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1.0 Introduction 

Computer animation systems today fragment the process of animation by unnaturally 

separating motion control from the visualization of a scene. Spatial and temporal changes 

are normally modified from separate editing windows - one for modifying an object's 

current position in space and others for modifying the object's changing path over time. A 

majority of animation systems only allow precise motion control of single channels of 

motion. It is left to the skilled animator's mind to integrate these separate channels and 

views of motion. This research is an attempt to develop interactive techniques for visualiz­

ing, creating and modifying motion directly in a two- or three-dimensional scene. The 

principles of direct manipulation are used to achieve the goal of fluid and natural interac­

tion. Our solution uses existing keyframe and parametric techniques in combination with 

displacement functions inspired by digital signal processing for real-time direct manipula­

tion of spatial and temporal changes. The discussion in this paper will focus almost 

entirely on the control of the positional attributes of an object. However, the solutions pre­

sented here are adaptable to the animation of orientation, color, or any other attribute that 

varies over time. Expanding this research to these areas is discussed in the section on 

future work. 

1.1 Problems in Existing Animation Systems 

Several problems found in a majority of commercial and research animation systems 

served as the motivation for this research. Not all of these problems are present in all sys­

tems, but these are current trends in a large class of existing systems. 

•	 Animators can completely visualize and edit motion only in separate 2D graphs: 
The only means to edit an object's time-varying properties and visualize the value of 
these properties at prior and subsequent times is through 2D graph editors. The 2D or 
3D scene view can only be used for viewing and altering an object at a single time 
point. 

•	 Editing of motion curves is limited to single channels of motion: Motion curves are 
normally limited to representing a one-dimensional parameter vs. time (e.g. x transla­
tion vs. time, y rotation vs. time, red color component vs. time). Animators must men­
tally integrate all of these channels to visualize the animation which they are creating. 
The best computer animators today are expert at this process. In practice, many anima­
tors rely solely on the graph views for many hours without even referencing the scene 
preview[Chenoweth93][Pasquale93]. 



•	 The natural parameterization of splines does not advance uniformly with respect 
to distance. Many systems allow the animator to specify the path of an object through 
space with a two- or three-dimensional spline curve. Motion along this curve is then 
described by a single function of u vs. time, where u is the natural parameter of the 
spline curve. However, equal steps in u result in unequal distances traveled along the 
curve. In these systems, a graph that appears to indicate constant velocity will actually 
result in a velocity that varies based on the shape of the curve and the spacing of its 
control points (figure 1.1). The animator is forced to cancel out the timing induced by 
the spline before creating the desired motion (figure 1.2). 

u = 0.0 

k-b spline with 3 control points 

distance traveled 

along curve 

0.0 0~5 to 

u 

FIGURE 1.1. Parameter value vs. distance traveled for a sample spline curve. A 3 point 
Kochanek-Bartels spline is shown (top) with tick marks at even parametric intervals. Below, a 
graph of parameter value (u) vs. actual distance traveled along the curve. 

( 
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FIGURE 1.2. Timing induced by spline type in AfterEffects [CoSA93]. Three positions for a ball 

object have been set using a Catmull-Rom spline for spatial interpolation. No changes to the motion 

have been made; however, the velocity curve for the object indicates velocity increasing around the 
control points. This is a result of animating with respect to the natural parameterization of the spline. 
An animator must attempt to first undo the timings induced by the curve, then introduce their own 
timing changes. 

User User 

FIGURE 1.3. Altering the shape of a motion curve to achieve timing goals in 3D Studio 
[Autodesk93]. A short animation along a curve with three control points is shown at left. 3D Studio 

allows the animator to adjust the timing of the animation by directly dragging the object along the 
curve, compressing and expanding the surrounding motion (right). However, since motion is tied to 
the natural parameterization of the curve, their system must also modify the shape of the curve to 
achieve the temporal goal. 
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•	 The shape of a motion curve is altered to achieve timing goals: Some systems alter 
the shape of a motion path when users edit the timing of an animation. This problem is 
also a result of tying motion to the u-parameter of a spline. The actual shape of the 
curve must be changed in order to alter the distance travelled over equal time steps 
(figure 1.3). 

•	 Direct manipulation of the animated object is allowed only at control points: When 
a spline curve is used as the underlying representation of spatial change, most systems 
only allow the animator to change the object at the spline control points 
[ElectricImage93][TDI93]. If the animator wants to alter a position between control 
points, she must either work indirectly, altering surrounding control points and tan­
gents, or she must add a new control point. 

•	 Animations with densely spaced keyframes are difficult to modify: Most production 
quality animations end up being specified by very densely spaced keyframes (10-15 
keyframes/second is normal) [Chenoweth93][Pasquale93]. If an animator decides that 
part of the motion should be changed, she must individually change a wide range of 
control points surrounding the specific change in order to blend it with the surrounding 
motion. Many animators find it faster to re-do the animation from scratch in this situa­
tion (figure 1.4). 

(	 position 

time 

FIGURE 1.4. Modifying densely spaced keyframes. A single change Oeft) must be 
blended into the surrounding keyframes by individually adjusting several neighboring 
keyframes on either side. 

1.2 Prior Work 

There is a large body of previous published research on kinematic animation and 

motion control. This section will only address those prior models that incorporated splines 

to control spatial interpolation and motion control. 

A significant problem in computer animation for many years involved finding a type 

of spline that would pass through a given set of control points smoothly. Kochanek and 

Bartels invented a spline type which achieved this goal, and also incorporated timing con­

trols into the model [Kochanek84]. Their model uses three parameters (tension, bias and 

time 

.. 
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continuity) whose values are set at each control point. These parameters alter both the 

shape of the curve and the spacing of u around each control point. An animator using the 

system first gets an intuitive feeling for the effects of these controls, then attempts to 

achieve her animation goals using these controls. The effects of these parameters are often 

intuitive, changing the shape and timing in a manner consistent with many naturalistic 

motions. However, intimately connecting shape and timing has severe drawbacks. Anima­

tors often end up in a tug-of-war in which they achieve the desired timing at the expense 

of the motion curve's shape, or vice-versa. 

FIGURE 1.5. Double-interpolant method (adapted from [Steketee85]). The leftmost curve of 
keyframe vs. time is composed with the x vs. keyframe graph (center) to determine the actual value of 
x over time (right). As an example, a single point is traced through the three graphs. At time t=3 the 
keyframe number is 6 (left). Looking up keyframe 6 in the middle graph gives an x value of 8. 
Therefore, in the final graph (right) we see that time t=3 corresponds to an x coordinate of 8. 

Steketee and Badler [Steketee85] published an early paper describing a method for 

separating temporal control from spatial control in parametric animation. Their work uses 

B-splines for graphing object attributes. One set of curves represents position vs. key­

frame for individual object attributes (e.g. x, y, z). A second curve of keyframe vs. time is 

used to separately modify the timing of the object attributes. The composition of the two 

curves results in the final value for a given attribute (figure 1.5). These timing curves can 

be applied to multiple parameters at once, so that adjusting a single timing curve modifies 

the timing of several different related object attributes. The position and timing of the 

object being controlled are visualized in the final view by placing tick-marks at even inter­

vals of time along the composite spatial curve. A drawback of their system is that the spa-

o time 10 o keyframe 10 o time 10 
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tial attributes are separated into multiple channels and no direct manipulation of temporal 

information is allowed. Control of motion involves editing two separate graph views (the 

object attribute graph and the timing curve), then viewing the actual spatial path to evalu­

ate changes. Furthermore, the effective range of a change in any graph is limited by the 

number and spacing of control points in the given curve and cannot be arbitrarily con­

trolled by the animator. 

The Menv system developed at Pixar uses only a single graph of value vs. time for 

object attributes [Reeves90]. Key values along these curves are connected by spline seg­

ments. The shape and type of these splines can be modified in a piece-wise manner, choos­

ing the best shape and type for each segment of time (figure 1.6). The system has the 

drawback that the x, y and z positions must be edited separately, and timing curves can 

only be modified at their control points by using their tangents. However, the system was 

developed in cooperation with traditional animators who find it a convenient way to spec­

ify and visualize motion. Once an animator gets used to the idea of viewing changes in 

graph form, the Pixar system provides an efficient way to create motion. The Pixar model 
i 
\ is the method used by most commercial animation systems today. 

.'00 

r' r
r 
~ 

~ 
t. '0 .• a 

FIGURE 1.6. Editing motion curves in the Menv animation system. Pixar's animation system 
allows the editing of single parameters vs. time. Keyframes are connected by spline segments which 
the animator can modify directly by altering the tangents or changing the spline type. Note that only 
one channel can be edited at a time. The top curve represents the z position of the object, while the 
curve below shows its x position. Diagram from [Reeves90]. 
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The Inkwell system developed at the Apple Advanced Technology Group includes a 

set of tools for digitally filtering densely spaced control points in timing curves 

[Litwinowicz91]. The authors interpret each hand-animated or sampled motion curve as a 

digitally sampled signal. Animators can modify the gain, decay or oscillation of their 

motion curve by filtering with an infinite impulse response filter(figure 1.7). To the anima­

tor, these parameters are understood intuitively as magnitude, wiggle and lag. Their sys­

tem also has a cosine blending function to blend changes from a single frame into 

surrounding control points. 
I 

FIGURE 1.7. IIR filter applied to 
a motion curve. A digital lIR filter 
can be applied to motion curves to 
achieve the intuitive animation 
effects of wiggle and lag. The filter 
is controlled by parameters 

\ 
representing gain, decay and 
oscillation. The top curve is the 
original unmodified graph. The 
middle curve is the result of 

\ 

applying a filter with gain =1, delay 
= 0.625 and osc = 0.0. The filter 
smooths and delays the original 
signal. The bottom curve results 
from applying the filter (gain =1, 
delay =0.67, osc =1.5132). This 
results in both wiggle and lag of the 
underlying parameter. 

Several commercial programs allow the spatial path of an object to be described by a 

three-dimensional spline curve. Timing is then specified by a graph of u vs. time, where u 

is the underlying parameter of the spline. These systems all have the drawbacks men­

tioned in section 1.1: Equal steps in u do not result in equal distance traveled, and manipu­

lation of the object is only supported at the spatial control points 

[TDI93] [ElectricImage93] [CoSA93]. 

Many researchers from fields outside of computer animation are working towards bet­

ter direct manipulation of spline curves and surfaces. Least-squares techniques 

[Fowler93], constraint-based techniques [Welch92] and oriented particle systems 

[Szeliski93] are the major areas currently being explored for directly manipulating spline 
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shape and complexity at any point on the curve. These approaches will be more fully 

explored in section 3.0. 

2.0 Goals for Gestural Animation Controls.	 . 

The following set of goals serve as the basis of this research. They were arrived at 

through evaluation of the problems in existing commercial and research animation sys­

tems. They attempt to describe an interface that will be more intuitive and productive for 

animators. 

•	 Create a parametric animation system that visualizes temporal and spatial infor­
mation in a single view. Achieving this goal should reduce the cognitive load on an 
animator, enabling her to directly view changes without mentally integrating separate 
graphs and scene views. 

•	 Allow direct manipulation of the object being animated while maintaining a para­
metric curve as the underlying representation. An animator should be able to 
directly manipulate the actual object at the current time rather than editing a spline 
curve and tangents to indirectly achieve motion goals. For animators skilled in key­
frame animation, this goal will allow them to exploit their existing skills without learn­
ing new interaction techniques. Maintaining a parametric curve as the underlying repre­( 
sentation allows control of spatial and temporal continuity and changes in resolution 
impossible with other representations. 

•	 Parametrize the spatial curve by arc-length so that equal steps along the curve's 
new parameter s result in an equal distance travelled. Animators should be able to 
think in the natural terms of distance or velocity vs. time when editing and visualizing 
motion. Mathematically, this is achieved by re-parameterizing the curve by arc-length. 

•	 Create a series of gestural tools for modifying spatial and temporal information. 

- "Reach this point at this time" while maintaining the shape of the motion curve, but 
changing the speed at which the object travels along the given path. This is accom­
plished by compressing or expanding surrounding temporal information. 

- "Reach this point at this time" by modifying the spatial curve but maintaining either 
the duration or velocity of the given segment. 

- "Make this segment longer, shorter, or of a specific duration". 

- "Go faster", "Go slower", or "Reach a specific velocity" at a given point, while main­
taining the shape of the spatial curve and the duration of the temporal segment. 

•	 Allow an arbitrary range over which changes in space or time will be smoothly 
blended into surrounding motion. Animators should be able to change a portion of 
the animation without re-doing a large amo~nt of the surrounding motion. Changes 
should be smoothly integrated in space or time, maintaining the character of the origi­
nal motion to the greatest extent possible. 
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•	 Provide real-time performance for spatial and temporal curves with more than 
300 control points. An animator is routinely dealing with motion curves containing 
control points at nearly every frame. For a 10 second scene at 30 fps, this means 300 
temporal control points and 300 spatial control points. Response time for this type of 
scene should be a maximum of 200 ms, preferably much faster, allowing immediate 
interaction and time for other computation and rendering. In general, this will preclude 
using iterative constraint solving techniques for any of these tools. 

•	 Provide direct editing of motion graphs or spatial curves using control points. The 
new techniques should not preclude hand adjustment of individual temporal or spatial 
control points. Animators should be able to freely switch between the gestural inte­
grated tools, direct manipulation of the objects, and editing of control points and graphs 
in separate views. 

•	 Develop techniques that are naturally extensible to orientation, scale and any 
other animatable parameters. 

3.0 Implementation of Gestural Animation Controls 

Our approach to meeting these goals is to control an object's movement through space 

by using two spline curves for each object. The first spline curve, Q, is the motion path, 

describing a path through space along which an object travels: 

Q	 : 9\ -7 9\3 

We express Q as a function of the parameter u such that 

Q(u) = (x(u),y(u),z(u)) 

The second curve, S, is a function of distance vs. time and is referred to as the motion 

graph: 

S : 9\-79\ 

This function maps from a time value t to a distance travelled along the curve, s: 

S (t) = S 

Since the curve Q is parametrized by its natural parameter, u, and we wish to parametrize 

it by arc-length (s), we must create a mapping from s to u and vice-versa. This problem is 

addressed in section 3.1 where the following function A, which maps from u to s, is 

defined: 

A (u) = s 

9 



Our goals for motion control require that we satisfy mathematically precise goals for 

the shape and derivative of both the motion graph and the motion path. We will discuss 

two separate approaches to achieving these goals. The first approach uses popular con­

straint-based techniques, building on the work developed by Gleicher, Welch, Moreton 

and other authors [Gleicher9I][Welch92][Moreton92]. This approach is discussed in 

section 3.2 along with its significant drawbacks. A more successful approach uses dis­

placement functions to solve the curve-manipulation problem, which is discussed in 

section 3.3. fu section 3.4 we show how to achieve direct manipulation of temporal infor­

mation in a single view. Both the constraint and displacement techniques are applicable to 

a wide range of spline types; in section 3.5 we discuss the particular representations we 

use for our implementation. Section 3.6 discusses techniques for visualizing motion in a 

single two or three-dimensional view. 

3.1 Separating Spatial Control from Temporal Control in Splines 

In order to separate spatial and temporal control in splines, we first re-parametrize the 

motion path by arc-length. Suppose we have a function 

A : 9\~9\ 

where A (u) is the distance travelled along Q from 0 to u. We can use this function to map 

between the motion graph curve S (t) and the motion path curve Q (u) . The function A 

gives us the arc-distance travelled, s, given a parameter value u: 

S = A (u) 

However, to detennine a point along Q for a given time t, we must map from the distance 

value, S given by Set) to the u value over which the curve Q(u) is parametrized. This can be 

accomplished by inverting the function A: 

U = A-1 
(s) 

To detennine the u parameter value along the curve Q for a given time t, we evaluate this 

function at the s value given by the function S at time t: 

U = A-1 
(S (t)) 

Now we can detennine an object's position at a given time with the following equation: 

10 



P (t) = Q (A-
1 

(S (t») 

The entire process is illustrated in figure 3.1. 

arc-length 

I • ::::::=>1 ....... 

sQ 

s 

Q (u) 

u = A-1 (s) t time 

FIGURE 3.1. Motion control with separate space and time curves. The triangular object is 
driven along the curve Qby S, a function of distance vs. time. The function S at right gives us 
the distance travelled, S, for a given time, t. The parametric distance along the curve, u, is then 
determined by A-1 . The actual position of the objects is determined by evaluating Q(u). 

In practice, a velocity curve Vet) is more commonly used as the motion graph, since 

subtle changes of velocity can be more easily visualized. However, Vet) can be integrated 

without difficulty to determine Set). For ease of manipulation, the graph Set) is often repre­

sented as a two-dimensional spline curve. Animators find this representation easier to 

manipulate and capable of finer control of motion with fewer control points. However, 

interpreting a two-dimensional spline curve as a function of one variable involves some 

subtleties, which are discussed in section 3.1.2. In this paper we will usually refer to Set) 

as a one-dimensional function for simplicity. However, keep in mind that S may in fact be 

represented parametrically as a two-dimensional spline. There turns out to be no analytic 

expression for the arc-length function A for an arbitrary spline Q, so the computation and 

inversion of this function are accomplished using numerical methods, which are discussed 

in the next section. 

3.1.1 Reparametrizing Splines by Arc-length 

In order to parametrize a spline curve by arc-length we must take the original curve 

Q(u) and find a formulation for the arc-length s along this curve with respect to the origi­

nal parameter u: 

s = A (u) 

The spatial curve's parametric formulation in 3-space can be described as follows: 

11 



Q(u) = (x(u),y(u),z(u» 

A segment of arc-length ds between points Q(u) and Q(u + du) should be familiar from 

vector calculus: 

I 2 2 2 
ds = '"dx + dy + dz 

= {~~r + (~~r + (~~r du 

To determine the arc-length from the start of the curve to a point at parameter value u, we 

integrate this equation: 

A (u) = S:J(~~r + (~~r + (~~r du 

In general there is no analytic expression for this integral, so instead we use numerical 

techniques to evaluate it. An adaptive technique for evaluating this integral is presented in 

[Guenter9Ol The method recursively subdivides the curve and evaluates the integral of 

the halves using Gaussian quadrature (a numerical integration scheme described below). 

A table of (u i' si) pairs is built up through the recursive evaluation of the integral. At each 

recursive step, the interval is divided into two equal length subhalves. The integrals over 

these intervals are then evaluated using quadrature and the sum of the values for the two 

regions is compared with the value calculated for the entire interval. Once the difference 

between these values passes below the desired accuracy, the subdivision process halts for 

a given interval. The resulting table is then used to rapidly find the arc-length value for an 

arbitrary u value. The table is searched for the values u i' u i + 1 such that ui ~ u ~ ui + 1 . 
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J 

The arc-length from u i to U is then computed using quadrature. An illustration of this pro­

cess is shown in figure 3.2. 

s ---.. 
u s 

0.0 0.0 
0.25 7.1 

0.5 13.2 

0.5 20.1 

o	 0.25 0.5 I 
u ---.. 

FIGURE 3.2. Arc-length computation using adaptive subdivision (adapted from 
[Guenter90]). To approximate the arc-length of a curve, we subdivide the curve and evaluate 
the sub-intervals using Gaussian quadrature (left). When the difference between the sum of 2 
sub-intervals and the value calculated for the entire interval passes below a given threshold, 
values are entered into a table (at right). The table is then used to find the arc-length for 
arbitrary points along the curve, as described in the text. 

The Gaussian quadrature integration technique works by taking the sum of a set func­

tion values at specific points, multiplied by appropriate weights. The quadrature technique 

for integration requires that the arbitrary interval [a,b] is first mapped to the interval [-1,1]. 

A linear transformation 

2x-a-b 
't = --:- ­

b-a 

can be used to accomplish this remapping. The integral of a function!can then be 

expressed as: 

(f(X) =( (b;a) f«b-a)~+ b+ a) 

This integral is evaluated at n fixed points xl' "x within the interval [-1,1] and weighted n 

by a set of weights CI ' , , en to determine the best approximation of the integral: 

l!(X) "" i c!(x) 
a i = I 

The points and weights for different orders of Gaussian quadrature can be found in stan­

dard mathematical tables or computed as shown in [Press92]. 
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The adaptive Gaussian quadrature scheme is unfortunately not guaranteed to perform 

correctly in all cases. The error estimation process is flawed and for certain curves may 

cause the refinement process to halt prematurely. This case can occur when the quadrature 

estimate for an interval happens to match the sum of the 2 subdivided regions even though 

the estimates for the sub-intervals are erroneous estimates. This degenerate case seems to 

be rare, however, and the scheme performs well in practice. 

In order to find the U value corresponding to a given S value such that A (u) = S we 

use Newton-Raphson iteration on the subinterval [ui,u i + 1] corresponding to the interval 

[Si,Si + 1] such that si $; S$; si + 1 . This process becomes unstable where the motion curve's 

derivative approaches zero, in which case binary subdivision can be used. 

In our system, the animator is often in a tight interaction loop modifying a curve's 

shape, requiring real-time feedback of the new arc-length values along the curve. In this 

case the adaptive quadrature technique is too time consuming. We use a simple forward 

( differencing scheme for rapidly computing an approximation of the arc-length. A table of 
\ 

(u, s) pairs is built up by sampling at even intervals of U along the entire curve. When the 

U value of a particular value of S is requested, we linearly interpolate between the bound­

ing values [ui,u i + 1] corresponding to the interval [si,si + 1] such that si $; S$; si + l' The 

adaptive quadrature technique is only used when the final motion is requested or a more 

accurate preview is desired. A comparison between normal and arc-length parameteriza­

tion can be seen in figure 3.3. 

FIGURE 3.3. Comparison of parametric and arc-length subdivisions. The same 
curve is marked at equal parametric intervals (above) and equal intervals of arc-length 
(below). 
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This section was adapted from and inspired by a number of sources. For further 

numerical approximations to integration see [Burden81] and [Press92]. For a more com­

plete discussion of arc-length computation see [Watt92] and [Guenter90]. 

3.1.2 Interpreting 2D Splines as Function Graphs 

In order to use a two-dimensional spline curve as a function graph we must find a way 

to map from the parametric representation of the curve 

S(u) = (t(u),s(u» 

to a functional representation of the curve 

S (t) = S 

Since the parametric curve S(u) is not necessarily one-to-one, this mapping does not make 

sense for arbitrary curves. However, in the interface for manipulating graphs we can set 

sufficient constraints to ensure that the resulting parametric curve is one-to-one. Assuming 

that we do have a parametric curve that is one-to-one, the solution is straightforward. For 

a spline curve consisting of a single cubic segment, we first find the particular u value ui 

corresponding to a given t value t i : \ 
r 

t. 
I

= t(u.)
I 

To put this into a more convenient form for solving: 

t (u.) - t. = 0 
I I 

Since the two-dimensional spline curve is ensured to be one-to-one, the one-dimensional 

function t (u) is strictly increasing, and therefore there is a single value ui which satisfies 

this equation. For a cubic spline curve, this solution can be determined analytically. An 

efficient implementation of a root finder for cubic polynomials can be found in [Press92]. 

Once the ui value has been determined, we determine the graph value si: 
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S. = S (u.)
I I 

The entire process is illustrated in figure 3.4. 

S(u) t (u) 
S 

u. 
, • ..Si~ t i 

ut i ui 

FIGURE 3.4~ Interpreting a 2D spline curve as a graph. To determine the graph value si at t i 
of the curve Q (u) = (t (u), S (u» (left) we first determine the value for which t (ui) = t i (right). 
We then evaluate S (u i) to determine si' This assumes that t (u) is strictly increasing so that there is 
a unique ui for each t i • 

A function curve usually consists of more than one spline segment. In this case we 

must first determine the cubic segment corresponding to the inquired ti . Once again, we 

( exploit the fact that the function t (u) is strictly increasing and compare the desired ti 

with the computed values of t (u) at the start and end of each segment (tj and tj + 1 ). 

When the segment for which tj :5 t i :5 tj + 1 is found, we solve for u i and Si as shown 

above. For splines that interpolate the first and last control points of each segment, the 

control points themselves can be used for comparison. 

3.2 Constraint Based Solutions 

All of our tools for motion control can be expressed as precise goals for the shape and 

derivative of the motion curve Qand the motion graph S. The most common solution to 

this type of problem is to express the goals as a series of mathematical constraints and 

solve the set of simultaneous equations. There is generally no unique solution to these 

problems. They are normally either under-constrained or over-constrained. For problems 

which are under-constrained, there exist an infinite number of solutions to the problem. 

For these problems, we must add additional qualifications to the constraints, for example, 

we find the solution that minimizes change in the shape of the curve, relative to its last 
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representation. For over-constrained problems, there is no solution to the set of simulta­

neous equations. In this case we try to find a solution that comes "closest" to satisfying our 

constraints. For our research, all of these problems can be expressed as under-constrained 

systems. This section describes analytic solutions to point constraints of position and 

derivative. Techniques for phrasing and solving more complicated sets of constraints vary 

greatly depending on the nature of the problem and are the subject of ongoing research in 

computer graphics and computer aided design[Gleicher9l] [Welch92][Moreton92]. 

3.2.1 Single Segment Constraints 

Point Constraint 

As a first case, consider a single point constraint on the graph S (figure 3.5). The initial 

value of S at time t is s1 ' which indicates a distance along the spatial curve Q. The anima­

tor decides that she would like to modify this motion, so that the object instead travels the 

distance s2 at time t. We must modify the shape of the curve S so that it passes through 

the point (t, s2) . This type of problem can be solved by expressing the constraint mathe- ( 

matically. In this case, the constraint is: 

S (t) = s2 

We then find a new formulation of S so that this, and any additional constraints, are satis­

fied. In our particular case, this is an under-constrained problem whose result will depen­

dent on the representation and shape of the curve S. To find a solution, we must express 

this problem more formally. 

distance 
sQ 

S2 t - - - - - - ., : :: ~ 
• I 

Sl I ,e' 
.' 

::A
I 

........
 .. 
time 

FIGURE 3.5. Single point position constraint. The triangular object originally reaches point 
81 at time t . The animator decides that point 82 should now be reached at time t (left). In order 
to achieve this goal, the graph must be modified so that its curve passes through the point (t,82) 

while maintaining the values at the graph's endpoints (right). 

17 



To solve this point constraint, consider a curve S consisting of a single two-dimen­

sional Bezier segment. The curve can be represented in matrix form as 

S (u) = BP 

where B is the Bezier basis matrix evaluated at u: 

-1 3 -3 1 

B .= [u3 i u IJ I 3 -6 3 0 
-3 3 0 0 

1 000 

The rows of the matrix P represent the control vertices: 

Xl YI 

P = (2 Y2 
X 3 Y3 

X 4 Y4 

We know the parametric value u corresponding to the point on the curve and the amount 

by which we want to move the point (i1S). Using techniques presented in [Bartels89] and
( 
\ 

[Fowler91] we can express our constraint as follows: 

S(u) +i1S = B(P+i1P) 

This equation reduces to 

i1S = Bi1P 

which we must solve for i1P , the change we need to make to the control points. Since we 

have an underdetermined system, we are actually trying to find a solution which mini­

mizes the length of i1P . The vector i1P can be expressed in terms of mutually orthogonal 

components, one in the row space of B and the other in the null space of B: 

T
i1P = B 'A, +z 

We now seek to minimize this function, and observe that the system does not depend on z, 

and thus we should limit the search to those values of i1P for which z = O. By substitut­

ing back into the expression for i1S, we now have 

i1S = BBT'A, 
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solving for A. gives us 

A. = (BBT
) -1!!J.S 

which we then substitute back into the expression for !!J.P to yield our solution: 

!!J.P = BT (BBT
) -1!!J.S 

For interactive manipulation of a curve, the expression B
T 

(BB
T

) -1 can be thought of as a 

set of weights W W need only be evaluated once for a given parameter value u. Direct 

manipulation of the curve then simply involves computing W!!J.S with each incremental 

change to !!J.S . 

If we want to fix one of the control vertices, we need to force !!J.P i to be zero, where i 

corresponds to the ith control vertex. To achieve this we replace the ith column of B with 

zeros before evaluating W Fixing the first and last control vertices of a graph segment will 

achieve a result similar to our initial example in figure 3.5. This is often the desired behav­

ior, as we would like to modify the character of the motion between two points in time 
\

while maintaining the values at the endpoints. 

Velocity Constraint 

A specific goal for the derivative of the curve S can be described as a velocity con­

straint. For a given time t along the motion graph there is a corresponding parameter Us 

along the motion graph S (represented as a two-dimensional parametric curve). The veloc­

ity at Us is determined by the slope of S at that point. An animator provides a specific goal 

for the velocity of S at the given point. From their goal velocity, we determine the desired 

change in slope, !!J.S1 ' at the given point. We must then modify S to satisfy this constraint. 

Unfortunately, if we use a single constraint to modify the velocity, then the position at the 

given point is free to wander. In this case the position of S at the parameter value Us may 

no longer correspond to the original value of t and our constraint will not be met at time t. 

So, instead we must construct a double constraint system which holds the position con­

stant at Us while modifying the slope (figure 3.6). To implement this velocity constraint 
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we have to solve the double constraint system: 

[0] = [B (US)]!:lP 
!:lSI B' (us) 

The top constraint holds the position at the parameter value Us constant while the bottom 

constraint modifies the derivative at Us by !:lSI. Other combinations of constraints can be 

simultaneously maintained including higher derivative values, curvature and other proper­

ties of the curve. Analytic solutions to such double and triple constrained systems are 

described in [Fowler9l]. 

distance 

Q 

s 

time 

FIGURE 3.6. Constraint controlling velocity while maintaining position. Initially, the 
velocity at time t is vI: S' (t)	 = VI. The animator decides that she wants the velocity at time t 
to be increased to vz (left, velocity is indicated by the length of the tangent vector). In order to 

\	 achieve this goal, the graph must be modified so that its tangent at point t is altered from 't i to 
't so that S' (t) = vz .z 

The most serious drawback of these single point constraints is that they only affect a 

fixed range of the curve. These formulations only allow modification of a single segment 

of the spline curve. If the motion graph has only a few segments, the animator's changes 

may be too broad. If the graph has many segments, then the changes made might be too 

fine and not blend well with the surrounding motion. In addition, the single point con­

straint technique has widely varying results depending upon how close the selected point 

is to the endpoints of the segment. Changes in the middle of the segment are well behaved, 

with the effect of the change falling off with distance from the selected point. If the 

selected point is close to one of the ends of the segment, however, large changes far from 

the point of influence must be generated so that the cubic segment passes through the new 

point (figure 3.7). We will later describe a method which allows arbitrary control of the 

range over which the constraint's changes are distributed. Additionally, this method 
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should result in displacements which falloff smoothly with respect to the distance from 

the selected point. 

FIGURE 3.7. Unequal distribution of change with a single point constraint. Using least­
squares spline manipulation over a cubic curve with its endpoints fixed, the magnitude of a 
change seems to falloff evenly with distance when the manipulated point is near the center of 
the curve (left). However, when the point is closer to one of the endpoints (right) the cubic 
segment can only pass through the goal position by making changes larger than the points's 
change on portions of the curve far from the point's position. 

3.2.2 Multi-segment Constraints 

There are many approaches to phrasing and solving constraints over multiple seg­

ments of spline curves and surfaces. Here, we will briefly examine two common 

approaches and judge their applicability to the satisfaction of our shape and derivative 

constraints for motion paths and motion graphs. 

The first technique solves point constraints like those phrased in the last section, 

except allowing an arbitrary range of segments along the curve to be affected. This 

approach is presented in [GortleI94]. The process begins by solving for the single segment 

along which the point constraint lies. The technique then iteratively tries to minimize cur­

vature (or some other measure of "goodness") over a broader range across the curve, while 

maintaining the point constraint (figure 3.8). The minimization is accomplished with any 

number of solution techniques, the simplest being a gradient search. The drawbacks of this 

approach become apparent when one attempts to shape a curve using successive applica­
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tions of this technique. Since we minimize curvature, all fine details along the curve are 

lost with each application. 

FIGURE 3.8. Constraint satisfaction using curvature property. The first step in satisfying 
this multi-segment constraint involves satisfying the point constraint over a single segment 
(left). The process then iteratively modifies the surrounding control points, minimizing 
curvature over the entire curve to achieve the final result (right). 

The second technique is similar, but minimizes the change between the previous curve 

and the new curve. This method maintains the small details in the curve with each succes­

sive modification (figure 3.9). 

ilQ = Q'-Q 

( Aql~ 
Ui 

U 

FIGURE 3.9. Constraint satisfaction using shape property. The point q on curve Qis 
moved, minimizing the change in shape of the curve (left). To minimize the change in shape 
we must simultaneously satisfy ilQ (ui) = ilq while maintaining the values at the edges equal 
to 0 and minimizing curvature over the change function ilQ (right). 

Both of these constraint techniques are extremely sensitive to the number and spacing 

of control points in the curve. To successfully use these techniques, we must ensure that 

the control points are evenly spaced over the length of the curve. In addition, the iterative 

solutions are time-consuming, vary in their accuracy, and are not guaranteed to converge. 

3.3 Displacement Functions Applied to Space and Time Curves 

As a more controllable method with guaranteed time complexity for real-time interac­

tion, we consider applying displacement functions to motion curves. This technique 

eschews the complicated mathematics of constraints for a simple composition of func­
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tions. In general, there is a displacement function F which when added to the motion path 

Q or the motion graph S to achieve our goals for position, shape and derivative. 

Our initial approach was to represent F as a point change which we add to a curve y. 

Consider the simple geometric goal that y pass through point q at time to' We can define a 

new curve 

7(t) = yet) + F (t) 

Where F is defined to be 0 except at to and 

F(to) = q-y(to) 

This satisfies our goal, but destroys the continuity of 7. We can smooth 7 by repeatedly 

filtering with a box filter to increase continuity. However, this will also gradually remove 

any fine details from 7. Instead of post-filtering 7, we can pre-filter the displacement 

function F. If we smooth the point-change filter, the resulting function F now has a "total 

displacement" of 1, although the exact displacement at to is now less than one. We have a 

smooth displacement function which no longer satisfies our constraint. 

Using these ideas as a starting point, we attempt to construct F without any iterative 

convolution by representing F as a curve with the continuity properties of the filtered 

curve and the desired values at the constraint points. Although F will have a simpler shape 

than the convolved function, it satisfies our geometric goals. 

3.3.1 Principles of Displacement Functions 

The application of a displacement function is simple. The function S (t) (here consid­

ered a one-dimensional function) representing distance vs. time is added to a displacement 

function F (t) over the time interval [ta,t~ , resulting in a modified version of S, Sf 

(figure 3.10): 

t- t )
Sf(t) = S (t) + F ( t~ _ ~ ,'\It : ta ~ t ~ t~ 

The above function assumes that F is defined over the domain [0, 1], so that the expres­
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t- t )sion __a. maps from the function's domain to [ta.,t A]. If the function S is represented( 
t~ - ta.	 P 

as a digitally sampled curve with N samples within the interval [ta,t +N], such that a

ta = ta. and ta+ N = t~, we can sample F at the same frequency and rewrite the above 

equation as: 

N 

SfU) =	 I,SUa +) +F(tj )
 

i = 0
 

The drawback of this representation is that the high level controls afforded by splines are 

lost when we discretize the curve. This drawback can be remedied by promoting the dis­

crete representation back to a spline representation. This can be achieved using two differ­

ent methods. The first simply involves fitting a spline through every discrete point in the 

graph, but this is likely to introduce redundant control points along many sections of the 

curve. The second method involves using a curve fitting algorithm which finds the best 

spline curve interpolating the set of points within a given tolerance [Schneider90]. 

/
\ 

S + F = Sf 

~
 
ta t~ 0 1 ta t~ 

FIGURE 3.10. Using a displacement function to modify a curve. The displacement function F 
(middle) is used to precisely modify the shape of S (left) by scaling F over the range [0, t~ - tal 

adding F to S over the range [ta,t~l . The resulting curve Sf is shown at right. 

An alternate method of applying the displacement function does not involve any dis­

cretization of the original curve. This method is only applicable when both the original 

curve S and the displacement function F are represented by Bezier curves. Two properties 

of these curves allow us to directly add the control points of the splines to produce the sum 

of the two functions. These properties are: 
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1. The sum of two Bezier curves, Q 1 and Q2' with equal number of con­

trol points is exactly equal to the curve obtained by adding their control 

points. 

2. Subdivision of Bezier curves can be accomplished without affecting 

shape or continuity of the original curve. 

Using these properties, and assuming that S and F both begin and end on interpolated 

points, we can simply subdivide F so that it has the same number of control points as the 

region of S being displaced, then add the control points of the two splines. The t values of 

the subdivision points must also correspond to the relative t values of the displaced region 

(figure 3.11). 

~ 
F (before subdivision) 

~ 
F (after subdivision) \ 

! 

FIGURE 3.11. Applying a displacement function using Bezier segments. The Bezier curve 
at left consists of thirteen control points, four of which are shown. We want to convolve S with 
the displacement function F consisting of a four point Bezier segment (top right), resulting in 
Sf = S + F . This result can be achieved by subdividing F so that it has the same number of 
control points as S (lower right), then adding the control points of each spline together. 

All of the methods for applying the displacement function preserve the continuity of 

the original curve S if the displacement function F is continuous to the desired order. The 

following sub-sections will describe the functions we use to implement our set of gestural 

tools, which maintaining arbitrary degrees of continuity. 

3.3.2 Temporal Translation 

Temporal translation is our term for the operation which satisfies the goal "Reach this 

point on the motion graph at this time". This technique for motion control maintains the 

shape of the motion path while altering the motion graph to satisfy a point goal. The posi­

tional goal is satisfied by compressing or expanding surrounding temporal information. 
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This amounts to translating S (t) up or down at the point corresponding to the current 

time, while maintaining the continuity of S over the range being modified. An example of 

this method in action is shown in figure 3.12. To implement this operation, we construct a 
I 

s 

111,1" ......."11·1' .. : rT"TT"T""fT"T"" JILktt' 
ta t~ 

FIGURE 3.12. Temporal translation. Within the specified interval [ta' t~] , the animator drags 
the cone object along the length of the motion path Q. The timing around the object changes to 
maintain the desired position at the current time. The motion graph S (below) shows the 
application of the displacement function F at the current time (indicated by the black triangle). 
Note that continuity with the surrounding motion is maintained. 

(	 displacement function F which will maintain continuity over the specified range and give 

a maximum displacement value of 1 at time ti , relative to the start of the function F. These 

goals can be expressed mathematically as: 

F (0) = 0 

F (ti ) = 1 

F (1) = 0 

F' (0) = 0 

F' (1) = 0 

If higher degrees of continuity are desired, then the higher order derivatives at the end­

points must also equal zero. The function is applied over the specified range of the motion 

graph, scaled by the desired displacement, I1s: 

lt- t JStet) = S (t) + I1sF	 ~ ,"ift : ta ~ t ~ t~ 
t~ ta 

We represent the displacement function F as a two segment Bezier curve. By adjusting the 
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tangents of the curve F, the displacement function's shape can be changed to achieve dif­

ferent types of interaction. The parameters k, b1 , and b2 control the width and amount of 

blending at the two endpoints of the function. Each parameter can vary from 0 to 1, repre­

senting the minimum and maximum values the tangents can have for a given value of t j 

(figure 3.13). 

k 
F(t) 
~ 

1.0 Ps 

b i 

(0,0) 1.0 tt i 

FIGURE 3.13. Construction of displacement function for position. This function is constructed 
with a two segment cubic Bezier curve. The maximum values for the parameters k, b i and b2 are 
determined by the value of ti and the values of the other parameters. In order to keep the curve one­
to-one, the tangents values must remain in the quadrant whose corners are (ti,l) and either (0,0) 
or (1,0) for the first and second segments respectively. This cubic function guarantees CI 

continuity. For higher degrees of continuity, a higher order Bezier curve is required. However, the 
construction is identical. \ 

3.3.3 Spatial Translation 

The spatial translation method modifies the motion path to achieve the effect of 

directly manipulating the position of the animated object. Given a change in position for 

the object, !1q , a displacement function is constructed which will modify Q so that its 

position at time t passes through Q(u) +!1q, where u is the parameter value along Q at 

time t. The displacement function used is the same as that of figure 3.13, but applied to the 

motion path rather than the motion graph. We wish to have the displacement function fall­

off with respect to time, rather than according to the normal parameterization of the curve. 

In this case the application of the function is slightly more complicated. The displacement 

function F (t) is constructed as a function of distance vs. time. In order to apply this t 

function to the motion path Q over the time interval [ta' t~] the function must be con­

verted to a function of distance vs. u (the natural parameter to the curve Q) by transform­
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ing first via the arc-length function A and the function of arc-length vs. time 8 (t) : 

1 
8- (A (u)) - to.]

F(u) = Ft ( 
t~ - to. 

This is a transformation from time to distance to parametric space. We cannot efficiently 

evaluate this function, so we must approximate F. We accomplish this by sampling Ft at 

even intervals of t, t E [to'" tnl where n is selected based on the number of frames in the 

interval. For each value of t we calculate the parameter value u and construct a one-dimen­

sional spline F from the set of points F (uo) ...F (un) . Additional control points may be 

required at the ends of the spline so that the curve's derivatives equal 0 at the endpoints. 

The displacement function is applied in a manner similar to the temporal translation 

method: 

-( U - Ua )
Qj(u) = Q(u) + AqkF u~-ua ,'Vu : ua~u~u~ 

The constant k in this equation is a scaling constant which ensures that F (u i ) = I, so 

"\ 
that the position of the curve at u i will exactly equal Q (u i ) + Aq : 

I 
k = F(u )

i 

Since this function changes the arc-length of the curve Q, the graph 8 must be scaled to 

maintain the character of the animation. If we wish to maintain the duration of the seg­

ment along Q being edited, then the graph must be adjusted so that the distance traveled 

within the interval [to.' t~l of 8 is modified to exactly equal the new distance from to. to 

t~ along Q. This involves a scaling along the vertical axis of 8. If we want to maintain 

velocity, then the graph 8 must be scaled horizontally in t, changing the duration of the 
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segment within the interval [ta' t~] . Figure 3.14 shows the results of these two opera­

tions. The scaling operations are defined more precisely in the next section. 

1Ll:t:L,,1iLktC",IILk::::r:L,

FIGURE 3.14. Spatial translation. By applying the point displacement function along the length of 
the curve Q, we can achieve direct manipulation of the animated object. At left is the original spatial 

path and graph. In the center, we have dragged the object to a new position by applying the point 
displacement function to the mouse delta. To maintain the duration of the segment being modified, we 
must scale the corresponding region of the graph (below middle). The graph segment must also be 

modified to restore continuity at its edges. To maintain the velocity of the segment, we must scale the 
interior segment by an amount proportional to the change in arc-length (right). 

3.3.4 Scale Operations 

The scale operations are more easily understood if we do not normalize the s-axis of 

the graph, as we have done in the previous section. In this case, the motion graph S may be 

seen to be growing in both axes as points are added in space and time, instead of the com­

pression and expansion of the graph seen in figure 3.14. 

Time/Arc-length Scale 

The time/arc-length scale function is only applied in combination with the spatial 

translation method. Its purpose is to maintain the velocity along a segment of the curve 

given a change in arc-length As by varying the duration of the segment. We assume that 

the original segment lies within the range [ta' t~] and that we also wish to maintain con­

tinuity at the boundaries of this region. We need to change the duration by an amount pro­

portional to the change in arc-length. The ratios of As to total arc-length (send) and At to 
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total duration (tend) are thus equal: 

I:1t I:1s 

tend Send 

So, given I:1s we can easily computel:1t : 

I:1s x tend
 

I:1t = S d
 
en 

We can then define the transformation to the new graph Sf from S: 

S U) 0 :S t:S ta 

StU) = SUa) + 't(S( t / -'tta )-S U ») ta:S t:S t~'a a
{ 

S U - M) + M t~' :S t :S tend' 

Where 

I:1t
't=l+-­

t~ - ta 

The diagram in figure 3.15 illustrates this transformation. 

( 
\ 

Sfi 

ta t~ t~' tend tend' 

- - - - SU) 

-_. StU) 

FIGURE 3.15. Tim~arc.length scale. The curve S is transformed so that the segment in the 
region [ta' t~] is uniformly scaled, maintaining the velocity of the motion while expanding its 
duration. The segments at either end retain the same duration and velocity and connect smoothly 
with the scaled segment, since the derivatives at the ends of the scaled segment remain the same. 

Time Scale 

If we want to scale a segment temporally while its total arc-length remains fixed, then 

maintaining continuity becomes a more difficult problem. The chosen segment is scaled in 

time by 't and displaced in s by a function F which restores continuity over the region 

[ta' t~'] : 
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s(t) O:S;t:s;ta 
t-t t-t 

Sf(t) = S(ta+~)+FC~,_;J ta:S;t:S;t~' 
1S (t - f1t) t~':S; t:S; tend' 

The displacement function F must be continuous to the desired degree and have the fol­

lowing properties: 

F(O) = 0 

F(1) = 0 

F' (0) = S; (ta) - S' (ta) 

F' (1) = S; (t~') - S' (t~') 

We would also like some range along the interior of F to equal 0 so that a portion of the 

original motion is maintained. One choice for the representation of this function is shown 

in figure 3.16. The function has many degrees of freedom which determine the magnitude 

of the change and how quickly the motion blends into the surrounding regions. An addi­

tional constraint on the function might require that the resulting curve Sf is nondecreas­

ing, which is discussed in section 3.3.6. We leave the details of constructing such 

functions from Bezier curves to the reader. 

F(t) F(t) 

m { lL-~--------7->-------0:0.5 

1o 
~ v ~ 

k 

FIGURE 3.16. Time scale displacement function. The curve on the left shows one solution for 
the displacement function F which restores continuity to a scaled segment of the motion graph S. 
On the right we show the conslruction of the first half of this filter from Bezier segments. The 
parameters k, m and b are convenient abstractions to the animator, corresponding intuitively to 
the range of influence, the magnitude of change, and the amount of blend of the displacement 
function. The second half of the function is constructed similarly. 

Arc-length Scale 

An animator may wish to scale the amount of distance travelled over a specified seg­

ment, while maintaining the shape of the motion path and the total length of the animation. 
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This is accomplished by scaling the selected segment [ta' t~] in s and simultaneously 

compressing the surrounding segments in s. This is a simple variation on the previous 

methods. The new curve can be determined by the following equation: 

S U) 0 < t~ t 
't t t - a 

StU) = SUa) +'t(S(t) -SUa» +FC[3~~) ta~t~t[3 

1 S(t) -S(t[3) 
SU(3) + 'I' t[3~t~tend 

where the function F is identical to the time scale displacement function, applied over the 

range [ta' t~] . 

3.3.5 Velocity Control 

The velocity function implements the intuitive controls "go faster", "go slower", or 

"reach a specific velocity". A displacement function is applied to the curve S at a specified 

point t in time, maintaining the shape of the underlying spatial curve and the duration of 

the temporal segment. An illustration of the velocity function in use can be seen in 

figure 3.17. This function is applied in a manner identical to the temporal translation func­( 

1lJ:±:t"IIlli:t,lldtt,,1
t 

FIGURE 3.17. Velocity control. An object moving at a constant velocity is shown at left. By 
applying the velocity displacement function to the time graph, we can increase the speed at time t 
without changing the duration of the segment or the point reached by the object at time t. At right is 
an application of the function to decrease the velocity at the chosen point. 

tion, modifying the graph only. The displacement function F must have the following 

properties: 

F(O) = 0 
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F(t) k 
~ 

m{.-. '" ._ 

t- t )F __a_ = L\v
( 
t~ - ta 

F(O) = 0 

F(1) = 0 

F' (0) = 0 

F' (1) = 0 

where L\v is the desired change in velocity of the graph S at point t. If higher degrees of 

continuity are desired at the boundaries of the modified region, then the higher derivatives 

at the endpoints of F must also be constrained to O. Construction of this function is once 

again an under-constrained problem and we show our own construction of such function 

from Bezier curves in figure 3.18. 

o 
~ 

k 
1:0t-ta 

t~ -ta 

FIGURE 3.18. Construction of velocity displacement function. Four cubic Bezier segments are 
used to construct a velocity displacement function. The parameters k, m, b i and bz control the 
amount of influence, magnitude of change and amount of blending respectively. The actual range of 
these parameters are dependent on t and the values of all other parameters. The user is given a range 
between 0 and 1 for each parameter which is mapped to the actual minimum and maximum values. 

3.3.6 Ensuring that Displaced Graphs are Increasing Functions 

Ensuring that the displaced graph Sf remains strictly increasing is a simple problem. If 

the graph is represented as a series of discrete samples or as a Bezier curve, then we have 

to insure that successive samples or control points are strictly increasing: 

"iii, 1 $i$n-l : S/, (t'_1) $S/, (t) $S/, (ti + 1) AS/, (ti _ 1) $Sj, (t) $Sj, (ti + 1)
Jx I Jx Jx Jy y y 

We compare the values along the curve as the displacement function is applied to S. If the 

function violates the strictly increasing condition we have several choices: 
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1. Clamp the values violating such condition. This has the drawback of 
destroying the continuity properties of the graph. 

2. Stop the application of the displacement function and revert to the previ­

ous version of S. 

3. Stop the application of the displacement function, adjust the function so 

that smaller changes in magnitude are applied at the regions of violation, 

and re-apply. 

For our implementation we chose to stop applying the function when it violates the strictly 

increasing property and allow the animator to change the parameters affecting the shape of 

the displacement function F. 

3.4 Direct Manipulation 

To achieve direct manipulation we must maintain a one-to-one correspondence 

between a user's mouse motions and the changes made to objects in the visible scene. In 

practice, this amounts to some trigonometry which maps from raw mouse-deltas onto the 

objects in the scene to determine the underlying parameters which we are changing. These ( 
techniques are generically applicable to any of our motion control methods, using either 

the constraint-based solution or the displacement function solution. All of our methods 

require a specific change in position, time or velocity. This section discusses how to deter­

mine these specific values so as to maintain a direct correspondence between mouse 

motions and temporal changes. 

3.4.1 Spatial Translation 

Direct manipulation for spatial translation is straightforward. We use a method which 

allows manipulation of the object in a plane parallel to the film plane of the viewing cam­

era. We project the mouse delta onto a plane parallel to the film-plane which passes 
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through the object being manipulated (figure 3.19). This gives us a vector in world-space, 

!¥" which can be applied using the techniques described in section 3.3.3. 

Screen 

<1 ­ 5 ~-r --k-.l 
p 

Plane parallel to screen 
intersecting object 

Original object 
position 

FIGURE 3.19. Mapping mouse delta to object delta. 

Other methods for direct manipulation are possible, which we will only briefly 

describe here. The first projects the mouse deltas onto the three axes corresponding to the 

object-space basis of the object being manipulated. This allows manipulation in three spa­

tial dimensions, in contrast to the parallel-plane method. However, it is very sensitive to 

the camera view and orientation of the object, sometimes making it impossible to move 

along a particular axis, or vacillating between choices of axis. A third method works simi­

larly, but projects onto the world-space basis. 

3.4.2 Temporal Translation 

For the temporal translation function (section 3.3.2) we must determine tis, the 

change in arc-distance for the point at time t. In this case, we determine the world-space 

vector!¥' as before, then project the new object position p' back onto the curve Q, which 

gives us the point on the curve Qclosest to the new mouse position. We find the parameter 

value u ' corresponding to the parameter value of the projected point, then map this to new 

an arc-distance along the curve. Subtracting the new arc-distance from the old, we arrive 

at tis: 

tis = A (u ) -A (u)new
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3.4.3 Velocity Modification 

For the velocity controls we must determine Av, the change in velocity at time t j • In 

our interface, we would like the tick-marks surrounding the object position to track the 

mouse position, in the same way that the object tracked the mouse position during tempo­

ral translation. We can accomplish this by using the value of As, as computed in the previ­

ous method. We assume that the user clicks on the object, dragging in either direction 

along the curve to increase or decrease velocity. The tick at the next time step t j + 1 should 

be moved by As. We can determine Av from this information: 

As
Av = 

t j + 1 -tj 

We can then use Av with one of the methods for modifying the graph S (t) . Figure 3.20 

shows the direct manipulation process. 

As 
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#' , 
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FIGURE 3.20. Mouse tracking for direct manipulation of velocity change. 

3.4.4 Specification of Range 

To specify the range [ta' tpl over which the displacement functions or constraints are 

applied, we allow the animator to place two bars along the length of the curve Q which 

indicate the start and end of the modified region. To manipulate these bars, we use a 

method similar to the direct manipulation technique for temporal translation. As the user 

drags on the bar, the mouse deltas are projected onto the point on the curve Q. This new 

point is then chosen as the new position for the bar, and the orientation of the bar is deter­

mined by the Frenet frame at this point. We also calculate the time-value t at the endpoints 

to specify the range of the motion graph S to be modified. To specify the start and end of 

the range, we color the two bars green and red, respectively. 
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This interface can become tedious when making many modifications to different 

objects along different curves. A simpler, but less flexible interface for range specification 

might allow the animator to choose a fixed range, which is automatically calculated when­

ever the animator changes the currently viewed time or the current object. For example, 

the animator might decide that she always wants a range of five frames about the manipu­

lated temporal point to be modified. 

3.5 Choice of Representation 

Both the constraint and the displacement methods for motion control can be applied to 

a wide range of representations for the curves. For our research we chose to represent the 

spatial path of an object's motion with a Kochanek-Bartels spline with tension, continuity 

and bias all fixed at 0.0. This choice conveniently gives us a spline that interpolates its 

control points while maintaining first and second order continuity throughout the length of 

the spline. The disadvantage of this representation is that continuity is not easily broken 

when needed, and adding control points changes the shape of the curve. A more appropri­

ate representation might be Bezier curves whose tangents are automatically adjusted to 

maintain continuity except where a user specifically request lower order continuity. Add­

ing control points to a Bezier curve does not effect shape or continuity. 

For the graph describing distance traveled along the curve vs. time we use a one­

dimensional function of position vs. time. This function is discretely sampled at a resolu­

tion corresponding to the frame rate of the animation. The discrete sampling is required 

for the application of displacement functions over specific ranges within the function S. At 

times, the one-dimensional representation is promoted to a two-dimensional parametric 

spline curve fitting through the points defined by (time, position) pairs. This is required 

when scaling the motion, or when a higher-level hand adjustment of the curve is required. 

This two-dimensional representation is temporary, however. As soon as another applica­

tion of a displacement function is required, the curve is again re-sampled and stored as 

discrete points. 
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3.6 Visualizing Temporal Change 

We employ several simple techniques for visualizing temporal change in our system. 

The technique of drawing a point or line at equal intervals of time along the curve is the 

most basic, and is found in many commercial systems. Points are sometimes difficult to 

distinguish, and spacing between the points can be difficult to ascertain. Lines provide 

strong visual cues, but present a problem in three dimensions. If the lines are drawn at a 

fixed orientation relative to the curve, they are difficult to see from many viewing angles. 

A simple solution is to always draw the lines perpendicular to the film plane of the cam­

era. Other solutions involve drawing three-dimensional objects at each point, such as a 

vector or a 3-dimensional axis. If we want to visualize changing orientation along the 

curve, an axis is particularly useful. 

A more sophisticated visualization draws actual copies of the animated object at equal 

intervals of time along the curve. As time recedes in either direction, the transparency of 

the copies increases. This allows the most complete visualization by the animator, as all 

the information is visually present (figure 3.21). This representation can be visually clut­
( 

tered and slow for complicated objects. One solution to this problem is to draw the ani­

mated object at wider intervals of time, for example every 1/4 second. We can also use a 

simpler version of the animated object for the copies, even resorting to bounding boxes. 

FIGURE 3.21. Ghosting used to visualize change over time. Instead of tick-marks, copies 
of the actual object are distributed at equal intervals of time along the curve. This gives a more 
accurate and complete picture of all the object's properties varying over time. 
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Other possible techniques could involve a hybrid of these processes. Instead of seeing 

entire copies of the animated object, we might only see only the leading or trailing edge of 

the object as it fades temporally. This technique is inspired by traditional animators' tech­

niques (figure 3.22). We do not yet have a method for this type of visualization, but are 

looking at both image processing and polygonal approximations for possible solutions. 

FIGURE 3.22. Hand-drawn 
visualization of temporal 
change. This drawing of Wile E. 
Coyote by Ken Harris 
[Schneider88] shows a 
sophisticated method for 
visualizing time-varying 
information. Suggestive line 
work indicates the essential 
features and boundaries of the 
hands at distinct moments of 
time. It is not necessary to draw 
the entire figure at each time step. 

4.0 Evaluation of Gestural Tools 

Our research presents a complete set of tools for visualizing and editing motion in a 

single two or three-dimensional view. By carefully applying these techniques using the 

principles of direct manipulation, the interface is made intuitive to the user. Every action 

has a distinct and reversible visual reaction directly proportional to the user's movements. 

The animator has precise control of the range over which an operation can be blended into 

the surrounding motion. This allows animators to refine motion at a high level, rather than 

constantly resorting to individual frame-by-frame adjustment. By re-parametrizing the 

motion curve by arc-length, animators can think and see in the natural terms of distance 

vs. time. 

This research has applications outside of desktop animation systems. In the emerging 

world of virtual reality, the user does not have access to a keyboard or windowing system 

which are currently essential components of today's multiple-view animation systems. 

Using our techniques, the single stereo view is sufficient for visualizing and editing 
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motion at the same time. Direct manipulation is the only available tool in VR and our 

techniques are easily extended to accommodate a freely moving three-dimensional point 

of manipulation. 

Motion capture and performance animation are steadily growing areas of computer 

animation. Our editing techniques are especially well suited to modifying this type of 

sampled motion, since it is naturally sampled at the frame-rate of the animation and is dif­

ficult to edit. We have experimented briefly with motion capture using our system. A seg­

ment of animation is captured, then converted to our space/time curve representation. 

Obtaining a spatial curve is accomplished by fitting a spline through the sampled spatial 

points to create the spatial path. The temporal curve is created by forward differencing the 

sampled points to determine distance travelled vs. time. The motion can then be edited 

using our tools. 

Several problems are currently inherent to our system. The arc-length evaluation pro­

cess is still a computational bottleneck. The accuracy of our current methods is not guar­

anteed, although they perform well in practice. Users must be made aware of the ( 
approximate nature of the motion in the same way that they now understand how a wire­

frame or low-resolution preview of their animation relates to the final rendered version. 

Choosing the correct displacement functions is currently more of an art than a science. We 

would like to provide simpler parameterization to the user or automatically determine the 

"optimal" displacement function, if there is such a thing. 

Another problem is the spatial direct manipulation of the animated object. The appli­

cation of a displacement function to the motion curve only has the desired effect when 

there are sufficient control points within the edited region. If the point of direct manipula­

tion is far from any control point, the curve can behave unintuitively, overshooting the 

point of manipulation in a manner similar to that produced by constraint-based curve 

manipulation (figure 3.7). If a control point is added at the point of direct manipulation, 

this problem disappears; however we then face two other problems - adding control 

points changes the shape of some spline types, and the number of control points can 
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quickly become unmanageable. Large deltas may also distort the original motion curve in 

a manner unintended by the animator, destroying the small details of motion. 

5.0 Future Work 

We would like first and foremost to improve the representation of the spline and graph. 

For the spatial curve, we would like a spline parametrized directly by arc-length, or a 

faster and more robust method for approximating arc-length. We would like to find a 

spline type that allows the application of displacement functions to be expressed analyti­

cally so that the results of displacement are precise and continuous. As possible solutions 

to these problems we are considering curves represented as NURBS and other schemes 

using Bezier curves which automatically add and remove control points. A more radical 

solution might involve representing the curves as a one-dimensional oriented particle sys­

tem with continuity properties automatically maintained at each "particle" along the 

curve. Geometric modeling using these techniques has already been explored by Richard 

Szeliski in [Szeliski93]. A wavelet representation for the curves is also possible, although 

preliminary results of wavelet spline manipulation show many of the same problems of 

other constraint-based techniques [Finkelstein94]. The most serious drawback is the diffi­

culty of precisely specifying the range over which a modification has effect. 

Although these techniques are easily applicable to other one-dimensional parameters 

such as color or single channels of scale/rotation, there are currently no methods to visual­

ize and edit rotation or scale through direct manipulation. For rotation we are hopeful that 

a quatemion representation might be a fruitful means to visualize rotation. The rotation of 

the object could be represented as a path along the surface of a sphere surrounding the 

object, and tick-marks adjusted along this path. Scale might be visualized using additional 

paths showing the extent of the object, or some sort of handles extending from the points 

along the motion curve. 
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