
BROWN UNIVERSITY

Department of Computer Science

Master's Project

CS-95-M15

"Identifying Failure Modes in Compiler Algorithms applied to

Distributed Memory Data Parallel Computation"

by

Peter A. Walker

\.- ...

1

- 1

_ i

Identifying Failure Modes in Compiler
Algorithms applied to Distributed Memory

- ., Data Parallel Computation

Peter A. Walker
- .1
-

- }

Department of Computer Science
Brown University

,- I

Submitted in partial fulfillment of the requirements for the degree of

Master of Science in the Department of Computer Science at Brown

University.

May 1994

Identifying Failure Modes in Compiler Algorithms
applied to Distributed Memory Data Parallel

Computation

Peter Walker

This document describes the results of research examining a

representative set of published algorithms used in automatic compilation

of code for data parallel computation on distributed systems; we

determine the data dependence conditions, as expressed in the structure

of the input program, that result in these algorithms producing output

code which generate incorrect result upon execution. Methods for

instrumenting these compilation environments to enable run-time

detection of errors in executed code are also suggested.

1.0 Introduction

This work examines four representative algorithms that have been developed and used

in compilers for the automatic generation of code that is executed in parallel on a

distributed memory architecture; in particular, all data transfer between processors is

managed solely by the compiler, thereby releasing the user from the complexity

associated with programming inter-processor communication in this environment. The

model of parallel computation addressed by these algorithms is the data-parallel model

[11], which is defined as a method of parallel computation where the data used in a

given computation is decomposed into smaller subsets that may be independently

operated on by computing nodes executing the same program. This form of parallel

program is described as SPMD (single-program, multiple-data [24]). The algorithms are

examined for identifying stated and unstated assumptions on how data dependencies

in source code are addressed dUring compilation and, to ascertain how these

assumptions are applied to realize parallelism in an execution; the identification of

the constraints embedded in such assumptions (which defines the scope of application

of the algorithms) is discussed. Also, the static and/or dynamic data dependence types

in source code that would trigger a violation of these constraints are explored.

Further, it is determined whether the parallel execution from code generated by

compilers using these algorithms will exhibit data races as, the presence of data races

3

undermines confidence in the results produced from such executions. Additionally,

analysis is done to determine how the behavior of executions is affected with source

code having different data dependence types -- whether the computation will

consistently generate an incorrect output, exhibit data races or deadlock. Finally, for

each algorithm that has the potential to generate incorrect code, a run-time method for

detecting these conditions dUring an execution of the compiled code is developed.

1.1 Terms and Definitions

In the context of this paper, a failure in the discussed compiler algorithms is defined

as follows:

Definition: A parallelizing compiler algorithm is defined to have failed if the results of

computation generated from the execution of code produced by the application of that

algorithm differs consistently, or intermittently, from the results of code generated by a

sequential algorithm supplied with the same input and which is known to produce

correct (or desired) results.

The types of failures anticipated are

(1)	 Deadlock [18] arising from incorrect communication patterns

between processors.

(2)	 Erroneous results due to the persistent violation of data

dependencies [9] between shared variables.

(3)	 Non-determinacy arising from the presence of data races [19]. The

Bernstein conditions [23] define the types of unsynchronized

accesses by processors to a variable that create data races. However,

a common feature of many of the distributed data parallel methods

referenced, is the owner's compute rule [3]; shared data structures

are partitioned such that processor nodes participating in the

computation are exclusively responsible for writing to a subset of the

original structure [1, 2. 4, 6, 121 for which they have been assigned

ownership. Unordered write-write accesses to the local subset of the

node is therefore avoided. However, without a mechanism to enforce

the order between writes (by the owning processor) and reads (by

4

remote nodes). data races will occur. Of the four methods discussed

in this paper, only one does not use the owner's compute rule.

1.1.1 Data Parallel Computine Environment

The data parallel paradigm [ll] of computation in a distributed memory system, can be

described as a computing environment that emphasizes the partitioning of an iteration

space and associated data (over which the iterative operation is perfonned), among the

compute nodes in the system for concurrently operating on the data placed at those

nodes. For example, consider the code shown below.

Example 1

do i=l to N

A(i)= B(i) + C(i)

end do;

Using data parallel method to perfonn this computation, each of the arrays A, B and C

would be partitioned among the nodes such that each node would compute for a subset

of the values of the range LN, the iteration space covered by the iteration index i.

Ideally, the data elements of the each array reference in an iteration i, would be placed

at the computing nodes such that only a local reference is required to access it.

The intent is to maximize on the parallelism in a given computation for minimizing total

computation time, while maintaining correctness. As such, source code with iterative

structures that have little or no loop-carried data dependence [9] is most suited for

execution in this environment. This approach differs from functional (or task)

parallelism in which independent functions in a segment of code are assigned to

separate compute nodes (multi-threaded) for execution. An example of functional

parallelism is a system making remote procedure calls to multiple nodes for them to

perfonn specific operations at those nodes, e.g., for one node to execute the command

'Is,' another to start a database process, etc.

5

1.1.2 Data dependence Considerations

The definition given for correctness in the code generated for parallel execution centers

on the requirement that the result of the parallel execution is the same as that

generated from a uni-processor execution with the same input data. Correctness can

further be traced to the non-violation of data dependence between statements in the

parallel execution. From (9) three types of data dependencies can be identified:

1. If statement 81 uses the result of another statement 82. then 81 is

flow dependent on 82.

2.	 If 81 can store only after 82 fetches the data stored in that location,

then 81 is anti-dependent on 82.

3. If 81 overwrites the result of 82 then 81 is output dependent on 82.

Thus. data dependencies dictate the execution precedence among statements that must

be honored for consistent correct results to be produced. Consider the following code

fragment:

~ample2

DOl= 2. N-1

51: A(I) =

52: . =A(l+l)

53: Aff-1) ='"

54: . = A{l - 1)

ENDO

In the above example, 83 is output dependent on 81, since it overwrites the results of

81 and the execution of 83 in iteration I must follow the execution of 81 in iteration

1-1. Also. statement 81 is anti-dependent on statement 82 in that it overwrites the

value read at 82. Thus the execution of statement 81 in iteration I must follow the

execution of 82 in iteration 1+1. 84 is flow dependent on 83 because it reads results of

83; the execution of 83 must precede the execution of 84.

6

When the data dependence between statements extends across iterations. it is called

loop-eanied data dependence. The presence of control directives such as if-then-else

statements can mOdify the execution precedence between two statements. Where the

order of execution is modified by the presence of control statements. a control

dependence is said to exist between the statements.

It is also possible for the data dependence between statements to change at runtime;

e.g.. Consider the assignment y(b(i)) =y(b(i+ 1)); if all b(i) < b(i+ 1) then iterations have

loop carried anti-dependence. However. if all b(i) > b(i+l), the iterations have a loop

carried flow dependence. Where the data dependence between statements can change at

runtime. a dynamic data dependence is said to exist; if this is not possible the data

dependence is described as static.

If data dependence occurs across several iterations of a loop, the distance is called the

dependence distance (with respect to the loop). In example 2. the output data

dependence between 83 and 81 is 1. In example 2. all data dependencies have constant

distance. For statements nested in multiple loops. the dependence distance of each

statement with respect to the each loop may be different. Dependence distance provides

an index of the degree to which a loop may be paralleltzed. A loop in which all

statements have zero dependence distance for assigned variables is fully parallelizable.

Where non-zero dependence distances occur. loop-skewing or strip-mining [4) is

reqUired to correctly parallelized the execution of the code. Thus a knowledge of

dependence distance is important for extracting parallelism in a fragment of code. For

simple loop indices (linear) [9) this is may be determined at compile time. However. for

non-linear subscripts. run-time evaluation may be needed to assess the dependence

distance between statements, for evaluating the degree to which the execution may be

parallelized.

The dependence direction vector [9) specifies the direction of dependence distance of

a loop index in an assignment statement with respect to the loops nesting the

statement. Each element of the dependence distance vector is called a dependence

direction. For example. consider a nest of two loops. where the outer loop has index

I. and the inner loop has index variable J. Assume there is data dependence between

7

two statements 51 and 52 such that the execution of 5 l[i1j 1) must precede that of

52(i2j,2J· The dependence direction for the Jloop is "<","=" or ">" depending on if JJ <h.
) 1 =)2 ' or)1 >)2 respectively. For the I loop the dependence direction is similarly

determined. The vector formed from the consideration of the dependence direction is

the direction vector. Again, the dependence vector is a crucial indicator of the degree of

parallelism that exist in a given program module.

1.1.3 Data Races

Data races [19] exist when the order of read/wrtte or wrtte/WIite operations to a

vartable occurs without some mechanism for enforcing a fIxed order of access to the

variable. In a SPMD execution governed by the owner's compute rule [3], the execution

of each processor is such that a single processor is responsible for updating a subset of

data elements to which it is assigned wrtte ownership. This ensures the process of

updating a vartable, is race free in the wrtte/wrtte sense. However, this does not

eliminate races or non-determinism in the parallel execution; this follows as the relative

temporal ordering of reads of a vartable and wrttes by the owner node may vary from

one execution to another in the absence correct inter-processor synchronization.

In the Multiple-Data-Single-Compute (MDSC) model, multiple nodes may write to a

single vartable. In this situation, wrtte/wrtte data races can occur, thereby leading to

unpredictable outcome if the values wrttten are different.

On message passing systems, as examined in this work, data races are manifested as

races in messages between communicating processors. In [22] a message race between

two messages is defIned as a situation in which either message could have been

accepted fIrst by some receive due to vartations in message latencies or process

scheduling.

1.1.4 Data Dependence violation and Data Races

The data dependence between two statements specifIes the order in which those

statements can be executed (one after the other or in parallel). A data race however, by

defInition, is an observation of the order in which concurrent processes without

explicit synchronization, access a vartable used in those processes and in which the

8

purpose of access is contrary -- say one reads the variable and the other writes it.

Data race can exist even if an execution correctly satisfies the data dependence

between two statements. For example, one processor, say p I, may write a variable and

another, say p2, reads it and pI writes the variable again without any synchronization.

The value read by p2 may correctly satisfy the data dependence between the executed

statements but the execution would be classified as one that involved a race, as

synchronization was absent between the processors to enforce a definite order in access

to the variable. An alternative execution could have been that pI updates the variable

twice before p2 reads it. Thus, when an execution correctly satisfies the data

dependence among statements, if a data race exists this should be reported as it

implies instability in the structure of the code leading to non-determinacy in the

global state of program from one execution to another.

1.2 Models Examined

This work examines representative algorithms that attempt different methods of

extracting data parallelism from code at compilation. The methods share the common

paradigm of partitioning large data sets among processors but vary on how parallelism

is realized in operating on the partitioned data; the variations include how the

computation time is minimized by reducing the effects of communication latency from

sending data between nodes and, how data dependence that requires access to off

processor data elements is handled. The four techniques discussed individually

emphasize one of the following strategies:

1.	 Inter-processor transactions to communicate to a node all data used

by the node in computations on the assigned subset of the iteration

space; execution of the iterations at the local node starts only after

receiving all data referenced in those iterations.

2.	 Communication by a node to request data used in the execution of a

statement at the point of execution the statement.

3. Overlapping	 the communication for off-processor data referenced in

an execution with the execution of iterations that reference only local

data.

9

4. Using run-time supplied information to determine iterations that can

be executed concurrently and providing synchronization for

scheduling loop-carried dependent iterations.

These four algorithms are representative in that they cover the four basic strategies

used to realize efficient parallel computation on message passing systems using the

data-parallel paradigm. Indeed. there are only a finite number of ways that any given

piece code may be executed in parallel and produce correct results. The data

dependence between statements dictates the approach possible although different

strategies for placing and communicating data between nodes can affect the underlying

communication complexity. Our intent is to demonstrate through the examined models

an approach that can be extended to analyze the behavior of any closely related

technique.

10

2.0 Case I: Communication Before Execution
{Iteration level}

2.1 Aleorithm Description

In [20) Saltz et. al. discusses a method for attaining parallelization that involves the

use of distribution and alignment directives which specify the mapping of global data

onto processors in a MIMD computational environment named Parti. The mapping

directive includes the use of arrays for specifying irregular distribution such as may

occur in computations involving sparse arrays; these mapping arrays are also used

when run-time methods of determining the parallelization paths (index set) of

processors are intended. Their parallelization efforts center on computations over do

loops; do-loops that are to be parallelized are indicated to the compiler by a distribute

clause at the start of the loop. An outline of the algorithm is shown in figure 1.

The algorithm has two primary phases. namely a preprocessing or inspector phase

and an execution phase. In the inspector phase the algorithm performs the following

operations:

1.	 Use the distribute and partition directives to place data elements on

processors. A distributed-translation table is built that uses static

directives, such as block. cyclic. etc.. to determine how data elements

should be placed on the processor nodes. Run-time regular and

irregular data placement is supported by using arrays that specify

data mapping onto processors; runtime scheduling of loop

iterations for parallel execution is specified via a similar array

structure. For example consider the code shown below.

In this code. SO specify that array partition is to be distributed by

SO	 distribute regular using block Integer partltion(n)

S2 distribute do 1= I.n on partition

.... code for do loop

Example 2

11

block [12) on the available processors. In S2, the loop iteration to be

executed by a processor is determined by the mapping information in

the array partition. Thus, every processor is capable of resolving the

iterations that belong to its iteration or index set using the run-time

supplied information.

2.	 Once data mapping is resolved, the system then determines which

data elements in the distributed arrays are required at a node to

carry out the defined computation. The location of a data element is

resolved using the distributed-translation table. Subsequently, a set of

inter processor communication is carried out; each processor is

able to anticipate exactly which send and receive call it will need to

execute for all inter-processor data communication to be correctly

carried out. A hash cache associated with the distributed translation

table is used to record the off-processor fetches and stores; this

allows for the recognition and single fetch of variables that may be

Preprocessing phase (inspector):
Call procedure build-translation-table using the mapping

defined by array partition (This generates distributed translation table Tpartition)
Call procedure dereference to find processor assignments, PA, and local indices, LA,

for consecutive references to array elements. (Procedure dereference uses the
distributed translation table to find processor and memory locations of distributed
array data that have been mapped to processors using the array partition.)

Use setup hash table H to record off-processor elements

Execution phase(executor):
communication:

Use procedure gather-exchanger to find distributed data elements to

be transmitted and send/receive of elements. Write data to hash table

computation:
Use locally stored and off-processor data elements of distributed array

register in hash table to do computation.

Store: I

identify distributed elements to be stored off-processor;

fetch value from hash cash and send to off-processor location

fig.	 1 : Algorithm outline

referenced multiple times in the current computation.

12

The second phase of the algoIithm is the executor, where the established

communication plan generated from the inspector phase is carned out, followed by the

computation on the data. The communication process in the executor reads all off

processor distIibuted array data elements that are used in the execution of the loop

iterations scheduled for the node and place those data elements in local storage (a

hash table) for subsequent use. At the completion of the execution of the loop set at a

node, data elements of arrays that have been wrttten to, but owned by another node,

are retIieved from the hash cache and sent to the appropIiate off-processor locations.

To illustrate, the code generated from this algoIithm by an example (extracted from [20])

distribute regular using block integer partition(n)

distribute irregular using partition real ·Sx(4.n), y(4,n), fl4.4,maxcols,n)

distribute irregular using partition integer cols(9,n), nc!os(n)

..... initialization of local variables ...

distribute do i= l,n on partition

do j= l,cols(i)

do k=1,4

sum=O
do m=1,4

sum = sum + flm.k.j.Wx(m.colsU,i))

end do
y(k,i) = y(k,i) + sum 1

end do

end do

end do

figure 2: Sparse Block Matrix Vector Multiply

is shown in figure 2.

With compilation the code is decomposed into a SPMD type code (Le., executed by each

processor) shown in figure 3.

13

I. call gather-exchanger using schedule S to obtain off-processor elements of x
gather-exchanger places gathered data in hash table H

count = 1

II.	 for all rows i assigned to processor P
do j= l.ncols(l)

do k=I,4

sum=O
lIa. If PA(count)==P then / /PA is processor assignment array

vx(1:4)=x(1:4,LA(count)) / /LA is the local indices of each processor
else

Use PA(count), LA(count) to get vx(1:4) from hash table
endif

do m=I,4
sum = sum + f(m,k,j,l,)'"vx(m)

end do
lIb. y(k,i) = y(k,i) + sum

end do

count = count +1

end do

figure 3: Executor generated from ARF for sparse Block Matrix Vector Multiply

2.2 Failure Modes

Step I of figure 3. identifies that all processors call routine gather-exchanger to obtain

off-processor data elements. These data elements are placed in the local hash cache to

be accessed when the executor references those data elements. Thus. there is a distinct

data gathering stage followed by execution that uses the collected data. Further. the

algorithm does not consider the data dependence that may exist across iteration

boundaries of a processor's assigned index set; this omission may result in incorrect

computation as the following discussion illustrates.

2.2.1	 Flow dependence

Correct computation in the presence of flow (or true) loop-carried data dependence

(e.g.. y[kl = y[k-ll +...) requires that the processors actively collaborate dUring

computation by waiting until variables on which a true dependence exists have been

updated by the node responsible for doing so; after updating. the processor must then

send the computed values to the dependent processor. An effective implementation of

14

strategy can result at best in a skewing or tiling [l4] of the computation time among

processors and a serialization of the total computation at the worse.

For example, assuming a loop-carried data dependence then, if statement IIb is

changed to

y(k.il= y[k.i-ll + y[k.il + sum

then. the processor that assigns y[k,1] should proceed only after the processor that

assigns y[k,i-l] has done so and sent the computed value to the dependent processor.

No provision is made to guarantee this synchronization in the algorithm.

2.2.2 Output dependence

An output data dependency exists if a variable is updated multiple times in an iteration

or on different iterations (loop carried) and read in iterations other than those in which

it was updated. For example, consider a statement from an iterative structure such

as,

y(b(i)) = ...

then a loop-carried output dependence exists if there exists some b(i) = bU) for i not

equalj.

If the indexing array, I.e., array b, is partitioned among processors without assuring

that all repeated values of b {say b(i)= bU) = .. , =k} are given to the same processor

then, the final value of the array element with that index {y(k) = ... } will be

indeterminate; this is so as different processors will write to the same location in y

with possibly differing values. This scenario is a possible as the algorithm allows for

multiple nodes to compute new values for in a given data element and then send

those values to the owner node for that element. This condition defines the presence of

a data race if the order in which messages are received at the storage node is non

deterministic, I.e., there is no mechanism for enforcing that data from remote nodes

arrive at the owner node in a defined order. The algorithm does not present such a

mechanism. The presence of data races leads to non-determinism in an execution and

may consequently lead to the generation of incorrect results.

15

2.2.3 Anti-dependence

In the presence of loop-carried anti-dependencies only, this algorithm will compute

correctly, since by definition. a loop-carried anti-dependence on a variable x, requires

that the dependent processor obtain the value of x before it is updated in the current

loop.

Observation 1: The strategy as used by this algorithm involves preceding the

computation over a given set oj iterations at a node with the collecting oj data used in

those iterations without consideration to loop-carried computational dependence: this

results in the algorithmjaUing to compute the results correctly on any code that involves a

true or output dependence that extends across the iteration boundaries oja processor.

Observation n: Without a mechanism to enjorce an order in the messages among

processors, data races will occur when a value that has been updated at multiple nodes

is stored at the designated oJfprocessor location.

2.3 Run-time Error Detection

We have shown that the algorithm generates incorrect code with inputs that have loop

carried flow or output data dependence. A method for detecting such violation at run

time by instrumenting the system is now discussed.

Each processor is aSSigned a subset of the iteration space; an execution is carried out

using the given subset, in conjunction with the distribution specified, to place and

locate data. A read and write access history is associated with each data element in

the distributed arrays. As off-processor data is retrieved before the execution of the

loop iterations, it is necessary that the read access history of those elements read by

the gather-exchanger be updated dUring this phase of the execution. Further. as off

processor data updated by a node is written back to the parent node the write access

history of such data elements much be checked by the parent to see whether the values

sent by other nodes are inconsistent; if the values differ, then an error is reported as

the messages are racing in that the outcome of the updating process is determined

only by the order in which update-messages are received at the parent node. If the

update values are consistent, then one could choose not to report this; however, it

16

could be significant to the user that a data race exists in the updating process. This

follows as another execution of the program with a different set of input data may

result in different update-values being sent, hence leading to a random final value in

that location. Thus a user should always be made aware of data race and whether the

updating process leads to a random state in the current execution.

check(var, pid, access,new_valueJ(

if (access == READ) {

for each entry in var->write_history {

if (var->write.pid > pid) then "report error"

}

insert pid in read_history

}

({(access == WRfIE) {

for each entry in var->read_history {

if (var->read.pid > pid) then "report error'

}

for each entry in var->write_history {

(f{var->write.pid !=pidJ(

(f{var->value != new_value) report "data race with inconsistent value"

else "report data race"

insert pid in Write_history

figure: 4

Without loss of generality. assume the index variable of iterations is increasing and

that the iterations of the loop are partitioned among processors such that processor id

(pid) increases with increase in the range of the index set associated with the

processors; Le., a processor with pid of 1 would be assigned iterations in a lower range

of the iteration space than that assigned to a processor with pid of 2. This implies that,

if a processor with a higher pid reads a variable and a processor with lower pid writes

it subsequently. then a loop-carried flow/output data dependence would have

occurred. Also. when a variable is read by a processor with lower pid after it has been

written to by a processor with higher pid, then an incorrect execution has occurred.

As the access history of a variable can be reset at the end of a given parallel loop. we

consider only the management of the access history within a loop. The pseudo

17

algorithm, check. shown in figure 4 shows how the access history of a variable is

managed to assess when an error has occurred.

18

3.0 CASE II: Communication Before Execution
(Statement level}

3.1 Ali0rithm Description

In 11) Kennedy et al, describe at system for compiling programs for execution in a

distributed memory multi-processor environment. They identity two areas that have

hindered the utilization of the distributed-memory environment that they seek to

address. The two areas of concern identified are:

1. The communication complexity associated with using distributed

memory computers for solving certain problems will exceed the time

complexity, thereby making it not efficient to solve such problems in

a distributed-memory environment. A programmer may be reluctant

to invest the time to code for this environment in the face of such

uncertainty.

2. The degree of difficulty associated with programming distributed

memory environment is higher that of programming the tightly

coupled shared-memory systems. This has further discouraged the

use of this environment for solving computationally intensive

problems.

Concern 2 is identified as due largely to the absence of language support tools that

make it easier for programmers to use the particular environment, a factor that the

paper seeks to address directly through language augmentation and directives that

transfer responsibility from the programmer to the compiler for generating SPMD (Single

Program Multiple Data) code for distributed execution. They seek to address concern 1,

by providing a paradigm that attempts to minimize the communication required to

solve a computation problem; they provide distribution directives that a user may

utilize to pass hints to the compiler for maximizing data locality with computation, Le.,

the data is placed at the node that Will reference it the most in the computation. The

approach is similar to that used in (16) with variations on how ownership and

distribution of variables is specified but similar in that inter processor communication

19

for off-processor variables occur only at the point that those variables are referenced

dUring a computation

3.2 Implementation Structures

The algorithm incorporates the use of distribution directives to specify the mappings

of data from input arrays onto processors. A distribute statement is defined, and

provides a method of specifying a local function that identifies the processor at which

elements of a shared array are stored. A decompose statement is also provided, and

defines a virtual array. the members of which are elements of an underlying real array.

These two functions are used by the compiler to decide the memory allocation needed

at nodes for storing the data elements of shared arrays that will reside at those nodes.

The execution algorithm makes no assumption on the location of data at any given

instant but rather resolves each reference at the time of use. Through the

distribute/decompose statements the compiler generates code that allows each

processor to resolve the Variables it needs for performing a computation and to

determine where those variables are located. Once a processor acqUires an array

element that belongs to it. the array element is stored in the allocated space; if there

are variables used in the current computation that are owned by another processor,

that data is requested from the owning processor.

In this distributed computation model, every data element is assigned an address that

is an ordered pair. The first component identifies a processor and the second

component identifies an address in the local memory space of the processor. The

functions () and a are used to refer to these components individually; () returns the

processor identifier of the processor that contains the selected data element and a

returns the location of a particular data element in the local memory of the processor

that holds it. Some data elements may also be defined as floating or replicated as is

done for arrays for which no distribute or decompose specification is provided.

The central task of the compiler is to separate the movement of data from the

computation of new results. 1\vo statements are formulated that explicitly handle this

concern, namely LOAD and STORE. LOAD moves the values stored in a data element

into a specified memory location and processor. STORE assigns the value of a local

computation to a distributed variable. The algorithm for LOAD and STORE are shown in

20

.LOADC MI.t,pfdl{

INPlITS: pid = processor on which variable should reside

MJ = reference to original variable

t = compiler generated local variable

if OeM!) = thisproc then I I ifvariable belongs to this proc

if pld = thisproc
then t ~ OeM!) Ilput it in a local var. '1'

else if pid ;:f. 0

then SEND(DEST = pid) oeM!) I I send it to owner

else do

t ~ oeM!) I I if owned by aJl, copy it and

GSEND t I I broadcast element

else if oeM!) ;:f. 0 then

if pld = thisproc or pid =0 Ilbut pid is mine then
then RECV(ONLYSRC = O(M!)) I I expect from source

else if pid = thisproc or pid =0 Ileise element is floating

then t ~ OeM!)

STORECMO, fIU tkl!

INPlITS: MO = reference to original variable
tl, ...tk = compiler generated variables with loaded values

m = a function operating on tl, ...tk

if o(MO) = thisproc or o(MO) = 0 I lif var is mine or floating

then ex.(MO) ~ f(tl, tk) lido computation and write to it

Figme 5. Load /Store algorithm used in [1]

figure 5. The WAD statement reads a value using the 0 and ex. functions. If the

variable is located off-processor, it is read and placed in a temporary local variable.

The computation is then carried out using the local version of the variable. The STORE

statement is used to place the results of a computation into distributed memory

locations.

Program execution consists of two phases. A data collection-transmission phase,

where variables used in the pending computation are loaded into local variables

followed by an execution phase where the specified computation is carried out using the

locally stored variables.

21

For Example. the statement

8lI) = A(PIlI))

is compiled to

8(T)~ 0 /Iassume variable is replicated

LOAD PI(I) • t 1. 8(T) Iluse load statement to locate and load PIlI) into tl

STORET =tl I I store tl in T

LOAD A(T), tl. 8(8(1» Iluse load statement to locate and load PI(T) into tl

STORE B(I) =tl Iistore tl into 8(I)

assuming the index I is already replicated to the processors.

3.3 FAILURE MODES

This algorithm is similar to that discussed case I; communication precedes

computation Without consideration to the dependence that may exist in the problem

structure. It differs from the former algorithm in the technique used for identifying

variable location and the absence of the strategy to exclusively precede computation

for a given set of iterations With the necessary communication; here, communication is

demand driven occurs at the statement level Within an iteration.

3.3.1 Flow Data Dependence

Applied to an iterative computation With loop carried dependencies this model Will fail

to compute the correct result if there exists any true dependence that requires cross

processor references. The algorithm does not vectorize the process of gathering data for

computation. as in case I discussed above does. Instead, communication via the LOAD

routine. occurs for each data element that is off-processor and needed to be used in

the pending computation. This can be viewed as a localized (about the computation

point) communication before computation Without consideration to dependence and. as

such. the algorithm could generate erroneous results in the presence of true data

dependencies that extend across processor boundaries.

Consider the example below;

22

B(I)= B(I-l) +

where B is an array partitioned on a distribute/decompose directive. At the boundary

case where B(I-1) is owned by another processor, the LOAD statement should retrieve

the new B(I-1) as assigned by the owning processor. However, the algorithm indicates

no mechanism to ensure that the processor that owns the variable sent it after it has

written to it or. that the node that reads it sees the updated variable.

It is possible for the algorithm to dead-lock here. The distributed memory information

stored on a variable specifies (a) the processor that owns the variable (this is 0 for

variables with unspecified distribution in which case, the variable is replicated) and (b)

the address of the variable in the local memory of the processor that owns it. If a

distribution is specified for array B, then all elements of B will be owned by a particular

processor. An examination of the load algorithm shows that at the boundary case,

where (1-1) or (1+1) references to an element that is off processor, the load algorithm

request the element from the owner processor. The owning processor however, have no

way of knowing that it should anticipate this request and consequently the processor

will not respond. The algorithm allows processors to assume ownership of sections of

shared data structure without facility to anticipate redistribution of the data elements

dUring computation. Consequently, processors that reference an element owned by

another processor will block at that point and the computation deadlocks. Thus this

algorithm will manifest deadlock in the presence of iterations that have loop-carried

dependence that requires inter-processor communication during execution.

If we assume however. that there is a mechanism to read a memory location at

another processor, then dead-lock will not occur. However, the execution will have data

races as there will be no enforced order between the reading of off-processor data and

the writing of those elements at the owner locations while the owner is executing its

iteration set.

3.3.2 Output and Anti-dependence

Again. assuming there is a method to read data located at another processor, then

output and anti-dependence will have data races associated the execution fulfilling

23

those dependencies. This is so owing to the demand driven communication structure

used in the computation, i.e., to request a variable only when it is need in a

computation; thus the variable may be read before or after it has been updated at the

parent node. Consequently, the results of the execution will be in-determinate for

situations that cross-processor loop-carried data dependencies exist.

3.4 Run-time Error Detection

The spontaneous and unpredicted generation of messages between processors

without a mechanism for enforcing message ordering. maps the execution into the

general category of message passing programs that generic debuggers for message

passing systems may be used.

Non-determinacy in an execution is indicated when messages between programs race.

By messages racing, we mean that the observed order between message sends/receives

could have occurred in another manner and thus affect the outcome of the

computation. For example, consider the following possible executions in this

environment:

doall i=2,4

ali) = a(i-I) ;

end do

Possible trace of the messages among 3 processors in two executions, with each

processor executing an iteration, is as follows:

Execution Trace l'
execution at 01 execution at 02 execution at 03

LOAD a(l) read a(l) LOAD a(2) - send message to read a(2) LOAD a(3) - send message to read a(3)

read mess to read a(2) receive mess to read a(3) receive mess with a(3)

send a(2) receive mess with a(2) execute a(4)=a(3)

execute a(2) = a(l): send a(3)

execute a(3) = a(2)

(a)

24

Execution Trace 2
execution at 0 I execution at 02 execution at 03

read a{l) send message to read a(2) send message to read a(3)

read mess to read a(2) receive mess wtth a(2) receive mess wtth a(3)

send a[2) execute a(3) = a(2) execute a(4)=a(3)

execule a(2) = a{l): receive mess to read a(3)

send a(3)

(b)

figure 6: Possible Traces of Executions

These executions show a race in the messages at p2; p2's reply message to the

request to read a[3] could have occurred before or after the anival of the response

message to p2's message to read a[2] followed by the execution of code to change a[3].

Consequently, the final value of the elements of array a varies with the message

ordering during the execution.

P1 P2 P3 TimeP1 P2 P3

a(4)=A(3)
a(4)=A(3)

Execution 2

Figure 7: Partial Order Execution Graphs for traces

In [221 Netzer and Miller discuss a run-time method for detecting the presence of such

races in message passing parallel programs; the technique applies to an execution in

the parallelizing environment as discussed and, thus can be used to determine when

races occur within programs generated for this system. A summary of the technique is

presented below.

Execution 1

25

3.4.1 On-the-Oy Race Detection and Tracina

An on-the-fly race detection algortthm is applied after each receive. The algorithm

assumes that the receiving ends of communication channels are each associated with

a single process and that messages can race only if they are received by the same

process. After a message is received. this algorithm determines whether the message

could have instead been received by a pervious operation in the same process. To

identify these situations. an earlier receive is located that accepted a message from the

same channel over which the current message was sent. Both the earlier message and

the current message are treated as race candidates. If the previous receive did not

happen before the current message. then a race exists: both the previous and current

message could have been simultaneously in transit and either could have arrived first

at the previous receive. If instead the previous receive happened before. then no race

exists: the two messages could not have been simultaneously in transit. and no race

exists. Implementation to of the algorithm involves the use of vector time stamps in

each process that serve to encoded the happened before relations dUring an execution.

A vector time stamp is a vector of length p (the number of processes) containing event

sertal numbers[25) and the happened before relation [22) describes the temporal

ordertng between events. The user may refer to [22] for a detail deSCription of the

algortthm and the associated theory.

26

4.0 Case III: OverlaRPed Communication and
Execution

4.1 Aleorithm Description

In [4] Koelbel et al describe Kali, a FORTRAN augmented compiler that provides

code for a software layer emulating a global name space on distributed memory

architecture. In Kali, computation is specified via a set of parallel loops using the global

name space as done on shared memory architecture; that is, the user is abstracted

from the underlying model and presented with a view of a shared memory environment;

It is the job of the Kali compiler to handle the generation of code to emulate the

shared memory architecture via messages among the nodes of the distributed memory

system.

The decomposition and distribution pattern for shared data structures are specified by

Kali data mapping primitives similar to those used in High Performance FORTRAN (HPF)

[12, 13] specifications. Once data distribution has occurred, computation is carried out

in parallel with each processor executing the same code but operating on different

index sets, a SPMD-style execution; Jorall program constructs are the main program

structures for specifying concurrent execution. The index set given to each processor is

derived using the data distribution specified by the user. Mapping functions or

distribution directives are used determine how data should be partitioned to optimize

on computation time through overlapping data transfer with computation. This reduces

the effects of communication latency on computation time. An outline of the algorithm

is shown in figure 6.

The algorithm is designed such that every processor has a knowledge of the data

required by another node for it to do the required computation. To take advantage of

communication latency between processors, the algorithm identifies iterations in the

index set assigned to a processor that includes a reference to a non-local variable. It

then identifies all iterations that reference local data.

At of the start of execution of a given Jorallioop, the processors use their knowledge of

the variables needed at other nodes to initiate the transmission of that data to those

27

nodes. They then execute those iterations that require access only to local variables

and subsequently use the data received from off-processor locations to compute those

iterations that are dependent on those data elements. Thus the effect of

communication latency on the computation time is minimized. Further, the generation

of the index sets of a processor and the determination of loops that may be executed

with local references only, can be determined at compile time if the compiler has

adequate knowledge to do so. Otherwise, run-time techniques are used when the

compiler needs added information, such as when the loop index variable has one or

more levels of indirection.

The semantics ofthejorallioop used are "copy-in-copy-out," in the sense that values on

the right hand side of the aSSignment are the old values in the array being updated in

the loop. Thus the array assigned in a computation is effectively "copied into" each

invocation of the forall loop and then the changes are "copied out." This may be

expressed as having (A(i) = ... j transformed to (A_new(i) = ...) and the new values of

A_new copied to array A at the completion of the loop.

generate index setjor local processor
generate index oj remote variables rejerenced by this processor
generate list oj variables local variables used by remote processors
generate list oj variables to be expected from remote processors

send local variables needed by remote processors

do local iterations

receive messages from other processors

do non-local iterations

figure 8: Kall model for distributed memory computation

28

4.2 Failure Modes.

4.2.1 Anti dependence

The algonthm will generate correct results in a program that uses only anti

dependence. For example, consider the following taken from paper [4].

forall i in 1 .. Non A[i}.1oc do

A(i):= A(i+l)

end:

where program fragment on A(i).loc causes the ith loop invocation to be executed on

the processor owning the ith element of array A. With the loop shown. the algonthm

will generate correct results as the off-processor elements of A needed by a node will be

sent to the node before A is updated and, as the assignment is changed from A(i) =
A(i+ 1) to A_new(i) = A(i+ 1). Thus. loop iterations can execute in any order Without

data dependence violation occurring.

4.2.2 Output and Flow dependency

A fundamental assumption used by the partitioning algonthm in generating the index

set is, there exists no loop-carried output and flow data dependency between the

vanables assigned in the forall construct. Index sets that determine the work done by

a processor are generated strictly with the intent of maximizing computation while

minimizing the effects of communication time. Thus. lower index iterations in the

index set of a processor could be computed after iterations with higher index values if

the iterations of lower index values depended on off-processor data elements.

Consequently, whether the index sets of the processors are such that only local loop

carried dependencies exist. the algorithm does not guarantee correctness as the

execution of the iterations can be re-ordered.

29

4.3 Run-time Failure Detection

The communication plan established among the processors is well defined. The access

pattern to variables used in a computation is also ordered -- all variables are sent before

they are updated in the current iteration and the owners compute rule is applied. This

well-defined structure in the communication amongst processors suggests that the

execution will be race free and consequently computed results are deterministic.

However, if a programmer were to mistakenly enter

jora!! i in 1 .. N on A(iJ.loc do

51: A(iJ:= A(i-l)

end;

instead of

jora!! i in 1 .. Non A(iJ.loc do

51: A(i} :=A(i+l)

end;

then a flow data dependence will occur at 51 in the execution, but may not be noticed

in a debugged session by examining the results of the computation. To detect a loop

carrted flow and output data dependence violation at run-time the following approach is

suggested.

Assume. without loss of generality. that the iterations within the loop are increasing

and that the processor ids increase with the range of iterations assigned to a

processor. i.e.. processor with id 1 would execute lower iterations than a processor with

id 2. As taken from [4]. each processor has associated with it the following set of

information. generated by the partitioning algorithm.

exec(p) := the list of iterations executed by processor p

local(p) := subset of exec(p) that references only variables local to p

exec(p) - local(p) := set of iterations of p that reference otT processor elements

ref(p) := the list of variables referenced by proc p executing iter exec(p)

in(p.q) := set of elements received by p from q, and

out(p,q) := the set of elements sent from p to q.

30

Associate with each variable within the iteration space a read and a write access

history. As explicit information is available on the iterations that a variable is read and

Written, the access history contains only the iteration number in which the variable was

generate index setJor local processor: exec(p)

generate index oj remote variables reJerence by this processor: rej(p)

generate list oj variables local variables used by remote processors: out(p,q)

generate list ojvariables to be expectedfrom remote processors: in(p,q)

send local variables needed by remote processors: out(p,q)
» Jor each variable, i, in out(p,q) do
» iter = reJerence oJi in q iteration
» check(i, iteration, read)

do local iterations: local(p)
» Jor each variable read/written ,i, in iterationj, do
» check(i,j, read/write);

receive messagesJrom other processors: in(p,q)

do non-local iterations: exec(p) - local(p)

» Jor each variable read/written ,i, in iterationj, do

» check(i,j, read/write);

check(var, iter, modeJ(
if(mode == write)do

if var read in higher iteration then report 'violation'
insert in i write history iter;

else if (mode==read)do
if i written in higher iteration, then report 'violation'
insert in i read history, iteration;

)

figure 9: Kali algorithm modified for checking data dependence violation

accessed along with the mode of access. The iteration number specifies the iteration

order that an execution should follow and by using this information a conflicting

access to data arising from an out-of-sequence iteration execution is detectable. The

code for detecting such data dependence violation is merged with the algorithm as

shown in figure 9 below.

31

The routine check manages the access history and checks for accesses that indicate

data dependence violation. A flow or output data dependence violation is reported at the

node that defines the variable as this is where conflicting accesses occur. As the

model is data race free, the only perturbation that this analysis incurs is an extension

in the computation time; the outcome of the computation is unaffected.

The approach to merge the access history management and checking routines with the

algorithm is important for the following reason. If an independent debugger were applied

to detect access violation it would see any conflicting access as the Kali environment

substitutes assignments to variables with assignments temporary variables; this is a

side-effect of the "copy-in-copy-out" rule used by the environment. Consequently. for

run-time detection of errors to work, when a write to a variable is performed within an

iteration, the write history of the variable represented by that temporary should be

updated and the access history checked for conflicts. a procedure that requires support

from the Kali environment in identifying the mapping between temporary variables and

variables they represent.

32

5.0 Case IV: Loop Schedulina

5.1 Ala0rithm Description

In [5) Saltz et al present an algolithm for perfonning static and run-time

parallelization of do loops on message passing systems. Their optimizations for attaining

parallel execution are specifically targeted toward loops having array references made

through a level of indirection. This approach is important as it has been shown [9)

that array references that involve indirection are a major reason for parallelization

failure of loops by compilers. They discuss an implementation of this system in [21)

for shared memory systems; valiants of this approach are discussed in [7, 8.10). Two

basic plinciples are utilized in the algolithm, namely

1. A schedule of the loops that can be executed in parallel is fonnulated

from an examination of the dependency infonnation obtained from the

array that serves as the indirection function. A topological sort on this

array is used to identify those iterations that may be scheduled in

parallel. Le., iterations between which no loop-carried data dependence

exists.

2. An inspector is used to identify valiables referenced in the execution

of the loop; This infonnation is later used to generate send and receive

messages for passing data between nodes on execution of a loop

schedule. Control of execution is then passed to an executor that

perfonns the computation with the acquired data.

To illustrate the operation of the system, consider the following example shown in

figure lOla) below (taken from [5]). Assume the outer loop SI has to be executed in a

sequential fashion. Sets of iterations of S 1 (figure lOla)) that can be executed

concurrently are identified by perfonning a topological sort on the dependence graph

relating the left hand side of 82 to the light hand side. This sort is perfonned by

examining the integer array column. In this way. the sequential construct in Figure

33

lOla) is transfonned into a parallel construct consisting of a sequence of parallel do

loops. Each parallel do loop represents a concurrently executable set of indices from 8 I

of figure I O(a) .

In figure IO(b), the inspector resolves the list of variables referenced in a schedule of

concurrently executed iterations and uses that infonnation to generate messages

amongst the nodes to transfer those data elements. It is assumed that data has been

distributed on nodes using the distribution directives discussed in previous cases. Thus

parallel execution proceeds as a series of waves of concurrent execution.

SI do I = 1, n"2

do j = !owli). high(I)

S2 xli) = xli) + aUl'x(co!umnUll

end do

end do

figure IO(a): Sparse mesh Jacobi

SI do phase =1. num_phases

S2 doall pe = I. num_processors

S3 do j = 1, npOlnts(phase, pel

54 next = schedule(phase. pe. j)

do k =!ow(next), high(next)

S5 x(next) = x(next) + a(k)'x(column(kll

end do

end do

end doal!

end do

figure IO(b): Transformed Sparse mesh

5.2 Failure Modes

5.2.1 Flow Dependence

This algorithm correctly handles all loop-carried data dependence types when complete

infonnation on the data dependence within the loop has been captured in the

indexing array that is used to detennine independent iterations. Thus, for the

example shown in figure IO(a), in statement 82 the array colwnn is adequate to

represent the dependency graph of the loop as all other references in the loop have a

dependence distance of zero with respect to the inner loop.

34

However, if any of the variables referenced incurred a flow dependence with non-zero

dependence distance with respect to the inner loop, then array column is inadequate to

specify the data dependence between the iterations. Therefore, if statement S2 were

changed to

S2 xij) = xij-I) + aijl"x(columnijll

then for correct execution to occur, the flow dependence now present in the problem

has to be considered with array column to determine the possible parallel schedule of

loops. Thus column may indicate that loops say. j equal to 2,3 and 4, are independent

and schedule them for concurrent execution, when a flow dependence exists between

those iterations.

5.2.2 Anti dependence

Similarly, if an anti dependence was introduced outside the knowledge of array

column. then execution could execute erroneously. Assume for example that statement

S2 was changed to,

S2 xij) = xij+1) + aij)"x(co)umnijll

As above, if column indicated that loops say, j equal to 2, 4 and 6, were independent

and schedule them for concurrent execution and if, loops with iteration index of say, j

equal to 3, 5 and 7, were then executed afterwards. the values of x{j+l) read in these

executions would be incorrect.

5.3 Run-time Error Detection:

The parallel execution produced by this system is race free for the following reasons, (1)

the inspector carries out all inter processor communication pIior to executing a set of

loop iterations -- that is all reads occur before WIites (2) further, each node executes a

single iteration in the set of concurrent do loops and thus variables are updated in a

race free manner. The results of an execution are therefore deterministic.

The behavior of the system is similar to that of case III. in that loop iterations may be

executed out of sequence. Thus, to detect a data dependence violation in an access,

the iteration in which the variable was referenced and the nature of the reference, must

35

be kept in its access history; checks must be made at each access to ascertain whether

an access anomaly has occurred. As in case III. a data dependence violation. or access

anomaly is observed to have occurred if any of the following conditions occurs: (1) a

variable is written in a higher iteration and then read in a lower iteration and (2) a

variable is read in a higher iteration and then updated in a lower iteration.

36

6.0 Summary

The table in figure II, summarizes the failure modes observed in the algorithms

discussed. Some conditions that trigger these failures can be detected by compile-time

(static) data dependence analysis. When a parallelizing compiler is unable to assess the

data dependence structure within a source code. a common default is to abandon the

parallelization effort or to force the process at the request of the user. The discussions

in this paper presume that a compiler using the algorithms discussed does generate the

intended parallel code as the techniques assume that the user has supplied code that

meets the assumptions on which the technique is designed.

Case ParaIlellzlng Strategy Failure Cause

(loop carried

dependence)

Exhibit

Data Race

I Exclusive Communication

Before iteration set Computation

Flow and Output data

dependence

yes

II Communication at statement

execution (Demand driven)

All data dependencies yes

III Overlapped Communication

with Computation

All data dependencies no

IV Loop scheduling All data dependencies no

figure 11: Summary of Failure Modes

The presence of loop-carried data dependence (particularly flow and output) restricts

the degree of parallelism realizable in the execution of a program. As such. each

technique makes assumptions on the type of data dependence that exists in the

problem structure and then focuses effort on the placement and access of data among

the compute nodes for producing an execution that requires minimum time. Little

attention is given to the need to produce complex synchronization actions between

processors for handling problems with flow and output data dependencies. This is

understandable as the approaches emphasize the construction of pre-planned

communication that allows processors to anticipate messages from other nodes as well

as the messages that need to be sent; where this anticipatory scheduling is not used,

37

there is an assumption that data dependence in the problem is resolved without access

to off-processor data locations; this is possible if the distribution and mapping directives

placed the data elements at nodes such that references are correctly resolved through

local access only.

In [9), Yew et al, have shown that in the incidence of common nest loops with

determinable dependence distance, 11% of array references have zero dependence

distance, I.e., the dependence does not extend across the iteration and such loops are

parallelizable without regard to data dependence. This low incidence of zero loop

carried data dependence in user code, implies a proportionate level of parallelizing

success in algorithms that fail due to the presence of loop-Carried data dependence.

The algorithms also have an underlying assumption that there is enough regularity in

the problem structure that allows the cost of communication to be bounded by the cost

of computation, thereby leading to speedup in program execution. This assumption

requires that the index of arrays referenced in the computation. be largely linear.

Again, in [9), it is shown that 53% of all array subSCripts are linear; this implies

there are suffiCient occurrences of regularity in problems for the efficient use of the

mapping and alignment directives to partition data as done in the distributed memory

data-parallel model, thereby minimizing communication overheads dUring computation.

Further, the primary case of non-linearity is the presence of unknown variables (at

compile time) in arrays subsCript functions; parallelizing code with this type of data

dependency requires run-time methods as discussed in case IV.

The variations in the techniques used reqUires that different run-time methods be

applied to detect data dependence violations. For all cases except case II. it was shown

that by augmenting the system with code for managing the access history of shared

Variables. it is possible to use simple checks on the history to determine incidence of

data dependence violation. In case II, it was shown that by using an established

technique that check for races in messages between processes. potential conditions for

data dependency violation could be detected. Is was also discussed that. the presence

of a data race in an execution undermines confidence in the results generated from

such a computation.

Finally. we observe that an approach to guarantee correct parallel execution for a larger

body of problems may need to use run-time information acqUired from uniprocessor

execution or information supplied by the user that serve as hints to compiler to

38

improve the possibility of parallelization; also. a general purpose system used for

identifying and extracting larger amounts of data parallelism for execution on a

distributed memory system. could utilize combinations of the algorithms as is the

case in [3. 12].

39

References

[I]	 D. Callahan, K. Kennedy, "Compiling Programs for Distributed-Memory

Multiprocessors", In 'The Journal ofSuper computing', 2: 151-169 October 1988.

[2]	 K. Kennedy .et al "High Performance FORTRAN Language Specifications" Ver 1.0

DRAFT, Jan. 25. 1990, Rice Univ.

[3]	 K. Kennedy ,et al, " Compiler Optimizations for FORTRAN D on MIMD Distributed

Memory machines", in SuperComputing 1991.

[4]	 C. Koelbel, et al " Supporting Shared Data Structures on Distributed Memory

Architecture" in PPoFP , 1990

[5]	 J. Saltz et al, "Run-Time Scheduling and Execution of loops on Message Passing

Machines", in Journal ofParallel and Distributed Computing 8,303-312 (1990)

[6]	 C. Koelbel et al, "Compiling Global Name-Space Parallel Loops for Distributed

Execution" in IEEE TI-ans. on Parallel and Distributed Systems, Vol. 2 no. 4

Oct,1991.

[7]	 Joel Saltz, Janet Wu, Seema Hiranandani, and Harry Berryman, " Runtime

Compilation Methods for Multicomputers" in 1991 International Conference on

Parallel Processing, Vol. II page 26-30

[8]	 Peiyi Tang, Pen-Chung Yew, Chun-Qi Zhu, " Impact of Self-scheduling Order on

Performance of Multiprocessor Systems", 1988 ACM

[9]	 Zhiyu Shen, Zhiyuan Lt. Pen-Chung Yew, "An Empirical Study on Array Subscripts

and Data Dependencies", in 1989 International Conference on Parallel Processing,

Vol. II page 145-152

[10]	 Joel Saltz, Ravi Mirchandy and Kay Crowley, "Run-Time Parallelization and

Scheduling of Loops". in IEEE Transactions on Computers. Vol. 40 No.5, May 1991.

40

[11]	 Cheni M. Pancake, "A report from SuperComputing '92; Languages for High

Performance Computing: A Smorgasbord". in IEEE Parallel & Distributed Technology

, February 1993

[12] High Performance FORTRAN Forum, "Draft High Performance FORTRAN Language

Specification. Version 1.0", January 25 1993

[13] David B. Loveman,	 " High Performance FORTRAN", in IEEE Parallel & Distributed

Technology , February 1993

[141 Saman P. Amarasinghe. Jenifer M. Anderson, Monica S. Lam, and AmyW. Lim

An Overview of a Compiler for Scalable Parallel Machines",

[15]	 Ravi Mirchandaney, Joel Saltz, Roger M. Smith, David M. Nicol, Kay Crowley, "

Principles of Runtime Support for Parallel processors" In 'Proc. 1988 ACM

International Conference on super computing' . St. Malo France, July 1988.

[l6] Michael Gemdt, "Updating Distributed Variables in Local Computations" in

CONCURRENCY: PRACTICE AND EXPERIENCE. Vol. 2(3), 171-193 September 1990.

[17]	 Charles koelbel, Piyush Mehrotra "Compiler Transformations for Non-Local Memory

Machines", in Proc. 4th Conj. Supercomput. Vol. I, May 1989, pp. 390-397.

[l81 G.R Andrews and F.B. Schenider. "Concepts and Notations for Concurrent

Programming," ACM Computing Suroeys IS, I, pp. 3 -43. March 1983

[19]	 Robert H. B. Netzer and Barton P. Miller, 'What are Race Conditions? Some Issues

and Formalizations." ACM Letters on Progranuning Languages and Systems 1, I,

March 1992

[20] Janet Wu. Joe Saltz, Seema Hiranandani, Harty Berryman, " Runtime Compilation

Methods for Multicomputers". 1991 International Conference on Parallel Processing,

Vol II, pp. 26- 30

[21]	 Joel Saltz, Ravi Mirchandaney, " The PREPROCESSED DOACROSS Loop", 1991

International Conference on Parallel Processeing, Vol. II pp. 174-179

41

[22]	 Robert H.B. Netzer and Barton P.Miller. "Optimal Tracing and Replay for Message

Passing Parallel Programs. " Supercomputing '92. Mineaplois

[23]	 Anne Dinning and Edith Schonberg. "An Evaluation of Monitoring Algorithms for

Access Anomaly Detection," Ultracomputer Note # 163. July 1989.

[24] A.H. Karp. "Programming for Parallelism.'''. Computer, 20(5):43-57, 1987.

[25] C. J. Fidge. "Partial Orders for Parallel Debugging," SIGPIANjSIGOPS Workshop on

Parallel and Distributed Debugging, pp. 183-194 Madison, WI, January 1989.

42

