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Abstract 

Cyclic debugging is a proven method for debugging sequential pro­
grams. In order to use the same techniques for parallel programs, special 
tools must be used to ensure the same data dependencies in successive 
runs. This is accomplished by tracing information about processor inter­
action during the original execution, and using that information during 
the replay phase. This paper investigates the performance of several adap­
tive tracing algorithms for parallel replay. The algorithms were measured 
for trace size and runtime overhead. It also attempts to make a judgment 
on which of the tracing schemes would be the most useful. 

Introduction 

In order to exploit the advantages of parallel computers, developers need an 

extensive set of debugging tools. Cyclic debugging has become an established 

procedure for eliminating errors in sequential programs. Similar methods for 

parallel programs are very desirable. The problem lies in the inherent non­

determinism of parallel programs. Special tools are required to ensure the events 

in a re-execution occur in the same order as they did in the original execution. 

All the current replay schemes trace information about program execution while 

it is running. This information is later used to ensure proper ordering of events 
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upon re-execution. Such a system is commonly referred to as a trace and replay 

system [5]. The problem with most trace and replay systems is the large amount 

of data they trace. The focus of this paper is comparing the results of several 

different schemes that reduce the amount of information traced. 

The non-determinacy encountered in shared memory parallel programs can 

be characterized in two ways. The first is general races. The second is data 

races [8]. General races are what is commonly referred to as non-determinism. 

They are only considered to be bugs in programs which are supposed to be 

deterministic. General races are a global property of a program. Most paral­

lel applications don't need to be deterministic, and contain general races. In 

fact, the ability to step beyond the limitation of linearity is one of the things 

that makes parallel computation so attractive. In a program meant to be non­

deterministic, general races are not considered bugs. Data races are the result 

of non-atomic execution of critical sections. Data races are a local property in 

a program, and are usually caused by insufficient or improper synchronization. 

Data races have also been called access anomalies, and are always considered to 

be bugs, because the interleaving of the instructions in the critical sections can 

cause spurious data to be produced. Synchronization bugs generally manifest 

themselves as data races, although they can also cause general races. 

In either case, these races are at the root of the problems in trace and replay 

systems. The schemes to reduce trace size concentrate on only tracing events 

that are racing with each other, thereby tracing only information which effects 

the order of events which are dependent on each other. 

All of the algorithms implemented in this paper are for shared memory 

parallel programs. It should be noted that many tracing techniques can be 

generalized to also work for message passing programs [2]. The differences lie 

in how one looks at communication between processors. An access to a shared 

memory object is like a message from, or to, a data object in a specific processors 

memory in a message passing system. Although the difference looks marginal it 
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is theoretically significant. In particular, Netzer's optimal algorithm is optimal 

for shared memory programs, but is not optimal in all cases for message passing 

programs [7]. 

1.1 Previous Work 

The need for a trace and replay system has been seen by other researchers. Two 

particularly interesting implementations are Bugnet [9] and Instant Replay [2]. 

Although Bugnet was implemented in a message passing environment, it is 

interesting because it traces the order and content of all inter-process commu­

nication. By recording the data and order of events, Bugnet can replay the 

original program, or just a single process. It can simulate the actions of the 

other processes, allowing a debugger to isolate processes. The obvious draw­

back is the extremely large traces, which would limit the effectiveness of any 

system which records data and ordering information. 

Instant Replay is notable because it introduced the notion that a trace and 

replay system could be implemented tracing only the ordering between inter­

process events. It was developed on a shared memory system, but the same 

type system could be used for message passing systems. During an execution, 

each access to a shared data object is noted, and its process, object and version 

are recorded. The replay phase forces events to happen in the same relative 

order as the original. Since, acting alone, each process is deterministic, forcing 

communications to occur in the same order will exactly reproduce the original 

execution. By only recording the relative order of accesses the system does not 

require synchronized clocks or globally consistent time. 

There are a couple of drawbacks to this system. Because all memory accesses 

are recorded, trace sizes are large. The system does not record fine grained data 

access. All accesses are treated as messages to shared objects. The system 

institutes a CREW protocol for the shared objects, although the system can 

also work with a mutually exclusive protocol. This means programs have to 
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be written with the protocol in mind, or they must be modified to match it. 

One effect of this is that the overhead for tracing looks small, because some of 

the synchronization required for tracing is enforced in the CREW model, hiding 

tracing delays which are apparent in the algorithms in this paper. 

Model 

Much of the discussion of the algorithms presented here rely on several different 

models of time and the temporal relationship between events. 

When one is talking of o~derings between general events, it is most natural 

to think in terms of real, physical, time. It would be most advantageous if one 

could think along the same lines when working with parallel computers. The 

problem is that it is non-trivial to have a consistent global clock on a parallel 

processor [IJ. Generally, each processor runs off its own clock. This is the root 

of asynchronous behavior. There may be a global clock, but there are problems 

with races to the clock, i.e. two process could try to get a clock value at the 

exact same instant, and not get consistent values. This can be caused by many 

things, such as differences in delay time for communications. Even in multi­

processors with a single global clock there are problems, such as increased bus 

load from all the processors accessing resources at the same instant. Thus, a 

different notion of time must be used when talking of parallel programs. 

The Temporal Relation: For two events a, b: if a ~ b, then a 

occurs before b. Where ~ denotes the temporal ordering relation. 

Logical clocks are a way of assigning a number to an event [1J. The main 

condition they satisfy is the following. If event a happens before event b, then 

the clock value assigned to a is less than that assigned to b. The numbers don't 

necessarily reflect physical time, other than that lower clock values happened 

before larger clock values. For most purposes they can be implemented with 

counters. Logical clocks bypass many of the problems associated with physical 
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clocks, but don't reflect the ordering of events in separate processes. For that, 

more specialized clocks are needed. 

A commonly used form of ordering parallel programs is vector clocks, or 

timestamps [8]. A vector clock is an abstraction which orders events in parallel 

programs. The vector clock reflects the inter-process communications which 

have taken place. Each process maintains a serial number, (logical clock) which 

is incremented at each event. Each process maintains its own vector clock, which 

has one entry per processor. Entry i in the vector clock contains the most recent 

serial number from process i which has communicated with the current process. 

Of course, the i th entry for processor i simply contains the processes current 

serial number. 

Vector Clock Condition: For any events ai, bi : 

VCi,i(a) < VCi,i(b) if and only if ai ~ bi. 

Where i and j are the relative processes of a and b, and ai ~ bi IS 

the vector clock temporal relation signifying that event a in process 

i occurred before event b in process j, and V Ci,i (a) signifies the 

vector clock serial number of event a in the i th index of the vector 

clock for process j. 

,Timestamps are useful because they partition the events of an execution into 

two'sets, those that are known to have happened before the current event, i.e. 

its ~erial number is less than its processors entry in the vector clock, and those 

that didn't necessarily happen before the current event. Another way of viewing 

vector clocks is seeing that they maintain a graph of the execution, with one 

node per process. The ith entry in the vector clock contain the serial number of 

the most recent event in process i that has a path to the current process. This 

graph is what ,is referred to in the rest of the paper as the execution graph. 

Lamport clocks [1] are another abstraction that attempt to order the events 

in a parallel program. They were first developed to order events in systems of 
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Figure 1: Vector Clock Propagation 

spatially separated computers, but the notions can be generalized for parallel 

processing computers. Like vector clocks, Lamport clocks are based on logical 

clocks. Unlike vector clocks, each processor only maintains a single number to 

represent its Lamport clock. To order the events, Lamport clocks maintain the 

following condition. 

Lamport Clock Condition: For any events ai, bj: if ai ..!:+ bj 

then LCi(a) < LCj(b). Where ai signifies event a in process i, and 

LC;(a) signifies the Lamport Clock value for event a in processor i. 

Since ..!:+ and ~ impose a temporal ordering on events, they both can be 

used in place of the general temporal relation ..:!r in the following sections. In 

fact, this one of the differences in the algorithms presented in this paper. 

Maintaining the Lamport clock condition if fairly simple. The two following 

conditions must be followed. If a and b are events in process i, and a occurs 

before b, then LC(a) < LC(b). If event a in process i receives a message from 

event b in process j and LCi (a) < LCj (b) then LCi (a) = LCj (b) + 1. Where 

LCi(a) is the Lamport clock value of event a in process i. It may be helpful to 

view Lamport clocks as vector clocks which contain the maximal serial number 

across the array. Seen in this way, it is clear that a Lamport clock partitions the 
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events along a line that runs flat across the execution graph of the processes. 
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Figure 2: Lamport Clock Propagation 

By examining the properties for vector clocks and Lamport clocks, it can be 

seen that Lamport clocks order more events than vector clocks. Stated simply, 

if one event is ordered before another by the vector clock condition, it will also 

be ordered be the Lamport clock condition. The converse is not true. There are 

events that are ordered by the Lamport clock condition that are not ordered by 

the vector clock condition. 

Another key concept is data dependence [8]. Two events can only have a data 

dependency ifthey both access the same variable. Clearly, ifthey don't, one can 

not effect the other. In its weakest form, a data dependency simply states that 

events a and b are data dependent if a and b access the same variable. In its 

strong form, a data dependency means that events a and b are data dependent 

if a and b access the same variable, and at least one of the events writes. This 

condition is valid because, if both events simply look at the data, they can 

not effect the outcome of each other. In terms of the execution graph, data 

dependencies are the edges between processes. 

This notion of data dependence can be combined with the temporal relations 

to form the data dependence relation [6]. The data dependence relation seeks 

to define when one event could be effected by another in the execution. The 
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determination of whether one event proceeds another is based on the clock 

condition used, and the determination of data dependence is based on the weak 

or strong form of data dependency. In the discussion on vector clocks and 

Lamport clocks, it was said that their values were updated when ever contact 

was made between processes. If two events are data dependent on each other, 

then they are considered to communicate with each other. In other words, the 

vector, or Lamport clock is only effected by events that are data dependent with 

each other. 

The Data Dependence Relation, Strong Notion: For any two 
DS 

events	 a, b: if a --+ b, then a and b access the the same shared 

variable, at least one of them writes, and a ..:!: b. Where ~ denotes 

the strong data dependence relation. 

The Data Dependence Relation, Weak Notion: For any two 

events	 a, b: if a ~ b, then a and b access the same shared variable 
T DW 

and a --+ b. Where --+ denotes the weak data dependence relation. 

When two processes are accessing the same variable, and their relative order 

can't be determined, the accesses are said to race to the variable [8]. Parallel 

programs generally contain many races. For example, a program that uses spin 

loeks will have the processes racing to see which gets the lock and whieh are 

forced to spin. Similarly, any shared memory access, which isn't in a synchro­

nized critical section, is the potential source for a race. Since these races are 

the source of non-determinacy, they are of prime importance in replay systems. 

The line that partitions the execution graph, either for a vector or Lamport 

clock is called the frontier [8]. This is becaus~, it is the frontier between events 

known to have happened and those which might not have happened yet. The 

frontier must represent a consistent state of the execution. The clock conditions 

ensure that they are. Vector clocks are able to represent any consistent state, 

but Lamport clocks can't [I]. This is because the frontier for a Lamport clock 
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cuts straight across the execution graph. A frontier race is an edge in the 

execution graph which crosses the frontier. In both cases, it is an event that 

violates the clock condition, and also contains a data dependence. The various 

algorithms presented in this paper all are based on the notion that in order 

to enforce proper ordering between processes, only the frontier races must be 

traced. 

Critical Path: The critical path for a process is the transitive 

reduction of the data dependence graph for that process [6]. 

Artificial Dependency Edge: For the purposes of this work, an 

artificial dependency edge is an edge that is added to the execution 

graph that is not on the critical path. It represents a dependency 

that might not actually exist between two events [5]. 

Problem Statement 

This section formally defines what is sufficient for correct replay. Enough infor­

mation must be traced to insure that a replay on the same input is identical to 

the original execution. It has already been shown that tracing all shared-data 

access is sufficient [2] I but not necessary for correct replay. If all the shared-data 

dependencies are the same in a replay as in the original, it will be correct. What 

is needed are schemes which trace a small subset of the data dependencies which 

is also sufficient for correct replay. 

Sufficient Replay: Given two executions, P = (E,.!, ~)
 

and P' = (E',~, S), P' is a sufficient replay if
 

1. E' =E, and 

o 0'
2. for all a, b element of E, a -+ b =:} a -+ b. 

T T'
Where E and E' are the events, -+ and -+ are the temporal orderings 

o 0'
between events, and -+ and -+ are the data dependencies between 
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events in the executions P and pi [5]. 

This just states that the temporal orderings, the data dependencies, and the 

events are the same in the replay as in the original execution. 

Four of the algorithms reproduce, exactly, the data dependencies of the 

original. This is because they only trace dependencies which are directly on 

the critical path, i.e. they only trace actual dependencies. The remaining two 

introduce artificial dependencies, which aren't on the critical path, to reduce 

trace size even further. See the explanation of the non-critical edge algorithms 

for more detail. Determining the minimum amount of information required to 

provide for a sufficient replay is an NP-hard problem [5]. 

4 Methods 

4.1 Algorithms 

All six of the algorithms explored here are based on maintaining a data depen­

dence graph during execution. They only trace accesses whose data dependen­

cies cause frontier races, and then update the graphs to include the new edges. 

The differences lie in how the dependence relation is defined, the type of clock 

used, and how a processes clock is updated when a race is found. 

There might be some confusion as to why there are 3 versions of the 'optimal' 

algorithm. They are called optimal because they use the strong notion of data 

dependence. They never trace events which can't effect each other. 

4.1.1 Optimal Algorithm Vector Clocks 

This algorithm was first introduced in Optimal Tracing [6]. It dynamically lo­

cates and traces all the frontier races in an execution based on the strong data 

dependence relation, a ~ b, and on the vector clock relation, ~. Each process 

maintains its own private counter, its serial number, which is incremented upon 

each shared memory access. Each shared variable has an access history. An 
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access history contains the timestamp of the most recent writer, and the times­

tamp of the most recent reader in each processor. Each access history requires 

O(p) space, where p is the number of processors. 

The dependence graph is maintained with vector timestamps. Upon each 

access to a shared variable, its access history is checked for frontier races with 

the current processor. If the access is a read, only the previous writers need 

to be examined, because two readers can not be data dependent. An event, h, 

in the access history is considered to be unordered with the current event e, if 

there is no path from h to e in the data dependence graph. 

WRITE- RACE-CHECK-VECTOR-CLOCK(S) 
1a: increment the processes clock 
2a: get the access history for S 
3a: /* check for races */ 
4a: for each event r in readset 
5a: if (r is unordered with e) 
6a: trace that < r, e > is a race 
7a: if any races were detected 
8a: timestamp = component-wise max of timestamp and readset 
9a: if (writer is unordered with e) 
lOa: trace that <writer, e > is a race 
11a: timestamp = component-wise max of timestamp 

and writer-timestamp 
12a: /* update access history */ 
13a: writer_timestamp = timestamp 
14a: writer = e 
15a: remove any events in the readset that are ordered before e 

READ-RACE-CHECK-VECTOR-CLOCK(S) 
1b: increment the processes clock 
2b: get the access history for S 
3b: /* check for races */ 
4b: if (writer is unordered with e) 
5b: trace that <writer, e> is a race 
6b: timestamp = component-wise max of timestamp 

and writer_timestamp 
7b: 1* update access histories */ 
8b: reader-timestamp = component-wise max of 

timestamp and reader-timestamp 
9b: remove any events in the readset that are ordered before e 
lOb: add e to readset 
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4.1.2 COInpressed Access History Algorithm Vector Clocks 

In order to reduce the memory overhead of the optimal tracing algorithm, this 

algorithm uses the weak data dependence relation, a ~ b, based on the vector 

clock relation, ~. This has the effect of negating the difference between readers 

and writers. All accesses are treated the same. Therefore the algorithm no 

longer needs to keep track of a separate writer and readset. The access history 

for each shared object can be held in a single record, holding the last process 

and its clock value that accessed it. So, the access histories require O( 1) space. 

RACE-CHECK-VECTOR-CLOCK(S) 

1: increment the processes clock 
2: get the access history for S 
3: /* check for races */ 
4: if (last_access is unordered with e) 
5: trace that <last_access, e > is a race 
6: timestamp[lasLproc] = last_access_clock 
7: /* update the access history */ 
8: lasLaccess = e 
9: last_access_clock = clock 
10: last_access_proc = proc 

4.1.3 Optimal Algorithm adding Non-Critical Path Edges 

This algorithm is a modification of the optimal, vector clock algorithm. When 

a frontier race is detected from a to b, an artificial dependence is created from 

b to the event that is currently in a's process. It has two main advantages over 

the original algorithm. First, it produces reduced trace size. This is because one 

artificial dependence can cut across several actual data dependencies which then 

are considered redundant, and don't need to be traced. The second advantage 

is that it doesn't create any orderings that didn't exist in the original execution. 

Therefore, there will be no more waiting during the replay as was encountered 

during the original execution. 

WRITER-RACE-CHECK-NoN-CRITICAL-EDGES(S) 

la: increment the processes clock 
2a: get the access history for S 
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Figure 3: A non-critical path edge replaces 2 critical path edges. 

3a: 1* check for races *1 
4a: for each event r in readset 
5a: if (r is unordered with e) 
6a: trace that < r, e > is a race 
7a: timestamp = MAX(timestamp, timestamp of 

current event in r's process) 
8a: if(writer is unordered with e) 
9a: trace that <writer, e > is a race 
lOa: timestamp = MAX(timestamp, timestamp of 

current event in writers process) 
lla: 1* update access history *1 
12a: writer-timestamp = timestamp 
13a: writer = e 
14a: remove any events in the readset that are ordered before e 

READER-RACE-CHECK-NoN-CRITICAL-EDGES(S) 
lb: increment the processes clock 
2b: get the access history for S 
3b: 1* check for races *1 
4b: if (writer is unordered with e) 
5b: trace that <writer, e > is a race 
6b: timestamp = MAX(timestamp, current 

timestamp in writers process) 
7b: 1* update access histories *1 
8b: reader_timestamp = MAX(timestamp, reader-timestamp) 
9b: remove any events in the readset that are ordered before e 
lOb: add e to readset 
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4.1.4	 Compressed Access History Algorithm Adding Non-Critical 

Edges 

This algorithm is a modification of the compressed history, vector clock algo­

rithm. It has the same advantages that the optimal non-critical edge algorithm 

has. 

RACE-CHECK-NoN-CRITICAL-EOGES(S) 

1: increment the processes clock 
2: get the access history for S 
3: /* check for races */ 
4: if (lasLaccess is unordered with e) 
5: trace that <lasLaccess, e > is a race 
6:	 timestamp = MAX(timestamp, timestamp of current
 

event in last_access_proc)
 
7: /* update the access history */ 
8: lasLaccess = e 
9: lasLaccess_clock = clock 
10: last_access_proc = proc 

4.1.5	 Optimal Algorithm Lamport Clocks 

This algorithm is a modification of the optimal, vector clock algorithm, using the 

Lamport clock relation, .!:+, instead ofthe vector clock relation [3]. The Lamport 

clock relation is subtly changed so it says, event a in process i is ordered by 

event b in process j, if LC;(a) ~ LCj(b). This change is made because only the 

races which cause the Lamport clock to be updated to a higher value need to 

be traced. Because Lamport clocks are a much simpler construct than vector 

clocks, this algorithm is simpler than the corresponding vector clock algorithm. 

One significant difference is that the clock isn't incremented until after the race 

check. This is needed to insure that the clock condition is maintained. That 

is, the Lamport clock value for the event must be larger than the value for 

any events on which it has a data dependency. When races are detected, the 

Lamport clock for the processor of the current event is updated to reflect the 

dependence on the item it races with. The access histories are also simpler. The 

last writer can be stored as just the processor and Lamport clock of the last 
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event that accessed the variable. Likewise, the read set need only contain the 

Lamport clock value of the last read event in each processor (that isn't ordered 

by the writer). 

WRITER-RACE-CHECK- LAMPORT-CLOCKS (S) 
la: get the access history for S
 
2a: /* check for races */
 
3a: for each event r in readset
 
4a: if (r is unordered with e)
 
5a: trace that < r, e > is a race
 
6a: if races were detected
 
7a: Lclock = the maximum Lclock value in the read set
 
8a: if (writer is unordered with e)
 
9a: trace that <writer, e > is a race
 
lOa: LClock = writer_clock
 
lla: increment the processes LClock
 
l2a: / / update access history
 
l3a: writer_clock = Lclock
 
l4a: writer_proc = proc
 
l5a: remove any events in the readset that are ordered before e
 

READER-RACE-CHECK- LAMPORT-CLOCKS (8) 
1b: get the access history for S
 
2b: /* check for races */
 
3b: if (writer is unordered with e)
 
4b: trace that <writer, e> is a race
 
5b: LClock = writer-clock
 
6b: increment the processes Lclock
 
7b: /* update access histories */
 
8b: reader_timestamp(proc) = LClock
 
9b: remove any events in the readset that are ordered before e
 
lOb: add e to readset
 

4.1.6 Compressed Access History Algorithm Lamport clocks 

This algorithm is a modification of the compressed access history, vector clock 

algorithm. It shares the same advantages and disadvantages as the optimal, 

Lamport clock algorithm. 

READER-RACE-CHECK-LAMPORT-CLOCKS(S) 
1: increment tIlt, processes clock 
2: get the accc:o~ bistory for 8 
3: /* check for races */ 
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4: if (lasLaccess is unordered with e) 
5: trace that <last_access, e > is a race 
6: LClock = lasLaccess_cIock 
7: /* update the access history */ 
8: lasLaccess = e 
9: lasLaccess_cIock = LClock 
10: lasLaccess_proc = proc 

4.2 Implementation 

The shared memory computer used in these experiments was a 16 processor Se­

quent Symmetry Machine. The Sequent is a shared-memory parallel processor, 

which uses multiple Intel 386 processors connected to a common system bus. 

Its operating system is a proprietary version of Unix. 

In order to trace all accesses to shared variables, the compiler and parallel 

libraries were modified. Each instruction which could touch shared memory, 

and synchronization instructions, were replaced with hooks that sent control 

to a trace library. The trace library contains the code that identifies when a 

variable being accessed is in shared memory. The first scheme implemented was 

very simple. It simply traced all accesses which were in shared memory, and all 

synchronization events. 

The other algorithms were implemented completely in the trace library. This 

had the advantage that once programs were compiled, they could be linked 

with different versions of the tracing library. Since this was an original attempt 

to implement these algorithms on a parallel computer, they were not highly 

optimized. For example, the access histories are held in a fairly simple hash 

table. Utilizing a more sophisticated hashing function would probably reduce 

overhead. The overheads that were generated can be looked at as a worst case. 

It should be noted that since the adaptive algorithms were implemented 

to test their runtime overhead, the algorithms which add dependencies not on 

the critical path were not implemented. This is because they function similar 

to the original, vector clock versions of the algorithms. The estimated differ­

ence in runtime would be marginal. Thus, for purposes of testing overhead, 
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four algorithms were implemented, consisting of the combinations of optimal or 

compressed access histories, and vector or Lamport clocks. 

In order to compare the relative trace sizes of the various algorithms, they 

were implemented as simulations that used data sets generated from tracing all 

shared memory accesses. This was done so each algorithm could be run on an 

equivalent execution. Otherwise, the non-determinacy of the parallel programs 

would cause any data about relative trace sizes to be suspect. The simulations 

were implemented on a Sun SparcStation 10. 

Results 

The tables contain the test name followed by a number. The number is the 

number of processors used. The test programs are: 

barnes Parallel dynamics simulator 

barnes2 Barnes with different (larger) input 

gauss Gaussian elimination and back substitution 

gcd Greatest common denominator 

join Hash join algorithms 

flow Multiplies, component-wise, two matrices 

locus Parallel wiring router 

mesh Solves a rectangular mesh problem 

mp3d Wind tunnel simulator 

mtxmult Parallel matrix multiply 

pnet Parallel network flow simulator 

ptycho Parallel cache simulation 
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qs Quick sort of an array of integers 

shpath Dijkstra's shortest path determination 

sort Merge sort 

The results are represented in three tables. The first two contain the trace 

sizes from the simulation, and the last table contains the runtime overhead 

incurred on the Sequent. Since trace sizes were generated for all six algorithms, 

there is too much information to be put into one table. The first contains the 

results from the compressed access history algorithms and the second has the 

results from the optimal algorithms. The trace size tables show the program 

name, the number of processes used, and three pairs of numbers. Each pair 

contains the actual number of references that were 'traced', followed by its 

percentage of all the references in the execution. 

The runtime overhead table shows the program name, the number ofproces­

sors used, the runtime of the program without any instrumentation, and four 

numbers representing the runtime overhead for four of the algorithms. The 

overhead figures represent how many times slower the instrumented version was 

compared to the un-instrumented version. For example, if the runtime was two 

seconds, and the overhead given is 15.0, then the runtime of the instrumented 

code was 30.0 seconds. All timing figures were obtained with the time command 

and represent the average of five program executions. In all the programs, but 

two, the standard deviation of the runtimes was very small. This was surprising 

considering the non-determinacy these programs displayed. The two programs 

for which the instrumented versions had significant standard deviations were 

flow and sort. For flow, the standard deviation was quite high except for the 

optimal algorithms run on eight processors. For sort, the standard deviation 

was not as high as that for flow, and was small for the compressed algorithms 

run on four processors. It is worth noting that the two programs with the high 

standard deviation were also among the programs with the highest runtime 
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overhead. This connection was not explored. 

Since the tables are quite large, here is a short list of points that were found 

to be interesting: 

• In all cases	 but one (sort 2), the compressed access history, vector clock 

algorithm produced the largest traces. 

•	 The Lamport clock algorithms always performed at least as well as the 

vector clock algorithms, and usually did significantly better. 

•	 The non-critical edge algorithms always performed at least as well as the 

vector clock algorithms, and usually did significantly better. 

• There seems to be little correspondence between the trace sizes from the 

non-critical edge algorithms and the Lamport clock algorithms. 

•	 The optimal non-critical edge algorithm generated extremely small traces 

for mtxmuli, whereas, the other algorithms performed about average. 

•	 The compressed access history algorithms outperformed the optimal algo­

rithms for sort. All ofthe other cases displayed the opposite, and expected 

behavior. 

•	 The programs that generated the largest traces (percentage wise) were 

gauss, locus, pnei, and shpath. 

•	 The optimal non-critical edge algorithm and the optimal Lamport clock 

algorithm nearly always traced less than one percent of references. And 

they never traced more than 5.12% (pnet) of references. 

•	 The runtime overheads for join were unusually small. 

•	 The overhead of the Lamport clock algorithms run a few percent faster 

than the corresponding vector clock algorithms (except on flow 8.) 
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• The compressed access history algorithms displayed 50-80% of the over­

head of the optimal algorithms. 

•	 The overhead figures are not linear with respect to the number of proces­

sors used. 

• Adding processors nearly always resulted in an increase in	 the overhead 

(except for join.) 

• Many programs had runtime overheads of less	 than 50, even when eight 

processors, and optimal algorithms, were used. 

• The worst overhead figure was 125.57, from sort 8, with the optimal, vector 

clock algorithm. 

6 Discussion 

6.1 What was Learned from the Results 

6.1.1 Trace Size 

As was expected, the Lamport clock algorithms outperformed the vector clock 

algorithms. In fact, the respective clock conditions demand this. It was in­

teresting that the Lamport clocks had nearly the same advantage whether the 

compressed access history, or optimal algorithms were used. The Lamport clocks 

order enough events so the compressed access history, Lamport clock algorithm 

outperforms the optimal, vector clock algorithm for some test programs. This 

means that the extra ordering imposed by the Lamport clocks outweighed the 

dependency information lost by the weak data dependence relation. The added 

ordering information of Lamport clocks combined with the strong notion of data 

dependence produced extremely small traces. 

The non-critical edge algorithms also outperformed the corresponding vec­

tor clock algorithms, as expected. The interesting information was that the 
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optimal, non-critical edge algorithm displayed a greater advantage over the op­

timal, vector clock algorithm than the compressed access history, non-critical 

edge algorithm had over the compressed access history, vector clock algorithm. 

This is attributed to the fact that there are, usually, many more read-read races 

than either read-write or write-write races. The increased frequency of detected 

races, with the compressed access history algorithm, meant that the tail of the 

dependency edge could not be pushed down very far in the compressed access 

history, non-critical edge algorithm. The further the tails are pushed down, the 

more races can be made redundant. The compressed access history, non-critical 

edge algorithm displayed nearly the same performance as the compressed access 

history, vector clock algorithm for all the tests but one (mtxmuft), where it had a 

significant advantage. This advantage was also evident, in all the test programs, 

with the optimal version of the non-critical edge algorithm. The strong notion 

of data dependence leads to fewer races being detected, which are temporally 

spread out. When the events, which are racing, are temporally far apart, the 

tail of the added artificial edge can be pushed far down the execution graph. 

These artificial edges can cross many critical path edges, which explains why 

the optimal, non-critical edge algorithm displays a greater advantage than the 

compressed access history algorithm. 

There was an expected correspondence between the non-critical edge algo­

rithms and the Lamport clock algorithms, which was only partially supported 

by the data. They were expected to have similar performance because they trace 

similar information. The non-critical edges are added straight across the exe­

cution graph, and the Lamport clock algorithms use frontiers that lie straight 

across the execution graph. The algorithms had similar performance for the 

optimal versions, but were very different for the compressed access history ver­

sions. In fact, the compressed access history, non-critical edge algorithm had 

trace sizes closer to the compressed access history, vector clock algorithm than 

the compressed access history, Lamport clock algorithm. The opposite was true 
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for the optimal algorithms, were the non-critical edge algorithm was closer to 

the Lamport clock algorithm. 

The optimal algorithms nearly always produced many fewer traces than the 

compressed access history algorithms. The exceptions to this (qs, sort) had very 

few read-read races, which, when traced, caused other read-write, or write-write 

races to not be on the critical path, and not be traced. In general, there were 

far too many read-read races to get any advantage from this. In fact, for all the 

programs but join, pnet, qs, and sort, read-read races caused at least 50% of 

the traces, and usually were responsible for over 75% of the traces. All of the 

read-read traces are not needed, strictly speaking, to properly recreate the data 

dependencies during replay, so they can be seen as the overhead the compressed 

access history algorithms have over the optimal algorithms. 

As was noted in the algorithms section, when a race is detected in a Lamport 

clock algorithm, the clock is 'bumped ahead' to be greater than that ofthe event 

it raced with. It was interesting to study the size of these clock 'skips'. The 

compressed access history algorithm concentrated most of the skips on very Jow 

numbers. Most of the programs had a large number of races where the Lam­

port clock was only bumped ahead one clock value. The optimal algorithms 

displayed a different behavior. The skips seemed much more evenly distributed, 

and there were very few instances where clocks only skipped one clock value. 

This indicated that the compressed access history, Lamport clock algorithm 

traced many read-read races, which occurred at nearly the same time. Another 

interesting point was that both algorithms had similar numbers of instances 

where the clock skipped more than 1000 clock values. These large skips show 

that races can occur between events that are temporally far apart in the exe­

cution. Also, those events are not read-read races, because they are captured 

by the optimal algorithm. This implies that there are very few read-read races 

from events which occur at very different times. 
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6.1.2 Runtime Overhead 

Perhaps the most interesting data gained from these experiments was that trac­

ing all the references was faster than using an adaptive algorithm. This can be 

attributed to several factors. First, the Sequent has a very efficient disk con­

troller. It would buffer all the traces written and dump them onto the disk as 

each process would end. Trace file sizes were observed during several executions, 

and would usually sit at zero bytes, until a process would halt, at which time 

the trace size for the process would jump to its full, expected value. Programs 

which have traces larger than the buffer would probably see more of an advan­

tage with the adaptive tracing algorithms. Second, the code for the adaptive 

algorithms was not optimized. The only optimization was moving the 'write to 

disk' out of the critical section. The critical sections were fairly large. There 

was a significant amount of time waiting for the access histories to be released. 

Third, the extra memory used by the adaptive algorithms, and the use of hash 

tables for the access histories, caused many page faults. Finally, it is possible 

that the processors were slow compared to the disk controller, so writing to the 

disk didn't really incur much of an overhead penalty. 

It is expected that, as processors become faster, the extra work involved in 

adaptive tracing will be offset by the relatively slow operation of writing to disk. 

A highly optimized adaptive algorithm, on a computer with very fast processors 

would probably outperform a system that traces all references. 

The compressed access history algorithms generally ran about 40% faster 

than the optimal algorithms. As noted above, writing to the disk didn't seem 

to incur much of penalty in runtime, so most of the difference can be attributed 

to the complexity of the algorithms. In the optimal algorithms a 'read-race­

check' only checks the dependence of one event pair, but the 'write-race-check' 

has to determine the dependence of each event in the readset and the writer, 

and remove any readers ordered before the current write. This is much more 

complex than the compressed access history algorithms, where all events are 
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tested against the single entry in the access history. The additional work is the 

root of the extra overhead experienced with the optimal algorithms. Another 

factor is the extra memory required by the optimal algorithms, which results in 

more page swapping, and, consequently, higher overheads. 

The Lamport clock algorithms run a few percent faster than the correspond­

ing vector clock algorithms. This can be attributed to the simplicity of updating 

a Lamport clock, compared to updating a vector clock. Updating a Lamport 

clock is performed by changing a single variable, but updating a vector clock is 

performed by updating one variable per processor. Even when only two proces­

sors are used, it is twice as expensive to update a vector clock as it is to update 

a Lamport clock. 

In addition to measuring the real time overhead for the algorithms, the 

processor and system time overheads were also recorded. In most cases the pro­

cessor time overhead was slightly higher than the real time overhead, although 

adding processors generally made the processor time overhead grow quicker than 

the real time overhead. The system time overhead was fairly close for all the 

algorithms, and was only slightly lower than overhead of tracing all references. 

For most of the test programs, the system time encountered was between 10 

and 15 times slower than the un-instrumented versions. 

6.1.3 Overall 

It is easiest to choose the best algorithm by first discounting those with draw­

backs. The compressed access history, vector clock and compressed access his­

tory, non-critical edge algorithms trace too much information to make it worth 

the increased runtime overhead. The optimal, vector clock algorithm is very 

good, but it is out performed by the optimal, non-critical edge algorithm. Both 

of the Lamport clock algorithms produce small traces and have a slight runtime 

overhead advantage over the corresponding vector clock algorithms. Thus, there 

are three 'winners', the compressed access history, Lamport clock algorithm, the 
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optimal, non-critical edge algorithm and the optimal, Lamport clock algorithm. 

The Lamport clock algorithms do very well in terms of trace size and runtime 

overhead, but they do have drawbacks. For instance, they can't reproduce all 

consistent states of a program. Taking all this into consideration, the algorithm 

with the most 'positives' and the fewest 'negatives' is the optimal, non-critical 

edge algorithm. 

6.2 Replay Mechanisms 

Although implementing a replay mechanism was not part of this project, one 

can not ignore that aspect when comparing the merits of the various tracing 

schemes. 

One method that has been proposed for replaying Lamport clock traced 

programs is based on slice counters [3]. An array of counters, one per process, is 

used to ensure that all events with Lamport clock values lower than the current 

event have occurred. The slice counter contains the Lamport clock value of the 

next event in each process. It is incremented by one if the event hasn't been 

traced, otherwise it is set to the Lamport clock value of the traced event. A 

process may only execute an event if the slice counters in all the other processes 

are greater than or equal to the Lamport clock value of the current event. 

This scheme has some big drawbacks. The most glaring is the runtime overhead 

incurred by checking the slice counters for every event in the execution. Because 

an array of slice counters is used, the inherent scalability of Lamport clocks is 

compromised. 

A system that would have much less overhead would verify the Lamport 

clock value for an event only if the event is logged in the trace file. During the 

tracing phase, there are no provisions for enforcing consistent Lamport clocks 

at each event, therefore it seems a waste of time to enforce such conditions upon 

replay. The accesses that are traced capture the data dependencies. Therefore, 

enforcing the same data dependencies on replay will insure a proper replay. 
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This still has the drawback of depending on slice counters, and checking against 

each process at each traced event. A further refinement of this method would 

record which process a traced event was data dependent with. Then instead of 

making sure the Lamport clock of the current process was consistent with the 

clocks in all the other processes, one could merely enforce the condition that it 

is consistent with the Lamport clock value of the event in the process it is data 

dependent on. This restores the scalability, but the traces need to be larger to 

record the process numbers. 

The replay mechanism for the vector clock traces is similar to the mechanism 

for replaying Lamport clock traces. In fact, it is simpler, because the local clock 

is just incremented for each event. All the dependencies that were originally 

traced, must be enforced during replay. At each event the player would check 

to see if that event is the next event in the trace file. If it isn't the player 

can process the event and go on to the next one. If it is in the trace file, a 

dependence must be resolved. The serial number of the racing event is held 

in the trace file. The player must wait until the serial number of the process 

containing the racing event is greater than or equal to the serial number in the 

trace file. This will satisfy the data dependence. 

The same replay scheme can be used when the non-critical path edges are 

traced. With the benefit that there is less of a chance that processes will have 

to wait. By flattening the dependence edges in the execution graph, the clock 

values traced are closer to the clock value of the event dependent on it. So, the 

waits should be shorter. This means the replay will run faster than if edges, 

which are exactly on the critical, path are traced. 

It should be noted that the same replay mechanism would work for traces 

made with the optimal algorithm and the compressed history algorithm. This 

is because the compressed history algorithm has a weaker data dependence 

relation. Any dependencies that are found with the optimal algorithm will 

also be found with the compressed history algorithm. The replay phase would 
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just be enforcing dependencies that aren't necessary for correct replay. When 

implementing a replay mechanism, it would be wise, and simple, to have it be 

able to replay from traces generated by either algorithm. This would allow the 

programmer to choose which tracing scheme to use. 

6.3 The Probe Effect 

No discussion on parallel debugging would be complete without a few words 

about the probe effect. Any instrumentation that is added to the code can 

potentially change the way a program interacts. In fact, this was encountered 

during the implementation of the algorithms on the Sequent. The library was 

dead locking, but when print statements were added to try to find out where, 

the dead lock disappeared. The bug eventually was found through the use of 

PDBX, the standard style debugger on the sequent, and careful scrutiny of the 

code. This experience further reinforced the need for a complete set of parallel 

debugging tools. 

Although there are models that attempt to account for the perturbation 

instrumentation introduces [4], no attempt was made to minimize its effects in 

this project. Since research in perturbation analysis and trace and replay are 

still in the early stages, it was felt that attempting to implement a combination 

would not produce fruitful results in either area. 

6.4 Future Work 

There are many areas where this research can be continued. Most importantly, 

the efficiency of the implementations can be improved. As stated before, the 

overhead figures can be seen as worst case figures. Further reduction in overhead 

could be produced with a more efficient hash table, or smaller critical sections. 

Also, in the case of the compressed algorithms, the access history might not 

have to be locked during the race check. This was not explored, but would 

surely make the algorithms run much faster. 
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There are special cases where the algorithm can be simplified. Such as when 

an execution is running on 2 processors. The algorithms could just keep track 

of the most recent event on the other processor. The read set would only need 

to know where the most recent reader was. 

The amount of memory required seems prohibitive. As the set of access his­

tories grew to very large sizes, there were many page faults, and the throughput 

of the algorithms declined. There is a lot of area where the size of the access 

history for each variable could be reduces through encoding of information. 

Another aspect that wasn't explored is the effect of grouping sets of variables 

into aggregates. This is another are which could reduce run time overheads. 

The reduction would come from the need for less memory to hold the access 

histories, leading to less page faults. Although there might be more problems 

waiting for locked access histories, when the access histories are used for a group 

of variables. 

Of course, the area most in need of future work is the replay side of the 

system. This project did not implement any mechanism for replaying the exe­

cutions with the trace files produced. The problem was left for further research 

because it was felt that the tracing scheme should be decided before the replay 

side was explored. In other words, you can't play something if you haven't 

decided exactly how its recorded. 

Conclusion 

This project explored the performance of six adaptive tracing algorithms. Each 

method had its merits, and they all have some drawbacks. When all things are 

taken into consideration, the algorithm that looks the best is the vector clock, 

non-critical edge tracing algorithm. The trace sizes are very small. Though not 

as small as those for the optimal Lamport clock algorithm. The overhead is 

within a few percent of the less complex Lamport clock algorithm. The largest 

advantage would be realized during replay. There would much less waiting for 
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other processes to reach events which had data dependencies. That is where 

the Lamport clock algorithms give up ground to the others. Because races are 

traced only when they are dependent on events in other processes with higher 

clock values, traced events would generally have to wait for the other events 

to occur. The compressed history algorithms can't compete as far as trace size 

is concerned, but they have the advantage of requiring much less memory, and 

only 50% of the runtime overhead. Replay would also be slower because all 

the dependencies between readers would have to be resolved. In general, these 

algorithms would work the best only when memory or overhead were of prime 

importance. 
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A Appendix: Where the Code Lives 

A.I ,Simulated Versions of the Algorithms 

The code for the simulations on the SparcStation is in the directory 

/u/rn/public/ess. 

The algorithms are distributed in three files. race_check_eric.c contains the 

code for all three compressed access history algorithms. The file r_cJamport.c 

contains the code for the optimal, Lamport clock algorithm. The file r_c-vector.c 
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contains the code for the optimal, vector clock algorithm and the optimal non­

critical edge algorithm. The trace files are in the sub-directory 'traces'. There 

is a makefile that compiles everything. 

The simulator is run from the command line and accepts the following com­

mand line arguments. 

• -b'bit shift value': This is used to simulate aggregate access histories. The 

default is O. 

•	 -d'debug option': This is the level of debugging information printed. 0 

(the default) turns off debugging. 1 prints out the addresses and some 

other information about the races traced. 2 prints out a full debugging 

report. 

• -q: This puts the program in quite mode. (default) 

•	 -v: This puts the program in verbose mode. 

• -a: Performs race checks using all six algorithms. 

•	 -c: Performs race checks using the collapsed access history, vector clock 

algorithm. 

• -1: Performs race checks using the optimal, Lamport clock algorithm. 

• -m: Performs race checks using the collapsed access history, Lamport clock 

algorithm. 

• -n: Performs race checks using the optimal, non-critical edge algorithm. 

• -0: Performs race checks using the optimal, vector clock algorithm. 

• -r: Performs race checks using the collapsed access history, non-critical 

edge algorithm. 

• -z: Measures some information about the types of accesses present. 
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A.2 Instrumented Libraries 

The code for the instrumented parallel libraries is on topaz.cs.wisc.edu. It is all 

contained in the directory 

/usr2 /bart/netzer/races.replay2. 

The include files are in the sub-directory 'h'. The test programs are in the sub­

directory 'test'. The instrumented code for the libraries are in the sub-directory 

'instr', which contains the sub-directories 'libc', 'libpps', and 'libtrace', which 

contain an instrumented version of the 'c' library, an instrumented version of 

the 'pps' library, and the trace libraries, respectively. The different versions of 

the source files for the trace libraries are in 

/ usr2/bart/netzer/races.replay2/instr/libtrace. 

Any modifications to the code to enhance performance would probably take 

place in the 'instr/libtrace' directory. There is a makefile in 'libtrace' which 

compiles the trace libraries, puts them into their own libraries and puts the 

libraries in the ..... /lib directory. The binaries for the libraries are in 'lib'. 'bin' 

contains a version of the compiler, ccreplay, which instruments the code. 

To compile a program using the tracing libraries you must do the following: 

• Use ccreplay instead of cc. 

• Set the include path to ..... /races.replay2/h. 

• Include the following libraries: 

..... /lib/libc.a 

- ..... /lib/libpps.a 

...../lib/libtrace_all.a or
 

..... /lib/libtraceJace_ov.a or
 

..... /lib/libtraceJace_ol.a or
 

..... /lib/libtraceJace_cv.a or
 

...../lib /libtraceJace_cl.a
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There is a makefile with each of the test programs which produces an un­

instrumented version, a version that traces all references, and versions for each of 

the four adaptive tracing libraries. Refer to these makefiles for more information 

about compiling the programs. 
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Compressed Access History Algorithms 
Program # 

References 
Gmpr 

VG 
Gmpr 

Non-Grit 
Gmpr 

LG 

Barnes 2 66887 4004 (5.99%) 725 (1.084%) 232 (0.347%) 
Barnes 4 66004 7999 (12.12%) 1982 (3.003%) 630 (0.954%) 
Barnes 16 79426 21709 (27.3%) 8385 (10.6%) 3938 (4.96%) 

Barnes22 175671 2840 (1.617%) 1195 (0.68%) 257 (0.146%) 
Barnes24 173340 11102 (6.405%) 4393 (2.534%) 1790 (1.033%) 
Barnes28 173466 19972 (11.513%) 7625 (4.396%) 4038 (2.328%) 

gauss 2 162023 27274 (16.83%) 23661 (14.603%) 664 (0.41 %) 
gauss 4 162719 51574 (31.7%) 45899 (28.2%) 19291 (11.85%) 

[ gcd 2 I 478675 I 9058 (1.89%) I 8421 (1.76%) I 6394 (1.34%) I 
join 2 35672 63 (0.177%) 37 (0.104%) 19 (0.053%) 
join 4 35831 462 (1.289%) 307 (0.857%) 237 (0.661 %) 

locus 2 1932827 37552 (1.943%) 22769 (1.178%) 6182 (0.32%) 
locus 16 2530803 614120 (24.3%) 447600 (17.7%) 341274 (13.5%) 

mp3d 2 127041 1336 (1.052%) 791 (0.623%) 164 (0.129%) 
mp3d 4 127675 3983 (3.12%) 2133 (1.67%) 646 (0.506%) 

mtxmult 2 400209 56744 (14.2%) 107 (0.027%) 57 (0.014%) 
mtxmul4 400209 114404 (28.6%) 199 (0.05%) 155 (0.038%) 

pnet 2 104298 9510 (9.12%) 5335 (5.12%) 1557 (1.5%) 
pnet 4 139022 31509 (22.7%) 21502 (15.5%) 9094 (6.54%) 

ptycho 2 112372 3718 (3.31 %) 2202 (1.96%) 392 (0.348%) 
ptycho 4 336690 3649 (1.08%) 2474 (0.735%) 841 (0.25%) 

qs 2 11040 22 (0.199%) 22 (0.199%) 13 (0.118%) 
qs 4 22872 478 (2.09%) 452 (1.98%) 429 (1.88%) 

shpath 2 24775 7206 (29.1%) 7033 (28.4%) 987 (3.98%) 
shpath 2 3760213 1227179 (32.6%) 1224404 (32.6%) .38963 (1.04%) 
shpath 4 100344 33443 (33.3%) 32470 (32.4%) 21447 (21.4%) 

sort 2 14846 1 (0.007%) 1 (0.007%) 1 (0.007%) 
sort 4 29278 12 (0.04%) 6 (0.02%) 8 (0.027%) 

Table 1: Trace sizes from the compressed access history algorithms 
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Optimal Algorithms 
Program # 

References 
Optimal 

VG 
Optimal 

Non-Grit 
Optimal 

LG 

Barnes 2 66887 201 (0.3%) 170 (0.254%) 102 (0.152%) 
Barnes 4 66004 407 (0.617%) 358 (0.542%) 210 (0.318%) 
Barnes 16 79426 1475 (1.86%) 1402 (1.76%) 871 (1.097%) 

Barnes22 175671 461 (0.262%) 171 (0.097%) 145 (0.083%) 
Barnes24 173340 2260 (1.3%) 773 (0.45%) 856 (0.494%) 
Barnes28 173466 3489 (2.01%) 1107 (0.638%) 1050 (0.6%) 

gauss 2 162023 20806 (12.8%) 197 (0.122%) 78 (0.048%) 
gauss 4 162719 22362 (13.7%) 548 (0.336%) 266 (0.163%) 

[ gcd 2 1 478675 I 3764 (0.786%) I 1728 (0.361%) I 36 (0.007%) I 
join 2 35672 61 (0.171%) 36 (0.1 %) 19 (0.053%) 
join 4 35831 287 (0.8%) 140 (0.391%) 77 (0.215%) 

locus 2 1932827 11257 (0.582%) 1282 (0.066%) 1436 (0.074%) 
locus 16 2530803 88750 (3.51%) 12787 (0.505%) 11431 (0.452%) 

mp3d 2 127041 625 (0.492%) 87 (0.068%) 97 (0.076%) 
mp3d 4 127675 1293 (1.013%) 226 (0.177%) 208 (0.163%) 

mtxmult 2 400209 2453 (0.613%) 1 (0.0002%) 2431 (0.607%) 
mtxmult 4 400209 7207 (1.8%) 3 (0.0007%) 7078 (1.769%) 

pnet 2 104298 2570 (2.46%) 2519 (2.42%) 1260 (1.21%) 
pnet 4 139022 7272 (5.23%) 7194 (5.17%) 5944 (4.28%) 

ptycho 2 112372 102 (0.091%) 5 (0.004%) 17 (0.015%) 
ptycho 4 336690 762 (0.226%) 18 (0.005%) 16 (0.005%) 

qs 2 11040 22 (0.199%) 22 (0.199%) 13 (0.118%) 
qs 4 22872 452 (1.98%) 452 (1.98%) 429 (1.88%) 

shpath 2 24775 653 (2.64%) 575 (2.32%) 312 (1.26%) 
shpath 2 3760213 8973 (0.238%) 8072 (0.215%) 4243 (0.113%) 
shpath 4 100344 3547 (3.53%) 3249 (3.24%) 2027 (2.02%) 

sort 2 14846 3 (0.02%) 1 (0.007%) 2 (0.013%) 
sort 4 29278 17 (0.058%) 5 (0.017%) 13 (0.044%) 

Table 2: Trace sizes from the optimal tracing algorithms 
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Runtime Overhead 
Program Time 

Sec. 
Trace 
All 

Opt 
VC 

Opt 
LC 

Cmp 
VC 

Cmp 
LC 

gauss 2 1.366 4.29 15.53 14.32 11.34 10.85 
gauss 4 1.122 3.73 15.77 15.2 12.68 12.63 
gauss 8 1.068 3.70 18.38 17.99 14.57 14.30 

gcd 2 3.21 9.43 21.64 20.14 15.89 15.82 
gcd 4 3.63 10.93 34.19 30.45 20.41 20.08 
gcd 8 2.886 13.77 60.91 53.76 28.73 28.18 

join 2 4.28 1.55 3.46 3.34 2.35 2.44 
join 4 5.176 1.79 4.97 4.85 6.35 2.77 
join 8 5.408 1.65 4.68 4.63 2.70 2.66 

flow 2 5.664 17.3 56.22 49.78 47.85 47.82 
flow 4 1.74 14.11 59.36 52.8 48.2 44.83 
flow 8 2.23 19.8 118.52 120.21 91.18 82.09 

mesh 2 2.65 16.15 75.37 70.12 38.72 37.94 
mesh 4 1.874 15.69 93.98 87.66 46.29 45.01 
mesh 8 1.552 14.76 112.69 105.78 56.87 55.23 

mtxmult 2 1.644 7.70 30.98 28.24 22.17 21.44 
mtxmult 4 1.054 6.88 37.66 35.95 30.32 29.74 
mtxmult 8 .818 6.10 49.02 48.86 42.57 41.54 

qs 2 1.436 13.27 51.81 47.15 32.48 32.34 
qs 4 1.112 11.35 56.92 52.37 38.35 36.83 
qs 8 1.014 10.36 63.81 59.78 44.73 42.78 

shpath 2 5.656 3.85 23.43 22.42 10.17 9.82 
shpath 4 4.084 3.42 33.68 32.56 13.93 13.44 
shpath 8 3.618 3.17 47.81 44.23 18.48 17.98 

sort 2 6.046 21.31 94.64 83.98 61.02 59.30 
sort 4 4.746 20.43 112.02 96.60 76.58 75.36 
sort 8 4.222 20.72 125.57 120.58 92.89 86.37 

Table 3: Runtime overheads of the various algorithms 
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