
1

BROWN UNIVERSITY

Department of Computer Science

Master's Project

CS-95-M12

"The Performance of Various Tracing

Algorithms for Shared-Memory

Parallel Programs"

by

Eric Stradal

The Performance of Various Tracing
Algorithms for Shared-Memory

Parallel Programs

Eric Stradal

Department of Computer Science

Brown University

Providence, Rhode Island 02912

October 1994

This research project by Eric S. Stradal is accepted in its present form by the

Department of Computer Science at Brown University

in partial fulfillment of the requirements for the

Degree of Master of Science.

October 1994

Date: dJJ!J!1

1

The Performance of Various Tracing Algorithms
for Shared-Memory Parallel Replay

Eric Strada}
Department of Computer Science

Brown University

Providence, RI 12912-1910

ess@cs.brown.edu

October 6, 1994

Abstract

Cyclic debugging is a proven method for debugging sequential pro­
grams. In order to use the same techniques for parallel programs, special
tools must be used to ensure the same data dependencies in successive
runs. This is accomplished by tracing information about processor inter­
action during the original execution, and using that information during
the replay phase. This paper investigates the performance of several adap­
tive tracing algorithms for parallel replay. The algorithms were measured
for trace size and runtime overhead. It also attempts to make a judgment
on which of the tracing schemes would be the most useful.

Introduction

In order to exploit the advantages of parallel computers, developers need an

extensive set of debugging tools. Cyclic debugging has become an established

procedure for eliminating errors in sequential programs. Similar methods for

parallel programs are very desirable. The problem lies in the inherent non­

determinism of parallel programs. Special tools are required to ensure the events

in a re-execution occur in the same order as they did in the original execution.

All the current replay schemes trace information about program execution while

it is running. This information is later used to ensure proper ordering of events

1

upon re-execution. Such a system is commonly referred to as a trace and replay

system [5]. The problem with most trace and replay systems is the large amount

of data they trace. The focus of this paper is comparing the results of several

different schemes that reduce the amount of information traced.

The non-determinacy encountered in shared memory parallel programs can

be characterized in two ways. The first is general races. The second is data

races [8]. General races are what is commonly referred to as non-determinism.

They are only considered to be bugs in programs which are supposed to be

deterministic. General races are a global property of a program. Most paral­

lel applications don't need to be deterministic, and contain general races. In

fact, the ability to step beyond the limitation of linearity is one of the things

that makes parallel computation so attractive. In a program meant to be non­

deterministic, general races are not considered bugs. Data races are the result

of non-atomic execution of critical sections. Data races are a local property in

a program, and are usually caused by insufficient or improper synchronization.

Data races have also been called access anomalies, and are always considered to

be bugs, because the interleaving of the instructions in the critical sections can

cause spurious data to be produced. Synchronization bugs generally manifest

themselves as data races, although they can also cause general races.

In either case, these races are at the root of the problems in trace and replay

systems. The schemes to reduce trace size concentrate on only tracing events

that are racing with each other, thereby tracing only information which effects

the order of events which are dependent on each other.

All of the algorithms implemented in this paper are for shared memory

parallel programs. It should be noted that many tracing techniques can be

generalized to also work for message passing programs [2]. The differences lie

in how one looks at communication between processors. An access to a shared

memory object is like a message from, or to, a data object in a specific processors

memory in a message passing system. Although the difference looks marginal it

2

is theoretically significant. In particular, Netzer's optimal algorithm is optimal

for shared memory programs, but is not optimal in all cases for message passing

programs [7].

1.1 Previous Work

The need for a trace and replay system has been seen by other researchers. Two

particularly interesting implementations are Bugnet [9] and Instant Replay [2].

Although Bugnet was implemented in a message passing environment, it is

interesting because it traces the order and content of all inter-process commu­

nication. By recording the data and order of events, Bugnet can replay the

original program, or just a single process. It can simulate the actions of the

other processes, allowing a debugger to isolate processes. The obvious draw­

back is the extremely large traces, which would limit the effectiveness of any

system which records data and ordering information.

Instant Replay is notable because it introduced the notion that a trace and

replay system could be implemented tracing only the ordering between inter­

process events. It was developed on a shared memory system, but the same

type system could be used for message passing systems. During an execution,

each access to a shared data object is noted, and its process, object and version

are recorded. The replay phase forces events to happen in the same relative

order as the original. Since, acting alone, each process is deterministic, forcing

communications to occur in the same order will exactly reproduce the original

execution. By only recording the relative order of accesses the system does not

require synchronized clocks or globally consistent time.

There are a couple of drawbacks to this system. Because all memory accesses

are recorded, trace sizes are large. The system does not record fine grained data

access. All accesses are treated as messages to shared objects. The system

institutes a CREW protocol for the shared objects, although the system can

also work with a mutually exclusive protocol. This means programs have to

3

2

be written with the protocol in mind, or they must be modified to match it.

One effect of this is that the overhead for tracing looks small, because some of

the synchronization required for tracing is enforced in the CREW model, hiding

tracing delays which are apparent in the algorithms in this paper.

Model

Much of the discussion of the algorithms presented here rely on several different

models of time and the temporal relationship between events.

When one is talking of o~derings between general events, it is most natural

to think in terms of real, physical, time. It would be most advantageous if one

could think along the same lines when working with parallel computers. The

problem is that it is non-trivial to have a consistent global clock on a parallel

processor [IJ. Generally, each processor runs off its own clock. This is the root

of asynchronous behavior. There may be a global clock, but there are problems

with races to the clock, i.e. two process could try to get a clock value at the

exact same instant, and not get consistent values. This can be caused by many

things, such as differences in delay time for communications. Even in multi­

processors with a single global clock there are problems, such as increased bus

load from all the processors accessing resources at the same instant. Thus, a

different notion of time must be used when talking of parallel programs.

The Temporal Relation: For two events a, b: if a ~ b, then a

occurs before b. Where ~ denotes the temporal ordering relation.

Logical clocks are a way of assigning a number to an event [1J. The main

condition they satisfy is the following. If event a happens before event b, then

the clock value assigned to a is less than that assigned to b. The numbers don't

necessarily reflect physical time, other than that lower clock values happened

before larger clock values. For most purposes they can be implemented with

counters. Logical clocks bypass many of the problems associated with physical

4

clocks, but don't reflect the ordering of events in separate processes. For that,

more specialized clocks are needed.

A commonly used form of ordering parallel programs is vector clocks, or

timestamps [8]. A vector clock is an abstraction which orders events in parallel

programs. The vector clock reflects the inter-process communications which

have taken place. Each process maintains a serial number, (logical clock) which

is incremented at each event. Each process maintains its own vector clock, which

has one entry per processor. Entry i in the vector clock contains the most recent

serial number from process i which has communicated with the current process.

Of course, the i th entry for processor i simply contains the processes current

serial number.

Vector Clock Condition: For any events ai, bi :

VCi,i(a) < VCi,i(b) if and only if ai ~ bi.

Where i and j are the relative processes of a and b, and ai ~ bi IS

the vector clock temporal relation signifying that event a in process

i occurred before event b in process j, and V Ci,i (a) signifies the

vector clock serial number of event a in the i th index of the vector

clock for process j.

,Timestamps are useful because they partition the events of an execution into

two'sets, those that are known to have happened before the current event, i.e.

its ~erial number is less than its processors entry in the vector clock, and those

that didn't necessarily happen before the current event. Another way of viewing

vector clocks is seeing that they maintain a graph of the execution, with one

node per process. The ith entry in the vector clock contain the serial number of

the most recent event in process i that has a path to the current process. This

graph is what ,is referred to in the rest of the paper as the execution graph.

Lamport clocks [1] are another abstraction that attempt to order the events

in a parallel program. They were first developed to order events in systems of

5

P r s time

(1,0,0,0)

(2,0,0,0)
(1,1,0,

(0,0,1,0)

(3,200)(4 ., (1 , ,0) (O,O,O,n

,2,0,0) (1,2,1,0) (0,0,0,2)

(6,2,0,0) (5,3,1,0) (0,0,0.4)

Figure 1: Vector Clock Propagation

spatially separated computers, but the notions can be generalized for parallel

processing computers. Like vector clocks, Lamport clocks are based on logical

clocks. Unlike vector clocks, each processor only maintains a single number to

represent its Lamport clock. To order the events, Lamport clocks maintain the

following condition.

Lamport Clock Condition: For any events ai, bj: if ai ..!:+ bj

then LCi(a) < LCj(b). Where ai signifies event a in process i, and

LC;(a) signifies the Lamport Clock value for event a in processor i.

Since ..!:+ and ~ impose a temporal ordering on events, they both can be

used in place of the general temporal relation ..:!r in the following sections. In

fact, this one of the differences in the algorithms presented in this paper.

Maintaining the Lamport clock condition if fairly simple. The two following

conditions must be followed. If a and b are events in process i, and a occurs

before b, then LC(a) < LC(b). If event a in process i receives a message from

event b in process j and LCi (a) < LCj (b) then LCi (a) = LCj (b) + 1. Where

LCi(a) is the Lamport clock value of event a in process i. It may be helpful to

view Lamport clocks as vector clocks which contain the maximal serial number

across the array. Seen in this way, it is clear that a Lamport clock partitions the

6

events along a line that runs flat across the execution graph of the processes.

p q r s time

1

2

3

4

5

6

1

5

6

1

2

3

4

Figure 2: Lamport Clock Propagation

By examining the properties for vector clocks and Lamport clocks, it can be

seen that Lamport clocks order more events than vector clocks. Stated simply,

if one event is ordered before another by the vector clock condition, it will also

be ordered be the Lamport clock condition. The converse is not true. There are

events that are ordered by the Lamport clock condition that are not ordered by

the vector clock condition.

Another key concept is data dependence [8]. Two events can only have a data

dependency ifthey both access the same variable. Clearly, ifthey don't, one can

not effect the other. In its weakest form, a data dependency simply states that

events a and b are data dependent if a and b access the same variable. In its

strong form, a data dependency means that events a and b are data dependent

if a and b access the same variable, and at least one of the events writes. This

condition is valid because, if both events simply look at the data, they can

not effect the outcome of each other. In terms of the execution graph, data

dependencies are the edges between processes.

This notion of data dependence can be combined with the temporal relations

to form the data dependence relation [6]. The data dependence relation seeks

to define when one event could be effected by another in the execution. The

7

determination of whether one event proceeds another is based on the clock

condition used, and the determination of data dependence is based on the weak

or strong form of data dependency. In the discussion on vector clocks and

Lamport clocks, it was said that their values were updated when ever contact

was made between processes. If two events are data dependent on each other,

then they are considered to communicate with each other. In other words, the

vector, or Lamport clock is only effected by events that are data dependent with

each other.

The Data Dependence Relation, Strong Notion: For any two
DS

events	 a, b: if a --+ b, then a and b access the the same shared

variable, at least one of them writes, and a ..:!: b. Where ~ denotes

the strong data dependence relation.

The Data Dependence Relation, Weak Notion: For any two

events	 a, b: if a ~ b, then a and b access the same shared variable
T DW

and a --+ b. Where --+ denotes the weak data dependence relation.

When two processes are accessing the same variable, and their relative order

can't be determined, the accesses are said to race to the variable [8]. Parallel

programs generally contain many races. For example, a program that uses spin

loeks will have the processes racing to see which gets the lock and whieh are

forced to spin. Similarly, any shared memory access, which isn't in a synchro­

nized critical section, is the potential source for a race. Since these races are

the source of non-determinacy, they are of prime importance in replay systems.

The line that partitions the execution graph, either for a vector or Lamport

clock is called the frontier [8]. This is becaus~, it is the frontier between events

known to have happened and those which might not have happened yet. The

frontier must represent a consistent state of the execution. The clock conditions

ensure that they are. Vector clocks are able to represent any consistent state,

but Lamport clocks can't [I]. This is because the frontier for a Lamport clock

8

3

cuts straight across the execution graph. A frontier race is an edge in the

execution graph which crosses the frontier. In both cases, it is an event that

violates the clock condition, and also contains a data dependence. The various

algorithms presented in this paper all are based on the notion that in order

to enforce proper ordering between processes, only the frontier races must be

traced.

Critical Path: The critical path for a process is the transitive

reduction of the data dependence graph for that process [6].

Artificial Dependency Edge: For the purposes of this work, an

artificial dependency edge is an edge that is added to the execution

graph that is not on the critical path. It represents a dependency

that might not actually exist between two events [5].

Problem Statement

This section formally defines what is sufficient for correct replay. Enough infor­

mation must be traced to insure that a replay on the same input is identical to

the original execution. It has already been shown that tracing all shared-data

access is sufficient [2] I but not necessary for correct replay. If all the shared-data

dependencies are the same in a replay as in the original, it will be correct. What

is needed are schemes which trace a small subset of the data dependencies which

is also sufficient for correct replay.

Sufficient Replay: Given two executions, P = (E,.!, ~)

and P' = (E',~, S), P' is a sufficient replay if

1. E' =E, and

o 0'
2. for all a, b element of E, a -+ b =:} a -+ b.

T T'
Where E and E' are the events, -+ and -+ are the temporal orderings

o 0'
between events, and -+ and -+ are the data dependencies between

9

events in the executions P and pi [5].

This just states that the temporal orderings, the data dependencies, and the

events are the same in the replay as in the original execution.

Four of the algorithms reproduce, exactly, the data dependencies of the

original. This is because they only trace dependencies which are directly on

the critical path, i.e. they only trace actual dependencies. The remaining two

introduce artificial dependencies, which aren't on the critical path, to reduce

trace size even further. See the explanation of the non-critical edge algorithms

for more detail. Determining the minimum amount of information required to

provide for a sufficient replay is an NP-hard problem [5].

4 Methods

4.1 Algorithms

All six of the algorithms explored here are based on maintaining a data depen­

dence graph during execution. They only trace accesses whose data dependen­

cies cause frontier races, and then update the graphs to include the new edges.

The differences lie in how the dependence relation is defined, the type of clock

used, and how a processes clock is updated when a race is found.

There might be some confusion as to why there are 3 versions of the 'optimal'

algorithm. They are called optimal because they use the strong notion of data

dependence. They never trace events which can't effect each other.

4.1.1 Optimal Algorithm Vector Clocks

This algorithm was first introduced in Optimal Tracing [6]. It dynamically lo­

cates and traces all the frontier races in an execution based on the strong data

dependence relation, a ~ b, and on the vector clock relation, ~. Each process

maintains its own private counter, its serial number, which is incremented upon

each shared memory access. Each shared variable has an access history. An

10

access history contains the timestamp of the most recent writer, and the times­

tamp of the most recent reader in each processor. Each access history requires

O(p) space, where p is the number of processors.

The dependence graph is maintained with vector timestamps. Upon each

access to a shared variable, its access history is checked for frontier races with

the current processor. If the access is a read, only the previous writers need

to be examined, because two readers can not be data dependent. An event, h,

in the access history is considered to be unordered with the current event e, if

there is no path from h to e in the data dependence graph.

WRITE- RACE-CHECK-VECTOR-CLOCK(S)
1a: increment the processes clock
2a: get the access history for S
3a: /* check for races */
4a: for each event r in readset
5a: if (r is unordered with e)
6a: trace that < r, e > is a race
7a: if any races were detected
8a: timestamp = component-wise max of timestamp and readset
9a: if (writer is unordered with e)
lOa: trace that <writer, e > is a race
11a: timestamp = component-wise max of timestamp

and writer-timestamp
12a: /* update access history */
13a: writer_timestamp = timestamp
14a: writer = e
15a: remove any events in the readset that are ordered before e

READ-RACE-CHECK-VECTOR-CLOCK(S)
1b: increment the processes clock
2b: get the access history for S
3b: /* check for races */
4b: if (writer is unordered with e)
5b: trace that <writer, e> is a race
6b: timestamp = component-wise max of timestamp

and writer_timestamp
7b: 1* update access histories */
8b: reader-timestamp = component-wise max of

timestamp and reader-timestamp
9b: remove any events in the readset that are ordered before e
lOb: add e to readset

11

4.1.2 COInpressed Access History Algorithm Vector Clocks

In order to reduce the memory overhead of the optimal tracing algorithm, this

algorithm uses the weak data dependence relation, a ~ b, based on the vector

clock relation, ~. This has the effect of negating the difference between readers

and writers. All accesses are treated the same. Therefore the algorithm no

longer needs to keep track of a separate writer and readset. The access history

for each shared object can be held in a single record, holding the last process

and its clock value that accessed it. So, the access histories require O(1) space.

RACE-CHECK-VECTOR-CLOCK(S)

1: increment the processes clock
2: get the access history for S
3: /* check for races */
4: if (last_access is unordered with e)
5: trace that <last_access, e > is a race
6: timestamp[lasLproc] = last_access_clock
7: /* update the access history */
8: lasLaccess = e
9: last_access_clock = clock
10: last_access_proc = proc

4.1.3 Optimal Algorithm adding Non-Critical Path Edges

This algorithm is a modification of the optimal, vector clock algorithm. When

a frontier race is detected from a to b, an artificial dependence is created from

b to the event that is currently in a's process. It has two main advantages over

the original algorithm. First, it produces reduced trace size. This is because one

artificial dependence can cut across several actual data dependencies which then

are considered redundant, and don't need to be traced. The second advantage

is that it doesn't create any orderings that didn't exist in the original execution.

Therefore, there will be no more waiting during the replay as was encountered

during the original execution.

WRITER-RACE-CHECK-NoN-CRITICAL-EDGES(S)

la: increment the processes clock
2a: get the access history for S

12

p q time

j+=l

(QUI
tail pushed
down

artificial
dependence

critical edge
races

QUJ =i

Figure 3: A non-critical path edge replaces 2 critical path edges.

3a: 1* check for races *1
4a: for each event r in readset
5a: if (r is unordered with e)
6a: trace that < r, e > is a race
7a: timestamp = MAX(timestamp, timestamp of

current event in r's process)
8a: if(writer is unordered with e)
9a: trace that <writer, e > is a race
lOa: timestamp = MAX(timestamp, timestamp of

current event in writers process)
lla: 1* update access history *1
12a: writer-timestamp = timestamp
13a: writer = e
14a: remove any events in the readset that are ordered before e

READER-RACE-CHECK-NoN-CRITICAL-EDGES(S)
lb: increment the processes clock
2b: get the access history for S
3b: 1* check for races *1
4b: if (writer is unordered with e)
5b: trace that <writer, e > is a race
6b: timestamp = MAX(timestamp, current

timestamp in writers process)
7b: 1* update access histories *1
8b: reader_timestamp = MAX(timestamp, reader-timestamp)
9b: remove any events in the readset that are ordered before e
lOb: add e to readset

13

4.1.4	 Compressed Access History Algorithm Adding Non-Critical

Edges

This algorithm is a modification of the compressed history, vector clock algo­

rithm. It has the same advantages that the optimal non-critical edge algorithm

has.

RACE-CHECK-NoN-CRITICAL-EOGES(S)

1: increment the processes clock
2: get the access history for S
3: /* check for races */
4: if (lasLaccess is unordered with e)
5: trace that <lasLaccess, e > is a race
6:	 timestamp = MAX(timestamp, timestamp of current

event in last_access_proc)

7: /* update the access history */
8: lasLaccess = e
9: lasLaccess_clock = clock
10: last_access_proc = proc

4.1.5	 Optimal Algorithm Lamport Clocks

This algorithm is a modification of the optimal, vector clock algorithm, using the

Lamport clock relation, .!:+, instead ofthe vector clock relation [3]. The Lamport

clock relation is subtly changed so it says, event a in process i is ordered by

event b in process j, if LC;(a) ~ LCj(b). This change is made because only the

races which cause the Lamport clock to be updated to a higher value need to

be traced. Because Lamport clocks are a much simpler construct than vector

clocks, this algorithm is simpler than the corresponding vector clock algorithm.

One significant difference is that the clock isn't incremented until after the race

check. This is needed to insure that the clock condition is maintained. That

is, the Lamport clock value for the event must be larger than the value for

any events on which it has a data dependency. When races are detected, the

Lamport clock for the processor of the current event is updated to reflect the

dependence on the item it races with. The access histories are also simpler. The

last writer can be stored as just the processor and Lamport clock of the last

14

event that accessed the variable. Likewise, the read set need only contain the

Lamport clock value of the last read event in each processor (that isn't ordered

by the writer).

WRITER-RACE-CHECK- LAMPORT-CLOCKS (S)
la: get the access history for S

2a: /* check for races */

3a: for each event r in readset

4a: if (r is unordered with e)

5a: trace that < r, e > is a race

6a: if races were detected

7a: Lclock = the maximum Lclock value in the read set

8a: if (writer is unordered with e)

9a: trace that <writer, e > is a race

lOa: LClock = writer_clock

lla: increment the processes LClock

l2a: / / update access history

l3a: writer_clock = Lclock

l4a: writer_proc = proc

l5a: remove any events in the readset that are ordered before e

READER-RACE-CHECK- LAMPORT-CLOCKS (8)
1b: get the access history for S

2b: /* check for races */

3b: if (writer is unordered with e)

4b: trace that <writer, e> is a race

5b: LClock = writer-clock

6b: increment the processes Lclock

7b: /* update access histories */

8b: reader_timestamp(proc) = LClock

9b: remove any events in the readset that are ordered before e

lOb: add e to readset

4.1.6 Compressed Access History Algorithm Lamport clocks

This algorithm is a modification of the compressed access history, vector clock

algorithm. It shares the same advantages and disadvantages as the optimal,

Lamport clock algorithm.

READER-RACE-CHECK-LAMPORT-CLOCKS(S)
1: increment tIlt, processes clock
2: get the accc:o~ bistory for 8
3: /* check for races */

15

4: if (lasLaccess is unordered with e)
5: trace that <last_access, e > is a race
6: LClock = lasLaccess_cIock
7: /* update the access history */
8: lasLaccess = e
9: lasLaccess_cIock = LClock
10: lasLaccess_proc = proc

4.2 Implementation

The shared memory computer used in these experiments was a 16 processor Se­

quent Symmetry Machine. The Sequent is a shared-memory parallel processor,

which uses multiple Intel 386 processors connected to a common system bus.

Its operating system is a proprietary version of Unix.

In order to trace all accesses to shared variables, the compiler and parallel

libraries were modified. Each instruction which could touch shared memory,

and synchronization instructions, were replaced with hooks that sent control

to a trace library. The trace library contains the code that identifies when a

variable being accessed is in shared memory. The first scheme implemented was

very simple. It simply traced all accesses which were in shared memory, and all

synchronization events.

The other algorithms were implemented completely in the trace library. This

had the advantage that once programs were compiled, they could be linked

with different versions of the tracing library. Since this was an original attempt

to implement these algorithms on a parallel computer, they were not highly

optimized. For example, the access histories are held in a fairly simple hash

table. Utilizing a more sophisticated hashing function would probably reduce

overhead. The overheads that were generated can be looked at as a worst case.

It should be noted that since the adaptive algorithms were implemented

to test their runtime overhead, the algorithms which add dependencies not on

the critical path were not implemented. This is because they function similar

to the original, vector clock versions of the algorithms. The estimated differ­

ence in runtime would be marginal. Thus, for purposes of testing overhead,

16

5

four algorithms were implemented, consisting of the combinations of optimal or

compressed access histories, and vector or Lamport clocks.

In order to compare the relative trace sizes of the various algorithms, they

were implemented as simulations that used data sets generated from tracing all

shared memory accesses. This was done so each algorithm could be run on an

equivalent execution. Otherwise, the non-determinacy of the parallel programs

would cause any data about relative trace sizes to be suspect. The simulations

were implemented on a Sun SparcStation 10.

Results

The tables contain the test name followed by a number. The number is the

number of processors used. The test programs are:

barnes Parallel dynamics simulator

barnes2 Barnes with different (larger) input

gauss Gaussian elimination and back substitution

gcd Greatest common denominator

join Hash join algorithms

flow Multiplies, component-wise, two matrices

locus Parallel wiring router

mesh Solves a rectangular mesh problem

mp3d Wind tunnel simulator

mtxmult Parallel matrix multiply

pnet Parallel network flow simulator

ptycho Parallel cache simulation

17

qs Quick sort of an array of integers

shpath Dijkstra's shortest path determination

sort Merge sort

The results are represented in three tables. The first two contain the trace

sizes from the simulation, and the last table contains the runtime overhead

incurred on the Sequent. Since trace sizes were generated for all six algorithms,

there is too much information to be put into one table. The first contains the

results from the compressed access history algorithms and the second has the

results from the optimal algorithms. The trace size tables show the program

name, the number of processes used, and three pairs of numbers. Each pair

contains the actual number of references that were 'traced', followed by its

percentage of all the references in the execution.

The runtime overhead table shows the program name, the number ofproces­

sors used, the runtime of the program without any instrumentation, and four

numbers representing the runtime overhead for four of the algorithms. The

overhead figures represent how many times slower the instrumented version was

compared to the un-instrumented version. For example, if the runtime was two

seconds, and the overhead given is 15.0, then the runtime of the instrumented

code was 30.0 seconds. All timing figures were obtained with the time command

and represent the average of five program executions. In all the programs, but

two, the standard deviation of the runtimes was very small. This was surprising

considering the non-determinacy these programs displayed. The two programs

for which the instrumented versions had significant standard deviations were

flow and sort. For flow, the standard deviation was quite high except for the

optimal algorithms run on eight processors. For sort, the standard deviation

was not as high as that for flow, and was small for the compressed algorithms

run on four processors. It is worth noting that the two programs with the high

standard deviation were also among the programs with the highest runtime

18

overhead. This connection was not explored.

Since the tables are quite large, here is a short list of points that were found

to be interesting:

• In all cases	 but one (sort 2), the compressed access history, vector clock

algorithm produced the largest traces.

•	 The Lamport clock algorithms always performed at least as well as the

vector clock algorithms, and usually did significantly better.

•	 The non-critical edge algorithms always performed at least as well as the

vector clock algorithms, and usually did significantly better.

• There seems to be little correspondence between the trace sizes from the

non-critical edge algorithms and the Lamport clock algorithms.

•	 The optimal non-critical edge algorithm generated extremely small traces

for mtxmuli, whereas, the other algorithms performed about average.

•	 The compressed access history algorithms outperformed the optimal algo­

rithms for sort. All ofthe other cases displayed the opposite, and expected

behavior.

•	 The programs that generated the largest traces (percentage wise) were

gauss, locus, pnei, and shpath.

•	 The optimal non-critical edge algorithm and the optimal Lamport clock

algorithm nearly always traced less than one percent of references. And

they never traced more than 5.12% (pnet) of references.

•	 The runtime overheads for join were unusually small.

•	 The overhead of the Lamport clock algorithms run a few percent faster

than the corresponding vector clock algorithms (except on flow 8.)

19

• The compressed access history algorithms displayed 50-80% of the over­

head of the optimal algorithms.

•	 The overhead figures are not linear with respect to the number of proces­

sors used.

• Adding processors nearly always resulted in an increase in	 the overhead

(except for join.)

• Many programs had runtime overheads of less	 than 50, even when eight

processors, and optimal algorithms, were used.

• The worst overhead figure was 125.57, from sort 8, with the optimal, vector

clock algorithm.

6 Discussion

6.1 What was Learned from the Results

6.1.1 Trace Size

As was expected, the Lamport clock algorithms outperformed the vector clock

algorithms. In fact, the respective clock conditions demand this. It was in­

teresting that the Lamport clocks had nearly the same advantage whether the

compressed access history, or optimal algorithms were used. The Lamport clocks

order enough events so the compressed access history, Lamport clock algorithm

outperforms the optimal, vector clock algorithm for some test programs. This

means that the extra ordering imposed by the Lamport clocks outweighed the

dependency information lost by the weak data dependence relation. The added

ordering information of Lamport clocks combined with the strong notion of data

dependence produced extremely small traces.

The non-critical edge algorithms also outperformed the corresponding vec­

tor clock algorithms, as expected. The interesting information was that the

20

optimal, non-critical edge algorithm displayed a greater advantage over the op­

timal, vector clock algorithm than the compressed access history, non-critical

edge algorithm had over the compressed access history, vector clock algorithm.

This is attributed to the fact that there are, usually, many more read-read races

than either read-write or write-write races. The increased frequency of detected

races, with the compressed access history algorithm, meant that the tail of the

dependency edge could not be pushed down very far in the compressed access

history, non-critical edge algorithm. The further the tails are pushed down, the

more races can be made redundant. The compressed access history, non-critical

edge algorithm displayed nearly the same performance as the compressed access

history, vector clock algorithm for all the tests but one (mtxmuft), where it had a

significant advantage. This advantage was also evident, in all the test programs,

with the optimal version of the non-critical edge algorithm. The strong notion

of data dependence leads to fewer races being detected, which are temporally

spread out. When the events, which are racing, are temporally far apart, the

tail of the added artificial edge can be pushed far down the execution graph.

These artificial edges can cross many critical path edges, which explains why

the optimal, non-critical edge algorithm displays a greater advantage than the

compressed access history algorithm.

There was an expected correspondence between the non-critical edge algo­

rithms and the Lamport clock algorithms, which was only partially supported

by the data. They were expected to have similar performance because they trace

similar information. The non-critical edges are added straight across the exe­

cution graph, and the Lamport clock algorithms use frontiers that lie straight

across the execution graph. The algorithms had similar performance for the

optimal versions, but were very different for the compressed access history ver­

sions. In fact, the compressed access history, non-critical edge algorithm had

trace sizes closer to the compressed access history, vector clock algorithm than

the compressed access history, Lamport clock algorithm. The opposite was true

21

for the optimal algorithms, were the non-critical edge algorithm was closer to

the Lamport clock algorithm.

The optimal algorithms nearly always produced many fewer traces than the

compressed access history algorithms. The exceptions to this (qs, sort) had very

few read-read races, which, when traced, caused other read-write, or write-write

races to not be on the critical path, and not be traced. In general, there were

far too many read-read races to get any advantage from this. In fact, for all the

programs but join, pnet, qs, and sort, read-read races caused at least 50% of

the traces, and usually were responsible for over 75% of the traces. All of the

read-read traces are not needed, strictly speaking, to properly recreate the data

dependencies during replay, so they can be seen as the overhead the compressed

access history algorithms have over the optimal algorithms.

As was noted in the algorithms section, when a race is detected in a Lamport

clock algorithm, the clock is 'bumped ahead' to be greater than that ofthe event

it raced with. It was interesting to study the size of these clock 'skips'. The

compressed access history algorithm concentrated most of the skips on very Jow

numbers. Most of the programs had a large number of races where the Lam­

port clock was only bumped ahead one clock value. The optimal algorithms

displayed a different behavior. The skips seemed much more evenly distributed,

and there were very few instances where clocks only skipped one clock value.

This indicated that the compressed access history, Lamport clock algorithm

traced many read-read races, which occurred at nearly the same time. Another

interesting point was that both algorithms had similar numbers of instances

where the clock skipped more than 1000 clock values. These large skips show

that races can occur between events that are temporally far apart in the exe­

cution. Also, those events are not read-read races, because they are captured

by the optimal algorithm. This implies that there are very few read-read races

from events which occur at very different times.

22

6.1.2 Runtime Overhead

Perhaps the most interesting data gained from these experiments was that trac­

ing all the references was faster than using an adaptive algorithm. This can be

attributed to several factors. First, the Sequent has a very efficient disk con­

troller. It would buffer all the traces written and dump them onto the disk as

each process would end. Trace file sizes were observed during several executions,

and would usually sit at zero bytes, until a process would halt, at which time

the trace size for the process would jump to its full, expected value. Programs

which have traces larger than the buffer would probably see more of an advan­

tage with the adaptive tracing algorithms. Second, the code for the adaptive

algorithms was not optimized. The only optimization was moving the 'write to

disk' out of the critical section. The critical sections were fairly large. There

was a significant amount of time waiting for the access histories to be released.

Third, the extra memory used by the adaptive algorithms, and the use of hash

tables for the access histories, caused many page faults. Finally, it is possible

that the processors were slow compared to the disk controller, so writing to the

disk didn't really incur much of an overhead penalty.

It is expected that, as processors become faster, the extra work involved in

adaptive tracing will be offset by the relatively slow operation of writing to disk.

A highly optimized adaptive algorithm, on a computer with very fast processors

would probably outperform a system that traces all references.

The compressed access history algorithms generally ran about 40% faster

than the optimal algorithms. As noted above, writing to the disk didn't seem

to incur much of penalty in runtime, so most of the difference can be attributed

to the complexity of the algorithms. In the optimal algorithms a 'read-race­

check' only checks the dependence of one event pair, but the 'write-race-check'

has to determine the dependence of each event in the readset and the writer,

and remove any readers ordered before the current write. This is much more

complex than the compressed access history algorithms, where all events are

23

tested against the single entry in the access history. The additional work is the

root of the extra overhead experienced with the optimal algorithms. Another

factor is the extra memory required by the optimal algorithms, which results in

more page swapping, and, consequently, higher overheads.

The Lamport clock algorithms run a few percent faster than the correspond­

ing vector clock algorithms. This can be attributed to the simplicity of updating

a Lamport clock, compared to updating a vector clock. Updating a Lamport

clock is performed by changing a single variable, but updating a vector clock is

performed by updating one variable per processor. Even when only two proces­

sors are used, it is twice as expensive to update a vector clock as it is to update

a Lamport clock.

In addition to measuring the real time overhead for the algorithms, the

processor and system time overheads were also recorded. In most cases the pro­

cessor time overhead was slightly higher than the real time overhead, although

adding processors generally made the processor time overhead grow quicker than

the real time overhead. The system time overhead was fairly close for all the

algorithms, and was only slightly lower than overhead of tracing all references.

For most of the test programs, the system time encountered was between 10

and 15 times slower than the un-instrumented versions.

6.1.3 Overall

It is easiest to choose the best algorithm by first discounting those with draw­

backs. The compressed access history, vector clock and compressed access his­

tory, non-critical edge algorithms trace too much information to make it worth

the increased runtime overhead. The optimal, vector clock algorithm is very

good, but it is out performed by the optimal, non-critical edge algorithm. Both

of the Lamport clock algorithms produce small traces and have a slight runtime

overhead advantage over the corresponding vector clock algorithms. Thus, there

are three 'winners', the compressed access history, Lamport clock algorithm, the

24

optimal, non-critical edge algorithm and the optimal, Lamport clock algorithm.

The Lamport clock algorithms do very well in terms of trace size and runtime

overhead, but they do have drawbacks. For instance, they can't reproduce all

consistent states of a program. Taking all this into consideration, the algorithm

with the most 'positives' and the fewest 'negatives' is the optimal, non-critical

edge algorithm.

6.2 Replay Mechanisms

Although implementing a replay mechanism was not part of this project, one

can not ignore that aspect when comparing the merits of the various tracing

schemes.

One method that has been proposed for replaying Lamport clock traced

programs is based on slice counters [3]. An array of counters, one per process, is

used to ensure that all events with Lamport clock values lower than the current

event have occurred. The slice counter contains the Lamport clock value of the

next event in each process. It is incremented by one if the event hasn't been

traced, otherwise it is set to the Lamport clock value of the traced event. A

process may only execute an event if the slice counters in all the other processes

are greater than or equal to the Lamport clock value of the current event.

This scheme has some big drawbacks. The most glaring is the runtime overhead

incurred by checking the slice counters for every event in the execution. Because

an array of slice counters is used, the inherent scalability of Lamport clocks is

compromised.

A system that would have much less overhead would verify the Lamport

clock value for an event only if the event is logged in the trace file. During the

tracing phase, there are no provisions for enforcing consistent Lamport clocks

at each event, therefore it seems a waste of time to enforce such conditions upon

replay. The accesses that are traced capture the data dependencies. Therefore,

enforcing the same data dependencies on replay will insure a proper replay.

25

This still has the drawback of depending on slice counters, and checking against

each process at each traced event. A further refinement of this method would

record which process a traced event was data dependent with. Then instead of

making sure the Lamport clock of the current process was consistent with the

clocks in all the other processes, one could merely enforce the condition that it

is consistent with the Lamport clock value of the event in the process it is data

dependent on. This restores the scalability, but the traces need to be larger to

record the process numbers.

The replay mechanism for the vector clock traces is similar to the mechanism

for replaying Lamport clock traces. In fact, it is simpler, because the local clock

is just incremented for each event. All the dependencies that were originally

traced, must be enforced during replay. At each event the player would check

to see if that event is the next event in the trace file. If it isn't the player

can process the event and go on to the next one. If it is in the trace file, a

dependence must be resolved. The serial number of the racing event is held

in the trace file. The player must wait until the serial number of the process

containing the racing event is greater than or equal to the serial number in the

trace file. This will satisfy the data dependence.

The same replay scheme can be used when the non-critical path edges are

traced. With the benefit that there is less of a chance that processes will have

to wait. By flattening the dependence edges in the execution graph, the clock

values traced are closer to the clock value of the event dependent on it. So, the

waits should be shorter. This means the replay will run faster than if edges,

which are exactly on the critical, path are traced.

It should be noted that the same replay mechanism would work for traces

made with the optimal algorithm and the compressed history algorithm. This

is because the compressed history algorithm has a weaker data dependence

relation. Any dependencies that are found with the optimal algorithm will

also be found with the compressed history algorithm. The replay phase would

26

just be enforcing dependencies that aren't necessary for correct replay. When

implementing a replay mechanism, it would be wise, and simple, to have it be

able to replay from traces generated by either algorithm. This would allow the

programmer to choose which tracing scheme to use.

6.3 The Probe Effect

No discussion on parallel debugging would be complete without a few words

about the probe effect. Any instrumentation that is added to the code can

potentially change the way a program interacts. In fact, this was encountered

during the implementation of the algorithms on the Sequent. The library was

dead locking, but when print statements were added to try to find out where,

the dead lock disappeared. The bug eventually was found through the use of

PDBX, the standard style debugger on the sequent, and careful scrutiny of the

code. This experience further reinforced the need for a complete set of parallel

debugging tools.

Although there are models that attempt to account for the perturbation

instrumentation introduces [4], no attempt was made to minimize its effects in

this project. Since research in perturbation analysis and trace and replay are

still in the early stages, it was felt that attempting to implement a combination

would not produce fruitful results in either area.

6.4 Future Work

There are many areas where this research can be continued. Most importantly,

the efficiency of the implementations can be improved. As stated before, the

overhead figures can be seen as worst case figures. Further reduction in overhead

could be produced with a more efficient hash table, or smaller critical sections.

Also, in the case of the compressed algorithms, the access history might not

have to be locked during the race check. This was not explored, but would

surely make the algorithms run much faster.

27

7

There are special cases where the algorithm can be simplified. Such as when

an execution is running on 2 processors. The algorithms could just keep track

of the most recent event on the other processor. The read set would only need

to know where the most recent reader was.

The amount of memory required seems prohibitive. As the set of access his­

tories grew to very large sizes, there were many page faults, and the throughput

of the algorithms declined. There is a lot of area where the size of the access

history for each variable could be reduces through encoding of information.

Another aspect that wasn't explored is the effect of grouping sets of variables

into aggregates. This is another are which could reduce run time overheads.

The reduction would come from the need for less memory to hold the access

histories, leading to less page faults. Although there might be more problems

waiting for locked access histories, when the access histories are used for a group

of variables.

Of course, the area most in need of future work is the replay side of the

system. This project did not implement any mechanism for replaying the exe­

cutions with the trace files produced. The problem was left for further research

because it was felt that the tracing scheme should be decided before the replay

side was explored. In other words, you can't play something if you haven't

decided exactly how its recorded.

Conclusion

This project explored the performance of six adaptive tracing algorithms. Each

method had its merits, and they all have some drawbacks. When all things are

taken into consideration, the algorithm that looks the best is the vector clock,

non-critical edge tracing algorithm. The trace sizes are very small. Though not

as small as those for the optimal Lamport clock algorithm. The overhead is

within a few percent of the less complex Lamport clock algorithm. The largest

advantage would be realized during replay. There would much less waiting for

28

8

other processes to reach events which had data dependencies. That is where

the Lamport clock algorithms give up ground to the others. Because races are

traced only when they are dependent on events in other processes with higher

clock values, traced events would generally have to wait for the other events

to occur. The compressed history algorithms can't compete as far as trace size

is concerned, but they have the advantage of requiring much less memory, and

only 50% of the runtime overhead. Replay would also be slower because all

the dependencies between readers would have to be resolved. In general, these

algorithms would work the best only when memory or overhead were of prime

importance.

Acknowledgments

I would like to thank Robert Netzer for his knowledge and guidance, without

which this project would not have been possible. I would also like to thank my

parents for their endless support.

References

[1]	 Leslie Lamport "Time, Clocks, and the Ordering of Events in a Distributed

System", Communications of the ACM, Vol. 21, Num. 27, (July 1978).

[2]	 Thomas J. Leblank and John M. Mellor-Crummey, "Debugging Parallel

Programs with Instant Replay", IEEE Trans. on Computers C-36(4) pp.

471-482, (April 1987).

[3]	 Luk J. Levrouw and Koenraad M. R. Audenaert and Jan M. Van Camp­

enhout, "A New Trace and Replay System for Shared Memory Programs

Based on Lamport Clocks", ELlS, Universiteit Gent, B-9000 Gent, Bel­

gium, (1994).

29

[4]	 Allen D. Malony and Daniel A. Reed "Models of Performance Perturbation

Analysis", ACM/ONR Workshop on Parallel and Distributed Debugging,

pp. 15-25, Santa Cruise, CA, (June 1991).

[5]	 Robert H. B. Netzer "Trace Size vs Parallelism in Trace-and-Replay De­

bugging of Shared-Memory Programs", Department of Computer Science,

Brown University, Providence, RI, (September 1993).

[6]	 Robert H. B. Netzer "Optimal Tracing and Replay for Debugging Shared­

Memory Parallel Programs", ACM/ONR Workshop on Parallel Debugging,

pp. 1-11 San Diego. CA, (May 1993).

[7]	 Robert H. B. Netzer and Barton P. Miller, "Optimal Tracing and Replay

for Message-Passing Parallel Programs," Supercomputing '92, pp. 502-511

Minneapolis, MN, (November 1992).

[8]	 Robert H. B. Netzer and Barton P. Miller "What are Race Conditions?

Some Issues and Formalizations", ACM Letters on Programming Languages

and Systems 1, 1, (March 1992).

[9]	 Larry D. Wittie "Debugging Distributed C Programs by Real Time Re­

play", SIGPLAN/SIGOPS Workshop on Parallel and Distributed Debug­

ging, pp. 57-67, Madison, WI, (May 1988).

A Appendix: Where the Code Lives

A.I ,Simulated Versions of the Algorithms

The code for the simulations on the SparcStation is in the directory

/u/rn/public/ess.

The algorithms are distributed in three files. race_check_eric.c contains the

code for all three compressed access history algorithms. The file r_cJamport.c

contains the code for the optimal, Lamport clock algorithm. The file r_c-vector.c

30

contains the code for the optimal, vector clock algorithm and the optimal non­

critical edge algorithm. The trace files are in the sub-directory 'traces'. There

is a makefile that compiles everything.

The simulator is run from the command line and accepts the following com­

mand line arguments.

• -b'bit shift value': This is used to simulate aggregate access histories. The

default is O.

•	 -d'debug option': This is the level of debugging information printed. 0

(the default) turns off debugging. 1 prints out the addresses and some

other information about the races traced. 2 prints out a full debugging

report.

• -q: This puts the program in quite mode. (default)

•	 -v: This puts the program in verbose mode.

• -a: Performs race checks using all six algorithms.

•	 -c: Performs race checks using the collapsed access history, vector clock

algorithm.

• -1: Performs race checks using the optimal, Lamport clock algorithm.

• -m: Performs race checks using the collapsed access history, Lamport clock

algorithm.

• -n: Performs race checks using the optimal, non-critical edge algorithm.

• -0: Performs race checks using the optimal, vector clock algorithm.

• -r: Performs race checks using the collapsed access history, non-critical

edge algorithm.

• -z: Measures some information about the types of accesses present.

31

A.2 Instrumented Libraries

The code for the instrumented parallel libraries is on topaz.cs.wisc.edu. It is all

contained in the directory

/usr2 /bart/netzer/races.replay2.

The include files are in the sub-directory 'h'. The test programs are in the sub­

directory 'test'. The instrumented code for the libraries are in the sub-directory

'instr', which contains the sub-directories 'libc', 'libpps', and 'libtrace', which

contain an instrumented version of the 'c' library, an instrumented version of

the 'pps' library, and the trace libraries, respectively. The different versions of

the source files for the trace libraries are in

/ usr2/bart/netzer/races.replay2/instr/libtrace.

Any modifications to the code to enhance performance would probably take

place in the 'instr/libtrace' directory. There is a makefile in 'libtrace' which

compiles the trace libraries, puts them into their own libraries and puts the

libraries in the /lib directory. The binaries for the libraries are in 'lib'. 'bin'

contains a version of the compiler, ccreplay, which instruments the code.

To compile a program using the tracing libraries you must do the following:

• Use ccreplay instead of cc.

• Set the include path to /races.replay2/h.

• Include the following libraries:

..... /lib/libc.a

- /lib/libpps.a

...../lib/libtrace_all.a or

..... /lib/libtraceJace_ov.a or

..... /lib/libtraceJace_ol.a or

..... /lib/libtraceJace_cv.a or

...../lib /libtraceJace_cl.a

32

There is a makefile with each of the test programs which produces an un­

instrumented version, a version that traces all references, and versions for each of

the four adaptive tracing libraries. Refer to these makefiles for more information

about compiling the programs.

33

Compressed Access History Algorithms
Program #

References
Gmpr

VG
Gmpr

Non-Grit
Gmpr

LG

Barnes 2 66887 4004 (5.99%) 725 (1.084%) 232 (0.347%)
Barnes 4 66004 7999 (12.12%) 1982 (3.003%) 630 (0.954%)
Barnes 16 79426 21709 (27.3%) 8385 (10.6%) 3938 (4.96%)

Barnes22 175671 2840 (1.617%) 1195 (0.68%) 257 (0.146%)
Barnes24 173340 11102 (6.405%) 4393 (2.534%) 1790 (1.033%)
Barnes28 173466 19972 (11.513%) 7625 (4.396%) 4038 (2.328%)

gauss 2 162023 27274 (16.83%) 23661 (14.603%) 664 (0.41 %)
gauss 4 162719 51574 (31.7%) 45899 (28.2%) 19291 (11.85%)

[gcd 2 I 478675 I 9058 (1.89%) I 8421 (1.76%) I 6394 (1.34%) I
join 2 35672 63 (0.177%) 37 (0.104%) 19 (0.053%)
join 4 35831 462 (1.289%) 307 (0.857%) 237 (0.661 %)

locus 2 1932827 37552 (1.943%) 22769 (1.178%) 6182 (0.32%)
locus 16 2530803 614120 (24.3%) 447600 (17.7%) 341274 (13.5%)

mp3d 2 127041 1336 (1.052%) 791 (0.623%) 164 (0.129%)
mp3d 4 127675 3983 (3.12%) 2133 (1.67%) 646 (0.506%)

mtxmult 2 400209 56744 (14.2%) 107 (0.027%) 57 (0.014%)
mtxmul4 400209 114404 (28.6%) 199 (0.05%) 155 (0.038%)

pnet 2 104298 9510 (9.12%) 5335 (5.12%) 1557 (1.5%)
pnet 4 139022 31509 (22.7%) 21502 (15.5%) 9094 (6.54%)

ptycho 2 112372 3718 (3.31 %) 2202 (1.96%) 392 (0.348%)
ptycho 4 336690 3649 (1.08%) 2474 (0.735%) 841 (0.25%)

qs 2 11040 22 (0.199%) 22 (0.199%) 13 (0.118%)
qs 4 22872 478 (2.09%) 452 (1.98%) 429 (1.88%)

shpath 2 24775 7206 (29.1%) 7033 (28.4%) 987 (3.98%)
shpath 2 3760213 1227179 (32.6%) 1224404 (32.6%) .38963 (1.04%)
shpath 4 100344 33443 (33.3%) 32470 (32.4%) 21447 (21.4%)

sort 2 14846 1 (0.007%) 1 (0.007%) 1 (0.007%)
sort 4 29278 12 (0.04%) 6 (0.02%) 8 (0.027%)

Table 1: Trace sizes from the compressed access history algorithms

34

Optimal Algorithms
Program #

References
Optimal

VG
Optimal

Non-Grit
Optimal

LG

Barnes 2 66887 201 (0.3%) 170 (0.254%) 102 (0.152%)
Barnes 4 66004 407 (0.617%) 358 (0.542%) 210 (0.318%)
Barnes 16 79426 1475 (1.86%) 1402 (1.76%) 871 (1.097%)

Barnes22 175671 461 (0.262%) 171 (0.097%) 145 (0.083%)
Barnes24 173340 2260 (1.3%) 773 (0.45%) 856 (0.494%)
Barnes28 173466 3489 (2.01%) 1107 (0.638%) 1050 (0.6%)

gauss 2 162023 20806 (12.8%) 197 (0.122%) 78 (0.048%)
gauss 4 162719 22362 (13.7%) 548 (0.336%) 266 (0.163%)

[gcd 2 1 478675 I 3764 (0.786%) I 1728 (0.361%) I 36 (0.007%) I
join 2 35672 61 (0.171%) 36 (0.1 %) 19 (0.053%)
join 4 35831 287 (0.8%) 140 (0.391%) 77 (0.215%)

locus 2 1932827 11257 (0.582%) 1282 (0.066%) 1436 (0.074%)
locus 16 2530803 88750 (3.51%) 12787 (0.505%) 11431 (0.452%)

mp3d 2 127041 625 (0.492%) 87 (0.068%) 97 (0.076%)
mp3d 4 127675 1293 (1.013%) 226 (0.177%) 208 (0.163%)

mtxmult 2 400209 2453 (0.613%) 1 (0.0002%) 2431 (0.607%)
mtxmult 4 400209 7207 (1.8%) 3 (0.0007%) 7078 (1.769%)

pnet 2 104298 2570 (2.46%) 2519 (2.42%) 1260 (1.21%)
pnet 4 139022 7272 (5.23%) 7194 (5.17%) 5944 (4.28%)

ptycho 2 112372 102 (0.091%) 5 (0.004%) 17 (0.015%)
ptycho 4 336690 762 (0.226%) 18 (0.005%) 16 (0.005%)

qs 2 11040 22 (0.199%) 22 (0.199%) 13 (0.118%)
qs 4 22872 452 (1.98%) 452 (1.98%) 429 (1.88%)

shpath 2 24775 653 (2.64%) 575 (2.32%) 312 (1.26%)
shpath 2 3760213 8973 (0.238%) 8072 (0.215%) 4243 (0.113%)
shpath 4 100344 3547 (3.53%) 3249 (3.24%) 2027 (2.02%)

sort 2 14846 3 (0.02%) 1 (0.007%) 2 (0.013%)
sort 4 29278 17 (0.058%) 5 (0.017%) 13 (0.044%)

Table 2: Trace sizes from the optimal tracing algorithms

35

Runtime Overhead
Program Time

Sec.
Trace
All

Opt
VC

Opt
LC

Cmp
VC

Cmp
LC

gauss 2 1.366 4.29 15.53 14.32 11.34 10.85
gauss 4 1.122 3.73 15.77 15.2 12.68 12.63
gauss 8 1.068 3.70 18.38 17.99 14.57 14.30

gcd 2 3.21 9.43 21.64 20.14 15.89 15.82
gcd 4 3.63 10.93 34.19 30.45 20.41 20.08
gcd 8 2.886 13.77 60.91 53.76 28.73 28.18

join 2 4.28 1.55 3.46 3.34 2.35 2.44
join 4 5.176 1.79 4.97 4.85 6.35 2.77
join 8 5.408 1.65 4.68 4.63 2.70 2.66

flow 2 5.664 17.3 56.22 49.78 47.85 47.82
flow 4 1.74 14.11 59.36 52.8 48.2 44.83
flow 8 2.23 19.8 118.52 120.21 91.18 82.09

mesh 2 2.65 16.15 75.37 70.12 38.72 37.94
mesh 4 1.874 15.69 93.98 87.66 46.29 45.01
mesh 8 1.552 14.76 112.69 105.78 56.87 55.23

mtxmult 2 1.644 7.70 30.98 28.24 22.17 21.44
mtxmult 4 1.054 6.88 37.66 35.95 30.32 29.74
mtxmult 8 .818 6.10 49.02 48.86 42.57 41.54

qs 2 1.436 13.27 51.81 47.15 32.48 32.34
qs 4 1.112 11.35 56.92 52.37 38.35 36.83
qs 8 1.014 10.36 63.81 59.78 44.73 42.78

shpath 2 5.656 3.85 23.43 22.42 10.17 9.82
shpath 4 4.084 3.42 33.68 32.56 13.93 13.44
shpath 8 3.618 3.17 47.81 44.23 18.48 17.98

sort 2 6.046 21.31 94.64 83.98 61.02 59.30
sort 4 4.746 20.43 112.02 96.60 76.58 75.36
sort 8 4.222 20.72 125.57 120.58 92.89 86.37

Table 3: Runtime overheads of the various algorithms

36

