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1. Introduction 

One of the most exciting, and challenging areas of Artificial Intelligence is mobile robotics. 

Most mobile robotics applications depend on a control program, which receives inputs from vari

ous sensor equipment, processes that information to make a "best guess" as to the state of the 

world, or at least the immediate environment, and issues commands to the robot's navigation sys

tem based on the processing of this information. At this level of abstraction, the task of program

ming robots may sound trivial. As we move into a more concrete level, however, we begin to see 

the enormous complexities with which we are faced. There are several difficulties, not the least of 

which is making sense of our sensory inputs. 

One of the most commonly used sensors in robotics is a camera. Computer vision is area of 

study all its own. From a mobile robotics programmer's point of view, we are interested mainly in 

how we can process the inputs from a camera in order to make our estimate of the state of the 

world. The problem becomes more complex if we add additional sensors to our system. The more 

sensors we add, the more information we have. However, processing this information can become 

very complex. 

This report describes a system which uses machine learning to solve these complexity issues. 

We train artificial neural networks to learn specific functions. These functions in and of them

selves are simple, but combined, they create a "brain" capable of complex behavior. The system is 

essential a fusion of different approaches to mobile robotics. There is some influence from the 

behavioral approach to mobile robotics, in that each individual neural network performs its func

tion independently, while combined, they produce complex behavior.The goal is a modest one: to 

demonstrate that we can combine different approaches in vision and machine learning to build a 

practical robotics application. 
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2. Problem Description 

The problem that we wish to solve is a fairly straightforward one. We want a mobile robot to 

be able to navigate through the hallways of an office environment, without stopping, and without 

colliding with any people who may happen to be in the hallways. We use a small robot equipped 

with a camera and sonar sensors. The control program will take the input from these sensors, 

process the data through a series of neural networks, and issue commands indicating the direction 

in which the robot should turn. The robot should navigate the hallways on a primitive level, that 

is, by following a particular wall. Upon detection of an obstacle, such as a person in the hallway, 

the robot should take appropriate evasion actions. This would normally involve turning towards 

the other wall, aligning itself with that wall, and continuing forward, or in some cases, turn around 

completely. Sometimes, the robot may encounter a dead end. In this case, the robot needs to be 

able to turn around and exit the dead end, without stopping. The robot should also be able to turn 

right-angle corners in our office environment. 

We have three distinct behaviors that we wish our robot to emulate here. The simplest of these 

is the wall/ollowing behavior, in which the robot makes small angular adjustments at each itera

tion to keep itself moving parallel to one of the walls. The next behavior is the avoid obstacles 

behavior, in which the robot steers from one side of the corridor to the other, in order to avoid a 

collision with an obstruction in its path, presumably a person. The third behavior is the turn cor

ners behavior, in which the robot makes right angle turns when it detects a wall in front of itself. 

Each of these behaviors is controlled by a separate neural network. Individually, each network 

performs a fairly simple task. These networks are linked together by other networks which make 

decisions based on their outputs, and one piece of state information--the wall we are currently fol

lowing. Together, these networks form a brain capable of guiding our robot through a hallway 
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3. Motivation and Related Work 

As previously mentioned, this work is a fusion of different ideas. Pomerleau [5] developed the 

idea of using neural networks to train a robot to drive a car. It seemed logical that the technique 

could be adapted to fit the problem of a robot navigating the hallways of an office environment. 

Camus [2] has developed a real time vision algorithm which calculates optical flow. Optical 

flow is essentially the calculation of the displacement of pixels over each frame iteration. This is 

used in our system to detect moving objects, such as people in the robot's path. Because it runs in 

real time, the optical flow algorithm is particularly useful for mobile robotics applications. 

Horswill [4] uses a vision technique where a camera is aimed at the floor to detect carpet 

blobs, or areas where the carpet texture is consistent. Where the blob ends, there is likely to be an 

obstacle. This idea, fused together with Camus' algorithm forms the basis of the vision technique 

used in this system. 

Another aspect of this problem that is worthy of study is the idea of sensor fusion. We com

bine sensor data from sonar sensors with the data obtained from the camera in our vision algo

rithm. Sometimes data from different sensors can be contradictory, in which case a control 

program must decide which sensor to believe. 

There is also a flavor of the behavior approach to robotics in this work. The work of Brooks 

[1] and others has suggested that instead of building explicit, complex models of the world, a pro

grammer should build up primitive instinct-like behaviors into a system that will eventually 

exhibit complex behavior. Our system does this to some extent, in that it relies on simple behav

iors, and there are no extensive world models. 

This work is essential a system derived from the techniques of Pomerleau [5], Camus [2], 

Horswill [4], and Brooks[l]. The result is a robotics application that uses artificial neural net
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works to learn from optical flow data, and sonar data, to produce a behavior based robot naviga

tion system. 
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4. The Hardware 

In order to carry out our experiments, we need the following pieces of equipment: a mobile 

robot with sonar sensors, a video camera, a framebuffer to process the camera data, a Sun Sparcl 

workstation, a Sun SparclO workstation, and our hallway environment. 

The mobile robot we have used is named Louie. Louie consists of a circular RWI Base, with a 

30 cm diameter, and a square metal frame, about one meter tall. There are eight sonar sensors on 

the robot: two in front, two in back, and two on each side. We do not use the back sensors, so we 

deal with two sonars on each side, and two in front. Louie's base is capable of translating and 

rotating while in motion. Louie has no on-board computer. The robot is controlled by a forth 

board, which receives commands from a SparclO workstation. We tether the robot to the worksta

tion through a serial cable. 

The robot also has a small tripod mounted on top, onto which the video camera is mounted. 

The camera is connected by a video cable to a framebuffer, which processes the images from the 

camera. The framebuffer is controlled from a Sparc1 workstation. The Sparc I machine sends the 

processed camera data to a process on the SparclO machine through a socket connection. The 

camera is plugged into a standard wall outlet, rather than the robot's battery supply. The camera is 

positioned so that it is aimed at the floor at an approximate forty-five degree angle. The data it col

lects consists of a 64x64 pixel image, representing the light intensities. This gives the camera a 

sixty degree arc of sight of the floor, approximately one meter from the robot 

The hallway environment used in these experiments is the fourth floor of the CIT building at 

Brown University. The carpeting and lighting in this hallway required some modifications in 

order to reduce noise in the camera data. A lightbulb was mounted on the robot, above the base, 

and below the camera. This acted as a headlight, and helped improve the robot's vision. The car
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pet also has a vaguely discernible pattern, which can create noise for the camera. Mats were 

placed in front of the robot, which contained a much more discernible pattern, to reduce noise in 

the optical flow algorithm. 

\ 
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Figure 1: The processes which run our system. 

5. The Software 

There are three separate processes running simultaneously to gather the data and issue com

mands to the robot. One process is our main control program, which runs on the Sparc10 

machine. The process which takes pictures with the camera runs on the Spare!. The third process, 

which also runs on the Sparc I0, is the optical flow algorithm. 

5.1. The Optical Flow Algorithm 

The optical flow algorithm is a process called track, developed by Ted Camus [2] at Brown 

University. The algorithm reads the image data from the process which takes the pictures, called 

snap. For each pixel in the 64x64 image, track compares the value to the values of the adjacent 

pixels. A bound is passed as an argument to track, 4 in our case. The bound indicates how many 

fractions of a pixel we want to consider in our matching. Track then finds the best match for each 

pixel, and creates an optical flow vector field, which is a 64x64 field whose values encode the 

pixel displacement per frame. 
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The encoded value is a short, unsigned integer, which is really two eight-bit fields. One field 

represents row displacement of pixels, the other column displacement. Given our bound of 4, the 

values for each field will range from -4 to 4, where a negative value represents a displacement up 

or to the left (North or West), and positive values indicate a displacement down or to the right 

(South or East). A value of 0 means that the pixel did not appear to change its position at all in 

that particular direction. A value of 1 means the pixel moved 1/4 of a pixel per frame. Values of 2 

and 3 mean the pixel moved 1/3 and 1/2 pixels per frame, respectively. A value of 4 means the 

pixel moved 1 pixel per frame. It is this vector field which our control program reads in, and pro

cesses using an artificial neural network. For more information on the theory and implementation 

of the optical flow algorithm, consult [2]. 

5.2. Neural Networks As Decision Makers 
( 

\. 
The brain of our main program is a series of artificial neural networks. Each network was 

trained using the standard backpropagation learning technique [3] & [6]. Training sets were cre

ated by using combinations of real and program-generated data. Some of these networks require a 

fair amount of preprocessing. There are three primary networks, which receive data from the sen

sors as inputs. The other networks process the outputs of these primary networks and initialize the 

next iteration. The first of these primary networks is the optical flow network. 

5.2.1. The Optical Flow Networks 

As stated above, the track algorithm sends a 64x64 vector of encoded pixel displacements to 

the control program. These values form the basis of the inputs to our neural network. In order to 

speed up learning, and to reduce complexity, we scale down the vector field we receive by select
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ing only every other row and every other column. This leaves us with a more manageable 32x32 

vector field. Since we are only interested in detecting fairly large objects, rather than identifying 

specific objects with precision, this reduction in complexity can be achieved without a loss of any 

critical information. 

The general idea behind the optical flow algorithm is that objects that are closer to the robot 

will have more flow than objects further away. By aiming the camera at the floor, however, we 

would expect to see a even, consistent flow, since the floor is the same distance from the robot. A 

change in that even flow would represent the presence of an object other than the carpet the robot 

is traversing. 

Some further modifications are necessary to make the data more useful. Since the floor is rela

tively close to the robot at all times, the optical flow algorithm tends to "max out" in the vertical 

direction. That is, the pixels appear to be shifting faster than one pixel per frame in the downward 

direction as the robot moves forward. This is analogous to driving a car: the immediate stretch of 

road the car is traversing seems to be moving (relative to the car) much faster than the trees and 

landmarks on the sides of the road. Given this fact, the vertical pixel displacement value is largely 

useless. We therefore only use the horizontal pixel displacement values as input to our neural net

work. The assumption is that if the robot is moving straight down a hallway, the pixels should not 

appear to be shifting in a horizontal direction at all. Hence, we would expect all horizontal values 

to be zero. Non-zero values indicate the motion of something other than the relative motion of the 

carpet, and thus a potential obstacle. 

Since we are only interested in zero and non-zero values, we set each of the 32x32 inputs to 0 

or 0.1, for zero or non-zero horizontal values respectively. The network has an output consisting 

of three bits, which are set to indicate whether or not the left, center, and right regions in front of 
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( Figure 2: The Optical Flow Network 
'

the robot appear blocked. 

The training data for this network was gathered by repeatedly driving the robot over the carpet 

tiles, while walking in front of the robot at different positions, and storing the flow information. 

The outputs were manually added to the data files afterwards. Some data was generated by a pro

gram, which created a vector field with mostly zero values, but with concentrated areas of non

zero values, and the correct corresponding outputs. The real data tended to work better in the 

training sessions, because it was more generalized, rather than having rigid boundaries between 

zero and non-zero regions. A total of 150 examples were used in the final training set The learn

ing required 89 epochs for this set with 1024 inputs, 15 hidden units in a single layer, and 3 out

puts. 
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The camera data can be susceptible to noise. Therefore, rather than pass the three outputs to 

the next level as they are, we instead take thfee readings, and pass their outputs to a network 

which basically employs a "best of three" strategy. If two of the three readings for a given region 

indicate a blocked path, then the result is 1, otherwise it is 0. These outputs provide a more accu

rate view of the path ahead for the robot. 

Once we have the outputs of the flow network, we need to map that information to a direction 

in which the robot should turn. This is the job of the flowdir network. This network is much sim

pler than the flow network, and takes advantage of the fact that the flow net has reduced the cam

era data to a very simple bit field. The flowdir network has 5 inputs. Three of them are the outputs 

from the flow network. The other two parameters are values indicating which wall we are cur

rently following. The variables leftWall and rightWall are initially set to °and 1 respectively. 

This means that we are initially following the right wall. These values are updated after each iter

ation. The larger of the values indicates the current wall. 

The outputs for this network indicate a direction in which the robot should turn. The values are 

in the set {60,40,20,O,-20,-40,-60}, where a negative is a turn to the right, and a positive is a turn 

to the left, from the robot's point of view, for a total number of seven outputs. The angle with the 

highest corresponding output activation will be the angle that is recommended to be the robot's 

next turning command. 

Given the limited number of parameters with which we must deal, it is easy to manually create 

the training set for this network. For example, leftWall and rightWall are 0,1 or 1,0, respectively. 

We also use o's and 1's for the left, center, and right values. Using these guidelines, we create a set 

of 16 examples. We have 5 inputs, 7 hidden units, and 7 output units. These examples were 

trained over 235 epochs. The training set is designed to tell the robot to turn towards the wall it is 

12
 



.. 

60 40 20 o -20 -40 -60 

7 Output Directions 

7 Hidden Units 

5 Inputs 
~ 

Left Wall Left Center Right Right Wall 

Figure 3: The Flowdir Network 
I 

\. 

not following if an object is blocking its path. The number of blocked regions in front of the robot, 

and the wall values, determine how much of a turn we wish to make. Together, the flow network 

and the flowdir network create an effective way to translate optical flow camera data into an 

action to be undertaken by a robot. 

5.2.2. The Forward Sonar Networks 

The camera is particularly useful for detecting moving objects in the robot's path. However, 

the optical flow algorithm is not as accurate in detecting smooth textured walls, which tend to 

exist in hallway environments. Also, the camera only sees a sixty degree arc in front of the robot. 

We receive no data concerning how close we are to the walls, or possible objects out of the 
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Figure 4: The Forward Network 

camera's range of sight. This is why it is necessary to complement our camera data with data from 

the robot's sonars. 

The sonars return a value, in mm, indicating the distance to the nearest object. The sonars tend 

to be most reliable when positioned perpendicular to the surface that we wish to detect. This is the 

premise upon which we created the forward sonar network. 

This network takes as inputs the six sonar values starting from left rear, and going to right rear. 

The three outputs correspond to the angle set {90,O,-90}. The training set was generated by a pro

gram. Experimentation with the robot revealed the typical types ofvalues one could expect to see, 

given different positions of the robot in a corridor. The program merely created sets of values that 

reflect these patterns, and assigned the appropriate output. A total of7143 examples were gener
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ated, and trained over 44 epochs, with 9 hidden units. 

The training set basically teaches the robot to go straight whenever possible, and turn ninety 

degrees only when there is no other direction in which to tum. One special case can occur which 

requires us to pass the outputs of the forward network to another network called the fwddir net

work. 

Like the flowdir network, the" fwddir network takes the output of the previous network, and 

adds the leftWall and rightWall values as additional parameters. The output is of the same size and 

type as the forward network. The special case which can occur is when the robot's forward path is 

blocked, but the left and right sides are equally clear. Rather than just randomly pick a direction, 

the fwdddir network lets the wall parameters determine the direction. In fact, in this case, the for

ward output array will activate both the 90 and -90 units. It is up to the fwddir to arbitrate between 

them. If there is no choice, then the output from the forward net will be output again. If there is a 
( 

\ 
choice, the rule is to turn in the same direction as the wall the robot is currently following. This 

helps keep the robot moving in a path where it will continue to make progress, rather than turn 

back the way it came, as we will see in a later section. 

The data set for this network was created manually, much like the flowdir network. A total of 

8 examples were trained with 5 inputs, 4 hidden units, and 3 outputs over 28 epochs. The output 

from this network become the sonar recommendation as to which direction to turn. 

5.2.3. The Sides Sonar Network 

If there are no obstacles blocking the path of the robot, we would like the robot to move 

straight ahead. As the robot moves, however, it can gradually begin to drift off of its original 

heading, and even drift into a wall. For this reason, the robot needs to periodically turn slightly to 
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Figure 5: The Sides Sonar Network 

keep itself on course. This is the motivation for wallfollowing, and the purpose of the side sonar 

network. 

The side network takes two inputs, the two sonar values from the side of the robot.correspond

ing to the wall we are currently following. The output array corresponds to the angle set 

{25,20,15,lO,5,O,·5,.lO,·15,·20,·25}. These angles represent the varying levels of adjustment the 

robot needs. Ideally, the range {5,O,·5}, should be the only active set, and indeed these are the 

most common outputs. The network is not concerned with which wall we are following, since the 

outputs will be the same regardless. The way to achieve this, is to pass the inputs to the network in 

two different orders. If we are following the right wall, the front side value is the first output, and 

the back side value is the second. Ifwe are following the left wall, then the back side values is the 

first input, and the front side value is the second. This allows the network to be independent of the 
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wall being followed, and eliminates the need for another complementary set of training examples. 

The training of this network proved extremely difficult. There are two reasons for this. First, 

there are a large number of outputs to add to the complexity of the network, much more than any 

of the others. Secondly, and more importantly, the selection of the correct output to activate 

depends upon very small differences to the input values. With the forward network, we were deal

ing with distances that varied in magnitudes of tens of centimeters. The side network deals with 

values with differences less than, sometimes much less than, 10 em. The combination of the large 

output set and the vaguely distinguishable inputs made convergence in training a serious problem. 

The solution was to restrict the training set to a small number of examples, .with one value fixed at 

lOOmm, and the other changing up to 225mm. We also scaled the values with the formula: 

n*4-300, to make convergence easier. This allows the network to learn the only thing that is it 

critical that it learn: to assign outputs based on the difference between the two input values. We 

\ 
created a total of 36 examples, with 14 hidden units over 667 epochs. 

The training set was designed with the notion that for every 25mm of difference between the 

two values, there should be a turn of 5 degrees. The direction is determined by the ordering of the 

inputs. With this network in place, we have used the last of our sensor information, and we must 

decide which of the three primary networks should be followed. 

5.2.4. The Integration Network 

The integration network is basically an arbiter, which decides which network's output is the 

correct one to follow. The 21 inputs values consist of the 3 outputs from the fwddir network, the 7 

outputs from the flowdir network, and the 11 outputs from the side network. The output is a three 

bit field which corresponds to the fwddir, flowdir, and side networks respectively. The output with 
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Figure 6: The Integration Network 

the highest activation is the network that will be followed. 

The training set was computed by a program, which generated patterns of outputs from the 

three primary networks. The output is designed to reflect a simply hierarchy: l.fwddir, 2.flowdir, 

3. sides. The fwddir network has highest priority, since it is recommending a right angle turn to 

presumably avoid hitting a wall. The flowdir has next priority, since it is recommending a course 

change to avoid an obstacle in the robot's path. The side network has the lowest priority, since 

avoiding collisions with walls and obstacles is more important than alignment with the wall. 

If the fwddir net has any output other than its 0 degree (go straight) output active, then the integra

tion activates its first output node. If the fwddir says to go straight, it is up to the flowddir. If the 
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f10wdir has any active output other than its 0 degree output, then the integration network activates 

its second output. If both fwddir and f10wdir say to go straight, then we just want to align the robot 

with the wall, so the integration network activates its third output. The 0 degree turn outputs for 

the fwddir and the f10wdir basically enable the next priority, while the other outputs act as dis

ablers. The program generated 14,784 examples, which were trained with 18 hidden units over 49 

epochs. 

5.2.5. The Wall Networks 

Once we have decided which output value to follow, we must prepare for the next iteration of 

sensor readings. We must update the values of leftWall and rightWall, in the event that a course 

change has affected the choice of which wall to follow. We have two wall networks, one which 

corresponds to the fwddir network, and the other to the f10wdir network. The inputs to both net
( 

works are the current values of leftWall and rightWall, and the outputs of the corresponding sen

sor direction networks. The two outputs are the new values for leftWall and rightWall,- 

respectively. Both networks were trained with manually constructed data, with bool~an values 

representing the possible inputs and outputs. The fwddir wall network was trained with 6 exam

ples, and 4 hidden units, over 16 epochs. The f10wdir wall network was trained with 14 examples, 

and 5 hidden units over 14 epochs. 

The first wall network is used if the direction is chosen from the fwddir network. The rule that 

is learned for this network is: when making a 90 degree turn, the wall to follow to the opposite of 

the direction in which was just turned. This, combined with the rule for choosing which 90 turn to 

make when there is a choice, insures that the robot will continue moving in the same forward 

direction, rather than begin backtracking. 
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The second wall network, which corresponds to the flowdir output has a simpler rule: follow 

the wall in whose direction you've just turned. For example, if the robot veers 60 degrees to avoid 

a person walking down the hall, and had been previously following the right wall, then the left

wall would be the wall to follow for the next iteration. 

5.2.6. The Delay Network 

In the event that we choose the flowdir network's output as the robot's direction in which to 

turn, we need to allow enough time for the robot to get to the other side of the corridor, before tak

ing the next set of sensor readings. We need a variable delay, which is determined by both the 

angle in which the robot has turned, and the two side sonar readings facing the wall towards 

which we are turning. 
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Figure 8: The Delay Network 

The inputs for the delay network are the above mentioned angle and two sonar readings. The 

output array corresponds to the number of seconds the control program should wait before start

ing the next iteration. The first output corresponds to a wait of 0 seconds, the next I second, and 

so on, up to 5 seconds. 

The training set for this network was manually created to reflect the obvious rule: the greater 

the distance, the more delay. The angle also plays a factor: after a sixty degree turn, the time 

required to reach the other side is less than after a 40 degree turn. Usually, 20 degree turns do not 

cause a shift to the other side of the corridor, so this limits the delay considerably. The training set 

of 27 examples were trained with 8 hidden units, over 778 epochs. 
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5.2.7. Evaluating the Usefulness of Neural Networks 

Now that we have seen each of the neural network components which make up our system, 

one might ask, "Why do we need all these networks? Would it not be easier to just program their 

functions directly, in a conventional manner?" In this section, we will address this issue. 

In the case of processing the flow data from the track program, a conventional program would 

need to check each pixel displacement value, keep track of where non-zero values appear, and in 

what regions they appear most often. It would also need to identify concentrated blocks of non

zero values, since these would indicate the presence of obstacles. The neural network accom

plishes all of this in the training phase. All that is required is a diverse enough training set that 

allows the network to train on all possible types of examples. It was fairly simple to construct 

such a set. Adding the output values to the file after gathering the input data was time consuming, 

but very easy to do. Another issue is the flexibility ofthe network. A conventional program would 

at some point need to specify some rule for arbitrating between two actions. If, for example, the 

program were to require n values in a particular area to be non-zero, in order for that area to be 

considered blocked, what happens if there are n-l non-zero values? Conventional programming 

techniques tend to have an all or nothing approach when it comes to this type of situation. The 

flow network does not require as much rigidity in its specifications, and is therefore able to gener

alize more, on a case by case basis. This is similar to the problem of training with programmed 

data versus real data which was discussed in section 5.2.1. Given the requirements necessary to 

program the processing of the camera data, it seems that neural networks have definite advantages 

over conventional techniques. 

The advantages may not be as obvious in the cases of processing the sonar information. There 

are much fewer inputs values to process, than with the camera. In the case of the forward behav
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ior, a conventional program would need to check the forward sonars values to detennine whether 

they are large enough to determine that it is safe to continue to move forward. If not, it would 

have to check each side, and determine in which direction it is best to turn. These are essentially 

the same rules used in the program which generates the training examples for the forward net

work. The advantage of using the network approach is again in the generalization. Suppose that 

we decide that in order for our control program to decide it is safe to move ahead, both forward 

sonar readings must be above 500mm. Suppose one of the values were 501mm. The conventional 

program would say it is safe to go straight, while the forward network, would correctly general

ize, and determine that it is not safe. The actual training of the network was trivial once the exam

pIes were generated. Given this, the network approach seems to offer an advantage that 

conventional programming does not, with minimal cost. The exact same argument can be made in 

the case of the sides network. For roughly the same amount of work, we gain much better general
,/ 
\ 

ization by using networks over conventional programming. 

The other networks are fairly trivial in their architectures and functions. It would be fairly 

straightforward to program their behaviors into a control program directly. However, it was just as 

trivial to create and train the small training sets these behaviors require. The one exception would 

be the integration network, however. It may have been much easier to simply check the maximum 

output value of the three primary networks, in order to determine which one to follow. In this 

case, we do not need to generalize, so we would lose nothing by applying a direct, rigid rule. 

In general, the decision of whether to use neural networks, or standard programming tech

niques, depends on the nature of the behavior being programmed. It seems that the larger the set 

of input data is, the more likely neural networks will be easier to use than standard techniques. 

The decision also depends on how generalized the behavior must be. The more generalization that 
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is required of the system, the more likely neural networks would be useful. Certainly, in the case 

processing camera data, the usefulness of neural networks becomes obvious. 

>. 
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Figure 9: Interaction of the Neural Network System 

5.3. The Control Program 

Now that we have seen the various neural networks, and their specific functions, it may be 

helpful to see just how the main control program uses this collection of networks to make intelli

gent decisions as to the actions of our mobile robot. The first thing we need to do is initialize 

everything. 

We first run the snap program on the Sparcl workstation. This controls the frame buffer and 

the camera. The best flow results seem to come from setting a delay of 100 milliseconds between 

each picture. This means ten pictures, or frames, are taken each second by the camera and pro

cessed by the frame buffer. The track program must also be running next. This computes the opti

cal flow for the camera data, and writes it to a socket connection. The first step, then, in the driver 
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program, is to establish a socket connection for the output from track. Once the connection is 

made, we need to make a connection to the robot We then initialize leftWall to 0 and rightWall to 

1. We then set the robot into motion at the constant speed of Scm/sec. This speed, combined with 

the camera frame delay rate, seems to produce the best optical flow. We are now ready to begin 

the main control loop. 

The first thing the loop does is read in the optical flow data from the socket connection. Three 

separate flow vector fields are read in. Each of these are propagated through the flow network, 

which reduces them to the three bit field, indicating whether or not each region is blocked. The 

three output bit fields are combined into one by propagation through the "best of three" network. 

We now have the camera information in a form we can use. 

We then need to read the sonar values. The sonars are fired 3 times, and their readings aver

aged together. This reduces noise and misreading that occasionally occur with the sonars. 

We then propagate our sensor readings through their respective neural networks. The six sonar 

values are propagated through the forward network, and then through the fwddir network, along 

with the leftWall and rightWall values. The results of the flow networks are propagated through 

the flowdir network, along with the wall values. The side sonar values are scaled to be in range of 

the training data. The smaller of the two side values os scaled to 100mm, and the other value is 

scaled so that the difference in the values is the same as the original. The modified values are then 

propagated through the side network. We now have all possible choices for the turning direction. 

We then propagate the outputs of the fwddir, flowdir, and side networks through the integra

tion network. The output from this network tells us which of the three choices to follow. We then 

issue the command to the robot base to turn the appropriate angle. If the fwddir or flowdir choice 
.~ 

is chosen, then we call the corresponding wall network to set the leftWall and rightWall variables 
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for the next iteration of the loop. If the flowdir is chosen, we also call the delay network, to get the 

appropriate delay time. At the end of the delay, we turn in the opposite direction that we just 

turned, in order to realign the robot with the new wall. If flowdir is not chosen, then we use a fixed 

delay of 1 second. 

While the control program is deciding what to do, the snap and track processes are continu

ously taken pictures, calculating flow, and piping it via socket connection to our control program. 

To insure that the program is receiving the latest flow information, we need to read away all of the 

flow that is accumulated during any delay periods. We are now ready to begin the next iteration of 

the loop. The loop continues until aborted by the user. 

/
\ 
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Figure 10: P~ths taken by the robot. 
a: Straight.down the hall.
 
b:M:ove, towards other wall to avoid moving object.
 
c: M~ke two right turns to avoid non-moving object. 

.d:Make two right turns to avoid dead end. 
e.: Veer away frotnwaU to avoid small obstacle. 
f: Veer towards wall to avoid obstacle on other side. 

6. Experiments and Results 

The first, and simplest test we tried on the robot was to have it move straight down the hall-

e.
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way, without any obstacles. Ideally, the flow algorithm should detect a smooth consistent vector 

field on the floor, and the sonars should return large distances for the front, and much smaller ones 

for the sides. Each sonar value on each side should be nearly equal. Only small adjustments from 

the side network should be changing the robot's direction. 

This test basically worked out fine. The robot travelled to the end of the pattern tiles on the 

floor, making only slight course corrections. Any failures could be attributed to anomalous read

ings in the sensors. Occasionally, the camera would record flow where there should be none. The 

sonars would occasionally give strange readings. Our noise control strategy of taking three flow 

readings, and three sonar readings, reduced the overall noise considerably, however. 

The next test was a bit more ambitious. We wanted Louie to be able to detect a person walking 

slowly towards it, veer out of the way, and swerve back to a forward course before hitting the 

opposing wall. The robot should turn 20, 40, or 60 degrees, depending on how many regions are 
( 

deemed blocked by the flowddir network. The delay should bring the robot at least beyond the 

center of the corridor, before allowing it to turn back to face the forward direction again. 

This test was basically successful. When walking directly in the robot's path, the entire flow 

field became active with horizontal motion. So the robot made its 60 degree turn. The delay com

puted by the delay network brought the robot to within 30 cm of the other wall, before turning 

back. On the next iteration, the side network was able to more accurately align the robot with the 

new wall. When walking to one side of the robot, close to the same wall, the robot made a 40 

degree turn, as expected, and realigned itself on the other side accordingly. When walking side

ways, hugging the wall, the robot was able to make a 20 degree turn. With a twenty degree turn, 

the robot does not shift sides in the corridor. Rather, it moves away form the wall just enough to 

get by an obstacle up against the wall, which was the person walking. The robot was able to pro
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duce these desired results. We were also able to repeat the test several times; the robot was able to 

shift back and forth between walls and align itself. 

Another similar test was to see how the robot would react if it were following the right wall, 

and a person walked down, following the left wall. If the robot was close to the middle of the cor

ridor, then it would turn 20 degrees towards the wall it was already following, to move in closer. 

The delay would again bring the robot to a close, but safe, distance from the wall. If the robot was 

already close to the wall, the robot and person were able to pass one another without a course 

change. 

These tests were successful, as long as the camera data was relatively free of noise. One con

dition that can cause problems is if the person is wearing uniform colored pants that are of either a 

very light or a very dark color. A uniform color across the camera's field of vision can neutralize 

the optical flow. Non-uniform colored pants such as stonewashed jeans tend to produce the best 

results. 

The next tests involved right angle turns. We wanted the robot to be able to detect a non-mov

ing object, one that perhaps generates little or no optical flow, and turn at a right angle to avoid it. 

We would then expect the robot, on the next iteration, to detect the wall in front of it, and turn 

again. If the initial obstacle is now out of the way, the robot should choose to turn back to the 

direction in which it was previously traveling. If one side is blocked, presumably as a result of the 

presence of the object which caused the initial turn, the robot should turn in the other direction, 

presumably making a U-turn out of what would appear to be a dead end. 

These test were quite successful, but relied on two modifications; one hardware, the other soft

ware. The problem was that the walls in our hallway environment are not perfectly smooth. They 

have small bumps and ridges. With the relatively poor lighting available in the hallway, these 
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ridges can create shadows which the optical flow algorithm interprets as flow. The camera sees the 

wall, before the sonar readings are close enough for the forward network to turn to robot at a right 

angle, and the robot turns 60 degrees instead of 90. The hardware solution was to mount a "head

light" on the robot. The lightbulb provided enough light to eliminate the unwanted shadows that 

were creating the noise in the optical flow algorithm. The light must not be too bright, or it will 

make normal object detection very difficult with the optical flow algorithm. 

The other problem was the robot often chose to make a U-turn, even when it could have turned 

back on its original heading, and resumed a forward course. The software solution was to bound 

the side sonar values by a maximum limit of 1000mm. If the side values exceed these maximum 

bounds, then they do not provide any useful information for wall alignment; the sonars could not 

be detecting a wall in our hallway with those distances. By binding the values, the side readings 

were both sufficiently large when facing a wall, that it chose the correct 90 turn to make. Any 
( 
\ 

obstacles would be within the bounded range, and would be detected by the sonars. 
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7. Future Work and Conclusion 

Although the implementation of the general ideas of this project were successful, there is 

always room for more to be done. Sensor noise is a problem that has plagued mobile robotics pro

grammers for many years, and will probably continue to do so. One enhancement could be to try 

and eliminate more noise.The camera often produced noisy readings, given the lighting condi

tions in the hallway. One might try to improve the lighting conditions, or explore ways to reduce 

the camera's sensitivity to shadows. 

Another problem that could be addressed is the issue of speed. The robot moved fairly slowly, 

only 5cm/sec. One could explore ways of increasing the robot's speed while still receiving rea

sonable data from the optical flow algorithm. 

One might also try using different equipment, and different environmental conditions. The 

system would be more robust if it worked on any type of carpet or floor surface. The robot, Louie, 

which was used in these experiments, often had problems. Sometimes, as a day of testing went on, 

the robot's batteries would run low, resulting in a speed slower that expected, which threw off 

delays and optimal turning points. The system was built with the intent of using this particular 

robot, in this particular type of environment. One may want to generalize the system, so that it 

will work for robots of different sizes, shapes, and possibly even different sensors. The sonars 

sometimes would return anomalous readings, which would throw off a testing session. More 

sonars clustered together, might overcome these problems, and provide more accurate data. 

Despite these constraints, the system was able to accomplish what was expected of it. We have 

demonstrated a practical application of the optical flow algorithm. We have shown that different 

types of sensor information can be combined to allow intelligent control decisions to be made by 

a mobile robot. We have seen that neural networks can be trained off-line, and then used to pro
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duce real time outputs to the input sensor data. We have also demonstrated that neural networks 

are capable of performing simple low level functions, which combine to produce a complex 

behavior. This system is not completely behavioristic by any means. However, the neural network 

configuration is not unlike a behavioral approach. In any event, the system clearly demonstrates 

the usefulness of machine learning, and neural networks in particular, in the field of mobile robot

ics. 

I 
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