
\

Replication in Spring:

A New Subcontract

Joshua S. Spiewak

Department of Computer Science

Brown University

Submitted in partial fulfillment of the requirements for

the degree of Master of Science in the Department of

Computer Science at Brown University

May 1995

~rv;
Professor Thomas W. Doeppner

Advisor

1 Introduction

It is impossible to jump into the meat of a paper without understanding its title. And so, by way of
introduction, I will explain what meaning Replication in Spring: A New Subcontract holds. First I
will give some background as to what Spring is, other than a season. Next I describe what a
subcontract is and give an example. Finally, I will begin to describe replication, and its connection
to Spring and subcontracts. My description of replication will continue through this paper as the
issues of how to implement it, and the details of the project are discussed.

1.1 Background
Spring is an experimental development system consisting of an object-oriented, distributed
operating system and tools to build distributed applications within this environment. Applications
generally follow the client-server model where servers provide functional objects for client use. In
order to express the client interface to these server provided objects, Spring provides its own
interface definition language (IDL) and a set of tools for generating both the shell of the server
implementation, and remote procedure call (RPC) stubs for both the client and the server. These
tools are contoimpl and contocc respectively. The RPC stubs generated are generic, that is, they
do not use a particular RPC mechanism. Instead, these stubs make use of another layer called the
subcontract. This name derives from the interface being called the contract, i.e. the contract
between the client and the server. It is the subcontract that implements the invocation portion of
RPC mechanisms. The goal of separating the subcontract from the stubs was to allow different
RPC mechanisms to be easily added to Spring, and for application authors to be able to make use
of different subcontracts relatively easily.

Every subcontract must provide a standard interface, of which the generated stub code makes use.
The interface consists of a subcontract server class, a local class, and a client class. The server
class is instantiated with every server side object. It provides handling for invocations by the
client. A subcontract's local class, at a minimum, provides a conversion routine that returns a fat
pointer, also called an object reference, to the implementation of an object. What actually occurs
is, of course, dependent on the subcontract. And lastly, the client class provides marshalling
routines, one to copy an object and the other to consume it, as well as unmarshalling and invoke

routines1. Again, the information actually marshalled and unmarshalled depends on the
subcontract, but generally speaking some mechanism to allow the client to invoke functions on
the implementation is sent.

The most basic subcontract is aptly named simpleton. It meets all of the requirements of
subcontracts and no more. The common subcontract, used by the majority of objects in Spring, is
the singleton subcontract. It improves on the simpleton subcontract by expanding the role of the
subcontract local class. Rather than blindly returning a fat pointer that uses the client class, as
does simpleton, the conversion routine returns a fat pointer using the local class. The benefit is
that any invocations on the fat pointer while it is still in server space do not need to travel via the
normal invocation route of marshalling the arguments and placing the call through a door. Instead,

1.	 The marshalling and unmarshalling routines are for object references only. Built-in types are not
marshalled by subcontracts.

1

a fast local call can be made. Most of the other, more complicated, subcontracts also make use of
this idea. Figure 1 depicts the three distinct layers of functionality on both the client and server
sides of a distributed Spring application.

Client Application

Client Stubs

Subcontract Client Class

Server Application

Server Stubs

Subcontract Server Class

j

invocation

Figure 1: Components of client and server, showing a method invocation

1.2 Overview of Replication
Clearly, once applications moved into the client-server model, replication became a very desirable
feature. If there is only one server for multiple clients, and it crashes, all the clients are unable to
access their information. Further suppose part of the network breaks down. Without replication,
clients are again without their information. Therefore we have multiple servers. Other reasons for
replication's desirability are load balancing and fast communication between particular machines.
Thus it seemed natural that there should be some form of object replication in Spring, since
distributed programming comes so easily. Further, this idea of replication fits in well with the
notion of subcontracts. In fact, a very simple replicative subcontract, called replicon, was written
by the creators of Spring. However, it was not kept update and was eventually completely
discarded. The final motivation for creating a subcontract that allows replication was to discover
how easy or difficult it truly is to create new subcontracts in Spring and make use of them.

There were very few requirements of the replication subcontract (named repleon, as opposed to
replicon), and while they are presented here, their full description and rationale are left for the
next sections. First, objects were divided into two categories: master and slave. A master object is
the writable copy of an object, while a slave object is a read-only copy. So there is a server that
contains the master replica of an object, and other servers that have slave replicas. Further, each
client object reference, also referred to as a fat pointer, must have associated with it information to
allow the subcontract to contact those servers that have a copy of the implementation of the
object. Lastly, the subcontract needs some means of distinguishing between operations that
change the state of the object and those operations which do not alter the state of the object. This
is the notion of read and write operations. Knowing what type of operation is being invoked will
allow the subcontract to decide whether it should contact the master replica of the object or
whether any replica will do. Given this server information and knowledge of which operations
need to contact the master object and which may contact any replica, a mechanism for invocations
and maintenance of the server list must be provided. This mechanism is known as management
objects, and described in full in Section 3. Given these minimal requirements for the subcontract,
the actual responsibility for the replication and updating of objects is left to the server. The
subcontract needs only to provide the ability for server objects to identify themselves, and
correctly marshal and unmarshal this information so the client subcontract may use this for
invocations.

2

2 Design

Over the course of designing this system of replication, many questions were raised and decisions
made. What follows is first a brief overview of the design followed by a chronicle of the design
process and a discussion of the rationales behind the design decisions.

2.1 Overview
Earlier, the repIcon subcontract was described as having information that allowed it to contact
servers in order to invoke methods on objects. This information consists of three things: an object
identifier, a list of servers, and a list of write operations. The subcontract is given this information
when the object is created. The replication system distinguishes between the master replica and
slave replicas of objects. There is only one master replica, and all write operations are directed to
it, thus the need for knowing which are the write operations.

In addition to the replcon subcontract, there are two other pieces of the replication system: the
management object and the server. Figure 2 shows the general structure and relationship of the
replication system. This figure will be used later with more detail to explain the internals of the
system and invocations.

The management object is a representation of a replicative server. It is an object interface to the
server that allows clients of the management object to invoke methods on the server. The
functionality provided by the management object is used both by the subcontract and servers
other than the one represented by the management object. Its interface allows servers to replicate
and update objects to other servers. These methods transmit an object's state and an object
identifier. The other part of the management object's functionality allows the subcontract to get a
handle to a particular replica of an object as well as update the subcontract's information on the
current set of servers for an object. In both methods, the subcontract must make use of an object
identifier. The handle is used to invoke methods on the object.

Client Name Server Server

r-------, r-------,
Client Application Management Object
I ContextObject Management

Reference Object

ObjectI·~~I
 Implementation

Factory Object
Client Stubs Server Stubs

~
L. .Jre.l?lcon re.l?lcon srvr

L. .J L. .J

Figure 2: Structure of replication system

3

Each server is given a unique name. Using this unique name, servers create and bind their own
management object into the namespace. This makes it possible to think of a set of servers as a list
of paths in the namespace. This idea is used both by the server as it perfonns replication of its
objects and by the subcontract as its information about the servers on which an object can be
found. Also using its unique name, servers create an identifier for each object created on the
server. This identifier is given to the subcontract for use when contacting servers.

2.2 Issues
There were several questions and problems that led to the creation of what are called management
objects. First, there was a need for a mechanism to actually replicate the objects. That is, some
means of transmitting the state of objects from one server to another. Also needed was a means of
determining the current set of running servers. This was necessary in order to discover new
servers to send replica objects. The second problem could be solved by maintaining a list of active
servers which was composed of path names. But paths to what? The answer was to create
management objects to provide the replication mechanism and to use paths to their location in the
namespace to maintain the list of active servers. This led to requiring that each server be identified
by a unique name, so that when the management object was bound into the namespace there
would not be conflicts.

One of the very first questions posed was whether the system would be replicating objects or
entire servers, and exactly what would be replicated in either case. If replication is on the scale of
the entire server, should every object in a server be replicated wholesale? And if so, should a
server be able to specify if it can be replicated? If, on the other hand, objects were to be replicated
on an individual basis, was every object to be replicated? The initial plan was to have a single
master server and multiple slave servers. Objects would be replicated from the master server to
the slave servers. All operations that altered the state of the object would have to use the copy of
the object on the master server. These operations are called write operations, while operations not
affecting the object's state are read operations. This model made certain things simple because
only the master server had work to do, but the model suffered because the servers would have to
have different implementations. Instead, it seemed better to have generic servers and distinguish
between master and slave replicas of the object itself.

In order for objects to be updated and so the replcon subcontract may refer to all replicas of an
object by the same means, there must be some way of referring to objects by a handle. The servers
may then store their objects and use the handle as a key to look them up when necessary. Because
the object will exist on several servers, and the subcontract will refer to the object by the same
handle on each server, obviously the handle must be unique not just to a particular server, but
across all servers. Each object is therefore referred to by an identifier constructed from the name
of the server on which it was created and a numeric tag assigned by the creator server. The
combination of the unique server name and tag number that increases with each object created
gives each object its own unique name.

When a server crashes and the master objects it contained are no longer available, it might be
necessary for some replica of those objects to become the master. In this case, it seemed natural
that the name of the object would then be changed. Since originally it contained the name of the
server on which it was created, i.e. the location of the master replica, the base of the object's new

4

name would be the new location of the master replica. However, this approach caused problems in
updating any bindings of the object in the namespace as well as any clients holding references to

the object. Any time the master object changed servers, it would change names and the binding in
the namespace would have to be rebound. More difficult to deal with is updating clients. Due to
the fact that servers have no knowledge of what clients it's objects have, it would be impossible to
inform all clients of an object that the object's identifier had changed. The solution was to
maintain a separate notion of object's name and the list of servers where it exists. The name of the
server that forms the base of the name of the object has no bearing whatsoever on which server
contains the master replica.

So the server on which an object was created contains the master copy. But how do objects get
created in the first place? Objects can be divided into two categories, they are either factory
objects or functional objects. A factory object is one that has the ability to create other objects,
whereas a functional object does not. Typically a server will create a factory object and bind it
into the namespace, with the expectation that clients will resolve the factory and use it to create
functional objects. The question is whether the create method is a write operation that needs to
contact the master replica of the factory, or a read operation that may contact any of the replicas of
the factory. Clearly if the creation method is a write operation, then whichever server creates the
factory, that is to say the server containing the master replica, will also contain the master replica
of every object the factory creates! This defeats the entire purpose of having the master replica of
objects located on different machines. The new master object could be migrated to a random
server, however the creation method of factories is most easily treated as a read operation that
may contact any of the servers which has a replica of the factory. Figure 3 depicts an example of
the interaction between factory creations and replication of both factories and functional objects.
We begin with three servers and the first one creates a factory, it is presumably bound into the
namespace. In Figure 3b, the factory has been replicated from Server I to Servers 2 & 3. Two
clients each resolve the factory object from the namespace. The clients then invoke the create
method on the factory. Since create is a read operation, the invocation may go to any of the
servers, which we see in Figure 3c. Finally, the newly created functional objects are replicated.

In the vein of discussion of read and write operations is the decision of what paradigm to use for
write operations. This decision has implications as far as how to propagate updates of objects as
well as keeping replicas of objects consistent across multiple servers. Three distinct methods for
write operations exist, each with their pluses and minuses: write to any, write to all, and write to
one. Writing to any server is perhaps the easiest to implement from the client's perspective, there
is no distinction between read and write operations and the need for master copies of objects is
eliminated. However keeping the all of the replicas consistent becomes very hard, if not
impossible! Sending the write operation to all servers was another option. This eliminates the
need for the servers to do update work since the client is carrying out its operation on each replica,
and again there is no need to distinguish between master and slave replicas of an object. Both of
these methods meant more work for the subcontract and less flexibility for the implementor of the
server, as well as difficulties with consistency of the replicas and update propagation. Therefore
the method chosen was to send write operations to the single server containing the master copy of
the object. It is then the server's responsibility to update the replicas of the object.

5

Server 1 Server 2 Server 3

...
_19
rj~~I~~~>
 _II~

Figure 3a: Startup with three servers, Server 1 creates a factory

Server 1 Server 2 Server 3

_.~f@li~II:%~ -I~ !VF1lctOb~A ~ctObV
'­ J

Figure 3b: Replication of initial factory object

Server 1 Server 2 Server 3 -

Figure 3c: Two clients contact the servers and create two functional objects

Server 1 Server 2 Server 3

.il~JP GctObV GctObV

.~~I. -~ct00 "A~I.

\ ------

ct00.ctObZY ~ctObY E
1 1\ \.. J

Figure 3d: Tbe functional objects are then replicated

It has been mentioned a few times that each object has a list of servers associated with it, or rather
a list of paths to management objects to the servers containing the replicas of the object. This
solution was originally thought of as a first pass to get the project working. The major competitor
to this method is that used by the replicon subcontract, the original replication subcontract.
Replicon maintained a list of door identifiers to the copies of objects on various servers. This
method is simple, but there are actually a number of benefits to using a list of paths over a list of
door identifiers. First, the management objects were already necessary for communication
between servers and for figuring out what servers were available to replicate to. Thus we were
already dealing with paths. Second, it is cleaner for the server code which is responsible for

6

replication and updating to manipulate lists of paths rather than low-level door identifiers. Lastly,
if a server crashes and is restarted, having a list of paths gives clients the opportunity to not notice
any change. When the server is restarted, many of the objects originally on the server may be
returned, thus clients that happen to not contact the server while it is crashed might be able to
continue with no knowledge of the crash. On the other hand, if a list of doors were maintained, as
soon as the server crashed all the doors to its objects become invalid.

Regardless of whether lists of door identifiers or lists of paths to management objects are used,
there is the issue of making sure that the client has the most up-to-date version of the list. This is
important because as servers crash and new servers are started, the set of servers holding replicas
of an object is fluid. In fact, during the lifetime of an object the set of servers may completely
change, that is no server to which the object was initially replicated holds a replica in the end.
Thus it is necessary to keep the client up-to-date, otherwise the client may find itself unable to
locate a replica of the object to use. There are two choices in this matter: either the client may
contact the subcontract of one of the servers in the object's list, or it may contract any server
directly via the server's management object. In order to implement the first method a door
identifier to the object on a particular server would have to be kept around. And while using the
door would be very quick, it may not be desirable to keep a door identifier lying around for
similar reasons as those mentioned in the previous paragraph. In addition, it would mean that
every time a change to the list of servers for an object is made, the subcontract of each of the
copies of the object would have to be informed. The alternative method contacts the server
directly, and since the client side of the subcontract is already contacting the server to retrieve a
door identifier to the object for invocations, this additional call is inconsequential. The next
question is when should this request for an updated list be made? Certainly not so infrequently
that there is a high probability that all the servers in the current list have become invalid. And so
rather than creating an intricate solution to a tangential problem, the request is made after every
invocation on the object by the client.

It is interesting to note at this point what structure the list of servers takes. Typically an object will
have a master replica. Somehow the location of the master replica should be distinct in the list of
servers. At times, however, the server containing the master replica may crash, and temporarily
there may be no replacement master replica. So whatever form the list of servers takes, and
however the updating of the list occurs, it must include the ability to identify one of the servers as
containing the master replica and be able to change the state of whether there even is a master
replica. The answer is a list that is simply an array of strings, the first entry representing the server
containing the master replica of the object. When the server containing the master replica has
crashed, either the client or the server realized the condition first. If the client side of the
subcontract recognizes this state, it eliminates the first entry and marks the object as not having a
master replica. If the servers recognize the situation first, then when the server list is updated a
flag is returned to indicate that there is no master for the object. At point later in time, when this
situation is resolved, the updated list will return a flag indicating that the first entry in the list is
indeed the location of the master replica.

The next major design issue was how to make invocations work. The client side of the
subcontract had an object identifier and a list of servers. It could also get a handle to the
management object for any of the servers. But how would it actually get the method identifier and

7

arguments from the client to an appropriate server? The first idea was simply to use the
management object and call an invoke function with the object identifier, an identifier for the
method, and the method arguments. This would have required marshalling the arguments to be
sent, and somehow dealing with the return arguments from the method. Essentially this idea
would require re-implementing the built-in mechanisms that Spring already provided! What was
really desired was to take the object identifier and management object and obtain a reference to
the object on a particular server and then to make a normal invocation. But how would the
management object method be able to return an appropriate object reference when there might be
many different types of replicated objects? This problem seemed similar to that of contexts.
Context contain many different types of object references, and in order to bind and resolve one
must make use of a templated helper class naming. So the next idea was to create a similar helper
class for management objects. There would be a getObjRejmethod that would take a management
object and object identifier. The class would be templated on the object reference. Again, there
was a problem with the approach. The object reference was still using the replication subcontract,
and so an invocation on it would simply recurse. To fix this it would have been necessary to create
to types of object references for every type of replicated object: one using the replicated
subcontract and the other using the singleton subcontract. At this point a major simplification
became clear: rather than getting an object reference to a particular copy of the replicated object,
retrieve from the server chosen a door identifier to the object on the server. Thus the need for a
helper class was eliminated, and the method of the management object was simply getObjDoor
with a single parameter of the object identifier.

One of the initial design questions was how to transmit objects to other servers to be replicated
and updated. What was desired was some method of capturing the state of an object in a form that
could be sent via a call to a management object. Writing a simple wrapper around an array of
bytes and the number of bytes seemed to be a starting point. This method is known in Spring as
pickling an object. Fortunately, it turned out that Spring came with its own pickling and
unpickling routines for a class called pickle-Jar. Once one created an instance of a pickle-Jar, one
could add basic data structures such as integers and strings to it. Thus all that was necessary was
to create pickling and unpickling routines for each replicated object and make sure that the
unpickling removed the information in the same order in was inserted.

The last major design issue is why so much of the functionality of this replicative system resides
in the server application rather than the replication subcontract. The main rationale for giving so
much responsibility to the server is to allow the server as much flexibility as possible. The author
of servers should be able to implement replication in whatever manner they choose, making use
of the provided tools. Thus the subcontract is left with little responsibility, and little functionality.
What would have been ideal is to create a generic server that implements as much of the server
requirement as possible, giving the author of a server the option of inheriting existing
functionality or implementing everything themselves. Unfortunately, the design of the server did
not quite reach that stage.

3 The Project

The pieces for this replicative system fall into four areas: the replication subcontract, the

8

- - - --

management object interface, replicated objects, and server requirements. Much of subcontract
has already been discussed at a high level, but now will be detailed. The management object has
been described in conjunction with the subcontract, but also is pivotal for the replication and
updating of objects, as well as for administrative tasks. Replicated objects should all have similar
interfaces and basic functionality. Lastly, a server for replicated objects needs to have certain
functionality to make the whole system work. Figure 4 shows the structure of the system,
detailing what information the subcontract holds.

3.1 Replication Subcontract
Perhaps what lies at the heart of this project is the question of what it takes to create a new
subcontract, and in particular, a subcontract that handles replicated objects. Earlier it was
mentioned that the subcontract provides the ability for server objects to identify themselves. This
ability is implemented through an API of four calls to the server class of the subcontract:

• void set_id(string object_id)
• void set_list(array_string server_list)
• void set write ops(array int write ops list)
• door_identifier get_did()

The first method, set_id, which gives the subcontract the object's unique name. In order to attach
the list of servers to the subcontract's notion of the object, there is the set_list call. The array of
strings is not truly of server names, but of paths to each server's management object in the
namespace. For identification of the write operations, set_write_ops is given an array of method
identifiers. The author of the server only puts in the array those identifiers generated by contocc
that correspond to write operations. The identifiers are of the form of
<module>_<interface>_codes:.f_<method> where <module>_<interface>_codes is a class and

f_<method> is part of an enum contained in the c1ass2. Lastly, get_didO returns a door identifier

Client Name Server Server

r-------, r-------,
MgtObj ContextClient Application

I

Object

Reference
 I·~~I

Object
1mplementation

Factory Object
Client Stubs Server Stubs

~ I
replcon L J repIcon srvr

Object Id Object Id
Server List Server List
W-opsList W-ops List

L J L J

Management
Object

Figure 4: Structure of replication system

9

to the object. This last call is used in conjunction with the management object for invocations.

Underneath the interface to the object implementations is the functionality of the subcontract.
Rather than attempting to create the subcontract from scratch, the replication subcontract was
modified from the source of the singleton subcontract (refer to Section 1 for the description of
singleton), thus it provides the subcontract local class and the ability for fast local calls on the
server. In fact, the only parts of the singleton subcontract needing to be changed were those
dealing with marshalling, unmarshalling, and invocation. Specifically, the marshaCconsume and
marshaCcopy routines in both the subcontract local and client classes need to marshal the object's
identification, list of servers, and list of write operations. Similarly, the subcontract client class
unmarshal routine needs to unmarshal the same information. The most complicated addition to
make replication work was the client class's invoke method. Based on the method being a read or
write operation, invoke chooses an appropriate server from the object's server list. If the method is
a write operation, and the server list does not contain a server for the master object, an error code

is returned. And of course, if there are no servers left in the list, an error code is returned3. Once a
server has been chosen, its management object is resolved from the namespace and is used to
obtain a door identifier to the object in question. If either the resolution of or the invocation on the
management object fails, the server is eliminated from the list and another is chosen. Once a door
identifier to the object is obtained, the invocation is actually made. If the invocation fails, another

server is chosen and the process repeats4. After the invocation returns, another call is made on the
management object used to get an updated version of the server list for the object. Using Figure 4
as a model, Figure 5 depicts the flow of a typical invocation.

Aside from the minimal modifications to singleton to make replication work, there were two
somewhat intricate issues. First, the replication subcontract needed a type identifier. Normally a
type_id is generated for an interface by contocc, but the subcontract does not have an interface.
The solution was to create, by hand, a typemgr file to generate the appropriate type_id. The
guideline used for this file was the entry in /sys/interjaces/spring/types.tm for the singleton
subcontract. The second issue regards learning of unreferenced objects. In the standard
subcontracts, when the client handle to an object "goes away," the reference count on the server's
door identifier for the object is decreased. When the count hits one, the server subcontract class is
informed that the server's reference is the last remaining. The author of the object has the option
of handling this by overriding the _unreferenced method. In order to be able to clean up after the
objects properly, a door must still be marshalled with the object even though it is not actually used
for any other purpose. This is not an atrocious solution, but neither is it entirely satisfactory since
it may not work in all circumstances.

2.	 Here, <module> refers to the name of the module defined in the .ittl file, and <interface> refers to an
interface, defined in the module, that is inherited from the replicated object interface. See Appendix E for
an example of an .ittl file.

3. The correct reaction to this is to search the namespace for management objects, contacting each in tum,
and asking if that server has a replica of the object in question. Only if all of the servers answer in the
negative should the invoke method return an error code.

4. Instead of simply checking the fail condition, it should detennine if it is a contract fault of some fonn, or
a higher level exception that should actually be returned to the user rather than attempting the same call
on another copy of the object.

10

I

Client Name Server

r-------, r-------,
~lient Application

Object
Reference

I

I MgtObj Context

iI.• ~ ~ I
I I /'

Client Stubs : 1) IJvoke ,,' I Factory Object

I ~ III ,,'" : ~
'-- ---1.,_, ~

re Icon 'J',) I,.........:..::.=-__....._, 2 ResolvtLharp.!L.3_
barney_IIl1' I - ­

barney-I, harpo~3 I

W-ops List I

I
L. .J

II
I

- - .J

Server: harpo_3

Management
Object

Object
Implementation

Server Stubs

I_---J

reolcon srvr

barney_Ill?
barney_I, harpo_3

W-ops List

L .J

Figure 5a: Diagram of an invocation. Step 1, the client calls a method on an
object reference it holds. Step 2, the replcon client class chooses
harpo_3 and resolves it management object from the namespace.

Client

r-------,
,Client Application

Object
Reference

Client Stubs

1_­
reoIcon

barney-l/17 i
barney_I, harpo_3

11 ~-?~~ ~~s! _~
L .J

Name Server

r-------,
M Ob' Context I

II I<)()I I7:l:I II ~
~ rt:L.;I , ,

'--------....."t'
" , I

Factory Object' , I
,,' I

~ , , , I
" IL':.... .J

",'3) getObjDoor(barney_1/17)
"

:~~'. _...4} !J.s~ ~.??~ !~r_~~~~a.ti_o~ __ .

Server: harpo_3

I

I ~agement
I Object

I Object

I Implementation

I I

I Server Stubs I

I

I

I

5) IIn~Oke on implemen~tloDl
I ' Ireplcon srvr '

: barneY-l/17:
barney-I, harpo_3

:. W-ops List :
L .J

Figure 5b: Step 3, the replcon client class uses the management object to contact
server harpo_3. It sends the object identifier, barney_I/I7, and is
returned a door identifier to the replica on harpo_3. Step 4, using the
door identifier, the subcontract client class contacts the server class to
perform the invocation. Step 5, the subcontract server class invokes
the method onthe implementation of the object.

11

3.2 Management Object
Aside from the interface required for the subcontract client class to work properly, there are two
other types of communication to servers that are necessary: server to server and administration to
server. In the first case, clearly servers need a communications channel to each other for the
replication and updating of objects. In the second case, administrative methods for informing

servers of other, crashed servers, and shutting servers down cleanly were desired5. Coupled with
the need mentioned earlier for a mechanism for invocations and updating the server list of client
objects, the interface for management objects was created.

As mentioned earlier in Section 2.1, management objects are object interfaces to servers. The idea
is that every server for replicated objects would create a management object to represent it. Then,
as a part of replicating and updating objects, each server would invoke operations on other
servers' management objects. In addition, subcontract client classes would be clients of server's
management objects, as would the administration program. The implementation of the
management object was divided into two parts: behind the scenes work encapsulated in a library,
and an API that each server that creates a management object must provide. The reason this is
necessary is to separate the error checking and data manipulations from the true work that the
server must perform. To aid in the error checking, a function was added to the API the servers
must provide to check that the server contains a replica of an object. The client interface to the
management object is in mgtobj.idl in Appendix A, and a description of the server API is part of
mgtobj_impl.h, the relevant section located in Appendix B.

The two major implementation issues of management objects centered around the types one is
able to use in .idl files. It was discussed earlier why pickling and unpickling were the methods
chosen for transmitting objects for replication and updating, and therefore Spring's pickle-.Jar
type was used as the data structure. However, pickle-.Jar does not have an interface defined, nor
the functions necessary to allow it to be used as a type in an .idl file. The easiest solution was to
construct a raw_data structure from the contents of a pickle-.Jar, and since raw_data was a type
usable by interfaces, transmit the information in that form. In order to accomplish this, it was
necessary to alter the pickle.h file to make conversion routines to and from raw_data public
instead of private. The other difficulty encountered with types in .idl files had to do with returning
a door identifier to an object. Again, door_identifier is not a type that can be used in an interface
file. Worse still, there are separate areas of the marshal buffer for general data and door
descriptors. This meant that it was not possible to disguise the door_identifier as another data

type, since it would not be returned in the proper section of the marshal buffer6. The solution in
this case was to modify the stub code generated by contocc for the management object. It was
necessary for the server side of the mgtobLMgtObj::getObjDoor(string) call to marshal the

5.	 In fact, there is no other mechanism for cleanly shutting down servers. Because there is no signal
handling, it is not possible for a server to clean up after Duke is run on its process, or Control-C is hit.
With this method of shutting down, it is necessary for the server providing the management object to
allow the shutdown call to return before it actually exits. The alternative is that the server process exits,
causing a contract fault to be returned on the shutdown call.

6. A door_identifier is simply an index into the process's door table. If the door_identifier were not returned
in the correct section, the kernel would not translate the door from the server's door table to the client's
door table. In this case, the client would have a useless index.

12

door_identifier returned by srvr_getObjDoor(string), and for the client side to correspondingly
unmarshal the door_identifier. In turn, the client side would then simply return the value
contained by the door_identifier. Excerpts from mgtobj.cc that include these stub code
modifications can be found in Appendix F.

3.3 Replicated Objects
The requirements of a replicated object can be seen from two different perspectives: the client
application's and the server application's. There are certain public routines that a client should be
able to invoke on all replicated objects, such as setting how frequently updates should be made to
slave copies of the object. This contrasts with the private routines that servers would like to
require of all replicated objects, such as the ability to pickle an object, create an object from a
pickled state, and updating an object from information in a pickled state. Two types of inheritance
are called for here: interface and implementation. The public interface, that to be used by clients
of the object, is encapsulated into replobj.idl, found in Appendix C. This interface is interface
inherited by every replicated object in its .idl file. The private server implementation interface is
defined in RepIObj.h, found in Appendix D, and should be inherited by each object's C++ class
generated by contoimpl.

3.4 Server Requirements
At first glance it may seem that there is little required of servers, only that they provide
management objects. Yet, as discussed earlier, most of the work of replication is left to the
servers, and in fact a great deal is expected of them. The requirements come in three flavors:
startup, runtime, and miscellanies.

It was already mentioned that servers need unique names in order to identify their management
objects and to aid in uniquely identifying the objects created on that server. In addition to a unique
name, it is required that there be only one initial server. An initial server is a server that binds
objects (other than management objects) into the namespace at startup typically the objects are
factory objects. Limiting the initial servers to one is necessary to simplify startups. If every started
server attempted to create and bind a factory to the same location, chaos would ensue and many
objects would be unnecessarily replicated. In line with the issue of an initial server is the
replication of the objects the initial server creates and binds. Clearly, if the object is bound before
being replicated, any client resolving the object will know only about the initial server to begin
with. If the initial server ever crashes, the client will have problems. Servers must address this
issue in some way. Finally, upon startup each server, whether initial or not, must create and bind
into the namespace a management object.

Whenever a new object is created it must be given a name unique to all objects across all servers
and stored such that it can be found with the name as a key. As mentioned several times
previously, the server must provide an implementation for management object methods (see
Appendix B). And finally, the server must have a thread to check for new servers, replicate objects

as necessary, and update those objects needing to be updated7.

7. Actually, two threads might be even better. Checking for new servers and replication could run in one
thread, and updates could be made in the other.

13

The last set of requirements have to do with replicated objects and administering the servers.
First, replicated objects must make calls to the repleon subcontract upon creation in order to set
their object identification, server list and list of write operations. Second, some form of
administration program must be written. One of the hardest questions in distributed computing is
determining when another machine has crashed or is just slow to respond. Rather than attempting
to address this question, clients are informed when it might be the case that a server has crashed.
It is then left to the administrator to confirm this. If a machine has crashed, the administrative
program should provide the ability to inform the other servers. In addition to being able to inform
servers of crashes, the administrative program should at a minimum allow for shutting down
servers.

4 The Prototype

The prototype used the dbex example from the Spring course, with some alterations. Dbex is a
simple database program. It implements a factory which creates collections of name-value pairs.
In addition, collections may create iterators to iterate through their contents. The interface for
dbex is in Appendix E. This program was chosen to be the prototype server for three reasons: it is
conceptually simple, it has a straightforward implementation, and it provides objects that one
would want to replicate. In addition to the implementation of the functionality of the dbex
interface, the prototype met the requirements of servers of replicated objects. The rest of this
section is in two parts. First we discuss what the prototype does correctly. Following that, we
bring to light a number of things it doesn't do quite right.

4.1 Highlights
The prototype consists of three components: the client, server and administration programs. The
client program does nothing any differently than client programs using singleton objects; the
replication is completely hidden. The administration program does a little more than the
minimum of contacting servers to shutdown or concerning crashed servers. In addition to these
requirements, the administrator is able to remove management objects from the namespace,
remove the context that contains the management objects, and remove the initial factory that is
bound into the namespace. Lastly, the server program is where all the pieces come together.

When the server starts up, it takes two required arguments and one optional argument. The first
two arguments are a unique server name and a number of times to replicate objects created on the
server. The optional third argument is a flag to signify that this server is the initial server. Given
this unique name, the server makes sure that a context for the management objects exists in the

namespace8. If the context already contains a management object with the same name given on
the command line, the user who started the server (typically the administrator) is asked if they

would like to replace the management object9. Once the management object is correctly placed
into the namespace, the server creates a factory object if it is designated an initial server. The last
thing the server does is to become a spring server with the spring_lib::become_server call.

8.	 The context was created in village/services/dbex_mgt in order that all servers could access it. It is
possible that with replicated contexts a more interesting method for this might be found.

14

During its execution, the server makes use of its name to give objects it creates a unique name.
The server concatenates its name and a numeric tag to create an identifier for each object. The
numeric tag is made persistent by storing it in a file with the server's name. Thus when a server
returns after having crashed it does not reuse object names which might result in conflicts with
objects that still exist on other servers. Every replicated object, either factory or collection, is then
stored in a table, keyed by the object identifier.

4.2 Lowlights
There are some unfortunate shortcomings of the dbex prototype. First of all, it was not actually
tested over several machines and with network failures. Spring was only installed on one
machine, the other intended machine having unsupported hardware. Presumably the system
would have handled this situation well, since it is the administrators responsibility to determine
whether a machine has actually crashed or not. Another major drawback is that dbex as a system
does not have clients making heavy use of the same replicated object. This situation is interesting
in order to observe consistency in write operations among many clients and read operations
among many servers.

The last two lowlights of the dbex prototype have to do with the implementation. In order to keep
things simple, the setUpdate method for replicated objects does not actually have any effect for
the replicated factory and collection objects. All replicated objects are updated as needed, and are
checked every fifteen seconds. This is for the sake of being able to demonstrate the prototype. It
would be trivial to keep track of both whether an object needs an update and when it is scheduled
to be updated. And the final issue concerns replication of objects bound into the namespace. As
mentioned earlier, servers must address this somehow. The dbex prototype solution was to ask the
administrator if they would like to wait for the initial factory object to be replicated before
binding into the namespace. If yes, then the server waits a little while and checks if the factory has
been replicated. If it has, the object is bound, otherwise the administrator is asked again. The
drawback to this solution is that the set of servers that have replicas of an object changes as
servers go down and come up. And at some point, even if the initial factory object has been
replicated, the list of servers bound in the namespace may no longer contain any of the actual
servers. A better solution would be to rebind initial objects each time their list of servers changes.
In addition, each replica of the object would have to know that the object is bound in the
namespace and where in case that server is called upon to become the repository for the master
replica of the object.

5 Conclusion

Despite the drawbacks mentioned in the previous section, this system is a solid prototype that

9. The first attempt at this tried to bind into the namespace and handle the "already bound" exception and
then rebind if appropriate. While this seemed to work from the server's perspective, when the
management object was resolved, the calls on the object failed. This was because fat pointers may not be
used in the server once they have been bound. Unfortunately this also includes binding attempts that fail.
The solution was to first check if the management object was already in the namespace, and remove if it
if desired. Only then is the new management object created and bound into the namespace.

15

demonstrates working replication. The design of the system is useful because it provides
functionality to server writers, allowing them to decide many details of how they would like to do
the replication.

As a prototype system, there are still many areas of work to improve this system beyond
replication specific areas such as load balancing and determination of quick machines. One of the
major areas to be explored is security. It has not been worked out what access control lists should
be associated with various objects in order to make the system secure. Additionally, the issue of
capabilities should be further explored.

Another area to improve the system would be to cache door identifiers in the subcontract client
class instead of making a call to the server for every invocation. Management objects might also
be cached so as not to have to resolve from the namespace quite as much. Coupled with these
speedups, it would be informative to attempt to get some statistics on how fast replicated objects
work as compared to the same object using the singleton subcontract. It might also be interesting
to provide tabulator information to get a glimpse of what is happening internally.

A few other ideas include creating replicated contexts, supporting write to any or write to all
paradigms, or having multiple initial servers. One of the hardest ideas to work cleanly into
Spring's object model is to allow the client to have access to the most up-to-date copy of a
replicated object. Clearly it is a desirable piece of functionality, but the subcontract is supposed to
be hidden completely from the client's view!

16

Appendix A: mgtobj.idl

import raw_data;
import array_string;

module mgtobj (
enum status_t

SUCCESS,
FAILURE

} ;

exception MgtObjErr
string msg;

} ;

typedef string obj_id_t;
typedef raw_data::raw_data pickle_jar_wrapper;
typedef long door_id_value;

interface MgtObj
door_id_value getObjDoor(copy obj_id_t obj_id) raises (MgtObjErr) ;
boolean updateSrvrList(copy obj_id_t obj_id,

produce array_string::array_string srvr_list)
raises(MgtObjErr);

status_t replicate (copy pickle_jar_wrapper pickled_obj);
status_t update(copy obj_id_t obj_id, copy pickle_jar_wrapper

pickled_obj) raises(MgtObjErr);
status_t master(copy string crashed_server);
status_t shutdown();

} ;

} ;

17

Appendix B: Excerpt from mgtobjJmpl.h

II As a server for a mgtobj, you must provide the following functions:

II Returns true if server has object, called before getObjDoor,
II updateSrvrList, and update.

extern bool srvr_checkObj(mgtobj_obj_id_t obj_id);

II Return a door to the object, call _rep.get_did on the object
II impl to contact the subcontract for a door

extern door_identifier srvr_getObjDoor(mgtobj_obj_id_t obj_id);

II Return the current list of servers the object is replicated to
extern bool srvr_updateSrvrList(mgtobj_obj_id_t obj_id,

array_string *& list);

II Replicate the object to this server, return true on success
extern bool srvr_replicate(pickle_jar * jar);

II Update the object on this server, return true on success
extern bool srvr_update(mgtobj_obj_id_t obj_id,

pickle_jar * jar);

II Take over all objects owned by the crashed server
extern bool srvr_master(string crashed_srvr);

II Shut the server down
extern bool srvr_shutdown();

18

Appendix C: replobj.idl

module replobj (
enum update_fre~t

IMMEDIATE,
HIGH,
MEDIUM,
LOW

) ;

interface ReplObj (

void setUpdate(copy update_fre~t freq);

) ;
) ;

Appendix D: ReplObj.h

class ReplObj
public:

ReplObj () ()

II Note: in order to force the writer of an object server
II to override this function, it could be neither a
II constructor nor a static function. The writer will have
II to have a null-object or figure another way to make use of this.

virtual void * createObj(pickle_jar * jar) = 0;

virtual pickle_jar * pickleObj() = 0;

virtual void updateObj(pickle_jar * jar) = 0;

) ;

19

Appendix E: dbex.idl

import replobji

module dbex (
struct NVpair

string name;

string value;

) i

interface colllter

NVpair next();

} ;

interface NVcollection : replobj::ReplObj
long size();
string query(copy string name);
boolean add (copy string name, copy string value) i

boolean remove(copy string name) i

colllter getlter() i

} i

interface NVcollection_factory replobj::ReplObj (
NVcollection create() i

) i

} i

20

Appendix F: Excerpt from mgtobj.cc

mgtobj_door_id_value

mgtobj_MgtObj_methods::getObjDoor(any_obj *obj, mgtobj_obj_id_t arg_obj_id)

throw (mgtobj_MgtObjErr, contract_fault)

{

II Because I actually need to transmit a door here, I couldn't

II use the generated stub byte code structure. There was no

II way to fake it into dealing with a door because it puts

II doors into a different area of the marshal buffer. I used

II contocc with -fno-byte-code-stubs to generate client side

II code (I already had the server side marshalling code). I

II cut the code out for getObjDoor and pasted it into the code

II generated with -fbyte-code-stubs, and then modified it to

II unmarshal the door identifier.

mgtobj_door_id_value r;

door_identifier did;

DEF1NE_MARSHAL_BUFFER(m_buf);

obj->sc->invoke-preamble(obj, m_buf);

m_buf.put_string(arg_obj_id);

int s = obj->sc->invoke(obj, m_buf, mgtobj_MgtObj_codes::f_getObjDoor);

switch (s) (

case isoh:: ok:

did = m_buf.get_door_identifier();

r = did. value () ;

break;

case mgtobj_MgtObj_codes::e_mgtobj_MgtObjErr:

unmarshal_and_raise_mgtobj_MgtObjErr(m_buf);

default:

throw contract_fault(s);

return r;

int mgtobj_MgtObj_srvr::_std_invoke(mgtobj_MgtObj_srvr *p,
MARSHAL_BUFFER &m_buf, int f) throw ()

int rc = isoh::ok;

try {

switch (f) (

case mgtobj_MgtObj_codes::f_getObjDoor:

mgtobj_obj_id_t a_obj_id;
a_obj_id = m_buf.get_string();
m_buf.cleanup_and_reinitialize() ;
mgtobj_door_id_value r = p->getObjDoor(a_obj_id);

door_identifier did(r);
II Need to actually marshal the door_identifier so
II it gets translated from server table into
II client table.

m_buf.put_door_identifier(did) ;
break;

21

case rngtobj_MgtObj_codes::f_updateSrvrList:
rngtobj_obj_id_t a_obj_id;
array_string *a_srvr_list;
a_obj_id = rn_buf.get_string();
rn_buf.cleanup_and_reinitialize();
bool r = p->updateSrvrList(a_obj_id, a_srvr_list);
array_string::_rnarshal_consurne(a_srvr_list, rn_buf);
rn_buf.put_bool(r);
break;

default:

rc = p->_bad_rnethod(rn_buf, f);

}

catch(rngtobj_MgtObjErr &e) (

rn_buf.cleanup_and_reinitialize();

rn_buf.put_string(e.rnsg);

rc = rngtobj_MgtObj_codes::e_rngtobj_MgtObjErr;

catch(contract_fault &e) (

rn_buf.cleanup_and_reinitialize();

rc = isoh::e_server_contract_failure;

catch(copy_fault &e) (

rn_buf.cleanup_and_reinitialize();

rc = isoh::e_copy_fault;

return rc;

22

