
BROWN UNIVERSITY
Department of Computer Science

Master's Project

CS-95-M9

"A Parallel Adaptive Point-Sampling Algorithm"

by

Mark Marcus

A Parallel Adaptive Point-Sampling

Algorithm

Mark Marcus

Department of Computer Science
Brown University

i
\

Submitted in partial fulfillment of tlle requiT'ements for
the degree of Master of Science in the Department of

Computer Science at Brown University

January 1995

or Francd P. Preparata
Advisor

A Parallel Adaptive Point-Sampling
Algorithm

(
Mark Marcus

January 26, 1995

Chapter 1

Introduction

There is an increasing commercial need for computers to quickly generate
photorealistic images. Photorealistic computer graphics is the branch of com­
puter graphics concerned with the production of computer synthesized images
that look, to the observer, as much like real photographs as possible. Today,
computer generated photorealistic images are routinely used in the motion
picture industry, in films such as Jurassic Park, Lion King, and Terminator
II, in television commercials, and in medical imaging for the visualization of
CAT and MRI scans.

The reduction of time required to produce photorealistic images would
provide two commercial benefits: (1) lowering the cost of existing uses by
providing quicker turn around time and (2) opening up new application areas.
For example, a CAD tool could be built to aid architects by allowing them
to walk-through a building being designed. Current virtual-reality systems,
that would allow this, require the generation of a new image every 1/20th of
a second. Alas, today's technology can't produce a photorealistic image in
1/20th of a second.

The production of photorealistic images is computationally intensive. It
is not uncommon to take 30 minutes to generate a single photorealistic image.
And, some photorealistic images take hours to produce. This process is com­
putationally intensive due to the complexity of visual clues that is required
to be included in an image in order for it to look photorealistic. Among those
visual clues that make an image look photorealistic and that can be observed
in real photographs are: hidden surface elimination, shadows, reflections,
refractions, surface details, depth of field, and motion blur.

1

2 INTRODUCTION

Surface details are especially important to photorealism. When an ob­
server looks at a surface, such as a brick wall or an orange, the observer
not only sees the colors of the surface but also the detail shadows that are
caused by pits, bumps, and imperfections. These details and shadows give a
sensation of realism to a computer generated image. It also take substantial
time to generate this level of detail for an entire scene of objects.

Photorealistic graphics provides the ability to depict an imagined scene.
Photorealistic graphic systems are designed specifically to produce images
of imagined scenes that are similar to those found in the real world. In ad­
dition, the techniques of photorealistic graphics can be applied to scientific
visualization that depict non-real world scenes. Examples of scientific visu­
alization are (1) the visualization of viruses for the drug industry and (2)
meteorological diagrams of wind flow in a hurricane. Scientific visualization
is itself a field of endeavor.

Typically in computer systems utilizing 3D graphics, of which photoreal­
ism is a part, images are produced as a result of the simulation of a camera,
known as a synthetic camera, taking a photograph of a 3D specified scene.
The kind of scene, as well as how the computer internally encodes the scene,
depend on the application area. For example, the encoding of a scene will
undoubtedly be different for an automobile design tool, a drug design tool,
or a motion picture animation system. In the automobile design tool, the
scene may be stored in a graph. The nodes of the graph representing au­
tomobile parts and the edges of the graph representing how the parts are
connected. In the drug design tool, the drug may be stored by a description
of its chemical element composition and how these elements are connected.

To visualize the scene, the application must first calculate the geometry
of the scene. For example, in the automobile design tool, the tool must read
the graph representing the car, as mentioned above, and compute the exact
physical dimensions of an assembled car. In computer graphics terminology,
creating the exact physical dimensions of a scene is known as modeling;
and, an application that performs modeling is known as a modeler. Com­
plementarily, in computer graphic terms, a renderer takes the output of a
modeler and creates an image. The modeler must output the physical dimen­
sions of a scene in terms of the physical dimensions of simple objects that
the renderer is capable of displaying. In other words, the modeler decom­
poses the scene into these simple objects (primitive objects). The renderer,
for example, doesn't receive an automobile to render but, perhaps, a set of

3

curved surfaces.
There are two types of simple objects by which modelers and renderers

communicate the geometry of the scene, namely, surfaces and solids.
Examples of simple solid objects that are used in solid modeling are cubes,

cylinders, and cones. Solid modelers communicate not only the simple solid
objects composing the scene but also what boolean set operators are used
to combine the simple solid objects. Boolean set operators used are: inter­
section, union, and difference. For example, the scene might, in part, be
specified by an overlapping cylinder and cube and, in addition, a boolean
operator of intersection may further specify what parts of these simple solids
end up in the final scene.

For modeler/renderer systems that use solid modeling, many different
types of representations are popularly used. Some of these are, as listed in
[FvDFH90], primitive instancing, sweeps, b-reps, spatial partitioning (octrees
and BSP trees), and CSG. See [FvDFH90] for further details on these.

Surfaces are either planar polygons or patches. The main focus of this
thesis will be on modeler/renderer systems that communicate a scene by the
union of a set of surfaces, in particular, patches. Intuitively, one can think
of a patch as an elastic rectangle that can be stretched, twisted, and con­
torted into any of a variety of curved surfaces. The modeler can placed these
patches anywhere in 3D cartesian space. Typically, many small patches are
connected, sharing edges, to approximate the surface of a physical object,
such as an automobile. These patches are generated by the modeler. Math­
ematically, patches are characterized by parametric polynomials parameter­
ized in two variables. In computer graphics terminology, these two variables
are often named u and v. There exists a continuous mapping between all
point in a u-v rectangle, in which both u and v span [0,1], and all the points
on the 3D surface of a patch. This mapping is specified by a given set of
polynomials in two variables. The names of popular patches are quadrics,
bezier, hermite, and non-uniform rational B-splines (i.e., NURBS). Details
of these parametric polynomials can be found in [FvDFH90]. The details of
these parametric polynomial-based surfaces will not be as important, in this
thesis, as the fact that both variables span [0,1].

In addition to the pure geometry of the scene, the modeler usually com­
municates descriptions of the color or type of surface each patch is. These
surface descriptions are highly variable among different modeler/renderer
systems. Some simple modeler/renderer system may simply indicate the

4 INTRODUCTION

color and shininess of the surface while, at the other end of the spectrum,
the photorealistic modeler/renderer system, considered in this thesis, can be
quite detailed. For example, the surfaces can be characterized by so-called
programmable routines that have the power to simulate real surfaces, such
as, wood-grain, concrete, cloth, texture-mapped pictures, etc. These surface
descriptions can not only mimic the color of real surfaces, such as concrete,
but also can describe the texture found in real surfaces. The surface de­
scriptions, in effect, perturb the geometry of the patch based surfaces. This
adds to the photorealism by depicting the subtle shadows produced by these
textural perturbations.

Modelers also communicate to the renderer varying amounts of book­
keeping information, for example, camera position and settings, kinds and
positions of lights, and output format.

In the class of modeler/renders we are exploring in this thesis, the renderer
will receive the geometry of the scene in terms of a set of patches, along with,
the descriptions of the surface features of each patch. From this information
and some additional bookkeeping information, such as, lighting and camera
information, the renderer must produce an image.

An image produced by the renderer is a result of a projection of a 3D
scene, represented by patches, onto a modeler-specified plane. This plane is
referred to as the image plane. A modeler-specified rectangle on this plane
will represent the output image; the specified rectangle is homologous to a
frame of film in a camera, and is referred to as the frame rectangle. The
location of the frame rectangle and the kind of projection used, i.e. orthog­
onal or perspective, is specified by the modeler. The image projected onto
the frame rectangle is then mapped onto a corresponding 2D pixel array
whose values represent the colors of dots (i.e, pixels) of the image. Typ­
ically, each pixel represents its color value as a triple, (red, green, blue).
Each of these primary colors is assigned an integer value in the range [0,255].
The exact nature of this mapping is controlled by a modeler-specified ras­
terization/quantization process. The rasterization process breaks the frame
rectangle into little squares whose color values will be mapped to the 2D
pixels array. The quantization process takes floating point values of color
components and converts them into integer values between [0,255].

Each pixel, then, represents the color, as projected onto the frame rectan­
gle, of portions of one or more patches. In the case of a pixel representing the
color of more than one patch, the pixel value represents a blending of the two

5

surface colors. A specific technique to determine the projected surface colors
is known as an illumination model. There are many viable illumination
models described in the literature. The illumination models range from the
very simple, corresponding to low quality graphics, to those that are more
computationally intensive and that are appropriate to photorealistic render­
ing. In practice, and in the literature, techniques of different illumination
models are combined to create hybrid illumination models.

There are two broad categories of illumination models, namely: (1)
global illumination models and (2) local illumination models.

Global illumination models tend to be the most computationally expen­
sive illumination techniques. And, as their name implies, global illumination
models often times take the entire scene of objects and light sources into
consideration in order to determine the color of a point on the surface of a
single object in the scene. This allows for the correct portrayal of interob­
jeet reflection and indirect lighting. An example of interobject reflection
is the reflection of other kitchen objects seen on the surface of a shiny pot.
An example of indirect lighting is the light found in a closet, when, from the
closet, one cannot directly view a window or other light source. This indirect
closet light comes from light bouncing off of the walls and other objects in the
room. Light in the sky, after sunset, is another example of indirect lighting.

The two most popular global illumination models are ray tracing and
radiosity. Local illumination models tend to consider only light sources that
directly illuminate an object of the scene.

Ray tracing is very good at displaying specular, i.e. mirror-like, reflections
of light. In fact, ray tracing can render mirror surfaces. In the physical world,
photons first emanate from light sources, then bounce off of objects and then
hit the retina of the eye. In order to avoid trying to simulate the very large
number of photons leaving a light source, ray tracing, performs a simulation
of this phenomenon in reverse order. The ray tracing simulation proceeds
first by considering a pixel on the image (homologous to a receptor on the
retina), then the simulated photons are traced back to see what object, if
any, these photons could have bounced off of and then these photons are
traced back again to see if some of these photons could have come from a
light source and!or a reflection from another object. If some photons are
determined to have come from the reflection off of another object, then the
determination of the color and intensity of photons reflected from the second
object is calculated by a recursive call of the ray tracing algorithm. This

6 INTRODUCTION

recursive ray tracing call traces back photons from the point of view of the
first object looking towards the second object. The second objects color
could be influenced by yet a third object. The recursion continues until it is
determined that the amount of photons traveling along a path is insignificant.
The refraction phenomenon, photons traveling through partially transparent
objects, is also calculated in ray tracing. The calculations for refraction
proceed in a manner similar to the reflection calculations. This whole process
is invoked to assign a single color to the pixel.

Ray tracing is an illumination technique that can be used to produce
photorealistic images. As mentioned above, a ray tracing renderer produces
specular interobject reflection; and in addition, it also produces shadows. It
tends to be a both computationally-expensive and memory-intensive tech­
nique to use. It is computationally expensive because it is called recursively
for both reflection and refraction in order determine the color of a single
pixel. It is memory-intensive because the entire scene of objects could be
involved in the assignment of a color value to a single pixel. Therefore, the
entire scene must be stored in memory-for reasonable performance. There
are many techniques to improve the performance of ray tracing, but, they
still have the fundamental problem of potentially having to process an entire
scene of objects in order to calculate the color of a single pixel.

Besides the high computational costs of ray tracing, another drawback of
ray tracing is that the technique is not ideally suited to display diffuse reflec­
tion. Whereas specular reflection is the phenomenon where light bounces off
of an object close to a specified direction, diffuse reflection is the phenomenon
where light bounces off of an object in all directions. Real surfaces tend to
exhibit some combination of both specular and diffuse reflection.

Radiosity is another global illumination technique. It is better suited than
ray tracing for displaying diffuse reflection. And, it is better at illuminating
objects that are exposed to area light sources. Fluorescent light panels found
in office buildings are examples of area light sources. Radiosity also produces
more natural looking shadows than does ray tracing. These shadows can
exhibit soft edges as opposed to the hard edges seen in an image produced
by ray tracing. Radiosity is based on considering that each small patch of
a scene as either a light source or light sink. And, it then uses thermal
engineering techniques to determine the steady state of light energy being
radiated and absorbed by each small patch. Determining the steady state of
all the small patches is extremely computationally and memory intensive.

7

As mentioned above, illumination models are ofttimes combined. Combi­
nations of ray tracing and radiosity techniques have been developed. These
combined ray tracing and radiosity techniques are, perhaps, the finest photo­
realistic rendering techniques known today. However, they are prohibitively
computationally and memory expensive techniques. It can literally take
hours upon hours to render a single image.

As a matter of completeness, it should be mentioned that the following
local illumination techniques are often combined with global illumination
techniques.

There are many local illumination modeling techniques. Uniformly, they
tend to be much less computationally and memory intensive than global illu­
mination techniques. Local illumination modeling techniques determine the
color of points on a surface by techniques, that, by definition, do NOT involve
any of the other objects in the scene. In contrast to global illumination mod­
els, local illumination modeling techniques do NOT have to have the entire
scene of objects in memory at once. Since it has been estimated that com­
plicated scenes may have on the order of 10,000 to 1,000,000 simple objects
[Ren89], the computational costs of handling the interaction of such a large
set of simple objects simply overwhelms most global illumination rendering
systems.

In the context of local illumination modeling, the term local refers to the
type of information that can be used to determine the projected surface colors
of a single object. The locality of a single object includes all the properties of
the object itself, as well as, its environment, such as, the light sources in the
scene and the synthetic camera location. The notion of locality only excludes
other objects of the scene. The projected surface colors of each object of the
scene can, therefore, be determined independently of any other object in the
scene.

But beyond the locality restriction, mentioned above, there are no other
imposed restrictions on local illumination modeling techniques. In fact, us­
ing a combination of local illumination modeling techniques a renderer can
produce very impressive photorealist images. These images are produced at
a fraction of the cost of an equivalent image produced using global illumi­
nation techniques. Because of the reduced cost, local illumination modeling
is oftened used for commercial photorealistic rendering. However, photore­
alistic rendering using local illumination can still take significant processing
time, in the order of hours. A technique to reduce the processing time for

8 INTRODUCTION

local illumination rendering is the focus of this thesis.
In order to produce photorealistic images, local illumination model­

ing/renderering systems usually orchestrate a combination of local illumina­
tion techniques. Programmable shading function renderers are designed
to facilitate such an orchestration. Renderers based on the RenderMan
Interface are examples of this type of renderer. The RenderMan Interface
is the photorealist graphics interface standard developed by the Pixar Cor­
poration. (Use of the Renderman Interface can be, to my understanding,
freely licensed from Pixar Corporation). The RenderMan Interface graphics
standard is a protocol, between modeler and renderer, which incorporates
programmable shading functions. Hereafter, a RenderMan Interface based
renderer will simply be referred to as RenderMan.

In this thesis, we will demonstrate our techniques for reducing the pro­
cessing time of local illumination rendering, by embedding the design and
implementation of our techniques in an implementation of RenderMan.

Although the Renderman specification allows for an optional capability of
global illumination techniques, such as, ray tracing and radiosity, its primary
current use is as a local illumination renderer. And, currently, traditional
local illumination based RenderMan systems can take 1/2 hour or more to
render a frame.

RenderMan is designed to allow for the programming of a very wide class
of local illuminations such as those described in [JGMH88] or [FvDFH90].
In RenderMan, the local illumination model used, in a particular instance,
is wholly determined by a set of modeler-provided programmable routines
known as shaders. Each object of a scene has its own set of shaders
assigned to it, and this set of shaders is used by RenderMan to determine
the color of a point on the surface of an object as it is projected onto the
image plane. The color of this point is referred to as the projected color.
The term shader is used to indicate that the primary purpose of this set of
programmable routines is to determine the shade, i.e. color, of points on the
surface of an object.

The set of shaders, mentioned above, is composed of six different kinds of
members, namely, surface shader, displacement shader, atmosphere
shader, light source shader, interior shader, and exterior shader.
Each object of a scene has one and only one of each kind of shader assigned
to it. However, there is one exception to this rule: there can exist more
than one light source shader assigned to an object. Each of these shaders

9

is programmed using a C-like language. The RenderMan system, however,
in effect, treats each shader as a black box. There is a RenderMan imposed
ordering on the data flow and flow of control among these shaders. This im­
posed ordering is designed to facilitate a shader performing the task implied
by its name. So, for example, typically, the C-like code in a light source
shader will be used to model lights and the C-like code in an atmosphere
shader will be used to model the effect of light being transmitted through
the atmosphere. A shader can be a null shader, providing no functionality.

The primary shader responsible for determining the projected color of
a point on a surface is the surface shader. All the other shaders can be
considered, to some extent, as auxiliary routines to the surface shader. Dur­
ing a RenderMan execution, RenderMan determines which points on which
surfaces it wants the projected colors for. Then, for each of these points,
RenderMan, one at a time, asks, i.e. calls, the assigned surface shader for a
determination of the projected color of this desired surface point. Each invo­
cation of the surface shader is provided with a number of appropriate pieces
of information that it may base its output color on. The surface shader

\.
(

does not have to consult these pieces of information in order to make its
color decision; however, it is indeed very likely that a programmable surface
shader will base its color result on some of the information provided to it by
RenderMan.

The information provided by RenderMan each time it invokes a surface
shader includes:

1. surface color,

2. surface opacity,

3. 3D surface position,

4. derivative of surface position along u,

5. derivative of surface position along v,

6. surface shading normal vector,

7. surface geometric normal vector,

8. surface texture coordinates, and

10 INTRODUCTION

9. 3D position of the synthetic camera.

See [Ren89] or [Ups90] for details on this information.
It should be emphasized that how the surface shader uses this information

in determining the projected color of a surface point is specific to a particular
surface shader. Surface shaders have been programmed to simulate such
surfaces as wood, marble, bricks, and rusted copper.

All shaders that get invoked by RenderMan share the same general mode
of operation. Each shader invocation is provided, by RenderMan, with ap­
propriate information, often geometric in nature, about a particular surface
point and its environment (excluding information about other objects, of
course), and is then required to produce some result. The RenderMan sys­
tem, itself, controls the flow of information passed among the individual
shaders.

As an example of how RenderMan passes information among the set of
shaders, let us consider how information is passed between the displacement
shader and the surface shader. As mentioned earlier, on each invocation of
the surface shader, RenderMan provides the surface shader with information.
This information has been listed above. RenderMan allows the displacement
shader to preprocess this information in order to model the texture of a
surface. The displacement shader can modify the values, if appropriate, of
the 3D surface position, item (3) listed above, and the surface shading normal
vector, item (6) listed above; these modified values will be subsequently
provided, by RenderMan, to the surface shader. These modifications could,
for example, perturb the geometry of the surface in a way that models the
bumpy surface texture of concrete.

On the invocation of a surface shader by the RenderMan system, light
source information is not automatically provided to the surface shader; it
must be requested by the surface shader itself. In general, in RenderMan,
extra flexibility is gained by providing the surface shader with the ability to
request additional information from the RenderMan system. For example, a
surface shader, may request, from the RenderMan system, information about
what types of lights, in terms of intensity, color and direction, strike the point
on the surface of an object being shaded. RenderMan allows the modeler
to specify programmable light sources, known as light source shaders. In
order to fulfill the surface shader's request for light information, RenderMan
invokes each light source shader that could possibly shed light on the point

11

being shaded. Each light source shader is provided with information in order
to determine its results. This information is similar in nature to information
provided to a surface shader. Each light source shader's result, in terms of
intensity, color and direction, is then passed onto the surface shader. Light
source shaders have been programmed to simulate such lights as spotlights,
point lights, and distant lights such as the sun.

In addition, the surface shader could request, from the RenderMan sys­
tem, other types of information. RenderMan would obtain this information
by invoking other programmable functions, i.e. shaders. These shaders go by
the names of internal volume shader and external volume shader. All
these shaders are provided with information by the RenderMan system and
produce an answer that can be used by the surface shader. After the color
of the surface point is calculated by a surface shader, RenderMan invokes
another shader, named the atmosphere shader, to account for atmospheric
effects, such as fog, that may influence the color of the surface point as ob­
served by a synthetic camera. The total set of programmable routines, i.e.
shaders, viewed as a whole, embody the local illumination model used.

The exact nature of how these shaders are programmed is not important\
for this thesis. The shaders are, in fact, programmed in a C-like language,
see [Ren89] or [Ups90] for details. The idea to emphasize here is that a Ren­
derMan system must select some set of surface points in the scene to shade.
And, it must invoke a set of programmable routines, i.e. shaders, to calculate
each color of these points. There is not much performance optimization a
RenderMan system can apply to the shaders. After all, they are C-like pro­
grams which RenderMan invokes but does not know the internal structure
of. RenderMan has to invoke them unmodified. On a uni-processor com­
puter, differences in RenderMan system performances, in terms of speed, are
primarily due to the differences in how cleverly the renderer can pick what
points on what objects it wants to shade.

The RenderMan interface between modeler and renderer calls out for
the specification of a shading rate in terms of shaded points per pixel. This
amounts to specifying the density of shading points that have to be processed
in order to determine the color of a pixel of the image. Objects very far away
from the synthetic camera may appear small on the image and will not have
to have many shaded points in order to satisfy the shading rate requirement.
On the other hand, the same object, if closer to the synthetic camera, may
appear larger on the image, therefore, requiring more shading points to satisfy

12 INTRODUCTION

the shading requirement.
The focus of our thesis is on an algorithm that will judiciously pick the

surface points to be shaded, and in addition, will shade, in parallel, these
surface points. Thus, by parallel shading, we will gain a significant overall
rendering time performance improvement over traditional uni-processor ap­
proaches. Initially, the algorithm selects a few surface points of an object
to shade and then determines whether or not it has satisfied the shading
requirement, if not, even more points on the surface are selected and shaded
in parallel. This process continues until the surface shading rate requirement
is satisfied.

As mentioned previously, the total set of user-programmable routines, i.e.
shaders, viewed as a whole, embody a local illumination model. RenderMan
shaders were designed to allow the programming of a wide class of local
illumination modeling techniques. With this in mind, in the remainder of this
chapter, we will review a few of the more commonly used local illumination
modeling techniques that can, of course, be programmed using RenderMan
shaders.

Portraying realistic surface details is a major contributor to the sense of
realism in a rendered image. Surface details include such real life features
as bumps, scratchs, marks, grains, textures. These surface details can be
provided by texture mapping and bump mapping. Intuitively, texture
mapping amounts to taking an existing image and wrapping it around an
object. The image being texture-mapped is often a picture of surface mate­
rial, such as, wood grain, concrete, brick. But it could be of any image, for
example, a picture of a person could be used as a texture map. Bump map­
ping is a similar process to texture mapping; however, instead of the image,
in terms of color, being wrapped around the object, the bump map contains
height information and the geometric surface of the object being wrapped
gets correspondingly perturbed, analogously to an embossing process.

Texture mapping and bump mapping can together produce very realistic
surfaces, such as an orange peel surface or brick wall surface. The process
of texture mapping and bump mapping can be generalized. Instead of con­
sulting a texture map or bump map for information on how to modify the
surface color and geometry, a programmable function can be used. This is
the historical context in which shader functions were created. Shading func­
tions have been programmed to simulate such diverse surfaces as wood grain,
marble, and the texture of cloth.

13

Many of the global illumination effects, such as mirror-like specular re­
flection, can be approximated by using just a local illumination modeler.
Since local illumination does NOT allow other objects to affect the shading
process, mirror-like speculation must be performed, using local illumination,
as a multi-pass operation, i.e., executing the renderer multiple times.

To simulate the global illumination effect of mirror-like specular reflec­
tion by utilizing only local illumination techniques, the following multi-pass
operation could be used. Place a cube around the mirror-like object. Place
the synthetic camera at the center of the cube. Now direct, in turn, the
synthetic camera to point to each of the six faces of the cube. At each face
render an image with each face used as the frame rectangle and the center
of the cube used as the location of the synthetic camera. These six images
will then be used as texture maps that surround the mirror-like object.

For example, if the scene contained a shiny pot in a kitchen, one would
render six frames taken at the location of the shiny pot looking out in all six
directions. These frames would be used as texture map information to be
wrapped around the shiny pot.

This simulates interobject reflection. However, this method has a couple
of problems: (1) it requires special handling by the modeler to obtain in­
terobject reflections and (2) depending on the scene, the shiny pots surface
could have exhibited self reflection which won't be shown by this method.
But the reason this technique is used commercially is because the results,
although not a 100% accurate, look pretty good and can be obtained at a
fraction of the cost of global illumination techniques. And typically, there
are only a relatively few really shiny objects in a natural scene.

Shadows from light sources, normally considered a global illumination
effect, can also be approximated by a local illumination modeler using a two­
pass technique. This time a frame is rendered at the light source looking
out in the direction that the light source is pointing. The frame, instead
of recording color, records the location of the surface of the objects in the
scene that the light source directly shines on. This information is used when
rendering objects of the scene in determining which part of the object may be
in shadow. Again, the same argument of using this technique over a global
illumination technique applies.

See [JGMH88] and [:PvDFH90] for detailed discussions on several popular
illumination models.

14 INTRODUCTION

Example

The intention of this very simple example is to give the reader a flavor of the
RenderMan interface protocol for communicating between a modeler and a
renderer. The following protocol example illustrates the specification of single
patch. Normally a modeler will specify thousands of patches. The patch, in
this case, is a section of a surface of a sphere. This patch is texture-mapped
with a picture of the book cover of [PS85].

In this example, the protocol is:

(0) Format 500 400 -1
(1) Display "example.tiff" "tiff" "rgb"
(2) Projection "perspective"
(3) Rotate -10 1.0 0 0
(4) WorldBegin
(5) LightSource "distantlight" 1
(6) Surface "texture_mapper" "mapname" "book_cover"
(7) Translate 0 -2 40
(8) Rotate 80.0 0.0 1.0 0.0
(9) Rotate -80.0 1.0 0.0 0.0
(10) Sphere 30.0 -12.0 12.0 60.0
(11) WorldEnd

RenderMan assumes many defaults. In this example, the default for the
location of the image plane is used. This default is the plane perpendicular
to the z-axis and intersecting z=1. Lines (0)-(3) take care of bookkeeping
information and camera location. Line (0) defines the resolution, in terms
of pixels, of the output image. Line (1) specifies the output format of the
output image. Line (2) indicates that perspective projection is to be used.
And, line (3) changes the orientation of the synthetic camera.

The WorldBegin command, line (4), heralds the beginning of the descrip­
tions of the objects in the scene. RenderMan is a graphics-state based ren­
derer. That is, RenderMan accumulates a state as it processes the protocol.
Line (5) adds to the graphics-state a light source shader named distant­
light. Line (6) adds a surface shader named texture.Jl1apper to the graph­
ics state. Lines(7)-(9) specify where the upcoming patch will be located.
Line (10) specifies the patch itself. The patch, in effect, gets stamped with

15

,

\

Figure 1.1: Example texture map of a book cover

the graphics-state that exists when RenderlVIan processes the patch speci­
fication. So, in this case, the sphere patch, gets stamped with the surface
shader named texture..mapper. In determining the colors of the surface of this
sphere patch, RenderlVIan will use the surface shader named texture..mapper
for each point it shades. And, if the texture..mapper surface shader requests
information, from the RenderlVIan system, about light, RenderlVIan will, in
turn, obtain this information from the light source shader named distantlight.

Line (11) indicates that the description of the scene of objects has ended,
and RenderlVIan is now required to produce an image.

In this example, the surface shader is aptly named texture...mapper.
This surface shader uses the texture map shown in Figure 1.1 to wrap around

16 INTRODUCTION

the patch. This surface shader also makes use of the distantlight light source
shader. The result is shown in Figure 1.2.

)

Ll

Chapter 2

The Parallel Adaptive
Point-Sampling Algorithm

2.1 Motivation

This thesis reports on the design and implementation of a set of related (

parallel algorithms used to implement a fast version of RenderMan.1 The

algorithms are designed to execute on the C*/CM-200, software/hardware,

combination. The C* software and CM-200 SIMD hardware are both man­

ufactured by Thinking Machines Corporation. C* is a variant of the C pro­

gramming language. C* contains constructs that allow the programming of

parallel algorithms. However, the algorithms could be easily altered to run

and take advantage of a MIMD architecture.

The CM-200 hardware used in this project possesses a small amount of
memory. The RenderMan standard encourages the ability to process very
large files. This led to a design that renders each primitive geometric object
specification, i.e. planar polygon or patch, immediately after it is observed
in the protocol stream provided by the modeler. The RenderMan standard
does indeed allow a RenderMan process to delay the rendering of a primitive
geometric object; however, this design option would require too much mem­
ory. The rendering of each primitive geometric object is done utilizing the
PARALLEL-ADAPTIVE-POINT-SAMPLING algorithm described in the following

1 RenderMan is Pixar Corporation's photorealistic interface standard as mentioned in
the Introduction section of this thesis.

18

19

section. It is designed to run quickly, and if a primitive geometric object
does not project onto the frame rectangle, it will be quickly dismissed and
further processing of the protocol stream will resume.

Our design allows for either a painter's or a z-buffer algorithm. This is
required by the RenderMan standard. A painter's algorithm depicts a scene
of primitive geometric objects as though during the processing of the protocol
stream, each primitive geometric object rendered will have its 2D projected
representation painted over the entire scene of the, up to this point, processed
set of primitive geometric objects. In order to produce an output image that
properly depicts the occlusion of one object by another, the modeler must
order the sequence of object specifications, sent in the protocol stream, by
the object's distance from the synthetic camera; the farthest object is ordered
to be first.

In contrast, the z-buffer algorithm depicts each primitive geometric ob­
ject's 2D projected representation, in the output image, by considering the
depth of its corresponding 3D surface points, as observed by the synthetic
camera. That is, if part of the surface of one of the primitive geometric ob­

\ jects is totally or partially occluded by another, as observed by the synthetic
camera, this occlusion will be properly depicted in the output image.

The RenderMan standard requires a number of features. For example,
the RenderMan standard requires the density of sampling (i.e., the number
of points shaded per pixel) be specifiable in the protocol stream. The Ren­
derMan standard also requires the inclusion of image processing capabilities.
And in addition, although not implemented, our design allows for depth of
field and motion blur calculations.

These are the considerations that went into the design and implementa­
tion of the algorithms described in the following section.

2.2 Algorithm

RenderMan processes the following primitive geometric types: planar poly­
gons and patches, including quadric patches. These primitive geometric
types are the only geometric types supported by RenderMan. All higher
level objects, such as cars, chairs, faces, etc., must be composed of these ba­
sic primitive geometric objects. RenderMan supports both surface modeling
and CSG (i.e., Constructive Solid Geometry). This projects only focuses on

20 PARALLEL-ADAPTIVE-POINT-SAMPLING algorithm

surface modeling, in particular, the current implementation for this project
processes only quadric patches.

In RenderMan, each primitive geometric object, in essence, is required to
have a u-v rectangle associated with it, u and v being the labels of the axis
of the rectangle: u, the horizontal, and v, the vertical. In each associated
u-v rectangle, both u and v span [0,1]. Each point of a 2D associated u-v
rectangle maps to a single point on the corresponding 3D patch; although
the reverse is not necessarily true.

The RenderMan system selects, for the purpose of shading, surface points
of a primitive geometric object. In our RenderMan system, we use the
PARALLEL-ADAPTIVE-POINT-SAMPLING algorithm to determine the selec­
tion of these surface points. Our PARALLEL-ADAPTIVE-POINT-SAMPLING

algorithm begins by selecting points on the u-v rectangle associated with a
primitive geometric object. These u-v points are then mapped to their corre­
sponding surface points, in 3D cartesian space, and are then shaded by their
assigned surface shader.

The u-v rectangle is an essential information structure available to the
user of RenderMan. As mentioned earlier, a surface shader, assigned to
each primitive geometric object, is used to determine the projected surface
colors of a primitive geometric object. When a surface shader is invoked,
the RenderMan system makes available to the surface shader the u-v point
that corresponds to the 3D surface point being shaded. The surface shader
can use this u-v coordinate in any of a number of ways. It can use this u-v
coordinate to access values from a texture map or bump map. Or, it could
use it as the parameter of a function that determines the color of surface.
This function could be, for example, a wood function, whose domain are the
u-v coordinates and whose functional image appears to be wood grain.

When implemented on the C* /CM-200 system, most of the informational
data structures described in the following PARALLEL-ADAPTIVE-POINT­

SAMPLING algorithm are defined in terms of C* parallel arrays. Each el­
ement of a C* parallel array has its own processor associated with it. During
the following description of the PARALLEL-ADAPTIVE-POINT-SAMPLING al­
gorithm, it seems natural to anthropomorphize these elements or, more ap­
propriately, view them as agents. For example, the PARALLEL-ADAPTIVE­

POINT-SAMPLING algorithm uses an information structure which contains
pixel values and another information structure that contains values related
to surface points. During the description of the algorithm, we might use a

21

phrase such as each surface point sends its color information to its corre­
sponding pixel. By this we mean, the processors holding the color values of
a surface point send their color values to the processors holding the color
values of the pixels.

PARALLEL- ADAPTIVE- POINT- SAMPLING

The PARALLEL-ADAPTIVE-POINT-SAMPLING algorithm is described as a
recursive algorithm; however, it is implemented iteratively.

Our RenderMan system invokes a top-level call of the PARALLEL­

ADAPTIVE-POINT-SAMPLING algorithm for each primitive geometric object
in the scene. This algorithm depicts, i.e. renders, one object of the scene, as
viewed from the synthetic camera. It will create and store this depiction in a
2D pixel array named the object-image array. It will then composite this(
newly created image stored in the object-image array with an image stored
in the scene-image 2D pixel array. Compositing is a method of combining
two images and will be described later. The scene-image array is structurally
similar to the object-image array but, as its name suggests, it represents the
scene as a whole. That is, after our RenderMan system has processed all
the primitive geometric objects, it will contain a composited image of all the
visible primitive geometric objects. Before any primitive geometric object
is subjected to the PARALLEL-ADAPTIVE-POINT-SAMPLING algorithm, the
scene-image array is initialized.

In the process of rendering each object, the PARALLEL-ADAPTIVE­

POINT-SAMPLING algorithm, initially, selects a few surface points to render
and then subjects these points, in parallel, to the surface shader2

• Until
the sampling rate, as specified by the modeler, is satisfied, this PARALLEL­

ADAPTIVE-POINT-SAMPLING algorithm is recursively called in order to pro­
cess more surface points, in parallel. The term sampling rate, as used in
RenderMan, is defined as the number of surface points processed per pixel.

2In some cases these points are subjected to an "interpolation" procedure rather than
a surface shader. See step 5, page 40.

22 PARALLEL-ADAPTIVE- POINT-SAMPLING algorithm

A more complete definition of sampling rate can be found in step 4, page 36.

Inputs

•	 An array of u-v subrectangles related to the geometric primitive
object being rendered (to be characterized below).

•	 A set of parametric polynomials in two variables that specifies, for the
primitive geometric object being rendered, the mapping from the u-v
space to the 3D cartesian space.

The term u-v subrectangle is used to emphasize that each u-v rectangles
used as input to this algorithm is located within the given geometric prim­
itive object's associated rectangle. u-v subrectangles are used to designate
points on the surface of a geometric primitive object. Each u-v subrectangle
designates four u-v points; one point for each corner of the u-v subrectangle.
These four u-v points are mapped, by this algorithm, to their four corre­
sponding 3D cartesian surface points; these 3D points are considered to be
the sampled points. Sampled points are subjected to projected surface color
determination, e.g., the surface shader. See step 5, page 40 for details.

When our RenderMan system invokes the PARALLEL-ADAPTIVE-POINT­
SAMPLING algorithm, it inputs a single u-v subrectangle: the primitive
object's associated u-v rectangle. If the four points of this associated u­
v rectangle do not satisfy the sampling rate requirement, the PARALLEL­
ADAPTIVE-POINT-SAMPLING algorithm breaks up the rectangle into four
new u-v subrectangles. These four u-v subrectangles then comprise the ar­
ray of u-v subrectangles used as input to a recursive call of this PARALLEL­
ADAPTIVE-POINT-SAMPLING algorithm. If the sampling rate is still not
satisfied, each of the four u-v subrectangles could be broken up resulting in a
total of 16 new u-v subrectangles. This process continues until the sampling
rate is satisfied for all input u-v subrectangles. See step 4, page 36, of this
PARALLEL-ADAPTIVE-POINT-SAMPLING algorithm for details on how a u-v
subrectangle satisfies the sampling rate.

Step 0: Initialization

23 Step 1: If no u-v 8ubreetangles are input...

Initialize the object-image array. This initialization is applied once and only
once per geometric primitive object. If this algorithm were implemented
in a recursive manner, this initialization step would only be executed at
the top-level call to this recursive PARALLEL-ADAPTIVE-POINT-SAMPLING

algorithm.

Step 1: If no u-v subrectangles are input, then the object-image
array and scene-image array are composited

This step determines whether or not the entire PARALLEL-ADAPTIVE­

POINT-SAMPLING algorithm terminates at this step. The termination con­
dition is satisfied if no u-v subrectangles are input to this particular recursive
call of the algorithm.

The termination condition indicates that the sampling rate for the object
being processed has been satisfied, and that a fully sampled image of the
primitive geometric object resides in the object-array. If this is the case, in

(this step, the object-image array will then be composited with the scene­\,
image array and, then, the invocation of the PARALLEL-ADAPTIVE-POINT­

SAMPLING algorithm will terminate.
On the other hand, if the input array of u-v subrectangles has one or more

elements, then this PARALLEL-ADAPTIVE-POINT-SAMPLING algorithm does
not terminates and proceeds directly to step 2, page 30.

If the object-array has not been written into, then the primitive geometric
object being rendered is not visible to the synthetic camera and this recur­
sive PARALLEL-ADAPTIVE-POINT-SAMPLING algorithm terminates without
performing compositing.

Compositing is a technique to combine two images. Each pixel of each
image contains three values, namely, the color, a (pixel coverage), and
z-depth to be defined below. In this step, the scene-image array already
contains these values. While for the object-image array, these values must
be calculated from information produced in step 6, page 42.

The meaning of the term color is the standard one. Each color is repre­
sented by the triple (Red,Green,Blue).

The a value represents the fraction of a pixel's area that contains color.
For example, a pixel may represent the color of a surface that, when pro­
jected, only covers 1/4 of area of this pixel. See Figure 2.1. If this were the

24 PARALLEL- ADAPTIVE- POINT-SAMPLING algorithm

W··"·-·""z u·········

non-contributing

~ pixel boundary

...............'
 .

pixel with a =1/4

Figure 2.1: Example of a

only surface affecting the color of this pixel, it would contain an a value
of 1/4. The remaining 3/4 area of the pixel would be considered non­
contributing, that is, this part of the pixel does not contain color informa­
tion. It should be noted that once an a value is determined, the information
concerning where, on the surface area of the pixel, the color is located, is lost.
Therefore, conceptually, the color is considered to be randomly distributed
around the area of the pixel.

The z-depth value represents the distance from the synthetic camera
of the 3D surface that is projected onto the pixel. In this implementation,
the z-depth value is stored as a scaled value that lies between the values of
[0,1]. This concept of a scaled z-depth value is related to 3D pixel space
described in step 2, page 30.

The modeler can specify whether the surface of a geometric primitive
object, i.e., a patch, is rendered to show only one side of the surface, the
outside, or both sides, the inside surface, as well as, the outside. Determining

25 Step 1: If no u-v subreetangles are input ...

the object-array values of color, a (pixel coverage), and z-depth is different
for each case. Each case is considered separately below.

Case 1. WHERE ONLY THE OUTSIDE SURFACE IS DESIGNATED TO
BE SHOWN. The algorithm proceeds as follows.

During step 6, page 42, of this algorithm, for each pixel of the object-image
array, a running weighted average of color and z-depth· is recorded.
These current weighted average values of color and z-depth are, in this step,
stored in the object-image as final values. See step 6 for details on the term
running weighted average of color and z-depth .

The modeler-specified shading and sampling rate, as defined in step 4,
page 36, dictates the total number of shaded points (samples) taken by the
PARALLEL-ADAPTIVE-POINT-SAMPLING algorithm in the case of a fully
covered pixel. A fully covered pixel is a pixel in which the projected surface of
a primitive geometric object totally covers the surface area of the pixel. The

(number of samples taken for a pixel in the PARALLEL-ADAPTIVE-POINT­
SAMPLING algorithm is proportionally related to the amount of pixel area
covered by the projection of the outside surface of the object onto the pixel.

Thus, in this step, the a (pixel coverage) value for each pixel is determined
by dividing the actual number of points (samples) made for the pixel by the
number of points (samples) of a fully covered pixel. An a value of less than
one would result if the pixel represents an edge of the primitive object being
rendered. So, if 2 samples were taken for a pixel that would have 16 samples
in a fully covered pixel, then the a value would be 1/8th. All pixels are
processed in parallel in determining a values.

Case 2. THE OUTSIDE AND INSIDE SURFACES ARE SHOWN. The
algorithm proceeds as follows.

The outside surface of a primitive geometric object may, from the view­
point of the synthetic camera, occlude the inside surface. For example, Fig­
ure 2.2 depicts a pixel on which a section of an open-ended cylinder is pro­
jected. In this example, the outside surface is red and the inside surface is
brown. The red outside surface occludes the brown inside surface.

26 PARALLEL-ADAPTIVE-POINT-SAMPLING algorithm

. .
••••••••• E L· ••••••••

~ pixel boundary

Figure 2.2: Example of a projection, onto a pixel, of an outside and inside
surface of an open-ended cylinder

So, for example, during the sampling process of the pixel shown in Fig­
ure 2.2, some of the brown inside-surface points sampled are occluded by the
red outside surface and should not be included in the final determination of
the color or a value of this pixel. In order to approximate, in the output im­
age, this occlusion phenomenon, separate bookkeeping is kept, during step 6,
page 42, for the information related to the sampled points of the outside
surface and inside surface.

Running weighted averages of the color and z-depth values of the sampled
points for both the outside and inside surfaces are recorded in step 6. In
addition, the average location of the sampled points for both the outside
and inside surfaces, in terms of their projected pixel space location, is also
recorded during step 6. In order to approximate the occlusion phenomenon
from this information record in step 6, the following procedure involving two
constructed squares is used.

Figure 2.3 shows two squares constructed from the two sets of sampled
points taken for the pixel shown in Figure 2.2. The red square represents the
outside sampled surface points and the brown square represents the inside
sampled surface points. The centers of the squares are the average location,

27

~

.. 'open-ended cylinder

Step 1: If no u-v subrectangles are input ...

a_ , . , -•••••....

pixel boundary

constructed square corresponding
to the inside surface of the

constructed square corresponding

to the outside surface of the

open-ended cylinder

(
Figure 2.3: Example pixel with an illustration of the constructed squares
corresponding to the outside and inside surfaces of the open-ended cylinder
shown in Figure 2.2

as mentioned in the previous paragraph, for each set of sampled points.
The size of each square corresponds to the number of samples taken by this
algorithm, for each type of surface, relative to the total number of samples
taken by this algorithm for a fully covered pixel. In our example, the sampling
rate dictates that the RenderMan system processes 20 samples per pixel for
a fully covered pixel. In our example, we do not have a fully covered pixel.
And, in this example, 7 samples are taken for the red outside surface and 10
samples are taken for the brown inside surface. Thus the area of red square
is 7/20th the area of the pixel. And the area of the brown square is 10/20th
the area of a pixel.

The constructed square on top, with respect to the viewer, is the square
with the smallest average z-depth value for all its sampled points.

It is acceptable that the constructed squares go outside the boundary of
the pixel; these constructed squares are only for calculation purposes. The

28 PARALLEL-ADAPTIVE-POINT-SAMPLING algorithm

a value for each pixel is calculated by dividing the visible shaded area, as
shown in Figure 2.3, by the area of a single pixel.

In our example, as shown in Figure 2.3, all of the area of red square is
visible (7/20th the area of a pixel) and 40% of the area of the brown square
is visible (4/20th the area of a pixel). Adding the visible area of the two
squares results in the total fraction of the area of the pixel containing color,
in this example, (4/20 + 7/20) or 0.55. This is the pixel's a value3 . The
pixel's color and z-depth values are determined by the average of the outside
and inside surface square's color and z-depth values weighted by the amount
of visible surface area of each square. All pixels are processed in parallel.

As mentioned above, after color, a (pixel coverage), and z-depth values
of the object-image have been determined, this step composites the object­
image and the scene-image array.

There are many ways to combine two images using color, a (pixel cover­
age), and z-depth information. RenderMan supports painter's and z-buffer
compositing. These techniques are fully motivated and described in [PD84].
All techniques, described in [PD84], composite two images by combining
corresponding pixels from the two images, independent of other pixels in
the images. Thus, during compositing, this algorithm combines each corre­
sponding pair of pixels in parallel. Although this thesis does not motivate
the derivation of the compositing formulas, we will, in the following Notes
on compositing section, specify the compositing formulas used in this step.

Notes on compositing

The previous step involves compositing the object-image array with the scene­
image array. This note explains, in detail, how compositing is performed.
There are two types of modeler specified compositing styles: painter's and
z-buffer. The compositing algorithms used in the previous step are derived
from [PD84]. This section only contains formulas. Consult [PD84] for details.

As mentioned earlier, these two images are stored in arrays that have
identical structures, each element of an array representing a pixel. The size
of the arrays corresponds to the number of horizontal and vertical pixels
requested, by the modeler, for the final output image.

3 a is defined on page 23

29 Step 1: If no u-v subrectangles are input ...

Each pixel, whether stored in the object-image or scene-image, contains
color, a (pixel coverage), and z-depth information. During the compositing
process, each pixel location is processed independently. Each pair of cor­
responding object-image and scene-image pixels are composited in parallel.
This parallel compositing process results in a new scene-image.

If the painter's compositing style is requested by the modeler, the new
scene-image is calculated by compositing the object-image over the scene­
image. Otherwise, the z-depth value is used to determine which pixel, con­
sidering corresponding pixels from the scene-image and object-image, is com­
posited over the other. After this determination, the composition algorithm
proceeds in an identical manner, regardless of whether the painter's or z­
buffer composition style is requested. We will use A to designate the pixel
on top, closer to the viewer, and B to designate the pixel on the bottom.

As is typical in compositing systems, color, a, and z-depth values,
(R,G,B,a,z-depth), are stored as (aR,aG,aB,a,z-depth).

In the following formulas, F stands for the fraction of the color area of
a pixel that ends up in the composited pixel. Remember, the color area

(refers to the amount of pixel area which contains projected surface color, as
illustrated in Figure 2.1.

From the [PD84] paper:

FA = 1.0

FB = 1.0 - aA

Composition of color and a value is as follows: The color of the new
scene-image pixel is

FA colorA + FBcolorB

The new a value of the new scene-image pixel is

FAaA + FBaB

The calculation for the composited z-depth value is slightly different in
form from the composited a or color value just described. The above formu­

30 PARALLEL-ADAPTIVE-POINT-SAMPLING algorithm

las, for composited U and color values, take into consideration that the com­
posited value may have non-contributing area, that is, the pixels being com­
bined might not have their entire pixel area covered with color-embodied
in the notion of an U value. However, the z-value is based solely on the
weighted average of color contribution area, if any, each pixel contributes to
the composited pixel.

There is no exact z-value for a composited pixel. Our pragmatic decision,
for this implementation, was to use a weighted average of the z-depth values
of both pixels based on the amount of color, by pixel surface area, contributed
by each pixel.

WA and WB designate, respectively, the weight given to A and B's z-depth
value.

If the divisor, used in the following two equations, is zero, then no z-depth
value is assigned.

WA
FAuA

FAuA + FBuB

WB =
FBuB

FAuA +FBuB

The new z-depth value of the new scene-image pixel is:

WAZA +WBZB

Step 2: Select additional points on each u-v subreetangle and then
map them to their corresponding points in 3D pixel space

In this step, all the u-v subrectangles are processed in parallel.
An image plane, on which the projected surface colors are represented

and whose integer-valued coordinates demarcate rectangular areas which are
mapped to pixel values, is referred to, in this thesis, as 2D pixel space. Sim­
ilar to the pixel plane, the 3D pixel space, has, in addition, a z-component.

3D cartesian surface points that are displayed in the output image lie,
when mapped (projected) to the 3D pixel space, in the view volume of the
3D pixel space. The view volume consists of an x-component spanning [0,
number of horizontal pixels in the output image], a y-component spanning [0,

31 Step 2: Select additional points on each u-v subreetangle...

number of vertical pixels in the output image]' and a z-component spanning
[0,1]. In the view volume, a z-component having a positive value closer to
zero would be a point closer to the viewer.

For each image rendered, each sampled 3D cartesian point which influ­
ences the color of a pixel maps to a 3D-pixel-space point which lies within
the view volume. Those sampled 3D cartesian points that do NOT influence
the color of any pixel map to 3D-pixel-space points that lie outside of the
view volume. For each image rendered, the mapping between 3D cartesian
space and 3D pixel space is determined by the modeler's specifications,.e.g.,
the synthetic camera location and the output-image size.

The view volume is the raison d'etre for the concept of 3D pixel space.
The width and height of the view volume corresponds, by design, to the
width and height, in terms of the number of pixels, of the output image.
Applying the floor function to a sampled point's x and y coordinate in 3D­
pixel-space results in the x and y designation of the pixel that is influenced
by the sampled point. The z-depth of a sampled point is its distance away
from the synthetic camera. In 3D-pixel-space, the values of the z-components

\
/

of all sample points that affect the output image lie between [0,1]. Thus, the
z-component of a 3D-pixel-space point represents a scaled z-depth in which
cartesian-space points that are closer to the synthetic camera map to points
closer to 0 in 3D pixel space, and conversely those cartesian space points
that lie farther away from the synthetic camera map to points that are closer
to 1 in 3D pixel space. This scaled z-depth is used by step 1, page 23 for
compositing.

Thus, there are three types of spaces involved in this step, namely,

• the u-v space,

• the 3D cartesian space, and

• the 3D pixel space.

In this step, selected (sampled) u-v space points get mapped to 3D surface
points. These 3D surface points then get mapped, or projected, into the 3D
pixel space. The protocol between the modeler and the renderer specifies
the mapping among these three spaces. For example, Figure 2.4 illustrates
a mapping of a point in u-v space to its corresponding 3D cartesian space
point on the surface of a cone. And, Figure 2.5 illustrates the mapping of this

32 PARALLEL-ADAPTIVE-POINT-SAMPLING algorithm

v mapping a point (sample)
y• from u-v space to 3D car­

I •
I teslan space

If-',-------,

~ * ~z

0' '1- u

x
cone's associated u-v rectangle 3D cartesian space

(u-v space)

[* = point

Figure 2.4: Example of mapping a point (sample) from a geometric primi­
tive's associated u-v subrectangle to a point in 3D cartesian space

point on the surface of the cone, in 3D cartesian space, to its corresponding
point, in 3D pixel space, which, in this example, happens to be located in
the view volume.

The mapping between u-v space and 3D cartesian space is determined by
a set of parametric polynomials in two variables that specifies the surface, i.e.,
the patch, of the primitive geometric object being rendered. In the example
illustrated in Figure 2.4, the primitive geometric object is a cone. The set of
parametric polynomials is part of the input to this algorithm, see page 22.

The mapping between 3D cartesian space and the 3D pixel space is spec­
ified in the protocol between the modeler and renderer. This specification is
in terms of the type of projection requested, orthogonal or perspective, and
other details such as those concerning the position and orientation of the
synthetic camera.

In our RenderMan system, as is typical, the mapping of a 3D-cartesian­
space point to 3D-pixel-space point is performed by a single matrix multiply
between a vector, representing the point4, and a 4x4 matrix representing
the mapping. A 4x4 matrix is a matrix whose elements can embody the

4The point is represented in homogeneous coordinates-a four valued vector. Homoge­
neous coordinates are commonly used in computer graphics. See [FvDFH90] and [PS85].
Homogeneous coordinates allow a single matrix multiply to perform the mapping between
coordinate 3D cartesian space and 3D pixel space.

33 Step 3: Prune u-v subreetangles not in the view volume

mapping a point width ofview
volume equals (sample) in 3D car­

y the number ofy tesian space to 3D	 horizontal pix­

~ls in the ouput :1

0/
pixel space linage

-------"""

--------i"- T
height of view volume equals ~z Qz \l	 the number ofvertical pixels in
the output image

t.
x #	 x

3D cartesian space 4~ 3D pixel space
.~~
4~

[*	 = point

Figure 2.5: Example of mapping from a point in 3D cartesian space to a
point in 3D pixel space

mapping from 3D cartesian space to 3D pixel space in its 16 elements. The
(use of matrices in performing mappings between spaces is standard practice

in the computer graphics field. The details of how this is done can be found
in [FvDFH90].

This step calculates (selects), in parallel, the u-v points, indicated in
Figure 2.6, for each u-v subrectangle. These u-v subrectangles are those
that are input into this PARALLEL-ADAPTIVE-POINT-SAMPLING algorithm.
These newly selected u-v points are midpoints in u-v space and are, namely,
points "e", "f", "g", "h", and "i". These points are then mapped to 3D­
pixel-space points and their locations in both u-v space and 3D pixel space
is stored.

This PARALLEL-ADAPTIVE-POINT-SAMPLING algorithm requires, at
this point in the algorithm, that the u-v space locations and corresponding
3D-pixel-space locations of the input points "a", "b", "c", and "d", shown
in Figure 2.6, be already calculated and stored.

Step 3: Prune u-v subrectangles that, when mapped into the 3D­
pixel space, do not wholly reside in the view volume

In this step, all the u-v subrectangles are processed in parallel.

34 PARALLEL-ADAPTIVE-POINT-SAMPLING algorithm

u-v subrectangle points

a h b

e g

c 1 d

• =input points

• =calculated points
Points are in u-v space

Figure 2.6: Labeled u-v subrectangle points

When a u-v subrectangle is designated as pruned, it is not further pro­
cessed by this algorithm. A u-v subrectangle is designated as pruned on
two conditions. One condition is the fulfillment of the shading and sampling
rates, and is discussed in step 4, page 36. And, the other condition is when
the u-v subrectangle's corresponding 3D patch is not at all viewable by the
synthetic camera, and this is further discussed in this step.

Surface points viewable to the synthetic camera are those surface points
that map into the 3D pixel space's view volume. The view volume is shown
in Figure 2.4. In order for a u-v subrectangle to be designated as pruned by
this step, no part of it's corresponding 3D patch, in 3D pixel space, must
reside in the view volume.

A conservative technique is used to determine whether or not a u-v sub­
rectangle should be designated as pruned. 'In other words, while it is ac­
ceptable to miss a pruning opportunity, it is not acceptable to prune a u-v
subrectangle that shouldn't be pruned. A missed pruning opportunity is ac­
ceptable because it does not affect the output image and only potentially
increases the processing time of the algorithm. In fact, this pruning step is
entirely an optimization step.

Determining whether or not a patch is at all located within the view vol­

35 Step 3: Prune u-v subrectangles not in the view volume

bounding box
(pruned)A

y " , A

~
---"""
- ---~

I
I
I
I
~

x

bounding box
(not pruned)

3D pixel space

Figure 2.7: Example bounding boxes

ume is computationally difficult. So instead, a pruning technique commonly
(used is the bounding-box technique. Figure 2.7 illustrates two patches with

their corresponding bounding boxes. Detecting whether or not a bounding
box intersects the view volume is a relatively small computational problem
to solve, see [FvDFH90]. A bounding box is any box that completely encases
the patch being considered, but for pruning determination, the smallest pos­
sible bound box is desirable. The calculations for determining the smallest
bounding box varies for each type of patch, consult [FvDFH90] for details.

In Figure 2.7, two patches and their corresponding bounding boxes are
shown. The u-v subreetangle corresponding to patch "A" is designated as
pruned because its bounding box does not intersect the view volume. As a
result of using a conservative pruning technique, patch "B's" u-v rectangle
is designated as not pruned even though patch "B" itself does not at all
reside in the view volume. This bounding-box technique relies totally on
whether or not a patch's corresponding bounding box intersects the view
volume. Patch "B" is thus an example of a missed pruning opportunity that
sometime occurs when using a conservative pruning technique.

There exists more computationally expensive pruning techniques than
the bounding-box technique that will always accurately determine whether
or not any part of a patch resides in the view volume. These are not used in
this implementation. There is a trade-off between more intelligent pruning

36 PARALLEL-ADAPTIVE-POINT-SAMPLING algorithm

techniques, which always detects situations that can be pruned but takes
significant processing time, and simple pruning, which takes less processing
time but may require more iterations of the overall PARALLEL-ADAPTIVE­

POINT-SAMPLING algorithm. A simple pruning technique may result in a
missed opportunity to designate a u-v subrectangle as pruned. This will,
in turn, result in the creation of additional (smaller) u-v subrectangles that
will be processed in the next iteration of this PARALLEL-ADAPTIVE-POINT­

SAMPLING algorithm. See step 7, page 45. This, however, may not result in
any additional processing time if another iteration of this algorithm would
occur any way-remember, all u-v subrectangles are processed in parallel.

Step 4: Prune u-v subreetangles based on fulfilling the modeler
specified sampling rates

This step only applies to non-pruned u-v subrectangles. And, all of these
non-pruned u-v subrectangles are processed in parallel.

Renderers based on the Renderman Interface standard allow the modeler
to specify the shading rate. Informally, the shading rate specifies the den­
sity of points to be sampled on the surface of a primitive geometric object
during the rendering process.

In this RenderMan implementation, the sampled points are the four cor­
ner points of each and every u-v subrectangle generated by this PARALLEL­

ADAPTIVE-POINT-SAMPLING algorithm. The four corner points of a u-v
subrectangle are indicated as points "a", "b", "c", and "d" in Figure 2.6.
These u-v-sampled points are mapped to their corresponding 3D cartesian
space points on the surface of the primitive geometric object being rendered.
Sampled points are rendered, i.e., their projected surface color is determined.
An example of mapping a point from u-v space to 3D cartesian space to 3D
pixel space is shown in Figure 1.2. This mapping is described in step 2,
page 30.

The shading rate dictates the maximum distance allowed between sam­
pled points. The maximum distance is specified in terms of 2D pixel space.
The mapping of a point from 3D pixel space to 2D pixel space is accomplished
by simply ignoring the z-component of the 3D-pixel-space point.

There is another important related RenderMan concept: the modeler

37 Step 4: Prune based on sampling rates

definable sampling rate5 • The sampling rate is similar in concept to the
shading rate and is applicable only if the sampling rate specifies more reso­
lution than is afforded by the shading rate.

After the shading rate requirement has been fulfilled, the PARALLEL­
ADAPTIVE-POINT-SAMPLING algorithm continues to select (sample) points,
i.e., breaking up u-v subrectangles into smaller u-v subrectangles, in order to
fulfill the more demanding, in terms of resolution, sampling rate requirement.
See step 7, page 45. However, the points selected to fulfill the sampling rate
are not subjected to the surface shader for projected surface color determi­
nation, instead, they are subjected to an interpolation calculation of already
shaded surface points.

For a sequential machine, the use of the sample rate to extend the resolu­
tion provided by the shading rate is a time saving feature; because, typically,
the interpolation calculation is much less computationally intensive than a
surface shader calculation. But this time savings doesn't necessarily happen
in our parallel, SIMD, implementation. Since sets of points are rendered in
parallel, if part of the set requires shading rate (surface shader) rendering

(and the remaining part of the set requires sampling rate (interpolation) ren­
dering both subsets of points have to be rendered, one after the other, in the
SIMD model. Only if there are no shading rate points left to be rendered
will there be a savings in time. Since there is a semantic difference between
shading rate rendering and sampling rate rendering, both are supported in
this parallel implementation.

Before entering this step, the projected surface colors of points "a", "b",
"c", and "d" of Figure 2.6 have been determined and stored in the object­
image array.6 See step 5, page 40 and step 6, page 42. And, all of the points
labeled in Figure 2.6 have been mapped to their corresponding 3D pixel-space
points.

If a u-v subrectangle maps into 2D pixel space in such a way as to satisfy
the requirements of both the shading and sampling rate then no further

5Specified in RenderMan by the RiPixelSamples routine
6 As mentioned on page 22, when our RenderMan system invokes this PARALLEL­

ADAPTIVE-POINT-SAMPLING algorithm, it inputs a single u-v subrectangle: the primitive
object's associated u-v rectangle. It is required that before the RenderMan system in­
vokes the PARALLEL-ADAPTIVE-POINT-SAMPLING algorithm, the projected surface colors
of points "a", "b", "c" ,and "d" of Figure 2.6 ofthe associated u-v rectangle are determined
and stored in the object-image array.

38 PARALLEL-ADAPTIVE-POINT- SAMPLING algorithm

processing of this u-v subrectangle is required. Such a u-v subrectangle is
designated as pruned.

On the other hand, if the density of sampled points selected from a u­
v subrectangle does not fulfill the sampling rate requirement, then the u-v
subrectangle will be broken up into smaller u-v subrectangles, and these
smaller u-v subrectangles will be then subjected to a recursive call of this
PARALLEL-ADAPTIVE-POINT-SAMPLING algorithm. See step 7, page 45.

Determining whether or not a u-v subrectangle satisfies either the shading
or sampling rate requirement is non-trivial and untractable by a sampling
method-if done with 100% accuracy.

A u-v subrectangle represents a portion of the surface of a primitive geo­
metric object. The corner points of a u-v subrectangle are the sampled points
that are rendered. A u-v subrectangle that fulfills the shading or sampling
rate requirement implies that no two points in the u-v subrectangle map
to two points in 2D pixel space that are farther apart than the allowable
maximum separation distance dictated by the shading or sampling rate.

It may be thought that determining whether or not the shading or sam­
pling rate is satisfied is a matter of determining whether or not all of the
following line segments, whose endpoints are shown in Figure 2.6, ab, bd,
cd, ac, ad, and bc are shorter, when mapped into 2D pixel space, than the
maximum allowed separation distance between sampled points dictated by
the shading or sampling rate.

But, this isn't the case. Intuitively, one can imagine the u-v subrectangle
as a rectangular elastic which is wrapped around the surface of its corre­
sponding primitive geometric object in 3D space. The surface of a primitive
geometric object, i.e., a patch, can contain very large bends and twists. With
this in mind, it is easy to envision a case where points "a", "b", "c", and "d"
of Figure 2.6, when mapped into either 3D cartesian space or 3D pixel space,
are close to each other but where point "f" may be far away. Figure 2.8,
shows an example of a primitive geometric object whose surface is a section
of a torus and whose corresponding u-v points "a", "b", "c", and "d" are
close to each other and whose point "f" is far away.

Therefore, it is incorrect to consider only points "a", "b", "c", and "d"
when determining whether or not a u-v subrectangle is small enough to fulfill
either the shading or sampling rate requirement. In fact, the imagined elastic
u-v subrectangle, could be bent in very peculiar ways. And, no amount of
sampling could make sure that there isn't a spike bend in the elastic, some­

39 Step 4: Prune based on sampling rates

h
y ef

1

z

c

o

3D cartesian space

,. Figure 2.8: Torus patch with corresponding u-v subrectangle points indicated \

where. However, pragmatically speaking, the primitive geometric objects
generated by many modelers are well behaved, that is, not having these dra­
matic spike bends. The following engineering solution is used to determine
whether or not the shading or sampling rate requirements are fulfilled.

The 2D pixel space points corresponding to all the u-v space points labeled
in Figure 2.6 will be used in determining whether or not a u-v subrectangle
fulfills the sampling rate requirement. If each of the eight 2D pixel space dis­
tances, shown below, is less then the maximum separation distance between
sampled points specified by the sampling rate, then the u-v subrectangle will
be designated as pruned, that is, it will not be further processed by this
algorithm.

lahl + lhbl (2.1)

lael + leel (2.2)

lafl + lfdl (2.3)

ldgl + 19bI (2.4)

•
 x

40 PARALLEL-ADAPTIVE-POINT-SAMPLING algorithm

Ibil + IIcl (2.5)

Idil + licl (2.6)

lell + IIgl (2.7)

Ihil + Ilil (2.8)

Otherwise, for each non-pruned u-v subrectangle, a similar test for the
less-demanding shading rate is performed and the result of whether or not
the shading rate requirement is fulfilled is recorded.

Step 5: Determine the projected surface colors of points "e", "f",
"g", "h", and "i"

This step only applies to non-pruned u-v subrectangles. And, all of these
non-pruned u-v subrectangles are processed in parallel.

This step determines the projected surface color of each of the following
points "e", "f", "g", "h", and "i"; these points are shown in Figure 2.6.

The u-v subreetangles processed during this step are divided into two cat­
egories; those whose points will be subjected to interpolation (sampling rate)
rendering and those whose points will be subjected to surface shader (shad­
ing rate) rendering. Which category a u-v subrectangle is in is determined
by step 4, page 36.

In this SIMD implementation, all the interpolation (sampling rate) ren­
dered u-v subrectangles will be processed in parallel; and then, all the surface
shader (shading rate) rendered u-v subreetangles will be processed in paral­
lel. If we were using a MIMD machine, both interpolation (sampling rate)
and surface shader (shading rate) rendering could overlap in time.

For a point rendered by the interpolation process (sampling rate), the
point's color is based on a linear interpolation7 of the color of other already
calculated points.

The table below indicates which points, as shown in Figure 2.6, the in­
terpreted points are based on.

7There is one exception, point "f" is based on a bilinear interpolation.

41 Step 5: Determine the projected surface colors ...

interpreted point based on
e a,c
g b,d
h a,b
1 c,d
f a,b,c,d

For a point rendered by a surface shader (shading rate), the point's color
is calculated by a modeler defined surface shader. As mentioned previously, a
surface shader can utilize other types of shaders, such as light source shaders,
while it is rendering a point.8 In this implementation, the modeler's choice
of shaders to correspond to a primitive geometric object is restricted to the
following.

i
\

Surface Shaders Light Source Shaders
Constant surface
Texture-map surface (non-standard)

Ambient light source
Distant light source

Descriptions of the above mentioned standard shaders, namely, constant
surface, ambient light source, and distant light source can be found in [Ren89]
or [Ups90]. The texture-map surface shader is specific to our implementa­
tion. It takes as a parameter the name of a texture map, and it utilizes the
named texture map and the specified light sources in its color determination
of a point.

In this implementation, these shaders are hard-coded. The optional Ren­
derMan C-like SHADER language capability is not implemented in this
project. The optional SHADER language capability is not required by the
RenderMan Interface specification. See [Ren89]. The SHADER language
provides a modeler with full flexibility in specifying the surface shading pro­
cess. Although this implementation doesn't support the SHADER language,
it is designed to allow for a SHADER language extension to this project.

After this step, the projected surface color of each of each point indicated
in Figure 2.6 is calculated and stored.

8Rendering based on shaders is explained in the "Introduction" section of this thesis.

42 PARALLEL-ADAPTIVE-POINT- SAMPLING algorithm

Step 6: Send color and 3D pixel-space-coordinate values to appro­
priate pixels, in the object-image array, utilizing filtering

This step only applies to non-pruned u-v subrectangles. All non-pruned u-v
subrectangles are processed in parallel.

The object-image array is a 2D array. The dimensions of this 2D array
corresponds to the output image size, in pixels, requested by the modeler.
The object-image is where the result of rendering a single geometric primitive
object is stored. Each top-level invocation of this PARALLEL-ADAPTIVE­

POINT-SAMPLING algorithm renders a single geometric primitive object and
the result is stored in the object-image array.

Each pixel of the object-image is represented by an element of the object­
image array. Each element of the object-image array is assigned its own
processor. In the C* jCM-200 system used in our implementation, each C*
array element is automatically assigned its own processor.

At this point in the PARALLEL-ADAPTIVE-POINT-SAMPLING algorithm,
processors (implemented as elements of a C* array) have stored, in their local
memories, values corresponding to each of the u-v subrectangle points "e",
"f", "g", "h", and "i". These corresponding values are the projected sur­
face color, see step 5, page 40 and the 3D pixel-space coordinate, see step 2,
page 30. Each processor send its above-mentioned values to an appropriate
element (processor) of the object-image array. The appropriate element is
determined by rounding down the x and y components of the 3D pixel-space
coordinate corresponding to a u-v subrectangle point. These rounded-down
values, which are integers, comprise the address of an element (processor) of
the object-image array. However, it makes sense for only only those proces­
sors that contain u-v subrectangle points that map into the view volume, as
defined on page 30, to send their values to the object-image array.

Each receiving object-image array element (pixel) keeps track of a
weighted average of color and z-depth values sent to it during the ex­
ecution of a top-level call of this PARALLEL-ADAPTIVE-POINT-SAMPLING

algorithm. As mentioned previously, the z-depth value is the z-component
of the 3D pixel-space coordinate. The weighted average calculation is made
in accordance with a modeler specified filter function. A filter function is
used by a renderer to prevent the appearance of jaggies, i.e. staircasing, ar­
tifacts in the digital output image that could otherwised be produced during

43 Step 6: Send values to object-image array

the rendering process. In addition, when rendering a sequence of images for
animation, temporal artifacts can also be prevented by the use of filtering.
See [FvDFH90] for details on filtering. Typical filter functions weigh, with
more importance, the values of points that, in 2D pixel space, lie closer to
the center of a pixel than the values of points lying farther away. This im­
plementation allows the modeler to specify any of the standard RenderMan
filter functions, namely: triangle, box, catmull-rom, sinc, and gaussian.

If the modeler specified filter width is wider than one pixel, then the u-v
points must send their values to not only the pixel of the object-image array
to which it is mapped, but also, to neighboring pixels, as well. Typically,
the height and width of a filter is between one and three pixels in length.
Therefore, if the filter width and height are the same, which is typical, then
the number of pixel processors that are sent values from each of the points
"e", "f", "g", "h", and "i" is

(ffilter width1? for odd ffilter width1
(ffilter width1+ 1)2 for even ffilter width1(

where "filter width" is the number of pixels covered by the width (or height)
of the filter. For example, if the filter width is 1.3 pixels; then ffilter width1
is 2.0, the even case; and therefore 9 pixel processors are sent values from
each active u-v subrectangle point.

On the C* jCM-200 SIMD system, used in our implementation, each u-v
point's processor can send information to only one designated pixel (proces­
sor) at a time; therefore multiple sends are necessary. Multiple designated
(non-broadcast) sends require multiple iterations of C* statements on the
CM-200.

It has been previously mentioned that only those u-v subrectangle points
that map (project) into the view volume send values (color and 3D pixel­
space coordinate) to the pixels stored in the object-image array. This is not
strictly true. If the filter width is wider than one pixel, a u-v subrectangle
point that maps to a 3D pixel-space point outside of the bounds of the view
volume but near an edge of the view volume might need to send information
to one or more pixels of the object-image array. Therefore, even when a u-v
point doesn't send values to its own pixel, because it is out of bounds, it may
be involved in sending information to neighbor pixels in order to support a

44 PARALLEL-ADAPTIVE-POlNT- SAMPLING algorithm

more than one-pixel wide filter.
In addition, some of the points of the u-v subrectangles, "e", "f", "g",

"h", and "i", do not send their point-related values to the object-image array.
Step 7, page 45, determines which u-v subrectangle points do not send their
values to the object-image array. Such don't-send points are designated as
such because near-by u-v subrectangles, generated by this algorithm, contain
identical u-v points. Sending the values of identical u-v points, more than
once, to the object-image array would distort the color of a given pixel in
favor of those more than once represented u-v points.

RenderMan allows the user to specify rendering on either one or both
sides of a primitive geometric object. If rendering on one side is requested,
RenderMan only renders the outside of the geometric primitive object. In
this case, this step only sends u-v points whose outside surface is facing the
synthetic camera; this is determined by the direction of the u-v point's 3D­
pixel-space surface-normal vector (to be discussed below). A running
tally of the total number of points sent to each pixel element (processor)
is also recorded, in this step, for use by step 1, page 23. Step 1 uses this
information to determine the final a value of a pixel of the object-image
array.

In our implementation, the 3D-pixel-space surface-normal vector of a
point on the surface of a primitive geometric object (patch) is calculated
as follows. As mentioned on page 22, the surface of a primitive geomet­
ric object is specified by a set of parametric polynomials in two variables.
This set of parametric polynomials in two variables specifies the mapping
from u-v space to 3D space. In our implementation, we use three parametric
polynomials whose two variables are "u" and "v", designating a u-v-space
point, and whose three polynomial expressions evaluate to "x", "y", and "z",
designating a 3D-cartesian-space point. Two vectors tangent to the surface,
at the given point, are then calculated. They are calculated by taking two
partial derivatives (i.e., two partial derivatives for each of the three poly­
nomials), one with respect to "u" and one other with respect to "v" and
then evaluated at the u-v-space point being processed. The cross-product of
these two tangent vectors result in the surface-normal vector in 3D cartesian
space. By mapping two points of a vector in 3D cartesian space to their
corresponding points in 3D pixel space, a 3D-pixel-space surface-normal vec­
tor is determined. This mapping can be performed by the homogeneous 4x4
matrix described on page 32.

45 Step 7: Create four new u-v subreetangles ...

Whether or not a surface point is front facing or back facing, with respect
to the synthetic camera, can be determined by taking the dot product of the
3D-pixel-space vector (0,0,-1), a vector directly pointing towards the syn­
thetic camera, and the 3D-pixel-space surface-normal vector just calculated.
The dot product will be positive if the 3D-pixel-space surface-normal vector
is facing the synthetic camera, thereby indicating a front-facing surface; oth­
erwise, the dot product will be negative conversely indicating a back-facing
surface.

If both sides are requested to be rendered, then, in order to facilitate the
calculation of a pixel's a value, a running tally of the number of back-facing
and front-facing u-v points sent to each pixel is recorded, as well as, the
average 2D-pixel-space location and z-depth value of each of these two sets
of points (back-facing and front-facing).

The final a and z-depth value for each pixel is calculated in Step 1,
page 23.

Step 7: Create four new u-v subrectangles, from each non-pruned
(u-v subrectangle, for further processing by a recursive call to this

Parallel-Adaptive-Point-Sampling algorithm

This step only applies to non-pruned u-v subrectangles. All non-pruned u-v
subrectangles are processed in parallel.

Each non-pruned u-v subrectangle will be the source of 4 new (smaller)
u-v subrectangles. See Figure 2.9. A list of all these newly generated u-v
subrectangles is used as an argument to a recursive call, made during this
step, of this PARALLEL-ADAPTIVE-POINT-SAMPLING algorithm.

As indicated in Figure 2.9, some of the u-v points on the new u-v sub­
rectangles are designated, by this step, as "don't send". The projected sur­
face color and 3D-pixel-space information corresponding to these u-v points
should not be sent, in Step 6, page 42, to the object-image array because a
sibling u-v subrectangle contains the same u-v point.

I End of PARALLEL-ADAPTIVE-POINT-SAMPLING algorithm.

Implementation and design notes on the Parallel-Adaptive-Point­
Sampling algorithm

46 PARALLEL-ADAPTIVE-POINT­ SAMPLING algorithm

• Since this project's CM-200 possesses a small number of processors and
a limited-memory capacity, a modeler's request for an output image
containing a large number of pixels is transformed, by our renderer,
into several requests for smaller sub-images. These smaller sub-images
are rendered independently and then assembled into one large output
Image.

• In this SIMD-based PARALLEL-ADAPTIVE-POINT-SAMPLING algo­
rithm, even though the rendering process for each primitive geometric
object utilizes parallel processing, every primitive geometric object is
rendered one at a time.

However, if a MIMD machine were available, this SIMD-based
PARALLEL-ADAPTIVE-POINT-SAMPLING algorithm could be modified
to render several primitive geometric objects in parallel. In a large
enough MIMD machine, all the geometric primitives of the scene could
be rendered in parallel. On such a large MIMD machine, a parallel
compositing operation taking O(log <number of geometric primitive
objects» time could be performed. Thus, this large MIMD machine
could support an extremely fast RenderMan renderer. Photorealistic
virtual reality rendering could be realized.

\

47 Step 7: Create four new u-v subreetangles ...

h OhnI IJe f f ga h .bt
I
I

f' e .-- -e-- -. g
I

(h •c 1 d

IV~O: EJ III
i d

I, II, III, & IV represent the x = send
new u-v subrectangles 0= don't send

Figure 2.9: New u-v subrectangles

(,

Chapter 3

Implementation Results and
Future Work

This project's RenderMan system is implemented on Thinking Machine's
C* /CM-200 system, a SIMD computer. This RenderMan implementation is
designed to be easily ported to other parallel computer systems-SIMD or
MIMD. The source files comprising this system are divided into two cate­
gories: (1) scalar sources; ANSI C, lex, and yacc and (2) parallel sources;
C*. The majority of source files in this implementation are scalar.

C* is a variant of the ANSI C programming language. C* contains all of
the features of the ANSI C programming language and in addition contains
constructs for parallel operations on arrays. Since portability of the source
files is a major design criterion of this project, only those C* features that are
available on most other parallel computer systems are used in this project.

A sample image rendered using this project's RenderMan system, which
includes the PARALLEL-ADAPTIVE-POINT-SAMPLING algorithm, is shown
in Figure 3.3. It contains two texture-mapped patches. The texture maps
are shown in Figure 3.1 and Figure 3.2. Each patch depicts a section of the
surface of a torus. The RIB code used to generate the image is contained in
the Appendix.

The following table lists the number of u-v subrectangles generated for
each patch during each iteration of the major loop (or recursion) of the
PARALLEL-ADAPTIVE-POINT-SAMPLING algorithm.

48

49

Figure 3.1: Texture map of santa motif (color image)

...
Figure 3.2: Texture map of flower motif (color image)

loop number
number of u-v subrectangles generated
santa-motif patch flower-motif patch

1
2
3
4
5
6
7
8
9

1
4

64
256

1024
4096

16384
0

-

1
4

64
256

1024
4096

16384
13280

0

There were two RenderMan systems built during this project. One which
uses a pre-selected evenly-distributed set of 36,000 u-v points as the basis for
sampling, and the other one which uses the PARALLEL-ADAPTIVE-POINT­

SAMPLING algorithm described in this thesis. Of course the former system
does not correctly observe the modeler specified shading rate-a big short­
coming. The former system performed about 5-10 times faster than the com­

50 Implementation Results and Future Work

Figure 3.3: Image Produced by the PARALLEL-ADAPTIVE-POINT­
SAMPLING algorithm (color image)

merciallyavailable (scalar) RenderMan system; and the latter system, using
the PARALLEL-ADAPTIVE-POINT-SAMPLING algorithm performed about 5
times slower.

These performance numbers indicate that the first of the two Render­
Man systems built during this project-the one using 36,000 pre-sleeted u-v
points-efficiently uses this project's SIMD computer. And, the performance
of the PARALLEL-ADAPTIVE-POINT-SAMPLING-based renderer can be easily
explained, as will be done (see below), and easily overcome.

This project's SIMD computer is a C* jCM-200 system containing 4K
of SIMD processors. The processors themselves aren't particularly fast. To
measure the relative speeds of the floating point operations of this projeet's
scalar machine, namely a Sun Microsystem Inc. Spare station with that of
an individual processor of the C* jCM-200 system, timings were taken for
the task of performing 2 million floating point operations on each of the
two processors. On the scalar machine the floating point operations were
performed on a scalar double-precision variable and on the C* jCM-200 the
floating point operations were performed on a 4K array of double-precision
elements. The scalar machine took 2.03 seconds to execute this task while the
C* jCM-200 system took 172.580 seconds to execute this task. This, then,
measures the C* jCM-200 processors' floating point operation speed to be

51

approximately 85 times slower than this project's scalar processor's floating
point operation speed.

Much of the computation done in a renderer is floating point operations.
Thus, although there are 4K of processors in this project's SIMD computer,
each of the 4K processors is 85 times slower than our scalar processor, so the
upper bounds on the time improvement of our SIMD-implemented renderer
is (4096/85), i.e. 48.18, times over the scalar version of the renderer. The
first renderer, using pre-selected points and obtaining a 5-10 time speed im­
provement over the scalar computer, approaches this performance number.
And, in addition, this renderer has the burden of data movement between
processors and a host machine that a scalar version of a renderer does not
have.

The goal of the PARALLEL-ADAPTIVE-POINT-SAMPLING algorithm is to
provide the renderer with the ability to fulfill the modeler specified shading
rate requirement and at the same time minimize any time-performance im­
pact this additional feature might incur. At a first glance, the performance of
the PARALLEL-ADAPTIVE-POINT-SAMPLING-based renderer, 5 times slower

\
(

than the scalar version, looks as though the overhead of this algorithm is in­
deed too great for the functionality it provides. However, as will be explained
below, the performance hit can be almost entirely ascribed to the code being
written in a portable style.

The approximately 50 times performance hit observed in the renderer
after inserting the PARALLEL-ADAPTIVE-POINT-SAMPLING algorithm into
it has little to do with the performance of the PARALLEL-ADAPTIVE-POINT­
SAMPLING algorithm per se but rather reflects the implementation choices
made for portability reasons. These issues, listed below, will be discussed in
more detail in the paragraphs following this list.

•	 the number of initially selected u-v subrectangles (at least a 5 time
speed up)

• oversampling

•	 the use of structs (at least a 5 time speed up)

In general, high performance on the C*/CM-200 is obtained by full paral­
lel utilization of all4K processors. As shown by the number of u-v subrectan­
gles generated per each loop of the sample image rendered, the PARALLEL­
ADAPTIVE-POINT-SAMPLING algorithm underutilizes the 4K of available

(

52 Implementation Results and Future Work

processors during the first five loops. Thus, for a C* jCM-200 implementa­
tion, this suggests modifying the algorithm to initially pick a much larger
data set of sampled points, i.e., 4K samples.

Another characteristic of this algorithm is its tendency to oversample.
While not a RenderMan semantic problem, it decreases the performance.
A u-v subrectangle that is just a little too large to satisfy the sampling
rate results in the creation of 4 new u-v subrectangles , and each new u-v
subrectangle contains 5 new sample points. In practice, this results in taking
20-25 times the number of samples required. This suggests that a more
judicious method of selecting new sample points is desirable.

The current implementation uses the C-Ianguage struct construct to
store together all of the information related to the points, indicated in Fig­
ure 2.6, of a u-v subrectangle. A struct is C's version of a record. In this
implementation, when processing the point information found in the u-v
subrectangles , structs, all u-v subrectangles are, indeed, processed in paral­
lel; however, a separate iteration is used for each type of u-v subrectangle
point, indicated in Figure 2.6. For example, all of the "a" points of all the
u-v subrectangles are processed in parallel in one iteration, followed by, an
iteration to process all of the "b" points, etc. This is a result of the C*
language restriction on accessing fields of a struct, i.e., only one field can
be designated at a time. An alternate, less descriptive, data structure could
be used to allow the parallel processing of all of the points of all of the u-v
subrectangles.

Instrumenting the PARALLEL-ADAPTIVE-POINT-SAMPLING algorithm,
on the C* jCM-200, reveals that 32.9% of the execution time is spent in the
low level C* jCM-200 routine, __CMLwaiLuntiLread_data_available,
and an additional 24.8% of the execution time is spent in the low level
C* jCM-200 routine, __CMLwaiLforJoomJ.nJ.fifo. These routines are all
part of the C*jCM-200 runtime package; they are not directly called from the
source files. The names of these routines suggests that much of the execution
time used by the C* jCM-200 for this algorithm is spent on communication
between processors. Therefore, fine tuning of the data-set memory layout, in
order to minimize communication distances on the underlying C* jCM-200
hypercube would seem to be in order-truly a machine-specific optimization.

This project's C* jCM-200 system is considered to be a small-sized ma­
chine, in terms of memory and number of processors. The current imple­
mentation runs out of CM-200 memory, on our C* jCM-200 system, when an

53

attempt to process a large-sized, in terms of 2D pixel space, patch is made.
The implementation needs a larger machine for better performance.

Future work for this RenderMan-based renderer includes porting the code
to a new suitable parallel-machine platform, fine tuning this system for high­
performance, and implementing the full set of features of RenderMan.

The usefulness of the current implementation is twofold: (1) as a test­
bed for parallel-machine builders and (2) as an evolutionary step towards
building high-performance photorealistic renderers. First, as a test-bed,
the RenderMan system provides an important application which embodies
a high degree of inherent parallelism. Secondly, the need for a step towards
high-performance photorealistic rendering can be seen in the current time­
demanding uses of photorealistic rendering found in the motion-picture, med­
ical imaging, architecture, and scientific visualization industries.

(

Appendix A

RIB code for Figure 3.3

version 3.03

RIB code for the image of two texture-mapped patches

shown in the "Implementation Results and Future Work" chapter.

Display "donut.tiff" "tiff" "rgb"

Format 180 180 1

Projection "perspective"

PixelFilter "box" 1.0 1.0

ShadingRate 1.0

Sides 1

WorldBegin
Translate 0.0 0.0 650

TransformBegin

Surface "texture_mapper" "mapname" "santall

Translate -200.0 0 0

Torus 400.0 #majorradius

155.0 #minorradius

-150.0 #phimin

20.0 #phimax

70 #thetamax

54

55

TransformEnd

TransformBegin
Surface "texture_mapper"
Translate 200 0 0
Rotate 180 0 0 1
Torus 400.0 #majorradius

155.0 #minorradius
-150.0 #phimin

20.0 #phimax
75.0 #thetamax

TransformEnd
WorldEnd

"mapname" "flowers"

{
\

Bibliography

[FT90] Ross L. Finney and George B. Thomas, Jr. CALCULUS.
Addison-Wesley Publishing Company, 1990.

[FvDFH90] James Foley, Andries van Dam, Steven Feiner, and John Hughes.
Computer Graphics: Principles and Practice. The Systems Pro­
gramming Series. Addison-Wesley Publishing Company, second
edition, 1990.

[JGMH88] Kenneth 1. Joy, Charles W. Grant, Nelson 1. Max, and Lans­
ing Hatfield. Tutorial: Computer Graphics: Image Synthesis.
Computer Society Press: IEEE, 1988.

[PD84] Thomas Porter and Tom Duff. Compositing digital images. In
Proceedings of SIGGRAPH '84, pages 253-259. Association for
Computing Machinery, Inc., 1984.

[PS85] Franco P. Preparata and Michael Ian Shamos. Computational
Geometry: An Introduction. Texts and Monographs in Com­
puter Science. Springer-Verlag, 1985.

[Ren89]	 The Renderman Interface: Version 3.1. Pixar, 3240 Kerner
Blvd., San Rafael, CA 94901, September 1989.

[Ups90] Steve Upstill. The RenderMan Companion. Addison-Wesley
Publishing Company, 1990.

56

