: Region 'Optimizer' does not know about goal
Region Simplify OR Goal or. Return queries are: WARNING: Region 'Optimizer' does not know about goal 'and'
query 0: true WARNING: Region 'Optimizer' does not know about goal 'or'

WARNING: Region 'Optimizer' does not know about goal 'address'
Branching for goal 'and': First, 3. WARNING: Region 'Optimizer' does not know about goal 'city'
Region SimpAND Goal and. Input query is: WARNING: Region 'Optimizer' does not know about goal 'name'

(true and (x.stars <= 5)) WARNING: Region 'Optimizer' does not know about goal
WARNING: Region 'Optimizer' does not know about goal 'name l

SR_simpAND customattain WARNING: Region 'Optimizer' does not know about goal
query 0: (x.stars <= 5) WARNING: Region 'Optimizer' does not know about goal 'and'
Region SimpAND Goal and. Return queries are: WARNING: Region 'Optimizer' does not know about goal 'or'
query 0: (x.stars <= 5) Branching for goal 'select': First, 3.

Region Select Goal select. Input query is:
Region CNF Goal CNF. Return queries are: select (lambda (x) ««(x.address.city.name = "New York') and (x.name = "ADA")) or «x.ad
query 0: (x.stars <= 5) dress.city.name = "New York") and (x.address.number = 1910))) or «(x.address.city.name =

'New York') and (x. name = "ADA')))) (Hotels)
Region Select Goal select. Return queries are:
query 0: select (lambda (x) (x.stars <= 5)) (Hotels) SR_Select: did transforms

Branching for goal 'CNF': First, 3.
Region Optimizer Goal optimize. Return queries are: Region CNF Goal C~W. Input query is:

demo Wed May 15 12:23:16 1996 12

««x.address.city.name = "New York") and (x.name = "ADA")) or ((x.address.city.name
"New York") and (x.address.number = 1910))) or «(x.address.city.name = "New York") and (
x.name = "ADA")))

SR_CNForm customattain

entring rule? -- (a*b)+(a*c) --> a*(b+c)

Input: ((x.address.city.name = "New York") and (x.name = "ADA")) or ((x.address.city.na

me = "New York") and (x.address.number = 1910»))

Output: «x.address.city.name = "New York") and «(x.name = "ADA") or (x.address.number =

1910»))
entring rule? -- (a*b)+(a*c) --> a*(b+c)
Input: «(x.address.city.name = "New York") and «(x.name = "ADA") or (x.address.number =
1910))) or (x.address.city.name = "New York") and (x.name = "ADA"»))

Output: ((x.address.city.name = "New York") and (((x.name = "ADA") or (x.address.number
= 1910)) or (x.name = "ADA")))
entring rule2 -- (a+b)+c --> c+(a+b)
Input: (((x.name = "ADA") or (x.address.number 1910)) or (x.name "ADA"))
entring rulel -- (a*b)*c --> c*(a*b)
Input: (((x.name = "ADA") or (x.address.number 1910)) or (x.name = "ADA"))
Output: «x.name = "ADA") or «x.name = "ADA") or (x.address.number = 1910)))
Output: «x.name = "ADA") or «(x.name = "ADA") or (x.address.number = 1910)))
Branching for goal 'or': First, 3.
Region Simplify OR Goal or. Input query is:

(x.address.city.name = "New York")

Region Simplify OR Goal or. No return queries.

Branching for goal 'or': First, 3.
Region Simplify OR Goal or. Input query is:

«x.name = "ADA") or ((x.name = "ADA") or (x.address.number 1910»))

SR-SimpAND: :CustomAttain. Delaying until variable defined.
query 0: (x.address.number 1910)
query 1: (x.name = "ADA")
Region Simplify OR Goal or. Return queries are:
query 0: «(x.address.number = 1910) or (x.name = "ADA"))

Branching for goal 'and': First, 3.
Region SimpAND Goal and. Input query is:

«x.address.city.name = "New York") and «x.address.number 1910) or (x.name "ADA"))
)

SR-simpAND customattain
query 0: (x.address.city.name = "New York")
query 1: «x.address.number = 1910) or (x.name = "ADA"))
Region SimpAND Goal and. Return queries are:
query 0: «x.address.city.name = "New York") and (x.address.number 1910) or (x.name

"ADA"»))

Region CNF Goal CNF. Return queries are:
query 0: ((x.address.city.name = "New York") and (x.address.number 1910) or (x.name

"ADA"»))

Region Select Goal select. Return queries are:
query 0: select (lambda (x) «x.address.city.name "New York") and ((x.address.number

1910) or (x.name = "ADA")))) (Hotels)

Region Optimizer Goal optimize. Return queries are:
query 0: select (lambda (x) «(x.address.city.name = "New York") and «(x.address.number

1910) or (x.name = "ADA")))) (Hotels)

Region Top Goal optimize. Return queries are:
query 0: select (lambda (x) (x.address.city.name "New York") and ((x.address.number

1910) or (x.name= "ADA")))) (Hotels)

!!iiii Query 16 ii.i!!

select (lambda (x) ((((x.address.city.name="New York") AND false) OR (x.name="ADA") OR ((x.s

tars=4) AND (x.address.number=1910))))) (Hotels)

Region TOp Goal optimize. Input query is:

select (lambda (x) ((((x.address.city.name = "New York") and false) or (x.name = "ADA"»)
or ((x.stars = 4) and (x.address.number = 1910)))) (Hotels)

Branching for goal 'normalize': First, 1.
Region Normalize Goal normalize. Input query is:
select (lambda (x) ((x.address.city.name = "New York") and false) or (x.name "ADA"))
or ((x.stars = 4) and (x.address.number = 1910)))) (Hotels)

Region Normalize Goal normalize. Return queries are:
query 0: select (lambda (x) ««x.address.city.name = "New York") and false) or (x.name

"ADA")) or «x.stars = 4) and (x.address.number = 1910)))) (Hotels)

Branching for goal 'optimize': First, 1.
Region Optimizer Goal optimize. Input query is:
select (lambda (x) ((((x.address.city.name = "New York") and false) or (x.name "ADA"))
or «x.stars = 4) and (x.address.number = 1910)))) (Hotels)

WARNING: Region 'Optimizer' does not know about goal 'address'
WARNING: Region 'Optimizer' does not know about goal 'city'
WARNING: Region 'Optimizer' does not know about goal 'name'
WARNING: Region 'Optimizer' does not know about goal
WARNING: Region 'Optimizer' does not know about goal 'and'
WARNING: Region 'Optimizer' does not know about goal 'name'
WARNING: Region 'Optimizer' does not know about goal
WARNING: Region 'Optimizer' does not know about goal 'or'
WARNING: Region 'Optimizer' does not know about goal 'stars'
WARNING: Region 'Optimizer' does not know about goal
WARNING: Region 'Optimizer' does not know about goal 'address'
WARNING: Region 'Optimizer' does not know about goal 'number'

,-,WARNING: Region 'Optimizer' does not know about goal

WARNING: Region ' Optimizer' does not know about goal 'and'

WARNING: Region ' Optimizer' does not know about goal 'or'

Branching for goal 'select': First, 3.

Region Select Goal select. Input query is:

select (lambda (x) ((((x.address.city.name = "New York") and false) or (x. name = "ADA"))
or (x. stars = 4) and (x.address.number = 1910))) (Hotels)

SR-Select: did transforms

Branching for goal 'CNF' : First, 3.

Region CNF Goal CNF. Input query is:

(((x.address.city.name = "New York") and false) or (x.name = "ADA")) or «(x. stars = 4)
and (x.address.number = 1910)))

SR_CNForm customattain

entring rule3 -- a+(c*d) --> (a+c)*(a+d)

Input: ((false or (x.name = "ADA")) or ((x.stars = 4) and (x.address.number = 1910)))

Output: (((false or (x.name = "ADA")) or (x.stars = 4)) and (false or (x.name = "ADA")

or (x.address.number = 1910»))

entring rule2 -- (a+b)+c --> c+(a+b)

Input: (false or (x.name = "ADA")) or (x.stars = 4))

entring rulel -- (a*b)*c --> c*(a*b)

Input: (false or (x.name = "ADA")) or (x.stars = 4))

Output: «x.stars = 4) or (false or (x.name = "ADA"))

Output: «(x.stars = 4) or (false or (x.name = "ADA"»)

entring rule2 -- (a+b)+c --> c+(a+b)

Input: «(false or (x.name = "ADA")) or (x.address.number = 1910))

entring rulel -- (a*b)*c --> c*(a*b)

Input: «(false or (x.name = "ADA"») or (x.address.number = 1910))

Output: ((x.address.number = 1910) or (false or (x.name = "ADA"))

Output: ((x.address.number = 1910) or (false or (x.name = "ADA")))

Branching for goal 'or': First, 3.

Region Simplify OR Goal or. Input query is:

((x. stars = 4) or (false or (x.name = 'ADA")))

demo Wed May 15 12:23:16 1996 13

SR_SimpAHD' :CustomAttain. Delaying until variable defined. org x=4 and x>4
query 0: (x.stars = 4) false
que~.1 1: (x.name = "ADA") org x=4 and x<5
Region Simplify OR Goal or. Return queries are: x=4
que~.1 0: ((x.stars = 4) or (x.name = "ADA"» org x=4 and x<4

false
Branching for goal 'or', First, 3. org x!=4 and x=4
Region Simplify OR Goal or. Input query is, false

(Ix.address.number = 1910) or (false or Ix.name "ADA"») org x!=4 and x=3
x=3

SR_SimpAND: :CustomAttain. Delaying until variable defined. org x!=4 and x!=4
query 0, (x.address.number 1910) x!=4
query 1: (x.name = "ADA") org x!=4 and x!=3
Region Simplify OR Goal or. Return queries are, x!=4 and x!=3
query 0: «(x.address.number = 1910) or (x.name = "ADA"» org x!=4 and x>=4

x > 4
Branching for goal 'and', First, 3. org x!=4 and x>=3
Region SimpAND Goal and. Input query is: x!=4 and x>=3

«(x.stars = 4) or (x.name = "ADA"» and ((x.address.number 1910) or (x. name "ADA") org x!=4 and x>=5
)) x>=5

org x!=4 and x<=4
SR_simpAND customattain x < 4
query 0: «x. stars = 4) or (x.name = "ADA"» org x!=4 and x<=3
query 1, (x.address.number = 1910) or (x.name = "ADA") x<=3
Region SimpAND Goal and. Return queries are: org x!=4 and x<=5
query 0: {«(x.stars = 4) or (x.name = "ADA"») and «x.address.number 1910) or (x. name x!=4 and x<=5
= "ADA"») org x!=4 and x>3

x > 4
Region CNF Goal CNF. Return queries are, org x!=4.0 and x>3.0
query 0: «(x.stars 4) or (x.name = "ADA"» and ((x.address.number 1910) or (x.name x!=4.0 and x>3.0
= "ADA"») org x!=4 and x>5

x>5
Region Select Goal select. Return queries are: org x!=4 and x<3
query 0, select (lambda (x) «(x.stars = 4) or (x.name "ADA"» and ((x.address.number x<3
= 1910) or (x.name = "ADA"») (Hotels) org x!=4 and x<5

x < 4
Region Optimizer Goal optimize. Return queries are: org x!=4.0 and x<5.0
query 0, select (lambda (x) ((x.stars = 4) or (x.name "ADA") and «x.address.number x!=4.0 and x<5.0
= 1910) or (x.name = "ADA"»» (Hotels) org x>=4 and x=3

false
Region Top Goal optimize. Return queries are, org x>=4 and x=5
query 0: select (lambda (x) «(x.stars = 4) or (x.name "ADA"» and ((x.address.number x=5
= 1910) or (x.name = "ADA")) (Hotels) org x>=4 and x!=4

x > 4
Exiting Epoq properly. Bye .. org x>=4 and x!=3
there were a peak of 415 OVoid-derived objects created x>=4

org x>=4 and x!=5
II. Simplify AND region x>=4 and x!=5

org x>=4 and x>=3
org x=4 and x=4 x>=4
x=4 org x>=4 and x<=4
org x=4 and x=5 x = 4
false org x>=4 and x<=3
org x=4 and x!=4 false
false org x>=4 and x<=5
org x=4 and x!=5 x>=4 and x<=5
x=4 org x>=4 and x>3
org x=4 and x>=3 x>=4
x=4 org x>=4 and x>5
org x=4 and x>=5 x>5
false org x>=4 and x<3
org x=4 and x<=5 false
x=4 o~g x>=4 and x<5
org x=4 and x<=3 x = 4
false org x>=4.0 and x<5.0
org x=4 and x>3 x>=4.0 and x<5.0
x=4 org x>=4 and x<6

demo Wed May 15 12:23:16 1996 14

x>=4 and x<6 org x>4.0 and x<6.0
org x<=4
x=3

and x=3 x>4.0 and x<6.0
org x>4 and x<7

org x<=4
false

and x=5 x>4 and x<7
org x<4 and x=3

org x<=4
x < 4

and x!=4 x=3
org x<4 and x=5

org x<=4 and x!=3
x<=4 and x!=3

false
org x<4 and x!=3

org x<=4
x<=4

and x!=5 x < 3
org x<4.0 and x!=3.0

org x<=4
x = 4

and x>=4 x<4.0 and x!=3.0
org x<4 and x!=5

org x<=4 and x>=3
x<=4 and x>=3

x<4
org x<4 and x>=5

org x<=4 and X>=5
false

false
org x<4 and x>=3

org x<=4
x<=3

and x<=3 x = 3
org x<4.0 and x>=3.0

org x<=4
x<=4

and x<=5 x<4.0 and x>=3.0
org x<4 and x>=2

org x<=4
false

and x>5 x<4 and x>=2
org x<4 and x>5

org x<=4
x = 4

and x>3 false
org x<4 and x>"3

org x<=4.0 and x>3.0
x<=4.0 and x>3.0

false
org x<4.0 and x>3.0

org x<=4 and x>2
x<=4 and X>2

x<4.0 and x>3.0
org x<4 and x>2

org x<=4
x<3

and x<3 x = 3
org x<4.0 and x>2.0

org x<=4
x<=4

and x<5 x<4.0 and x>2.0
org x<4 and x>l

org x>4
x=5

and x=5 x<4 and x>l
org x<4 and x<5

org x>4
false

and x=3 x<4
org x<4 and x<3

org x>4 and x!=3 x<3
x>4
org x>4 and x!=5 III. Simplify OR region
x > 5
org x>4.0 and x!=5.0
x>4.0 and x!=5.0

org x=4
x=4

or x=4

org x>4 and x>=5
x>=5

org x=4 or
x=4 or x=3

x=3

org x>4 and x>=3 org x=4 or x!=4
x>4 true
org x>4 and x<=3 org x=4 or x!=3
false x!:::)

org x>4
x = 5

and x<=5 org x=4
x>=3

or x>=3

org x>4.0 and x<=5.0
x>4.0 and x<=5.0

org x=4
x >= 4

or x>=5

org x>4 and x<=6
x>4 and x<=6

org x=4.0 or x>=5.0
x=4.0 or x>=5.0

org x>4
x>4

and x>3 org x=4 or x>=6
x=4 or x>=6

org x>4
x>5

and x>5 org x=4
x<=5

or x<=5

org x>4 and x<3
false

org x=4
x <= 4

or x<=3

org x>4
false

and x<5 org x=4.0 or x<=3.0
x=4.0 or x<=3.0

org x>4.0 and x<5.0
x>4.0 and x<5.0

org x=4 or x<=2
x=4 or x<=2

org x>4
x = 5

and x<6 org x=4
x >= 4

or x>4

demo Wed May 15 12:23:16 1996 15

org x=4 or x>3 x != 3
x>3 org x>=4.0 or x<3.0
org x=4 or x>5 x>=4.0 or x<3.0
X=4 or x>5 org x>=4 or x<2
org x=4 or x<4 x>=4 or x<2
x <= 4 org x<=4 or x=3
org x=4 or x<5 x<=4
x<5 org x<=4 or x=5
org x=4 or x<3 x <= 5
x=4 or x<3 org x<=4.0 or x=5.0
org xl=4 or x=4 x<=4.0 or x=5.0
true org x<=4 or x=6
org x!=4 or x=3 x<=4 or x=6
x!=4 org x<=4 or x!=3
org x!=4 or xl=4 true
x!=4 org x<=4 or xl=5
org x!=4 or xl=3 x!=5
xl=4 or xl=3 org x<=4 or x>=3
org x!=4 or x>=3 true
true org x<=4 or x>=5
org xl=4 or x>=5 true
x!=4 org x<=4.0 or x>=5.0
org Xi=4 or x<=5 x<=4.0 or x>=5.0
true org x<=4 or x>=6
org xl=4 or x<=3 x<=4 or x>=6
xl=4 org x<=4 or x<=3
org x!=4 or x>5 x<=4
x!=4 org x<=4 or x<=5
org x!=4 or x>3 x<=5
true org x<=4 or x>3
org xl=4 or x<3 true
x!=4 org x<=4 or x>5
org x!=4 or x<5 x != 5
true org x<=4.0 or x>5.0
org x>=4 or x=5 x<=4.0 or x>5.0
x>=4 org x<=4 or x>6
org x>=4
x >= 3

or x=3 x<=4 or x>6
org x<=4 or x<3

org x>=4.0 or x=3.0 x<=4
x>=4.0 or x=3.0 org x<=4 or x<5
org x>=4 or
x>=4 or x=2

x=2 x<5
org x>4 or x=4

org x>=4 or xl=5 x >= 4
true org x>4 or x=5
org x>=4 or xl=3 x>4
x!=3 org x>4 or x=3
org x>=4 or x>=5 x>4 or x=3
x>=4 org x>4 or x!=3
org x>=4
x>=3

or x>=3 xl=3
org x>4 or xl=5

org x>=4 or x<=5 true
true org x>4 or x>=5
org x>=4 or x<=3 x>4
true org x>4 or x>=3
org x>=4.0 or x<=3.0
x>=4.0 or x<=3.0

x>=3
org x>4 or x<=5

org x>=4 or x<=2 true
x>=4 or x<=2 org x>4 or x<=3
org x>=4
x>3

or x>3 x != 4
org x>4.0 or x<=3.0

org x>=4
x>=4

or x>5 x>4.0 or x<=3.0
org x>4 or x<=2

org x>=4 or x<5 x>4 or x<=2
true org x>4 or x>5
org x>=4.0
true

or x<5.0 x>4
org x>4 or x>3

org x>=4 or x<3 x>3

16 demo Wed May 15 12:23:16 1996

org x>4 or x<4
x != 4
org x>4 or x<5
true
org x>4 or x<3
x>4 or x<3
org x<4 or X=4
x <= 4
org x<4 or x=3
x<4
org x<4 or x=5
x<4 or x=5
org x<4 or x!=5
x!=5
org x<4 or x!=3
true
org x<4 or x>=3
true
org x<4 or x>=5
x != 4
org x<4.0 or x>=5.0
x<4.0 or x>=5.0
org x<4 or x>=6
x<4 or x>=6
org x<4 or x<=5
x<=5
org x<4 or x<=3
x<4
org x<4 or x>4
x != 4
org x<4 or x>3
true
org x<4 or x>5
x<4 or x>5
org x<4 or x<3
x<4
org x<4 or x<5
x<5

