
BROWN UNIVERSITY

Department of Computer Science

Master's Project

CS-95-M16

"Building a Client Application in the CORBA Environment

Using HyperDesk's Object Services"

by

John K. Martin

Building a Client Application in the CORBA

Environment Using HyperDesk's Object

Services

by

John K. Martin

Department of Computer Science

Brown University

Submitted in partial fulfillment of the requirements for the Degree of

Master of Science in the Department of Computer Science at Brown

University.

May 1995

This research project by John Martin is accepted in its present form by
the Department of Computer Science at Brown University in partial
fulfillment of the requirements for the Degree of Master of Science.

,> .

Building a Client Application in the CORBA

Environment Using HyperDesk's Object

Services

John K. Martin
Brown University

Table of Contents

1 Introduction

1.1 Objective

1.2 Organization

2 Purpose of the Object Browser

3 Description of the OMG and the CORBA Interface Standard

3.1 The OMG and CORBA

3.2 Object Model

3.3 Interface Repository

3.4 Comparison of HyperDesk and CORBA Interface Repositories

4 Problems Related to Maneuvering through Containment and the Selection of Objects

4.1 Problems Related with Search and Selection

4.2 The Need For Common Functionality Among All Objects in the CORBA Environment

5 Issues Discovered when Designing and Building an Object Browser

5.1 Displaying Attributes

5.2 Displaying Operations

5.3 Displaying Objects

5.4 Implementation Data

6 Building Client Programs in the CORBA Environment

7 Issues Involved in Constructing the User Interface for Browser

8 Conclusion

8.1 Summary

8.2 Areas for Future Research

A Basic User Guide

1.0 INTRODUCTION

1.1 Objective

The objective of this project was to investigate the adequacy of the object

services which were provided with the HyperDesk Corporation's Distributed

Object Management System from the perspective of a client application. Three

main services were provided in the initial release: the Interface Repository, the

Implementation Repository, and the Location services. We also hoped to identify

some of the unique design and implementation issues involved in building client

applications in the environment defined by the Object Management Group's

CORBA standard. An object browser was chosen as the example client

application to test these services because it would require much of the non-editing

functionality which they provide. Such a browser would also be a necessary part

of a development environment in which software engineers used preexisting

objects in the management system to build new object programs. The browser

was constructed using only the calls provided by these services to query and

retrieve object data. Since HyperDesk's Interface Repository was built to support

the operations defined in version 1.1 of the OMG's CORBA standard, it allowed

us to investigate whether the interface defined by this standard, in tandem with the

additional functionality provided by HyperDesk, was an adequate base upon

which tools such as the object browser could be built. An attempt was made to

detail the positive or negative effect of the operations defined in HyperDesk's

implementation of the Interface Repository which differed from those defined in

the CORBA standard. An effort was made to isolate a few small changes to the

object service definitions which would increase their functionality from a client

program's perspective.

1.2 Organization

Page 1

This document begins with a short section on why an object browser is

needed to support development in the environment defined by the OMG's

Common Object Request Broker Architecture standard (CORBA). A description

of the purpose of the OMG and a short technical overview of the CORBA

standard and the Object Management Architecture standard (OMA) is then

presented. This overview should enable an understanding of the technical issues

discussed in the rest of the paper. Readers who are unfamiliar with CORBA and

the HyperDesk Distributed Object Management System (HDDOMS) product may

wish to consult this section first. A comparison of some of the important

operations in the Interface Repository provided by HyperDesk and their

counterparts in the CORBA specification is then presented with discussions on the

positive and negative aspects of the differences found. Many significant issues

related to the design of HyperDesk' s object services were discovered when

designing and building various parts of the browser. These issues are presented

in section 6. Other topics relating to the construction of the user interface for the

object browser are then described. The scope of this discussion is then widened to

encompass some of the unique issues involved in building client applications in

this environment. We conclude with a summary of the major points made in the

paper and a brief discussion of some areas that were not fully explored by this

research and deserve further attention in the future. A basic user guide for the

browser is included as an appendix.

2.0 PURPOSE OF THE OBJECT BROWSER

The OMG is in the process of defining a set of standards which allow an

application developer to access objects without regard to the machine or operating

system that they run on, the language that they were written in, or the network

through which they are accessed. Such an environment would clearly aid in the

process of rapid application development by removing many complexities from a

software development task. Programs can easily be constructed in this

environment by combining preexisting objects with newly defined objects. One of

Page 2

the driving forces behind the OMG is to provide an environment which facilitates

this reuse of code. As stated in their Object Management Architecure Guide,

"A major goal (of the OMG) is to define a living, evolving

standard with realized parts, so that applications developers

can deliver their applications with off-the-shelf components

for common facilities like object storage, class structure,

peripheral interface, user interface, etc." [1]

The use of existing objects can simplify a developer's task by hiding

complexity, but how is an engineer going to discover what potentially useful

objects already exist? How can the functionality of these objects be investigated?

The answer to these questions could lie in various textual resources stored in the

computer's filesystem or in hardcopy specifications. Another, perhaps more user

friendly solution, would be an online browser which can search for objects based

on their containment structure and attribute values. A user could request that the

browser display selected information about both the structure and contents of

selected objects.

The CORBA standard does provide a textual language called IDL for

defining objects in a manner independent of that of existing programming

languages. One could presumably scan these files to discover the structure of

objects, but this task could prove onerous, especially when one considers that

there may be hundreds or even thousands of service objects, each possibly

containing large numbers of subobjects. These IDL files could be stored in many

different directories across the network, some of which a developer may not be

able to access. Even if the developer can access them, it may be quite difficult to

discern which objects may be potentially useful from a list of short file names.

IDL files may not even exist for certain objects, as HyperDesk (and the OMG)

have provided a dynamic means of defining objects which does not create IDL

Page 3

files. Attribute and parameter type definitions for a single interface can be

scattered across multiple IDL files making a developer's job even harder.

Hardcopies of IDL files share the problems of the online files and there is

no guarantee that the information in a particular hardcopy is up to date. Neither

online files or hardcopy resources can provide any information on the attribute

values of an object. An online browser, on the other hand, can provide up-to-date

information about both the structure and content of all currently installed objects.

It can provide facilities for a user to maneuver through the containment hierarchy

and select objects at any level in this hierarchy. Information about attribute and

parameter types can be had at the touch of a mouse button. Clearly, such a tool

would be a indespensible resource to an application developer.

3.0 DESCRIPTION OF THE OMG AND THE CORBA
INTERFACE STANDARD

3.1 The OMG and CORBA

The Object Management Group (OMG) is composed of a group of

independent software vendors. Its mission is to develop and promote standards

regarding distributed object oriented applications. The CORBA standard was

developed by the OMG as the programming interface to the Object Request

Browser (ORB). The ORB is the fundamental mechanism defined by the OMG

which allows users to make calls to an object's operations without concerning

themselves as to the actual location of the object, the implementation of the object,

or how the call is made across the network to access the object. The CORBA

standard was adopted in 1991 and several implementations of it are available

today.

The ORB is the central component in the OMG's view of the world. It

Page 4

Remote System

Object

Services

Local System

Object Database

Figure 3.1: HDDOMS CORBA Implementation

handles all requests to execute an object's operations be they from a local client

program or from a remote ORB. If a requested object is not held in its immediate

environment, the ORB will route the request across the network to another ORB,

receive the answer back and return the resulting data to the user. (See Figure 3.1)

This process is hidden entirely from the client program. This hiding of internal

complexity, sometimes called transparency, allows an engineer to rapidly develop

client applications by returning the engineer's focus to the real problem at hand

and away from any low-level intercommunication issues.

Objects in the ORB's environment can be stored in a number of places

Page 5

including an object oriented database, the computer's filesystem, or in a library.

Objects are accessed through a software device called an object adaptor which

provides mechanisms for object activation, object identifiers and management

services related to an objects state. HyperDesk's implementation, HDDOMS,

provides two object adapters: ODBOA and BOA. ODBOA, a proprietory adapter,

stores objects in an object oriented database (Object Design's ObjectStore). It

automatically provides a number of services for the objects it controls. (See Figure

3.3). It is used to store all of the objects in the Interface and Implementation

Repositories. (See definition below). The BOA, defined by the OMG, is a general

purpose adapter that allows objects to be stored in a variety of places. Only a few

basic object services are provided with the BOA. All other services must be

implemented by an object developer. It is important from the browser's

perspective that all (or at least most) objects, regardless of the adapter they use,

provide services to return attribute content and to move through containment.

There are two categories of utility programs defined by the OMG's Object

Management Architecture (See Figure 3.2). One is called the Object Services, the

other, Common Facilities. Object Services are composed of those functions which

aid in the handling or use of objects. All other useful programs such as electronic

mail and help utilities are lumped together under the Common Facilities category.

The HyperDesk product, HDDOMS, currently provides two object services which

hold information about objects, the Interface Repository (partially defined by

version 1.1 of CORBA) and the Implementation Repository (named but not

defined in version 1.1 of CORBA). As their names suggest, the Interface

Repository holds information about an object's interface (operations, attributes,

etc.) and the Implementation Repository holds information pertaining to an

operation's implementation (methods, object adapters, etc.). All of the information

in the repositories is provided by object interfaces which conform to the OMA's

object model and have CORBA defined IDL interfaces. The two repositories are

linked through the ProcedureDef object. (See Figure 3.3).

Page 6

Object Request Broker

Figure 3.2: Object Management Architecture

This connection allows a user to query which machines an operation, and

ultimately an object, can run on. Object Services and Common Facilities are

accessed in HDDOMS through another service called the Location Service. Once

a user has logged into an ORB, the Location Service can provide a list of object

identifiers for services and facilities in the users view.

3.2 Object Model

It is important to present a short description of the object model used by the

OMG. An object under this model is considered to be any encapsulated program

which provides services to client applications. The interface to an object describes

Page 7

the services that an object can provide. A data type defines a legal set of values

for an attribute or parameter that has that type. There are ten basic data types and

five constructed data types which are built from the basic types (i.e. structures,

arrays, etc.). An object operation provides a unique service and is described by a

signature. This signature contains specifications for an operation's parameters,

results, exceptions, and execution semantics. A single operation can have multiple

methods which run under different machine types. In the future, ORB

implementations will allow multiple methods for different operating system and

windowing environments. The ORB automatically picks the correct method to run

in a particular environment. Methods can be written as binary executables, scripts

for interpreters, or program executables.

A CORBA defined object can inherit attributes and operations from one or

more parent objects. An object can inherit an operation with the same name from

two different parent objects if and only if the parents inherit the operation from the

same source object. If the operation in the parent objects are defined in different

objects, then the operation cannot be inherited. Objects which inherit from the

::Bin class (See Figure 3.1) can contain other objects. An object in the

::MemberBin class can only be contained by one parent object. Objects in the

::ChiidBin class can be contained by multiple parents.

The current specification for the ORB allows only for the storage of

reasonably high level objects because of the overhead required for each object.

Objects such as a spreadsheet cell cannot be effectively stored under the current

model. Providing a means to store and access fine grained objects under CORBA

is an open area of research.

3.3 Interface Repository

The specification of the Interface Repository under the CORBA standard is

admittedly incomplete. The names of certain objects in the Interface Repository

Page 8

get_ediUlag

time_created
time_modified
created_byget_service_list<none>

objecUd
objeccname
type_name

register
deregister

::AttributeDef
type <none>

char_lengtn

allcmode
defaulcvalue

::ConstantDef
type <none>
value

::ExceptionDef
type <none>

::ParameterDef
<none>type

param_mode
required

::TypeDef
type <none>

,,,..bl.-""

::ProgramDef
<none> <none> ::MethodDef

entry <none>

'"C	 ::FactoryDeftf<i	
/

(1) <none> create_object

\0

use
end_use
contained_by: :Root
get_attribute
seCattribute

describe_self

modified_by
revision ::ltem
comments
language_code
country_code
character_set

HD Inheritance
(Figure 3.1)

<none>

<none>

install::coined
::Comman
environ_vars <none>
command_line
executable_obj
executable_def

objeccadapter <none>
objeccmanager
platform
index

..ProcedureDef <none> tionFile
implementallon_o~,..,,,,,-,,,,;,, h;"·	 ••• • Implementa. ~

ommand_obJ locatIOn
~ommand_def ~ file_~name

loadable_obj	 ~./ file_object I

::Executable ··Loatlab e ..
<none> <none> <none> <none>

::Library ~riPt
<none> <none> <none> <none>

selectJormat
sort_format ••lJin
attribute_format ••
pallernJormat

: :ChiidIJin
add_child

get_child_type_a1lowed

create_child

copy_child
remove_child

<none>

::OperationDef
op_mode <none> ::ImplementationIJin
result
context
protection

::ImplementationSet

base_interfaces find_factories

base_def
child_interfaces
child_def
member_interfaces
membecdef
implsecobj
implset_def
instantiable
objeccclass_name

<none> <none>

::InterfacelJin
subtype

::Implementation

Repository
impl30unt <none>

::Repository
interface_count <none>

::ModuleDef
<none> <none>

open_survey
read_survey
refresh_survey
close_survey

<none>	 create_member
copy_member
remove_member

<none> ::Container <none>

are defined along with the names and types of the attributes within these objects.

Only a few object operations have been specified. The standard's developers did

not expect that these operations would provide an adequate base upon which to

build a program like the object browser. They were designed to provide basic

functionality for object access.

"The interface specifications for the Interface Repository objects

define a set of basic operations for clients who want to access these

interface objects. They are not intended to provide sufficient

semantics for the construction of basic interface browsers or

command-line interfaces to the Interface Repository, nor to provide

an administrative interface." [5]

The Interface Repository objects specified by HyperDesk were designed to

provide a more complete interface. The inheritance hierarchy for the objects

defined in HyperDesk's Interface and Implementation Repositories is shown in

Figure 3.3. The object classes are shown in bold. Attribute names are displayed

to the left of the class name and operations are displayed on the right. The

containment hierarchies for the Interface and Implementation Repositories can be

seen in Figures 4.1 and 4.2.

It is important to examine some of the CORBA defined operations for the

Interface Repository at a detailed level because they can differ significantly from

the operations defined by HyperDesk. In the space below, we describe several

operations in the CORBA definition which would be useful to a browser such as

contents, lookup_name, within, describe_inteiface, and describe_contents. The

function prototypes for all of these routines and their HyperDesk counterparts can

be found in section 3.4. The contents operation is the fundamental containment

routine which returns all child objects which are held in a specified parent object.

This operation takes two parameters, restricCtype and exclude_inherited.

RestricCtype allows a user to restrict the set of returned objects to a specific type.

Page 10

Exclude_inherited permits the user to restrict the set of returned objects to only

those which do not inherit from the given object. The lookup_name operation

allows a user to search for an object with a given name within a certain number of

containment levels of a specified object. It takes the parameters specified above

along with a search_name and a levels_to_search parameter. Within returns a list

of all objects which contain the supplied object. Describe_inteiface returns a

description of all the attributes and operations defined in an interface. In CORBA,

this means a description of all the AttributeDef and OperationDef objects

contained by an InterfaceDef object. Describe_contents returns a description of all

objects contained within one level of a specified object. It allows a user to restrict

the set of objects returned by both type and inheritence and to specify a maximum

number of objects that can be returned.

3.4 Comparison of HyperDesk and CORBA Interface

Repositories

It is informative to compare some of the CORBA defined operations which

are useful in the browsers context with the corresponding operations which were

implemented in HDDOMS. One routine, lookup_name, which was defined in the

CORBA standard, has not been implemented in the HyperDesk's Interface

Repository. This routine looks for an object with a given name within a specified

number of containment levels of the supplied object. Such a routine could be very

useful in helping users who know the name, but not the location of the object for

which they are looking. Other useful operations for browsing in the CORBA

standard do have counterparts in HyperDesk's implementation: The within

operation was implemented by contained_by. Describe_contents and

describe_inteiface can be roughly emulated with the open_survey operation.

/* Defined in CORBA Container class */

sequence <Contained> lookup_name (

Page 11

IN Identifier search_name,

IN long levels_to_search,

IN InterfaceName limit_type,

IN boolean exclude- inherited

/* Defined in CORBA Contained class */

sequence <container> within()

/* Defined in HDDOMS Contained class */

contained_by (

OUT ORB_SeqObject container_list

There are some important differences between the CORBA standard's

definition of describe_contents and describe_interface and their emulation

through the use of HyperDesk' s open_survey operation. The describe_contents

operation returns a description of all attributes, operations, parameters, constants,

typedefs, and exceptions defined by an object (i.e. contained by an object)..

Describe_interface returns a description of a subset of the above object

descriptions consisting of the attributes and operations defined for an interface.

HyperDesk's open_survey operation returns a subset of the objects contained by a

specified parent object. It, unlike describe_contents or describe_interface,

provides the ability to both select and sort on attribute values. Pattern matching is

allowed in these selections. These features are quite useful in the context of a

browser. The exclude inherited parameter for the describe_contents operation

allows a user to exclude objects which are parented by the given object. This

feature is not explicitly provided by open_survey, but could be easily simulated

with a pattern match on the base_def attribute.

/* Defined in the CORBA Container Class */

sequence <contained> describe_contents (

IN InterfaceName limit_type,

Page 12

IN boolean exclude_inherited,

IN long max_returned_objs)

/* Defined in HDDOMS Container class */

open_survey (

IN long return_data,

IN ORB_Scoped_Name child_interface_name,

IN ORB_Format select_format,

IN ORB_Format sort_format,

IN ORB_Format attribute_format,

IN ORB_Format pattern_format,

OUT long entries_returned,

OUT long total_entries,

OUT ORB_SurveyID new_survey_handle

OUT long num_attributes,

OUT ORB_SurveyInfo survey_buffer)

/* Defined in HDDOMS Root class */

describe_self (

IN Root_CharacteristicKind information_type,

OUT ORB_Survey_Info information_list)

Another important difference between these operations is in the return

values. The describe_contents operation returns a complete description of each

object contained by a specified object. The open_survey operation allows the user

to select which attribute values should be returned. However, the attributes

selected must be common to all object types in the returned set. This means that a

user can only see a subset of a contained object's attributes if there is more than

one object type in the returned set. The describe_contents operation can be truly

emulated by using open_survey in conjunction with an additional HyperDesk

defined operation called describe_self Describe_selfreturns either a description

of the attributes or the operations defined for a specified object. It is not sufficient

to simply apply this operation to an InterfaceDef object as this will return the

Page 13

attributes and operations of the InterfaceDef type, not the object type described by

this interface. In order to view a description of the defined interface it is necessary

to first do an open_survey operation and then call describe_selfon each object that

is returned by this call.

It is important to have a single operation which combines the above calls for

two reasons. In the first place, making the necessary number of calls across the

network to describe_self for a large interface is likely to cause delays. Secondly,

this routine would receive frequent use, not only from the browser, but from other

client applications which need to query the structure of an object which uses an

adapter other than ODBOA. A query such as this would be made by first calling

the geCinteiface operation which returns the objecCid of the corresponding

InterfaceDef object for a supplied object and then calling a "describe_contents"

like operation on the InterfaceDef object. GeCinteiface can be called for any

object, regardless of the adapter used, as it is part of the ORB_Interface. A

"describe_contents" like routine need only be implemented for the object adapter

which is used for the Interface and Implementation Repositories.

4.0 PROBLEMS RELATED TO MANEUVERING
THROUGH CONTAINMENT AND THE SELECTION OF
OBJECTS

One goal in building the object browser was to provide a user friendly

means for an engineer to locate desired objects. In the OMA's environment this

implies that a user must be allowed to move within the containment hierarchy and

be able to select sets of objects in a specified container based on attribute values.

Objects stored with the adapter being defined by the Object Database

Management Group will have far more extensive search requirements, but

HypeDesk did not provide such an adapter. The emphasis in this project was to

provide a simple interface to a very basic set of search capabilities. Features such

Page 14

as set union, set intersection, and the comparison of objects at different

containment levels are not provided. These types of selections could be have been

built on top of the existing interface, but limitations of time prevented their

implementation. Other features could not be placed on top of the object service

functions specified in HyperDesk's Interface Repository. By bypassing this

interface and dropping directly into the ObjectStore database some additional

functionality could have been accessed, but this would have limited the use of the

browser to objects implemented via the ODBOA. Hyperdesk's implementation of

the Interface Repository would provide some serious limitations to anyone who

wanted to build a browser with a more powerful search and selection capabilities.

Some of the deficiences related to movement and selection are described in the

section below.

4.1 Problems Related with Search and Selection

The first and perhaps most notable problem is that a user is not allowed to

specify any selection criteria on the top level service objects. This is unfortunate

because this is the point at which such selections might prove to be the most

useful. For instance, a user may only wish to see those service objects which are

related to a certain topics such as text editing or graphical display. Since there is

no way to make such a search under the current implementation, a developer

would be forced to browse every service object within his view. The lack of an

object description attribute in the Interface Repository would make this search

even more difficult. In an environment which could contain thousands of service

objects, the lack of a sophisticated top level search facility would create a serious

bottleneck for development efforts.

At first glance, the solution to this problem seems simple. The

::LocationService class could simply inhierit from the: :Container class (See figure

3.3). At closer inspection, we see that this will not work using the current

Page 15

Interface Repository definition, because an object developer must specify at

creation time what object types can be children of a specified type using the

child_def and member_def attributes of the related: :InterfaceDef object. Since

service objects with new types will be continually added to the ::LocationService

this solution will not be effective. However, if one could specify a default value

in the child_def attribute which allowed for all types of objects to be stored in a

container, then this would provide a simple and effective solution.

Another problem arises from the structure of the Interface and

Implementation Repositories and the lack of a sophisticated query mechanism that

can search through more than one containment level. A developer may reasonably

desire, for performance considerations, to see only those objects whose operations

::Repository

::ModuleDef

::TypeDef

::ExceptionDef

::OperationDef ::FactoryDef ::AttributeDef

::MethodDef

::ParameterDef

Figure 4.1: Interface Repository Containment Hierarchy

Page 16

run on a particular type of hardware. This would require that the developer

handcode a long and inefficient query which made sure that at least one

MethodDef object within every OperationDef pointed to an ImplementationDef

which has the correct platform attribute or spend hours using the browser to do the

same thing. (See Figures 3.1, 4.1, 4.2) There are two ways to correct this

problem. Firstly, the machines (and operating systems, etc.) upon which an

object runs could be defined as attributes in the ImplementationSet or InterfaceDef

objects. A default value could be created for objects which contain two operations

which will not run on the same machine. The other solution is to provide a more

powerful query mechanism to enable the above query. It has been suggested that

the coupling between the Interface Repository and the Implementation Repository

be removed. (ORBA p 12) This would make a query about which objects run

under which machines impossible.!

The lack of a lookup_name routine in HyperDesk's Interface Repository

makes several very useful inquires quite difficult. For instance, one may wish to

see the names of the types of objects which can be children of a specified object.

The name in the child_def attribute of the related InterfaceDef object may be an

abstract type. We need, therefore, to discover all the object types which inhierit

from this type that are not abstract types themselves. This requires finding the

related object identifier for the InterfaceDef object with the given type name.

With a lookup_name routine for scoped names, this would be easy, otherwise it

would require parsing the type name and searching through each module listed in

the name. A lookup_name routine would also be quite useful for creating online

containment and inheritance charts for various service objects. (See section 7.0)

There is no standard marking for operations which return sets of objects in

this implementation of the Interface Repository. Object ids can be returned in a

1.	 The CORBA standard does define a function called geCimplemenation which is supposed to return an
object in the Implementation Repository that describes the implementation of an object. HyperDesk's
version of this routine returns an ImplementationDef object which describes the implementation of an
operation. This does not seem to be in line with the standard or make much sense.

Page 17

:: ImplementationRepository

::ImplementationDef

::Script or

::Library

::Command

::Executable

:: InterfaceDef

::ProgramDef

Figure 4.2: Implementation Repository Containment Hierarchy

variety of formats: a single id, an array of ids, a survey buffer containing ids, and

so on. There is no way for a programs such as the browser to tell which routines

have been set up by an object developer to easily access specific sets of objects. If

such routines were somehow labeled and their return types standardized, the

browser could allow the user to execute these operations and view the returned

objects. The SeqObject datatype is the most logical return type as it can return

any number of objects and is already used in the findJactories and contained_by

operations in the Interface Repository. Another issue that needs to be addressed

by the OMG is how can a browser at one site view the contents of the Interface

Repository at a remote ORB. This is clearly an important function as the objects

which a developer may wish to combine for a single client application may reside

Page 18

at a number of different ORBs. The ability to browse at least the Interface

Repository at a foreign ORB is something that should be incorporated into the

emerging inter-ORB communication standards.

4.2 The Need For Common Functionality Among All

Objects In The CORBA Environment

In order for a program such as the object browser to be able to access all

objects in the CORBA environment a small set of operations should be provided

for all objects. These basic routines must be available in both repositories and be

provided by every object adapter available. A gecattribute operation would be

needed for all objects and a very basic open_survey routine would be needed for

all container objects. These operations combined with a CORBA like

describe_inteiface operation for the Interface Repository would provide a solid

basis for one tool to browse all of the objects in the system. Of course, most

adapters will provide a great deal of additional functionality. Additional standard

functionality could be provided through levels of inheritance. For instance,

editable objects would require a secattribute operation, an add_child operation

and so on. At some point the developer of an object adapter may have to chose

between two or more standard levels and eventually will probably add additional

proprietory functionality. The point of providing standards for different levels of

functionality is that common tools will be able to act on all objects in the system,

although the level of service may change with each object.

5.0 ISSUES DISCOVERED WHEN DESIGNING AND

BUILDING THE OBJECT BROWSER

There are a number of additional weaknesses in HyperDesk's Interface

Repository, and a few in the admittedly incomplete CORBA definition, which

Page 19

were exposed when trying to construct various parts of the browser. Some of

these have been outlined in the sections below. In some cases we have offered

potential solutions. In others the problems are related to the limitations of the

chosen object model.

5.1 Displaying Attributes:

The basic types supported by the CORBA standard, (float, short, long,

unsigned short, unsigned long, char, boolean, octet, and any), as well as the

constructed types of string and enum can be easily displayed on a single line of a

string browser. Other constructed types such as arrays, sequences, structures, and

unions can be displayed on multiple lines of a string browser. Yet, people will not

always view even a simple attribute type in the same way. One person may create

an integer typed attribute such as age which can be displayed as an integer.

Another person may use an integer typed attribute to store an encryption for the

time of day which would be best viewed as a string. Still others might use the
\
j	

integer type to store a bit map which would be best viewed as multiple string

value pairs.. For another example, an attribute that is a file pointer (not defined in

CORBA, but is defined in HDDOMS) may be best viewed through an editor if the

file consists of text or in a graphical display if the file holds binary image data.

An object implementor may desire to offer mUlitiple displays of one type to adjust

to the needs of vaIious users. The only way for a generic tool like the browser to

display attributes is to check the base type of the attribute and display it in its most

common format. There is no current mechanism in the Interface Repository to

redefine the display of the type. This follows from the view that data types in

OMG's world are not objects. Object developers therefore cannot add display

operations to a type object.

There is one operation that needs to be implemented for all object adapters

if all object attribute values in the system are to be fully displayed by the object

browser. This operation is called gecattribute. It enables the browser to display

Page 20

the content of an object's attributes. A browser could be constructed with an

alternate display in which attribute values are not available for cases when a

gecattribute function is not supplied for an object. However, since attribute

values can be very useful both in understanding the design of objects and in

debugging operations, it is probably best that most adapters supply an executible

for gecattribute.

5.2 Displaying Operations:

The COREA standard does not provide any attributes which categorize

operations. As we mentioned before, this means that the browser can not identify

those operations which return sets of objects. More importantly perhaps, it does

not allow for such categorizations as public, protected, and private. Operations

which cause permanent side effects in the environment cannot be marked.

Without such tags and accompanying security, a user is free to unknowingly

wreak havoc when executing untried operations. An object developer would have

to be quite wary about implementing operations which were meant only to be

called by other operations. HyperDesk has implemented an attribute in the

OperationDef type called protection, which identifies the protection value for an

operation and it provides accompaning security. If this attribute is set to PUBLIC

the operation is visible to everyone. If it is set to PRIVATE, the operation is only

visable to the object's creator. This attribute provides a valuable service which

protects users and makes an object developer's job easier. This author

recommends that the COREA standard adopt it in its Interface Repository.

5.3 Displaying Objects

An object designer may have a standard display routine for an object type such

as a personnel record which could contain a digitized photograph, an audio of the

employee's speech and a variety of textual information. If a standard name for

Page 21

such operations was adopted they could be called by generic programs such as the

object browser. Since the displays for objects could be interactive, it would be

very easy to produce personalized and very powerful browsing applications for a

number of different object types. The use of an interpretive scripting language

such as TK-TCL could help make this process easier.

5.4 Implementation Data

The CORBA standard and the HyperDesk implementation do not provide a

means of accessing any source code, makefiles, or software specifications for an

operation in the Implementation Repository. This is clearly information that

would be of great interest to an object developer. A versioning facility for both

this information and for executable code would be a very useful and perhaps

necessary tool in a development environment. A means to call an alternate

executable for an operation should be designed to aid in the testing of new

versions of code.

6.0 BUILDING CLIENT PROGRAMS IN THE CORBA

ENVIRONMENT

The experience of building the object browser provided several insights into

the development of client applications in the CORBA environment. The biggest

drawback of developing applications in this environment appears to the be the

substantial amount of upfront learning that is required. This is especially true, if

the application requires the implementation of additional object services. The

construction of a new object adapter comprises a wofst case scenario in terms of

the amount of new knowledge that must be assimilated.

The benefits of the environment, however, seem to far outweigh the initial cost

Page 22

of investment. Applications using existing object services can be rapidly

developed through the use of GUI builders. Building an application with these

tools mainly involves reconciling the interfaces of the widgets and the object

services which are related to them This means that both the functionality and

appearance of a client program can undergo radical changes with a minimum of

programming effort. The rapid prototyping which this environment fosters could

enable software companies to tailor their applications according to specific

customer needs.

Many calls to existing object services require the use of some fairly complex

data structures. They also involve quite a bit of memory allocation and

deallocation through the use of some fairly cryptic routines. The speed of the

rapid prototyping could be increased and the number of memory leaks reduced

through the use of an interface defined in an interpretive language such as tcl.

This would also open up the power and flexibility of the CORBA environment to

a wider class of user.

One problem which is not encountered in more traditional programming

environments is the number of ways that a service operation can fail. A request

can fail because of a serious problem such as software or hardware failure or

because of a more minor error such as a timeout caused by network congestion. A

program must make an appropriate response for each type of error. Exception

handling can take up a fairly large percentage of code which contains calls to the

ORB. Object developers should pay heed to this when they design operations.

Operations which logically perform a number of other operations can be quite

useful to a client application developer because they can help minimize the total

number of calls to the ORB and the amount of exception handling that is required.

They may also be more efficient.

Another way to speed up the development process would be to create standard

error handling and help facilities for the local environment. Almost every

Page 23

application which involves interaction with users will require these facilities.

Standarized code would shorten development time and provide a similiar look and

feel for a set of applications.

7.0 ISSUES INVOLVED IN CONSTRUCTING THE USER

INTERFACE

One goal in designing the user interface for the browser was to allow a user

to quickly access enough information about an object to use that object

effectively. Another goal was to present this information in such a fashion that a

user who was unfamiliar with the CORBA standard and HyperDesk's

implementation could find the information he required without having to consult

any outside resources. Finally, it was desired to make the interface both simple

and consistent. It was not always possible to comply with these goals due to

restrictions posed by the standard and the fact that the goals were sometimes not

mutually satisfiable.

There appear to be three outside charts of information that a user would

need to most effectively use the browser: the hierarchical graph of the base object

types showing the inheritence of attributes and operations (Figure 3.1), the chart

showing the containment structure of the Interface Repository (Figure 4.1), and

the chart showing the containment structure of the Implementation Repository

(Figure 4.2). In addition, a user might need containment charts for other service

objects that he may need in a particular application. These charts can be used as

road maps to guide him to the information that is required.

It would be best if such valuable resources could be recreated online.

Unfortunately, this process could be quite time consuming. Creating a

containment chart for a service object would require opening every module

mentioned in every scoped name in the child_def and member_def attributes of

Page 24

every object interface in each level of the chart. Building the inheritence chart for

a service object is even more complicated. It would first require building the

containment chart so that all the legal object types can be listed. A process

similiar to the one described above would have to be executed for each distinct

object type that has not already been placed in the chart. Additional survey calls

would have to be executed in order to display the operations and attributes defined

by a particular interface. One problem in the efficient creation of these charts is

that the base_def, child_def, and member_def attributes are a list of names and not

object ids. Since under this implementation there is no way to directly convert a

name to an object id each module in the scoped name must be surveyed

successively to find the desired object id. If operations returning the object ids for

these names were included in the InterfaceDef object this process could be sped

up considerably.1 Since scoped names are unique, another possibility would be to

provide a lookup_name routine which returned a corresponding object id when

passed a scoped name. A search facility which could provide the information

shown in these charts with one call to the management system would be a very

useful tool and perhaps should deserve some consideration.

In the interest of simplicity, it was decided to minimize the number of

windows with which a user has to interact. Program control is centered in three

windows: the object browse window, the selection window, and the attribute and

operation display window. The object browse window displays the name and type

of the objects in the current selection level (See Figure A.I). It is the first window

that is presented to the user and it initially displays all service objects in the users

view. The user is allowed to view the children of selected objects, to view the

interface objects associated with selected objects, to narrow the selection of

objects through pattern matching on the name and the type, and to return to the

previous selection level. The browser also provides a means of reminding a user

where an object actually resides. (i.e. it resides in container A which resides in

1. Note: Constructed types can not be stored as attributes under this implementation.

Page 25

container B which ...)

There was a temptation to place all selection ability on the browse screen,

but it was felt that this would make the window unecessarily cluttered and perhaps

difficult to use. Most initial searches will probably be based on name, type, and

containment. For a more complicated search involving other object attributes, the

user can bring up the search window (See Figure A.2). This window initially

displays all attributes which are common to all of the objects in the current

selection level. The user selects an attribute, an operator, and types in a

comparison value. A limited amount of type checking is done on this value when

the user executes the selection to protect the user from creating a query which may

crash the program. A user can specify multiple criteria for a single selection. All

criteria are OR'ed together. Criteria can be AND'ed together by selecting against

a new selection level. The change in the current selection level is reflected on all

of the windows that the user currently has open.

The final control window displays information about an object's attributes

and operations (See Figure A.3). The main difficulty in designing this window

was how to present the tremendous amount of information available in a limited

amount of space. An effort was made to isolate and prioritize the information

about attributes and operations which a developer might need to know. This

enabled us to better organize the display so that the information can be viewed in a

quick and coherent fashion. The first thing a developer might like to view about

an attribute, operation, or object is a descripion of its purpose and functionality.

These attributes have been provided in the CORBA specification, but have not yet

been included into HyperDesk's implementation. This lack of information

virtually forces a developer to consult an outside resource before using an object.

A user is allowed to move back and forth through the objects in the current

selection level through the use of two push buttons. The operation names and the

name of the type from which the operation was inherited are automatically

Page 26

Bibliography

[1] Object Management Architecture Guide, Object Management Group

Publications, 1993.

[2] HyperDesk Client Developer Guide, HyperDesk Corporation, 1993.

[3] HyperDesk Object Developer Guide, HyperDesk Corporation, 1993.

[4] Object Request Broker Architecture, Object Management Group Publications,

1993.

[5] The Common Object Request Broker Architecture and Specification, Object

Management Group Publications, 1993.

[6] Object Services Architecture, Object Management Group Publications, 1992.

[7] Mark A. Linton, InterViews Reference Manual Version 3. I-Beta, The Board of

Trustees of the Leland Stanford Junior University, 1992.

[8] ObjectViews C++ Programmers Guide, Quest Windows Corporation, 1992

[9] ObjectViews C++ ObjectBuild Guide, Quest Windows Corporation, 1992

[10] "A Component Technology for the Future," Object Management Group

Page 37

White Paper, Object Management Group, Inc., 1993

[11] Soley, R., Ph.D., "OMG: Creating Consensus in Object Technology," Object

Management Group, 1993

[12] Probst, R., "A Software Model for the 21st Century Distributed Computing is

Everywhere," OBJECT Magazine, 1993, pg. 65-67

[13] Object Analysis and Design, Vol. 1, Draft 7.0, Special Interest Group of the

Object Management Group Technical Committee, 1991.

[14] Duvall, Lorraine, "The Information Needs of Software Managers: A Problem

Driven Perspective", 1993 IEEE 17th Annual International Computer Software &

Applications Conference, IEEE Computer Society Press, Los Alamitos, CA.

[15] Ashford, Colin, "Comparison of the OMG and ISO/CCITT Object Models",

OSIINetwork Management Forum, 1989.

[16] Watson, Andrew, "Object Request Broker 2.0 Extensions Interface

Repository RFP", Object Management Group, 1993

Page 38

