
BROWN UNIVERSITY

Department of Computer Science

Master's Project

CS-95-M3

"Estimating Cadinalities of Sets in EPOQ"

by

Madhu Jalan

"

1

This research project by Madhu Jalan is accepted in its present form by the
Department of Computer Science at Brown University in partial requirement of

the requirements for the Degree of Master of Science.

March 1995

'\

Date:--.fl.LM 0'- Vch \go, <; ~]J-1Uo~Q<
Marian H. Nodine

d7~
Steven P. Reiss

Estimating Cardinalities of Sets in EPOQ

by

MadhuJalan

Department of Computer Science

Brown University

Submitted in partial fulfillment of the requirements for the Degree of Master of
Science in the Department of Computer Science at Brown University.

March 1995

Estimating Cardinalities of Sets in EPOQ

MadhuJalan

Abstract

Unlike relational databases, object oriented databases manipulate complex
objects. Thus query optimization in object oriented databases is dependant on
cost estimates of queries rather than built-in heuristics. An important part of any
cost model is the technique used to evaluate the sizes of query sets. In this paper,
we present various techniques to estimate the sizes of sets formed by the query
operators of AQUA, which is the internal query algebra used in the query opti­
mizerEPOQ.

1.0 Introduction

Relational Databases operate on simple uniform data. Because of the simple uniform
structure of the data, query optimization is achieved by using built-in heuristics. The rules
applied and the algorithms for searching strategies are all fixed, for a particular optimizer,
irrespective of the data being manipulated.

Object Oriented Databases provide an environment for manipulating objects with an arbi­
trarily complex internal structure. These objects can be nested to any degree and also
involve sharing of subobjects. Because of the complex nature of the data being manipu­
lated, query optimization strategies cannot be fixed for a particular optimizer. They must
consider the properties of the data being manipulated by the query before performing
query rewrites. Query optimization is thus based on the cost of processing the query rather
than built-in heuristics.

A very important component of an object-oriented query optimizer is the cost model that
allows the optimizer to estimate the cost of different queries to determine the most effi­
cient one. An important component of the cost model is a technique to estimate the cardi­
nalities of sets that are formed as a result of a query or a subquery.

EPOQ is a query optimizer that uses a modular approach to query optimization. AQUA is
the internal query algebra used by the optimizer. This paper describes the approach taken,
and the actual implementation of the algorithms used by the cost model to estimate the
sizes of sets in EPOQ.

Within the optimizer the query is maintained in the form of a tree. This tree is annotated
with size and cost information at every stage. The sizes of sets are estimated starting at the
bottom of· the tree. This information is then propagated upwards. In this paper, we first
give a description of the class for representation of size and cost information. We then dis­
cuss the size and cost information that is maintained in the Schema Manager. We then
give a description of the various techniques used to evaluate the cardinalities of sets. After
that we describe the internal representation of the size and cost annotations in the parse

tree and the various methods used to estimate the size of queries. Mter that we give a brief
description of the database schema.

2.0 COlnterval

The size and cost information is kept as an interval. We cannot get an exact estimate of the
size and cost of a particular query. We give an upper bound and lower bound on the esti­
mate of the size. Similarly we give an upper bound and lower bound on the estimate of the
cost of execution of a query. We also keep information about the range of values that can
be taken by a set (mset) of reals or integers. This is also kept as an interval. The class for
the representation of the above information is called COlnterval. The methods in the class
are given below.

2.1 Class COlnterval

This is the interval class for the representation of size, cost, range and sizesset (for tuple
fields)

Public Methods

- COInterval 0;

Parameterless constructor.

-COInterval (COlnterval& s);

Copy Constructor.

- COInterval (float upper, float lower);

Constructor.

- -COInterval 0;

Destructor.

-void SetLower (float lower);

Sets the lower bound.

-void SetUpper (float upper);

Sets the upper bound.

-float Upper 0;

Returns the upper bound of the interval.

-float Lower 0;

Returns the lower bound of the interval.

-float Mean 0;

" Returns the mean value.

2

-int operator == (COInterval& c);

Overloads the operator ==.
-int operator «COInterval& c);

Overloads the operator <.

-int operator <= (COInterval& c);

Overloads the operator <=.
-int operator >(COInterval& c);

Overloads the operator >.

-int operator >= (COInterval& c);

Overloads the operator >=.

3.0 Schema Manager

The Schema Manager maintains information about the database which is used by the
parser and the optimizer. The Schema Manager maintains two tables, one which contains
type information and the other contains size and cost related information.

The first table contains information about the global types in the database. It maintains
information about the user defined types and user defined tuples in the database. This table
is know as the global types table'!t maintains the name of the type being defined and a
pointer to its structure.

The following table shows a sample of the global types table

TABLE 1. Thble showing the Global Types table

Name

Boolean

String

Real

Integer

Date

Name

Address

TDate

TAddress

TPerson

Money

Age

Set[Address]

Type

Boolean

String

Real

Integer

Date

Name

Address

Tuple: month: Integer day: Integer year: Integer

Tuple: country: String zip_code: String city: String street: String number: Integer

Tuple: name: Name birth_date: Date age: Integer address: Address

Set [Integer]

Set [Integer]

Set [Address]

3

The second table contains cost and size infonnation. For each element in the database, it
maintains the following infonnation.

1.	 <Name>
Name of the set

2.	 <Type>
The type of the element.

3.	 <Size [max, min]>
Estimate of the size of the object; kept as an interval. The size is maintained as an inter­
val because we use statistical sampling to estimate the sizes of certain objects in the
database. In this case, we give an estimate of the size which is in the fonn of an upper
abound and a lower bound on the size of the set.

4.	 <SKS>
The smallest known superset of the set (SKS). For example, we have a set, Students.
The smallest known superset of this is the set of People. We maintain infonnation
about the set of People in addition to infonnation about Students. This is because we
use this infonnation about supersets of sets to estimate the sizes of query sets.

5.	 <Choose>
The choose record for complex objects and nested sets. The AQUA operator choose
takes a set and returns a random element of it. Now for a simple set, the size of the ele­
ment retiuned is 1. But if we are choosing an element from a set of sets, the size of the
set chosen is not necessarily 1. Similarly, this chosen set might have it's own SKS,
range and other related infonnation. Thus for nested sets and complex objects we main­
tain infonnation about the choose record of the set.

6.	 <Range [max, min]>
The range of values that can be taken by integers, reals, sets (msets) of integers or sets
(msets) of reals.

7.	 <SizeSSet [max, min]>
Infonnation about the number of distinct elements in the set, for each tuple field; main­
tained as an interval. For sets of tuples, we maintain infonnation about each field of the
tuple. For each field of the tuple, we need to know the number of distinct objects of that
type that are there in the orignal tuple set. This infonnation is kept in addition to infor­
mation about smallest known supersets as it gives a better bound on the number of dis­
tinct objects in the set, for each tuple field, than the size of the SKS.

The Schema Manager also keeps infonnation about image sets. Image sets are sets of
objects that are referred to by another set. For example, the image set Student.age is the set
of all age objects that are referred to by person objects in the collection named Students.
The Schema Manager keeps one level of infonnation. Thus the table containing one level
of infonnation, keeps infonnation about sets of the fonn S.mj in addition to infonnation

about named sets.

4

The Schema Manager also maintains information that can be obtained through statistical
sampling of the database. It maintains information about the intersection of sets of the
same type. The supertype of the set of Employees and Students is Person. The Schema
Manager would thus maintain information about the size of the intersection of the two sets
Employees and Students.

The database also maintains information about the flatten record for nested sets and com­
plex objects. This information assists us in making estimates of image sets resulting from
flattening a nested set into a non-nested set.

The following table shows the Global Symbols Table.

TABLE 2. Table showing the Global Symbols Table

No Name Type Size Range SizeSSet SKS Choose

1 People Set[Person] [1000,
1000]

2 Addresses Set[Address] [500,500]

3 Students Set[Students] [200,200] - - 1

4 Clients Set[Client] [300,100] - - 1

5 Ages Set[Age] [74,74] [2,76]

6 People.address Set[Address] [350,350] - - 2

7 People.age Set[Age] [62,62] [10,72] - 5

8 Students,age Set[Age] [10,35] [25,25] - 7

9 Families Set[Family] [202,202] - - - 13

10 Families.address Set[Set[Address]] [202,202] - - - 14

11 ~attenOFarnilies) Set[People] [684,684] - - 1

12 ~attenOFami- Set[Address] [202,200] . - 2
lies).address

13 ChooseOFamilies) Set[People] [3.39,3.39] - - 11

14 ChooseOFami- Set[Address] [1.6, 1.6] - - 12
lies).address

15 TPeople Set[TPerson] [900,900] - - - 16

16 Choose(TPeople) TPerson [1, 1]

17 Choose(TPeo- String [1, 1] - [850,
ple):narne 850]

18 Choose(TPeo- TDate [1, 1] - [360, 22
ple):birtdate 360]

19 Choose(TPeo- Integer [1,1] [2,76] [74,74] 5
ple):age

20 Choose(TPeo- Address [1,1] - [325, 2
ple):address 325]

21 TDates Set[TDate] [365,365] - - - 22

22 Choose(TDates) TDate [1, 1]

23 Choose(TDates): Integer [1, 1] [1, 12] [12,12]
month

5

TABLE 2. Table showing the Global Symbols Table

No Name Type Size . Range SizeSSet SKS Choose

24 Choose(TDates):d Integer [1,1] [1,31] [31,31]
ay

25 Choose(TDates): Integer [1,1] [0,99] [100,

year 100]

26 Intersect(Clients, Set[Person] [20,20] - - 1
Students)

3.1 Schema Manager Classes and Methods

The class SchemaMgr contains information on the database schema for the optimizer. It
SchemaManager contains two elements, the first is the global symbols table of type
SMGlobalSymbols, and the other the global types table of type SMGlobalTypes. The class
SMGlobalSymbols represents a table of elements of type SMGlobalSymElt. This table
maintains the information related to the size and cost of queries. The class SMGlobal­
Types represents a table of elements of type PASymtabElt. This table maintains informa­
tion about the user defined types in the database.

SMGlobalSymElt PASymTabElt

SMGlobalSymbols SMGlobailyPes

SMSchemaManager

SMGlobalSymbols *
fGlobalSymbols;

SMGlobalTypes *
fGlobalTypes;

FIGURE 1. Figure showing the classes and methods in the Schema Manager

6

3.1.1 class SMSchemaMgr

The methods in the class SMSchemaMgr are as follows.

Public Methods

- void SMSchemaMgr (char'" type_file, char '" symbol_file, char'" dtypes_file, char '"
tuple_file);

Reads the type_file, the symboCfile, the tuple_file, the dtypes_file and creates a schema
manager with the information from the four files in it. The symbol_file contains infor­
mation about the global symbols in the database. The type_file contains information
about user defined types in the database. The tuple_file contains information about the
user defined tuples in the database. The dtypes_file contains information about the
types derived from the global types in the database.

- -SMSchemaMgr 0;
Destructor.

-Error AddUserTypes (char'" type_file);

Adds the types specified in the type_file to the types table.

- Error AddThpleTypes (char'" tuple_file);

Adds the tuple types specified in the tuple_file to the types table.

- Error AddDerivedTypes (char * dtypes_file);

Adds the types derived from the global user types to the global types table.

- Error TYTypeData * LookupType (char'" representation);

Looks up the type in the types table.

-TYTypeData'" LookupMethod (char '" class_name, char '" method_name);

Looks up user-defined type in the types table.

-Error AddUserGlobals (char'" globals_file);

Adds the globals specified in the types table to the symbols table.

-TYTypeData'" Lookup (char'" name);

Looks up the name in the global symbols table and returns the associated type.

-SMGlobalSymElt '" LookupRecord (char'" name);

Looks up the name in the symbols table and returns the associated extent record.

- COInterval '" LookupSize (char'" name);

Looks up the symbol in the global symbols table and returns the size.

-char'" LookupSKS (char'" name);

Looks up the name in the symbols table and returns the name of its smallest known
superset (SKS).

7

-COInterval * LookupRange (char * name);

Looks up the name in the global symbols table and returns the range of values that the
object can take if it is a real or an integer or a set (mset) of reals or a set (mset) of inte­
gers.

-COInterval *LookupSizeSSet (char * name);

Looks up the name of the object and returns the of size of the superset if it is the name
of a tuple field. Returns NULL otherwise.

-SMGlobaiSymElt * LookupSKSRecord (char * name);

Looks up the name in the global symbols table and returns a pointer to its SKS record.

-SMGlobaiSymEIt * LookupChoose (char * name);

Looks up the named symbol in the global symbols table and returns a pointer to its
Choose record.

-SMGlobalSymElt * LookupThpField (char * name, char * label);

Looks up the field of the named set of tuples and returns a pointer to it; returns NULL if
the record does not exist.

- SMGlobalSymEIt * LookupIntersect (char * namel, char * name2);

Looks up the Schema Manager to see if a record exists for the intersection of the two
sets and returns a pointer to it; returns NULL if the record does not exist.

-int NumGlobalSyms 0;
Returns the number of elements in the Global Symbols table.

-SMGlobalSymElt * ithGlobalSymbol (int i);

Returns a pointer to the ith record in the Global Symbols table. Counting starts at O.
Returns NULL if the record does not exist.

-void PrintSchemaMgr 0;
Prints the types table and the global symbols table.

3.1.2 class SMGlobaiSymElt

The global symbol element class represents an element in the symbol table. It contains
information about the name of the object, size, the range of values it can take (if its a set of
integers or reals), name of its smallest known superset (SKS), a pointer to its SKS record
and a pointer to its choose record. For each tuple field, it also maintains the number of
unique field elements that are there in the set.

Public Methods

-SMGlobaiEIt 0
Parameterless constructor.

8

-SMGlobalSymElt (char * name, TYTypeData * type, COInterval * size, char *
.SKS, COInterval * range, COInterval * sizeSSet, SMGlobalSymElt * SKSrecord,
SMGlobalSymElt * choose);

Constructor.

--SMGlobaISymElt 0
Destructor.

-char * Name 0;
The name of the symbol.

- TYTypeData * Type 0;
Returns the pointer to the associated type of the set.

-COInterval * Size 0;
Returns the size of the element.

- char *SKS 0;
Returns the name of the smallest known superset of the symbol.

- COIntervai * Range 0;
Returns the range of values that the elements of the set can take.

-COInterval * SizeSSet 0;
Returns the size of the superset.

-SMGlobalSymEIt * SKSRecord 0;
Returns the SKS record of the symbol.

-SMGlobalSymEIt * Choose 0;
Returns the choose record of the symbol.

-SetName (char * name);

Sets the name of the symbol.

-SetType (TYTypeData * type);

Sets the type of the symbol.

-SetSize (COIntervai * size);

Sets the size of the symbol.

-SetSKS (char *SKS);

Sets the name of the smallest known superset of the symbol.

-SetRange (COIntervai * range);

Sets the range of the symbol.

-SetSizeSSet (COlntervai * sizeSSet);

Sets the size of the superset.

9

- SetSKSRecord (SMGlobalSyrnElt * SKSrecord);

Sets the pointer to the SKS record of the symbol.

-SetChoose (SMGlobalSymElt * choose);

Sets the pointer to the choose record of the symbol.

3.1.3 SMGlobalSymbols

This class describes the global symbols table. It contains information about the sets in the
database, the size of the set, name of its smallest known superset, pointer to its SKS
record, a pointer to its choose record and the range of values it can take if its a set of reals
or integers. For each tuple field, it also maintains information about the number of unique
field elements that are there in the set.

Public Methods

-SMGlobalSymbols 0;

Parameterless constructor.

-- SMGlobalSymbols 0;

Destructor.

-SMGlobalSymEIt * Lookup (char * name);

Looks up the name of the symbol in the global symbols table and returns a pointer to its
record; returns NULL pointer if the symbol does not exist.

-TYTypeData * LookupType (char * name);

Looks up the name in the table and returns a pointer to its associated type; returns error
if the symbol does not exist in the table.

-COInterval * LookupSize (char * name);

Looks up the name in the global symbols table and returns the size of the set; returns
error if the symbol does not exist in the table.

-COInterval *LookupRange (char * name);

Looks up the symbol in the table and returns the range of values that the object can take
if it is a real or an integer or a set (mset) of reals (integers); returns an error if the sym­
bol does not exist in the table.

-COInterval *LookupSizeSSet (char * name);

Looks up the symbol in the table and returns the size of the superset if it is a tuple field;
returns an error if the symbol does not exist.

-char *LookupSKS (char * name);

Looks up the symbol in the table and returns the name of its SKS.
.., -SMGlobalSymElt * LookupSKSRecord (char * name);

Looks up the symbol in the global symbols table and returns a pointer to its SKS
record; returns an error if the symbol does not exist in the global symbols table.

10

eSMGlobalSymElt '" LookupChoose (char'" name);

Looks up the symbol in the global symbols table and returns a pointer to its choose
record; returns an error if the symbol does not exist in the global symbols table.

eSMGlobaiSymElt'" LookupTupField (char'" name, char'" label);

Looks up the field of the named set of tuples in the table and returns a pointer to it;
returns NULL if it is not found.

eError AddGlobal (char '" name, COlntervai '" size, char '" SKS, COInterval '"
range, COlntervai '" sizeSSet);

Adds the new symbol to the table after checking to ensure that the SKS of the record
already exists in the table. If the symbol is the choose record for a set, then it checks to
see if the symbol already exists in the table. If the two conditions are not satisfied, the
record is not added to the table and an error message is returned.

eintNumSyms 0
Returns the number of records in the table.

eSMGlobalSymElt'" ithGlobai (int i);

Returns a pointer to the ith global symbol in the table; returns NULL if the symbol does
not exist.

ePrintGlobaiSymbols 0;
Prints the global symbols table.

3.1.4 class PASymtabElt

This is the global type class. This represents an element in the global symbols table. It
contains the name of the user defined type and a pointer to it's type.

e	 PASymtabElt (char'" name, TYTypeData '" t);

Constructor.

e	 PASymtabEIt 0;
Parameterless constructor.

e	 -PASymtabElt 0;
Destructor.

e	 char'" Name 0;
The name of the global type.

e	 TYTypeData '" Type 0;
Returns a pointer to the type of the named global type.

11

3.1.5 SMGlobalTypes

This is the class describing the global types table which contains infonnation about the
user-defined types in the database.

Public Methods

-SMGlobaiTypes 0;

Parameterless constructor.

-- SMGlobaiTypes 0

Destructor.

- TYTypeData * Lookup (char * name);

Looks up the symbol in the types table and returns a pointer to its type.

-void PrintGlobalTypes 0

Prints the global types table.

4.0 Estimating the Size of Sets

Within the optimizer, the query is represented as an Extensible Annotated Tree (EAT). An
EAT is composed of alternating layers of data nodes and function nodes connected by
labelled arcs.

Data nodes represent the data that are being manipulated during the execution of a query.
Such a node can represent either an object in the database (if it is a leaf node in the EAT);
or an object built by a query, subquery, or other function (if it is an internal node in the
EAT). The root of the EAT is a data node representing the result of the query.

Function nodes represent the actions that can be taken on the data. Child nodes represent
the inputs to the function. Any function node has at least one child node. A function node
also has one parent node, representing its output.

Arcs in the EAT represent the relationship between functions and data. An arc always con­
nects a function node with a data node. Arcs are annotated with infonnation on the avail­
ability and use of variables defined in the lambda expressions contained in the query.

The cost of the execution of a query and the size of the resultant set are calculated by func­
tion nodes. Data nodes are annotated with size and cost infonnation, which is used during
query optimization.

The infonnation required to estimate the sizes of query sets is maintained in an extent
table in the Schema Manager. This infonnation in the. Schema Manager is restricted to

'.	 information about constant sets in the database, image sets and infonnation that can be
inferred using statistical sampling.

12

After a query is parsed, type checking is done. Then the size of the data sets, obtained as a
result of the execution of a query, a subquery or other function, is calculated bottom up.
The extent record for the leaf nodes is obtained from the Schema Manager. The extent
records for the data sets that are the result of some query or subquery are then calculated
starting at the bottom of the tree. The result is then propagated upwards. This section
describes the methods used to estimate the sizes of data sets depending on the query oper­
ator.

The extent record of the data node is maintained in the form of a table which contains the
following information about the object.

1.	 <Name>
The name of the object.

2.	 <Size [max, min]>
An estimate of the size of the set, which is kept as an interval. The size is maintained as
an interval because we cannot calculate an exact estimate of the size. We thus give an
upper bound and a lower bound on the size of the estimated set.
The operators forall, exists and mem return a boolean. They are often used as a predi­
cate for select. Thus fQr these operators we estimate size as a fraction between 0 and 1
to use as a probability that the operator evaluates to True.

3.	 <Cost [max, min]>
An estimate of the cost; which is kept as an interval. The cost of executing a query is
dependant on the size of the query set. Since we cannot calculate the exact size of a set,
we cannot calculate the exact cost of a query. We thus give an upper bound and a lower
bound on the estimated cost of a query.

4.	 <Range [max, min]>
The range of values an object can take if it is of type real or integer, or if it is a set
(mset) of reals or integers.This gives an upper bound and a lower bound Qn the values
that can be taken by the object.

5.	 <SKS>
Information about its smallest known superset (SKS).

6.	 <Choose>
Information about the sets choose record if it is a complex object or a nested set or a set
of tuples.

7.	 <SizeSSet [max, min]>
Information about the number of distinct elements in the set, for each tuple field; main­
tained as an interval. For sets of tuples, we maintain information about each field of the
tuple. For each field of the tuple, we need to know the number of distinct objects of that
type that are there in the set.

4.1 Set and Multiset Operators in AQUA

The following is a list of AQUA operators that operate on sets (multisets) and the tech­
niques used to estimate the sizes of the sets formed as a result of the query.

13

Guideline : When in doubt make estimate err on the side of being too big.

4.1.1 Operator Apply

The apply operator takes a set and applies a function to each element of the set to get a set
of objects of a new type. The set might be a flat set or a nested set.

Consider the query, Qj = apply (lambda (s) s.address.city) (People)

In the above query the function s.address.city is applied to each member of the set People

to return the set of all cities in which students live.

As given in [1], Cherniack gives an estimation technique for the AQUA operator, apply,
which is based on the assumption that for any function j and subset of fs domain D, if
Image/D) is the image ofjunder D, then

IDI ISKS (D) I
/Image?1 "" IImag ej (SKS (D»)l

This assumption is used to infer the size of the set People.address.city as follows

\People' addressl _ \Addressesl
IPeople . address' citYI - IAddresses· citYI

Thus solving the above equation, we get,

. I (lAddresses. citY1) I IIPeople' address' city = IAddressesl . People' address

In general, for any set s = S.mj.m2......m"

. SKS (s) . size ·l S· m1 : ••. m) . size
S'Slze = n

SKS (S . m1 ••••. mn) . size .

The size of the sets, where the function is a path expression, is calculated using the above
estimation technique.

The fully annotated parse tree for the above query is given in Figure 1 below.

"

14

apply ={name =People.address.city
size max =70, min =70

name =Cities

size max =100, min 100 } } }

SKS ={ name =Addresses.city
size max =100, min =100
SKS ={

s.address.city = { name = People.address.city People = { name = People

size max =70, min =70 size max = 1000, min = 1000 }

SKS = {	 name = Addresses.city

size max =100, min =100
SKS ={name =Cities
size max = 100, min = 100 } } }

s.address ={name =People.address

size max = 350, min = 350

SKS = { name = Addresses

Size max =500, min =500 } }

s = { name = People

size max =1000, min =1000 }

i
\. FIGURE 2. Shows the fully annotated parse tree for Ql

The EAT for the apply operator has two data nodes. The first called the input node, and the
second called the other node because it does not represent data that will be processed, but
instead represents how the input data is processed. The input node is the data node repre­
senting the input data set. The other node represents the function applied to the input data
set. The size and the extent record of the output set can be determined as follows.

1. If the name of the data set represented by the other node if of the form Choose(Set).
Then the size of the resultant data set is that of Set or a parent of Set.

For example, consider the query,

Q2 =ftauen (apply (lambda (j) apply (lambda (p) p.address) if)) (Families))

Here Families has type SetlSetlPersonll. In the above query we are trying to get the set
of addresses at which each member of any family lives. As can be seen in Figure 2, the
name of the other node for the outermost apply is of the form Choose(Fami­
lies). address. This is the average size of the set of addresses for any average family.
From this using the methods described above we estimate the size of the resultant data
set which is the set of sets of addresses at which each member of each family lives. This
set is then flattened to get the required set of addresses.

The fully annotated parse tree for the above tree is given in Figure 2 below.

15

2.	 If the name of the data set represented by the other node is not of the above form, then
the size of the resultant data set is that of the other node. This is because the resultant
set is the output of the given function, f, applied to each member of the original input
data set. This is illustrated in Figure 1 given above.

"

16

size max = 202, min= 202

f1atten= {name = F1atten(families).address
size max = 202, min = 202
SKS = {	 name = People.address

size max = 350, min = 350
SKS = { name = Addresses

size max = 500, min = 500 }}}

apply = {name = Families.address

choose = {name = choose(Families).address
size max = I, min = 1
SKS = { name = F1atten(Families).address

size max = 202, min = 202
SKS = { name = People.address

size max = 350, min = 350
SKS = { name = Addresses

size max = 500,
min = 500 } } } }

apply = { name = Choose(Families).address Families = { name = Families
size max = 1.6, min= 1.6 size max = 202, min = 202

choose = { name = Choose(Families)
size max = 3.39, min = 3.39
SKS = { name = F1atten(Families)

size max = 684, min = 684
SKS={name=People
size max = 1000,

min=looo}}}}

SKS = { name = F1atten(Families).address
size max = 202, min = 202
SKS = { name = People.address

size max = 350, min = 350
SKS ={ name = Addresses

size max = 500, min = 500}

p.address = {	 name = Choose(Families).address f = { name = Families
size max= I, min= 1 size max = 202, min= 202
SKS = { name = F1atten(Families).address choose = { name = Choose(Families)

size max = 200, min = 202	 sizemax = 3.39, min= 3.39
SKS = { name = People.address SKS =(name = F1atten(Families)

size max 350, min= 3500 size max =684,min= 684
SKS = { name = Addresses SKS = { name = People

size max = 500, min = 5OOO}}}}	 size max = 1000
min = 1000 } } } }

p = (name = Choose(Families)

size max = 3.39, min = 3.39
SKS = (name = F1atten(Fami1ies)

size max = 684, min = 684

SKS = { name = People

size max = 1000, min = 1000 } } }

FIGURE 3. Shows the fully annotated parse tree for Q2

17

4.1.2 Arithmetic Operators

The operators "+", "-", "/' and "*,, take in two integers (reals) and return the result of
applying one of the above operators.

The function node for arithmetic operators have two input nodes. The two input nodes
might be integers or reals. The resultant size is 1.

4.1.3 Operator Not

The query operator, not, is similar to the set operator complement.

Let the size of the input set be Size.ofS. The size of S is between 0 and 1. Then the size of
the resultant set is (l - Size.ofS).

4.1.4 Operator Choose

Choose, takes in one input set and returns a random element of the set. This is used for
nested sets, to give representative information on the elements on the elements of the set
(that are also sets).

For input sets that are sets of sets, the Schema Manager maintains a choose record. If the
extent record for the input set has a choose record, then the size of the resultant set is that
of the choose record; otherwise the size is assumed to be 1.

4.1.5 Operator Intersection

The AQUA operator, intersection, is similar to the set operator, intersection.

Records are maintained in the Schema Manager for intersection the same types. But this
record is maintained when an equality is defined as an argument and not as an equiva­
lence. The EAT for the intersection operator has two input data nodes and two other data
nodes.

Let the two input sets be Sz and S2 and the resultant set be R. The nodes for the lambda
variables are annotated with information about the superset of Sz and S2. The size of the
resultant set can be calculated as follows.

3.	 Sz = S2' then the Size.ofR = Size.ofSz

4.	 Sz is a superset of S2' then Size.ofR = Size.ofSz

5.	 S2 is a superset of Sz, then Size.ofR =Size.ofS2

6.	 If there exists a record for Intersect (Sz, S2) in the Schema Manager,

then Size.ofR = Size. ofIntersect (Sz, S2)

18

7.	 If there exists an intersect record for supersets of S] and S2' Let the superset of S] and
S2 be SS] and SS2 respectively.
Let Size.ofM = min (Size.ofS]> Size.ofS2) and SS = superset (M),

Size' of· Intersect (SSl' SS2)

Size' of· R = x Size' of· M

SS

8. Otherwise, Size.ofR =min (Size.ofS], Size.ofS2) *DEFAULT_INT_FRACTION

It is assumed that a certain fraction of the objects in the two sets are equal.
DEFAULT_INT_FRACTION is taken as this default value.

Consider the query, Q3 = intersection (=, Person) (Students, People)

The fully annotated parse tree for the above query is given below.

intersection ={ name =intersection (people, Students)

size max =200, min =200
SKS ={name =People

size max = 1000, min = 1000 } }

Students ={	 name =Students People ={name =People
size max =200, min =200 size max =1000, min =1000 }
SKS ={name =People

size max =1000, min 1000 } }

FIGURE 4. Shows the fully annotated parse tree for Q3

4.1.6 Operator Difference

The difference operator is similar to the set difference operator. But thus record is main­

tained when an equality is defined as an argument and not as an equivalence.The EAT for

the difference operator has two input data nodes and two other data nodes.

Let the two input sets be S] and S2' The nodes for the lambda variables are annotated with

information about the superset of S] and S2. Then the size of the difference is

Size.ofDifference (S]> S2) =Size.ofS] - Size.ofIntersect (S]> S2)

Size.ofIntersect (Sl, S2) can be calculated using techniques used to calculate the intersec­

tion of sets (Section 4.1.5).

Let us consider the query,

Q4 = diff (=, Person) (People, Students)

The size of the intersection of the sets Students and People is calculated using the methods

for calculating the intersection of sets (look at operator Intersection, Section 4.1.5). This

is then used to calculate the size of the above set.

19

The fully annotated parse tree for the above query is given in Figure 3.

diff ={	 name =diff (people, Students)

size max = 800, min = 800

sizemax=1000,min=1000} }
SKS ={ name =People

People ={ name =People Students ={ name =Students
size max = 1000, min = 1000} size max = 200, min = 200

SKS ={ name =People
size max = 1000,

min = 1000}}

FIGURE 5. Shows the fully annotated parse tree for Q4.

4.1.7 Operator Union

The union operator is similar to the set union operator. But thus record is maintained when
an equality is defined as an argument and not as an equivalence. The EAT for the union
operator has two input data nodes and two other data nodes.

Let the two input sets be S1 and S2' The nodes for the lambda variables are annotated with
information about the superset of S1 and S2' Then the size of the union of the two sets is
Size.oj. Union (Sl> S2) = Size.oj.Sl + Size.oj. S2 - Size.oj.Intersect (Sl' S2)
where Size.oj.Intersect (S1, S2) can be calculated using the techniques used to calculate
the intersection of sets (Section 4.1.5).

Let us consider the query,
Qs = union (=, People) (Students, People)

The size of the intersection of the sets Students and People is calculated using the methods

for calculating the intersection of sets (similar to the query operator Intersection, Section

4.1.5). It is then used to calculate the size of the above set.

4.1.8 Operator MSet

The operator takes the input element and converts it into a multiset.

The mset queries can be of two types:

1.	 Q6 =mset (E), where E is the input element.
In this case, the size of the resultant set is 1.

2.	 Q7 =apply (lambda (x) mset (x» (S)

In this case, the operator mset is applied to each member of the input set (mset) S. The
size of the resultant set is thus equal to the size of the original set (mset) S.

20

4.1.9 Operator Set

The operator takes the input element and converts it into a set.

The set queries can be of two types:

1.	 Q8 = set (E), where E is the input element.
In this case, the size of the resultant set is 1.

2.	 Q9 =apply (lambda (x) set (x)) (S)
In this case the operator set is being applied to each member of the input set or multiset.
If the input object S, is a set the size returned is equal to the size of the original set as
there are no duplicates in the input set. If S is a multiset, the set operator is supposed to
eliminate duplicates. But we have no means of eliminating duplicates from multisets
yet and so the size of the set returned is equal to the size of the original multiset.

4.1.10 Operator Select

Select returns all the elements of a set that satisfy the given predicate. The predicates can
be of two types. The first kind include predicates that compare field values with constants.
The second kind allow field values to be compared with one another. We are dealing with
predicates of the first kind only. Also, when we are comparing field values with constants,
we are dealing with field values and constants of type integer only. We are not dealing
with reals and string yet.

Selectivity is an estimate of the fraction of the input set that is present in the resultant set.
In determining the selectivity we assume that each attribute used in the predicate is evenly
distributed over a fixed domain.

Select queries are of the form select (Pred) (Set). The size of the resultant set, R, is given
by R.size =(Pred.sel *Size.o/Set).

The predicates can be of the following types and their selectivity can be estimated as fol­
lows:

1.	 Simple Predicate. This is of the form, Exp Comp Constant or Constant Comp Exp.
Where the comparators are "=", ">", ">=", "<", "<=" and U!=".
The size of Pred.sel for a predicate of the form Exp Comp Constant is given below,

Comparator U=" ,Pred.sel = l/Size.oj.Exp

Comparator u>", Pred.sel = TopRange (Exp.oj, Constant)ISize.o/Exp

Comparatotr "<", Pred.sel =BottomRange (Exp.oj, Constant)ISize.oj.Exp

Comparator u>=", Pred.sel = (Exp = Constant) and (Exp > Constant)

Comparator u<=", Pred.sel = (Exp = Constant) and (Exp < Constant)

Comparator u1=", Pred.sel = (1 -l/Size.oj.Exp)

The two functions, BottomRange and TopRange, that are used to estimate the selectiv­
ity are defined as follows.

21

Function BottomRange:

BottomRange(o : Extent Record, e : Constant) : float

if (e > o.highest) return (0)

else if (e > o.lowest) return (e - o.lowest)

else return (Exp.of.Size)

Function TopRange:

TopRange(o : Extent Record, e : Constant) : float

if (e < o.lowest) return (0)

else if (e < o.highest) return (o.highest - e)

else return (Ext.of.Size)

2. Predl and Pred2.
Pred.sel =Predl.sel *Pred2.sel

3.	 Predl or Pred2
Pred.sel =(Predl.sel + Pred2.sel) - Predl.sel *Pred2.sel

4.	 not Predl
Pred.sel = (l - Predl.sel)

5. True
Pred.sel = 1

6.	 False
Pred.sel =0

Consider the query, QlO = select (lambda (s) s.age = 15) (Students)

This query returns a set of people whose age is equal to 15. The fully annotated parse tree
for the above query is given in the figure below.

\

22

select ={ name = Select(Students.age =15, Students)

size max =8, min =8
SKS ={name =Students

size max =200, min =200
SKS ={name = People

size max = 1000, min = 1000 } } }

Students = { name = Students

size max =200, min =200

SKS = { name =People

size max = 1000, min =1000 } }

FIGURE 6. Shows the fully annotated parse tree for QIO

People ={name =People

size max =1000, min =1ooo}

4.1.11 Operator Fora))

The operator, forall, returns True or False depending on whether all the elements of a
given set satisfy a given predicate. We estimate a fraction between 0 and 1 to use as the
probability that the forall evaluates True. This is because forall is often used as a selectiv­
ity predicate for select (Section 4.1.10). The predicates for forall are exactly the same as
those for select. .

Consider the query, Q =forall (Pred) (Set). Let the fraction of elements that satisfy the
given predicate be Pred.sel (this is kept as the size of the predicate).
Then the size of the resultant set, R, is given by, R =(Pred.sellize.of.Set

4.1.12 Operator Exists

The operator, exists, returns True or False depending on whether any element of a given
set satisfies a given predicate. It is usually used as a selectivity predicate for select (Sec­
tion 4.1.10), and hence we estimate its size as the probability that the exists operator eval­
uates to True. The predicates for exists are exactly the same as those for select.

Consider the query, Q =exists(Pred) (Set). Let the fraction of elements that satisfy the
given predicate be Pred.sel (this is kept as the size of the predicate).
Then the size of the resultant set, R, is given by, Size.ojR = Pred.sel.

4.1.13 Operator Dup_elim

The AQUA operator, dup_elim takes in a set of elements and removes duplicates from the
set, where the equality is tested using the user-defined input equality function eq.

23

Dup_elim queries can be of four kinds.

l.Qn =dup_elim (True) (Set)

The size of the resultant set is 1 as all the elements belong to the same equivalence
class.

2.Q12 =dup_elim (False) (Set)

The size of the set is equal to the size of the original set as this will place each element
of the set into a different equivalence class.

3.Q13 =dup_elim (lambda (x, y) (x.tail =y.tail)) (Set)

This is equivalent to the query, apply (lambda (x) x.tail) (Set). Thus similar techniques
are used to find the size of these sets as are used to find the size of image sets.

4.Q14 =dup_elim (lambda (x, y) (PI and P2 and Pn) (Set) where each Pi is the compar­
ing two attributes of Set, of the same type; i.e. each Pi is of the form x.tail = y.tail.

The size of the set formed by Pi can be calculated as above.
Let R be the resultant set, then the size is given by,
Size.ojR.max =minimum (PI *P2 * ..·...Pn' Size.ojSet)

Size.ojR.min =maximum (PI> P2' Pn)

Consider the query,
QJ5 =dup_elim (lambda (x, y) x.age =y.age and x.address =y.address) (People)

The fully annotated parse tree for the above query is given in Figure 7.

24

dup_elim = { name = DupElim(people)
size max = 1000, min = 350

and = { name = (peop1e.age =Peop1e.age and Peop1e.address = Peop1e.address) People={name =People
size max =1000, min =WOO}

= = {name = (people.age = People.age) =={name =(people.address =People.address)
size max = 10, min = 10} size max =350, min =350 }

x.age = { name =People.age

size max = 10, min = 10

SKS ={ name = Ages =20} V

,;,. _ =20, mi';

x.address = { name=People.address y.address ={name =People.address
size max = 350, min = 350 size max =350, min =350
SKS ={ name = Addresses SKS ={ name = Addresses

size max = 500, min = 500} } size max =500,
min = 500} } /

\
FIGURE 7. Shows the fully annotated parse tree for query Q15

SKS = { name = People
size max = WOO, min = 1000 }

size max =1000, min =1000 }

y.age = {name, =People.age
size max =10, min = 10

SKS ={name =Ages "'"_=20, """ =20I

4.1.14 Operator Group

The query operator, group, takes in a set and groups its elements according to an equiva­
lence class by function f. It returns a set of tuples with one tuple per equivalence class.
Each tuple has two fields, fst and snd. The first item is the value returned when the func­
tion, f, is applied to the input set and second is the set of elements that satisfy the given
function, f.

Group queries can be of three kinds.

l.Q16 = group (lambda (x) True) (Set)

The size of the set is 1 as all the elements satisfy are put into the same equivalence
class.

2.QJ7 = group (lambda (x) False) (Set)

The size of the output set is equal to the size of the original set as each of the elements
of the set are put into a different equivalence class.

3.Q18 = group (lambda (x) x.tail) (Set)

Here the function x.tail is being applied to each element of Set. The size of the set
formed by this can be calculated in a manner similar to the one that is used to calculate
the size of image sets. IfR be the resultant set, and A = apply (lambda (x) x.tail) (Set),

2S

then the size of the resultant set is given by, R.ofSize = Size.oJA

The size of the second field snd, is given by Size.ofsnd =Size.ofSetIR.ofSize

The size of the first field !st, is given by ,

Size.of!st =Size.ofchoose (apply (lambda (x) x.tail) (Set))

The size of the choose record of the set is calculated in a manner similar to that

described in Section 4.1.4.

For sets of tuples, we keep a record for each of the fields of the tuple. In addition to the
information about the size of the set, we also maintain information about the number of
distinct objects there are, in the set for each tuple field. For example, the above set of
tuples has two fields,fst and snd. We maintain information about the number of distinct
objects!st, and the number of distinct objects snd in the set.

Consider the query, Q19 = group (lambda (x) x.address) (People)

The extent records for the above query, are given below.

TABLE 3. Table showing records in the set group Oambda (x) x.address) (people)

No. Name	 Size SizeSSet SKS Choose

1	 Group(People.address, People) [350,350] - ­
2	 Choose(Group(people.address, People» [1, 1]

3	 Choose(Group(people.address., [1, 1] [350,350] 6
People»:fst

4 Choose(Group(people.address, [1000/350, [350,350] 5
People»:snd 1000/350]

5 People [1000, 1000]

6	 People.address [350,350] - 7

7	 Addresses [500,500]

4.1.15 Operator Flatten

The AQUA operator,flatten, removes one level of nesting in a set of sets.

At present, we infer the size of the resultant set from the extent records of the input set. If
the choose record of the input set has an SKS, then the size of the resultant set is equal to
the size of this SKS. If this record does not exist, we cannot find the size of the resultant
set.

4.1.16 Operator Mem

Mem, takes in a set and an input element. It returns TRUE, if the input element is an ele­
ment of the input set, using the user defined equality function eq, to test for equality. We
estimate a fraction between 0 and I to use as the probability that mem evaluates to True.
This is because mem is often used as a selectivity predicate for select.

"

26

2

Mem queries are of four types.

1.Q20 =mem (true, a) (S)
The size of the set is 1.

2.	 Q21 =mem (false, a) (S)
The size of the set is O.

3.	 Q22 = mem (=, a) (S)
Let R be the resultant set The nodes of the lambda variables x and y, are annotated with
information about set S. If the input set is a set of reals (integers), then range of the
input element a is compared to the range of the input set S. If a lies within this interval
then the size of the resultant set, R.size = l/Size.oj.S else R.size =O. If the input set is
not a set of reals (integers), R.size = l/Size.oj.S.

4.	 Q23 =mem (lambda (x, y) Pred, a) (S)

Let R be the resultant set. The nodes of the lambda variable x and y, are annotated with
information about set S.

Mem predicates can be of two types,

1. Pred = x.tail = y.tail,

in this case size.oj.x.tail =size.oj.y.tail =apply (lambda (x) s.tail) (S)
Pred.size =l/apply (lambda (x) s.tail) (S)

2. Pred =(Pl andP2 Pn) where each Pi is of the form x.tail =y.tail for i =1 to n

The size of each Pi is calculated as above. Pred.size =(p1 *P2 *..... Pn)

\ The size of the resultant set is given by R.size =1/Pred.size

Consider the query,
Qu = mem (lambda (x, y) x.age = y.age, choose (Employees)) (Students)

The fully annotated parse tree for the above query is given in the figure below.

27

mem = (name = Mem(Choose(Employees), Students)
~ max size = 0.42, min = 0.42 }

= = { name =(x.age = y.age) choose = (name = Choose(Employees) Students = { name = Students
size max = 200,

x.age = { name = Students.age

size max = 0.42, min = 0.42} size max = I, min = 1
SKS = { name = Employees min = 200

size max = 100, min = 300 SKS = { name = People
SKS = { name = People size max = 1000

size max = 1000, min = IOOO}}}	 min = 1000
}}

y.age = { name = Choose(Employees).age

size max = 26, min = 26 size max = I, min = 1
Range max = 35, min = 10 SKS = { name = Employees.age
SKS = { name = People.age size max = 6.3, 18.9

size max = 63, min = 63 range max = 72, min = 10
Range max = 72, min = 2 SKS = { name = People.age
SKS = { name = Ages size max = 63, min = 63

size max = 75, min = 75	 Range max = 72, min = 2
Range max = 76, min = 2}}} SKS = { name = Ages

size max = 75, min = 75
Range max = 76,

min=2}}}}

FIGURE 8. Shows the fully annotated parse tree for Q24

4.2 Thple Operators in AQUA

Tuple operators, are those that operate on tuples or sets of tuples only. The operators tuple,
tup_concat and tup_select operate on tuples. The operators, nest and unnest, operate on
sets of tuples. For each set of tuples S we maintain the following information:

1. The name of the tuple set.

2. The size of the tuple set.

3. A pointer to the record for its smallest known superset, if any.

4. When we choose a random element of the set, we get a single tuple of the set. Thus we
maintain a pointer to its choose record, whose name is of the form Choose(S). This is
the record for a single tuple. We keep this record because whenever we consider the a
tuple field we are considering that field of one particular tuple ,and not a field for a set of
tuples. The records we maintain for the set are thus in the form Choose(S):tuple-field.

5. A record for each field of the tuple.

l,	
For each field of the tuple, we keep the following information

1. The name of the field, which is of the form Choose(S):jield_name

28

2. The size of the tuple field.

3. A pointer to its choose record if the field contains a set of objects.

4. A pointer to its SKS record.

5. The range of values it can take, if the field contains a set of objects.

6.	 The number of unique field elements for each field of the tuple (SizeSSet). This is
because we cannot always get an accurate estimate of the number of unique field ele­
ments from the information about the smallest known superset of the field. An example
explaining why this information needs to be kept is given in Section 4.2.1 (see Q27)

below.

Let us consider the set of tuples, TStudents with the fields, name, age, major. Then the
extent record kept for the above set of tuples is given below.

TABLE 4. Table showing the records for the set of tuples TStudents

No Name Size Range SizeSSet SKS Choose

1 TStudents [100, 150} - - - 2

2 Choose(TStudents) [1, I}

3 Choose(TStudents):name [1, I} - [10, I5}

4 Choose(TStudents):age [1, I} [16,48} [33,33} 6

5 Choose(TStudents):major [1,2} [4,8}

6 Age [8I,8I} [1,82}

4.2.1 Operator Thple

The operator tuple takes in a number of labels and an equivalent number of data items and
makes a labelled list of data items by associating the two lists pairwise.

Tuple queries can be of two types. Either a single tuple is created or a set of tuples is cre­
ated depending on the form of the query.

1. Q25 =tuple (a, b) ("16", "fl")

The size of queries of this kind is obviously 1. The size of each of the fields, a and b, of
the tuple is the size of the corresponding input set.

2. Q26 =apply (lambda (x) « name: x.name, age:x.age, major: x.major») (Students)
In this case, the query operator, tuple, is applied to each path expression of the form
x.tail where x is each element of the set Students. Let the size of the above set be S.

Then the maximum and minimum size of the set is given by:
S.max = min (Size.ofStudents, (Size. ofStudents.name * Size.ofStudents.age *

Size.ofStudent.major»

(Size. ofStudents.name *Size.ofStudents.age *Size.ofStudent. major), gives the size of

all possible combinations of the three attributes name, age and major of the set of Stu­

dents. This gives the upper bound on the estimate of the maximum number of tuples

29

there can be in the set. But we limit this by the size of the set of Students because we

cannot possible have more tuples in the resultant set than in the input set as it is the ele­

ments of this input set that are being converted into tuples.

S.min =max (Size.ofStudents.name, Size.ofStudents.age, Size.ofStudent.major)

This gives a lower bound on the size of the set. This gives a lower bound on the esti­

mate of the combinations of the three attributes name, age and major of the set of Stu­

dents. Thus there are atleast max(Size.ofStudents.name, Size.ofStudents.age,

Size.ofStudent. major) many distinct tuples in the set.

We also maintain records for each of the fields, name, age and major. The size of each

is equal to the siZe of the choose record for each of the sets Students.name, Students.age

and Students.major respectively. The size of their supersets is equal to the size of the

input set Students.name, Students. age and Students. major respectively.

The fully annotated parse tree for the above query is given in Figure 8, below.

Consider the query,

Q27 = apply (lambda (x) tuple (a, b) (x.major, select (lambda (p) p.age = 21) (People))

(Students)

Let the resultant set be R. The field a of each tuple of R is of type Major while the field
b is of type SetlPerson}.

Here each tuple of the set R, has the same elements in field b. Thus the size of the set is

equal to the size of the set People.major.

The table below shows the elements in the above resultant set.

TABLE 5. Table showing the elements in the set formed by the query apply (lambda (x) tuple (a,b)
(x.major, select (lambda (p) p.age = 21) (people» (Students)

No Name Size SizeSSet SKS Choose

1 SetOffup(a.b) [50,50] - - 2

2 Tup(a.b) [1,1]

3 Tup(a.b):a [1,1] [50,50] 5

4 Tup(a.b):b [16.21, [1,1] 6
16.21]

5 Major [75,75]

6 People [1000,
1000]

As can be seen, the size of the superset of field b is 1 though the size of its superset is
1000. Thus the number of unique field elements for the field b is 1. Ifwe were to select
all possible field elements b (i.e. a query of the form apply (lambda (x) tup_select (b)
(x)) (Set) from this set we would get an accurate estimate from the record of its Siz­
eSSet than we would if we used the size of its smallest known superset (SKS).

30

apply = (name = SetoITup(name, age, major) size max = 2000, min = 150

choose =(name =Choose(SetoITup(name, age, major»
size max =1, min =1 }

name = Choose(SetoITup(name, age, major):name
size max = 1, min 1, SizeSSet max = 150, min = 150
name =Choose(SetoITup(name, age, major):age
size max = 1, min = 1, SizeSSet max = 5, min = 5
name =Choose(SetoITup(name, age, major):major
size max = 1, min = 1, SizeSSet max = 25, min = 25 }

tuple ={	 name = SetoITup(name, age, major) size max = 2000, min = 150
choose =(name =Choose(SetoITup(name, age, major»

size max =1, min =1 }
name = Choose(SetoITup(name, age, major):name
size max = 1, min 1, SizeSSet max = 150, min = 150
name = Choose(SetoITup(name, age, major):age
size max = 1, min = 1, SizeSSet max = 20, min = 20
name = Choose(SetoITup(name, age, major):major
size max = 1, min = 1, SizeSSet max = 25, min = 25 }

Students ={ name =Students

size max = 200, min = 200
SKS = { name = People

size max = 1000,
min =10oo}}

(
x.name = {	 name = Students.name x.age = { name = Students.age

size max = 150, min = 150 size max = 5, min = 5
SKS = { name = People.name SKS ={ name =People.age

Size max = 900, min = 900 size max = 10, min = 10
SKS ={name =Names SKS = { name = Ages
size max = 1500, min =1500 }}} size max = 20,

\

min =20}}}

x.major = { name = Students.major

size max =25, min =25
SKS = { name = Majors

size max = 30, min = 30} }

FIGURE 9. Shows the annotated parse tree for Q26

4.2.2 Operator Thp_concat

The operator tup_concat takes in two tuples and concatenates them into a single tuple.

Tup_concat queries can be of two kinds.

1. Q27 = tup_concat «<a: "a", b:"b"», tuple (x) ("string"))
In this case, only a single tuple is being created. Hence the size of the set is 1.

31

2. Q28 =apply (lambda (x) tup_concat (x, tuple (a) ("hi"» (TStudents)
In this case a set of tuples is being created instead of a single tuple. The two input ele­
ments might either both be sets of tuples or one might be a tuple and the other a set of
tuples. If an input element is a set of tuples, as above, then the operator, tup_concat, is
applied to each·element of the input set. Therefore in this case the size of the resultant
set is the product of the size of the two input elements. This is because each tuple in
each set is unique. So the concatenation of anyone from one set with anyone from the
other set is unique.

4.2.3 Operator Thp_select

The operator tup_select, selects a specific field of the tuple based on the input label.

Tup_select queries can be of two kinds.

l.Q29 =tup_select (name) (choose (TStudents»
The records for each field of a tuple is kept in the extent record table. Thus the size of
the selected field is obtained directly from the extent record table.

2.Q30 =apply (lambda (x) (tup_select (name) (x»)(TStudents)
In this case, the function tup_select is being applied to each element of the set TStu­
dents. The result is a set of elements of the tuple field name selected from the set TStu­
dents. To calculate the size of the resultant data set, we use an approach similar to the
one used to calculate the size of image sets.
Let us consider the query, Q =apply (lambda (x) (tup_select (field) (x» (S)
Let SKS(S) be the smallest know superset of Sand SKS(S). field.SizeSSet be the total
number of unique elements in the field labelled field. Then ifR is the resultant set,

. --'--(S_K_S.....;(~('--S}:.........=.·fi_ie_ld='S::-iz:=-::e=S:-::Se:-:-t-=:»:..-·--::(~S-:-K-::-S~(S....:;}:-·..:!-fi_ie_ld_·_S_iz:....e_SS_e......:..t}
R . slze = ­
SKS (SKS (S) . field) . size

The above approach is then used to calculate the size of the resultant sets

4.2.4 Operator Nest

The query operator, nest, operates on a set of tuples. The operator takes a user defined
equality, eq, a label, L, and a set of tuples, S. We do a pairwise comparison of the elements
of S using the user defined equality function, eq. The tuples which satisfy the user defined
equality are collected into a set. The result of applying the query operator, nest, is a set of
tuples with two fields fst and snd. Each element of the field snd corresponds to the ele­
ments of S minus the field labelled L, that satisfy the equality function eq. The field fst
corresponds to any element of the field labelled L corresponding to the set of elements of

" the field snd.

32

Nest queries can be of two kinds.

1.Q31 =nest (lambda (x, y) (((tup_select (name) (x)) =(tup_select (name) (y)) and

((tup_select (age) (x)) =(tup_select (age) (y)))), major)
(TStudents)

Let the resultant set be R. The size of ((tup_select (name) (x)) = (tup_select (name)
(y)) is obviously the size of the set (tup_select (name) (TStudents)). Similarly, the size
of ((tup_select (age) (x)) = (tup_select (age) (y)) is the same as the size of the set
(tup_select (age) (TStudents)).
Let P be the size of, (((tup_select (name) (x)) = (tup_select (name) (y)) and
((tup_select (age) (x)) = (tup_select (age) (y)))), major).

P.max =minimum ((Size.oj.(tup_select (name) (TStudents)) *
Size.oj. (tup_select (age) (TStudents)), Size.oj.TStudents.max)

P.min =maximum (Size.oj.(tup_select (name) (TStudents),

Size.oj.(tup_select (age) (TStudents))
The size of the predicate is calculated in a manner similar to dup_elim (Section 4.1.13)
P gives the number of equivalence classes into which we divide the input set Each of

these equivalence classes give us a single tuple.

Therefore size of the resultant set R, R.size = P.size

The size of the field fst = 1,

Let the size of its superset be fst.SizeSSet. Thenfst.SizeSSet = min (R.size, major.size)

The size of the field snd = TStudents.size/R.size
Let the size of its superset be snd.SizeSSet . Then snd.SizeSSet =R.size

In general for a query Q = nest ((sP1 and SP2 sPn)' label) (S),

where sPi =tup_select (lJ (x) =tup_select (lJ (y), i =1 to n.

d·· . . (* * * S' ·.fS)pre Icate.size.max = mlnzmum SP1 SP2 SPn' Ize.OJ••max

predicate.size.min = maximum (sPl> sP2' sPn)' IfR is the resultant set, then
R.size = predicate.size

2. Q32 = nest (=, major) (TStudents)

In this case, the equality function is defined over all the fields of TStudents other than

major. Each tuple of the set TStudents has three fields, name, age and major. The equal­

ity function is thus assumed to be defined over the fields name and age which is similar

to Q28' Therefore size of the resultant set can be calculated in exactly the same way as

Q28'

In general, for queries of the form Q = nest (=,11) (S),

If the set S has fields labelled 11, 12, •••.In. Then the predicate "=" is equivalent to the

predicate P = (sp2 and sP3 and sPn), where each sPi = (tup_select (li) (S) =

tup_select (lJ (S)) for i = 2 to n.

p.max =minimum ((sp2 *sP3 *.... sPn)' Size.oj.S.max)
p.min = maximum (sp2' sp3' sPn)

33

The size of the resultant set, R, is given by, R.size = p.size

The size of the field jst =1,

Let the size of its superset bejst.SizeSSet. Thenjst.SizeSSet =min (R.size, major.size)

The size of the field snd =TStudents.size/R.size

Let the size of its superset be snd.SizeSSet. Then snd.SizeSSet =R.size

4.2.5 Operator unnest

Operator unnest is the inverse of operator nest. It takes a nested set and then unnests the
field snd to return a set of tuples of type similar to the set that was nested in the first place.

Consider the query Q =unnest (snd) (S).
It is assumed that the set S was nested and has two fields, jst and snd. Then the size of the
resultant set is the product of the size of the set S and the size of the tuple field labelled snd
in the tuple set, S. The records for both can be found in the extent record table. The size of
snd gives us the average size of each set labelled snd. Since we are unnesting on the field
snd, the product of the size of set S and the size of the tuple field labelled snd gives us the
size of the original set.

5.0 Internal Representation of Cost Information

As discussed earlier, within the optimizer, the query is maintained in the form of an EAT.
The EAT is composed of alternating layers of function nodes and data nodes connected by
labelled arcs.

The function nodes represent the action that can be taken on the data. They thus contain
the methods to calculate the size and cost of a query.

The data nodes represent the data that is being manipulated during the execution of a
query. It contains the information about size and cost of the execution of a query. This
information is maintained in the extent record table.

The extent record table maintains the following information,

1.	 The name of the set.

2.	 An estimate of the cost; which is kept as an interval.

3.	 An estimate of the size of the set, which is kept as an interval.

4.	 The range of value that the set can take, if it is a real, an integer or a set of reals or inte­
gers.

5.	 Information about its smallest known superset (SKS).

6.	 Information about its choose record if it is a complex object or a nested set or a set of
tuples.

l,

The following figure shows the different classes related to the cost model.

34

RPExtRecElt

char * Name 0;
COInterval * Size ();
COInterval Cost 0;
COInterval * Range 0;
COInterval * SizeSSet 0:
RPExtRecElt * Choose 0;
RPExtRecElt * SKS 0;

I

(

"

RPExtRec

COInterval *

LookupSize (char * name);

COInterval*

LookupCost (char * name);

COInterval*

LookupRange (char * name);

COInterval *

LookupSizeSSet (char * name)·

RPExtRecElt *

LookupChoose (char * name);

RecElt *
e);

Nooe 1 1­

FIGURE 10. Figure showing classes and methods related to the cost model.

3S

5.1 Methods Dealing with Size and Cost Annotations

5.1.1 RPDataNode

The following are the methods in RPDataNode dealing with extent records.

Public Methods

- RPExtRec >Ie ExtRec 0;
Returns a pointer to the extent table.

-Error insertExtRec (char >Ie name, COInterval >Ie size, COIntervai >Ie cost, COlnter­
val >Ie range, COInterval* sizeSSet, RPExtRecElt >Ie SKS, RPExtRecElt >Ie Choose);

Inserts the record at the end of the table.

- Error insertExtRec (RPExtRec >Ie extrec);

Copies the contents of extrec at the end of the table; returns an error message if it can­
not.

-void SetOCost (COlntervai >Ie cost);

Sets the override cost.

- void ClearOCost 0;
Clears the override cost.

-void SetOSize (COIntervai >Ie size);

Sets the override size.

- void CleoarOSize 0;
Clears the override size.

- COIntervai >Ie OCost 0;
Returns the override cost.

- COIntervai >Ie OSize 0;
Returns the override size.

- COInterval >Ie Cost 0;
Returns the override cost if it exists; else returns the estimated cost; returns an error if
the cost has not been computed.

- COIntervai >Ie Size 0;
Returns the override size of the set if it exists; else returns the estimated size; returns an
error if the size has not been computed.

-float SizeMax 0;
Returns the maximum override size if it exists; else returns the maximum size calcu­

" lated.

36

• float SizeMin 0;
Returns the minimum override size if it exists; else returns the maximum size calcu
lated.

• float CostMax 0;
Returns the maximum override cost if it exists; else returns the maximum cost calcu­
lated.

• float CostMin 0;
Returns the minimum override cost if it exists, else returns the maximum cost calcu­
lated.

•Error inferCost 0;
Calculates the cost of the query. Returns OK if it is successful; else returns NOT_OK.
This is a method that calculates the cost of a query starting at the top of the EAT.

•Error inferSize 0;
Calculates the size of the set returned by the query. Returns OK if it is successful; else
returns NOT_OK. This calculates the size of a query, starting at the top of the EAT.

•	 void DelCostAnn 0;
Starting from the top of the tree, it deletes all the size and cost annotations.

•	 Error RelnferSize 0;

i Calculates the size of the set returned by the query again. Returns OK if it is successful;
\ else returns NOT_OK.

•Error getExtRec 0;
If the data node is a leaf node, the extent record for the node is obtained from the
Schema Manager. If the data node is not a leaf node, the function returns NOT_OK.

• void PrintExtRec 0;

Prints the extent record table for the set.

5.1.2 class RPExtRec

The extent record for a data set is kept in the form of a table. The table has information
about the size of the set, its cost, the range of values it can take if it is a set of reals or inte­
gers, its SKS record and choose record.!t also maintains information about the number of
unique field elements in the set for each field of the tuple. The first record in the table is
always the record for the data set.

Public Methods

• RPExtRec 0;

Constructor.

..... RPExtRec 0;

Destructor.

37

-COInterval *LookupCost (char * name);

Looks up the cost of the set in the extent table. If the symbol does not exist in the table
it returns an error.

-COIntervai *LookupSize (char * name);

Looks up the size of the set in the extent table. If the symbol does not exist in the table
it returns an error.

-COIntervai * LookupRange (char * range);

Looks up the range of the set in the extent table. If the symbol does not exist in the
table it returns an errot

-RPExtRecElt * SKS (char * name);

Looks up the SKS of the named symbol. If the symbol does not exist in the table it
returns an error.

-RPExtRecEIt * Choose (char * name);

Looks up the choose record of the named symbol. If the symbol does not exist in the
table it returns an error.

-Boolean LookupName (char * name);

Looks up the name of the symbol in the table and returns TRUE if it exists; else returns
FALSE.

-LookupRecord (char * name);

Looks up the name of the symbol in the table and returns a pointer to its record. If the
symbol does not exist in the table it returns an error.

- RPExtRecElt * LookupThpField (char * setname, char * label);

Returns a pointer to the record for the named field of the set.

- RPExtRecElt * ithExtRec (int i);

Returns a pointer to the ith record in the table. Counting starts at O.

-Error CopyExtRec (RPExtRec * extrec);

Copies records into the extent record table. Returns an error message if it cannot do so.

-Error AddExtRec (char * name, COIntervai * size, COIntervai * cost, COIntervai
.* range, RPExtRecElt * SKS, RPExtRecEIt * choose);

Adds the extent record at the end of the table.

- void PrintExtRec 0;
Prints the extent record table.

-int NumElts 0;
Returns the number of elements in the extent record table.

- RPExtRecElt * Elements 0;
Returns a pointer to the array containing the extent records.

38

5.1.3 class RPExtRecEIt

RPExtRecElt represents an element in the extent record table. It contains information
about the size of the set, its cost, range of values it can take, its SKS and choose record. It
also maintains information about the number of unique field elements in the set, for each
field of the tuple.

Public Methods

- RPExtRecElt 0;
Parameterless constructor.

- RPExtRecElt (char * name, COInterval * size, COInterval * cost, COIntervai *
range, COlnterval * sizeSSet, RPExtRecElt * SKS, RPExtRecEIt * choose);

Constructor.

- - RPExtRecEIt 0;
Destructor..

-char * Name 0;
Returns the name of the symbol.

-COInterval * size 0;
Returns the size of the set represented by the symbol.

(-COInterval * Cost 0;
\

Returns the cost of the set.

- COIntervai * Range 0;
Returns the range of values the set can take if it is a set of reals or integers.

- COInterval * SizeSSet 0;
Returns the size of the superset for tuple fields.

-RPExtRecElt * SKS 0
Returns a pointer to its SKS record.

- RPExtRecElt * Choose 0;
Returns a pointer to the symbol's choose record.

-void SetSize (COlnterval * size);

Sets the size of the set.

-SetCost (COInterval * cost);

Sets the cost of the set.

-SetRange (COInterval * range);

Sets the range of values that can be taken by the object if it is a real or an integer or if
it is a set of real or integers.

39

-SetSizeSSet (COInterval * sizeSSet);

Sets the size of the superset for fields of tuples.

- SetSKS (RPExtRecElt * SKS);

Sets the SKS record of the symbol.

-SetChoose (RPExtRecElt * Choose);

Sets the choose record of the symbol.

5.2 Methods Dealing with Estimation of Size and Cost of a Query

5.2.1 class RPFunctionNode

Public Methods

- virtual Error COCost 0;
Calculates the cost of a query. Returns an error message if it cannot.

-virtual Error COSize 0;
Calculates the size of the resultant data set of a query. Returns an error message if it
cannot.

5.2.2 class RPApplyNode

Public Methods

- Error COSize O;Section

Calculates the size of the resultant data set. Returns an error message if it cannot. An
error is returned if the extent records of the two child data nodes cannot be calculated.
See Section 4.1.1 for a description of the technique used to calculate the size of the out­
put set.

5.2.3 class RPArithOpNode

Public Methods

-Error COSize 0;
Calculates the size of the resultant data set. Returns an error message if it cannot. An
error is returned if the extent records of the two child data nodes cannot be calculated.
See Section 4.1.2 for a description of the technique used to calculate the size of the out
put set.

40

5.2.4 class RPBoolOpNode

Public Methods

•Error COSize 0;
Calculates the size of the resultant data set for the boolean operators and and or.
Returns an error if the size cannot be calculated.

5.2.5 class RPCompOpNode

Public Methods

•Error COSize 0;
Calculates the size of the resultant data set for the comparative operators "=", "!=",
">", ">=", "<", "<=". If the parent operator is dup_elim, nest, partition or mem, then
the function returns an error if the size of their intersection cannot be calculated. If the
parent node is select, forall, group, exists or select, then the function calculates the size
of the set only if a set of reals (integers) is being compared to a real (integer).

5.2.6 class RPChooseNode

Public Methods

•Error COSize 0;
(
\ Calculates the size of the resultant set for the operator choose; returns an error if the

extent record for the child node cannot be calculated. See Section 4.1.4 for a descrip­
tion of the technique used to calculate the size of the output set.

5.2.7 class RPDiffOpNode

Public Methods

•Error COSize 0;
Calculates the size of the resultant set for the operator difference; returns an error if the
extent records for the two input data sets cannot be calculated. See Section 4.1.6 for a
description of the technique used to calculate the size of the output set.

5.2.8 class RPDup_ElimNode

Public Methods

•Error COSize 0;
Calculates the size of the resultant set for the query operator dup_elim; returns an error
if the extent records for the two input data nodes cannot be calculated. See Section
4.1.13 for a description of the technique used to calculate the size of the output set.

41

5.2.9 class RPExistsNode

Public Methods

• Error COSize 0;
Calculates the size of the resultant set for the query operator, exists; returns an error if
the extent record for the two input data sets cannot be calculated. The size returned is
always between 0 and 1. See Section 4.1.12 for a description of the technique used to
calculate the size of the output set.

5.2.10 class RPForallNode

Public Methods

•Error COSize 0;
Calculates the size of the resultant data set for the query operator forall; returns an
error if the size of the two input data sets cannot be calculated. The size is always
between 0 and 1. See Section 4.1.11 for a description of the technique used to calculate
the size of the output set.

5.2.11 class RPFlattenNode

Public Methods

•Error COSize 0;
Calculates the size of the resultant data set for the query operator flatten; returns an
error if the size of the input data node cannot be calculated. The size cannot be calcu­
lated if the choose record of the input set does not have an SKS record.See Section
4.1.15 for a description of the technique used to calculate the size of the output set.

5.2.12 class RPGroupNode

Public Methods

•Error COSize 0;
Calculates the size of the resultant data set for the query operator group; returns an
error if the size of the two input data sets cannot be calculated. See Section 4.1.14 for a
description of the technique used to calculate the size of the output set.

5.2.13 class RPlntersectNode

Public Methods

•Error COSize 0;

Calculates the size of the resultant data set for the query operator intersect; returns an

error if the size of the two input data sets cannot be calculated. See Section 4.1.5 for a
description of the technique used to calculate the size of the output set.

42

5.2.14 class RPMSetNode

Public Methods

•Error COSize 0;
Calculates the size of the resultant data set for the query operator mset; returns an error
if the size of the input set cannot be calculated. See Section 4.1.8 for a description of
the technique used to calculate the size of the output set.

5.2.15 class RPMemNode

Public Methods

•Error COSize 0;
Calculates the size of the resultant data set for the query operator mem; returns an error
if the size of the input data sets cannot be calculated. The size of the set is always
between 0 and 1. See Section 4.1.16 for a description of the technique used to calculate
the size of the output set.

5.2.16 class RPMethodNode

Public Methods

• Error COSize 0;
{
\. Calculates the size of the resultant data set for the query operator, method; returns an

error if the size of the input set cannot be calculated. The size cannot be calculated if
the resultant data set does not have a smallest known superset whose size can either be
calculated or looked up in the SchemaManager.

5.2.17 class RPNestNode

Public Methods

• Error COSize 0;
Calculates the size of the resultant data set for the query operator, nest; returns an error
if the size of the input sets cannot be calculated. At present, a set of tuples can be nested
on one field only. See Section 4.2.4 for a description of the technique used to calculate
the size of the output set.

43

5.2.18 class RPNotNode

Public Methods

•Error COSize 0;
Calculates the size of the resultant data set for the query operator not; returns an error if
the size of the input node cannot be calculated. It is assumed that the size of the input
set in between 0 and 1. The size of the resultant data set is always between 0 and 1 .See
Section 4.1.3 for a description of the technique used to calculate the size of the output
set.

5.2.19 class RPSelectNode

Public Methods

•Error COSize 0;
Calculates the size of the resultant data set for the query operator, select, returns an
error if the size of the input sets cannot be calculated. See Section 4.1.10 for a descrip­
tion of the technique used to calculate the size of the output set.

5.2.20 class RPSetNode

Public Methods

•Error COSize 0;
Calculates the size of the resultant data set for the query operator set; returns an error
if the size of the input set cannot be calculated. See Section 4.1.9 for a description of
the technique used to calculate the size of the output set.

5.2.21 class RPThpConcatNode

Public Methods

•Error COSize 0;
Calculates the size of the resultant data set for the query operator tup_concat; returns an
error if the size of the input set cannot be calculated. It assumes that no two labels of the
input tuples are the same. See Section 4.2.2 for a description of the technique used to
calculate the size of the output set.

5.2.22 class RPThpieNode

Public Methods

•Error COSize 0;
~ Calculates the size of the resultant data set for the query operator tuple; returns an error

if the size of the input field nodes cannot be calculated. See Section 4.2.1 for a descrip­
tion of the technique used to calculate the size of the output set.

44

5.2.23 class RPThpSelectNode

Public Methods

• Error COSize 0;
Calculates the size of the resultant data set for the query operator tup_select, returns an
error if the size of the input field nodes cannot be calculated. If the input data is a tuple
the size cannot be calculated if there is no record for the field of the tuple that is being
selected. If the input data nodes is a set of tuples then the size of the tuple cannot be cal­
culated if there is no record for the field of the tuple set that is being selected or if the
tuple set does not have an SKS. See Section 4.2.3 for a description of the technique
used to calculate the size of the output set.

5.2.24 class RPUnionNode

Public Methods

•Error COSize 0;
Calculates the size of the resultant data set for the query operator union; returns an error
if the size of the input field nodes cannot be calculated. See Section 4.1.7 for a descrip­
tion of the technique used to calculate the size of the output set

5.2.25 class RPUnnestNode

Public Methods

• Error COSize 0;
Calculates the size of the resultant data set for the query operator unnest. Returns an
error if the size of the input tuple set cannot be calculated. At this point, it is assumed
that the unnesting is done only on the field snd. The size cannot be calculated if there
are not records for the fields1st and snd. See Section 4.2.5 for a description of the tech­
nique used to calculate the size of the output set.

6.0 Database Schema

The database schema is stored in 4 files, TravelSchema, TravelThples, DerivedTypes and
TravelGlobals. The following is a description of the format of each of the files and the
information contained in each one.

6.1 File TravelSchema

This file contains information about the global user defined types in the database. The glo­
bal types Boolean, String, Integer and Real are present in the table. The rest are stored in
the file TravelSchema. The following is the format for each record.

4S

Class class_name: super_type (number attr)
attribute attr_name: bulk_type none elCtype

Here, the words highlighted are the keywords which are present for every record in the
TravelSchema. class_name is the name of the user type being defined, super_type is the
name of its supertype, number represents the number of attributes of the user defined type.
This is then followed by the record for each of the attributes of the user defined type.
attr_name represents the name of the attribute, bulk_type represents whether it is a set
(set), a multiset (mset) or neither one of the two (none). elCtype represents its type.

A part of the file TravelSchema is given below in Figure 11.

Class Date : none (3 attr)
attribute month : none none Integer
attribute day : none none Integer
attribute year : none none Integer

Class Name : none (3 attr)
attribute first_name : none none String
attribute middle_name : none none String
attribute last_name : none none String

Class Address : none (5 attr)
attribute Country : none none String
attribute zip_code : none none String
attribute city : none none String
attribute street : none none String
attribute number : none none Integer

Class Person : none (4 attr)
attribute name : none none Name
attribute birthdate : none none Date
attribute age : none none Integer
attribute address : none none Address

Class Student : Person (2 attr)
attribute school : none none String
attribute major : set none String

FIGURE 11. Shows the format of file TravelSchema

6.2 File TravelThples

This file contains information about the user defined tuples in the database. The following
is the format for each record in the file.

Thple tuple_name: none (number fields)

field field_name : bulk_type none elCtype

"
The words highlighted are the keywords which are present for every record in the file.
tuple_name is the name of the tuple, number represents the number of fields of the given
tuple. This is then followed by the records for each of the tuple fields. field_name repre­

46

sents the name of the field, bulk_type represents whether it is a set (set), multiset (mset) or
neither one (none). elCtype represents its type.

A part of the file TravelTuples is given in Figure 12.

Tuple TDate : none (3 fields)
field month : none none Integer
field day : none none Integer
field year : none none Integer

Tuple TAddress : none (5 fields)
field country : none none String
field zip_code : none none String
field city : none none String
field street : none none String
field number : none none Integer

Tuple TPerson : none (5 fields)
field name : none none Name
birthdate : none none Date
field age : none none Integer
field address : none none Address

FIGURE 12. Shows the format of the file TravelTuples

6.3 File DerivedTypes

This file contains the types that are derived from the already existing user defined types in
the database. For example, if we wanted to have a type for the set of set of Addresses, we
would keep the record for it in this file. The following is the format for each record in the
file.

Type elcname : bulk_type none elCtype

The words highlighted are the keywords which are present for every record in the file.
elcname is the name of the type being added to the database, bulk_type represents
whether it is a set (set), multiset (mset) or neither one (none), and elCtype represents its
type.

A part of the file DerivedTypes is given in Figure 13.

Type Money : none none Integer

Type Age : none none Integer

Type Set [Address] : set none Address

Type Family : set none Person

FIGURE 13. Shows the format of the file DerivedTypes

47

6.4 File TravelGlobals

This file contains information about all the global symbols in the database. It maintains
information that is needed to estimate the size and the cost of queries. Each record in the
file has the following format.

globaCname:
lYpe:bu&_rypenoneeu_rype
Size: Sl S2
SKS : sks_name
Range :R1 R2
SizeSSet : SSl SS2

The wor.ds highlighted are the keywords which are present for every record in the file.
globaCname is the name of the global_symbol. bulk_rype represents whether it is a set
(set), multiset (mset) or neither one (none). eltJype represents its type. Sl, S2 is it's size,
which is kept as an interval, sks_name is the name of it's smallest known superset, R1, R2
is it's range (-1, -1 if it is not of type real or integer). SSl, SS2 is the size of its superset if it
is the record for a tuple field, (-1 -1 otherwise).

A part of the file TravelGlobals is given in Figure 14.

48

(

People
Type : set none Person

Size : 1000 1000

SKS : NIL

Range : - 1 -1

SizeSSet : -1 -1

Students

Type : set none Stdudent

SKS : NIL

Range : -1 -1

SizeSSet : -1 -1

Families

Type : set none Family

Size : 75 75

SKS : NIL

Range : -1 -1

SizepSet : -1 -1

Flatten (Families)

Type : set none Person

Size : 202 202

SKS : People

Range : -1 -1

SizeSSet : -1 -1

Choose (Families)

Type : set none Person

Size: 3.39 3.39

SKS : Flatten (Families)

Range : -1 -1

SizeSSet : -1 -1

FIGURE 14. Shows the fonnat of the file TravelGlobals

7.0 Further Work

We need to extend the work described above to estimate the sizes of some other query
operators of AQUA not covered above. The following is a list of the work still to be done.

We do not know how to handle multisets yet. We do not know how to estimate the sizes of
the output sets returned by the query operators convert, dup_elim (when it is applied to a
multiset), union (when it is applied to a multiset), additive_union, intersect and diff.

For set operators, we do not know how to estimate the sizes of sets returned by AQUA
operators fold, LFP, join and outer.Join.

For the operator dup_elim, the size estimation technique does not give a good upper
bound. The formula in [3], does not work.

49

Consider the query Q =(lambda (x, y) spJ (Set). It gives the size of the resultant set to be
R.size,

k2

R'size = p- L (p-k)' Prob· (p-k· slots· are· empty)
k = kl

where p is the approximated size, and p =kI. kI = max (sPi) i = I ...n where each sPi is of
the form x.tail =y.tail and k2 =product (spJ i = in

The formula for calculating the value of Prob(p - k slots are empty) always gives a value
of 0 and hence the upper bound is always p.

The formula given by Mark Nodine to calculate the size of the set for dup_elim queries of
the form Q =dup_elim (lambda (x, y) x.tail =y.tail) (Set). Let the size of the resultant set
beR

. 1 Set· Size - 1 .
R . sIze = (. +.) x Set· SIze

Set· sIze Set· SIze X Set· tail· Size

This under estimates the size of the set and so we do not implement it.

For the AQUA operators select,jorall, exists and mem, we do not have a formula for cal­
culating the selectivity if we allow field values to be compared to one another or if a field
value is being compared to a string or a real.

For the operator flatten, if we do not know the size of the superset of the choose record of
the input set, we do not know how to calculate the size of the resultant set.

For the operators union, intersect and difference, if we do not have any information about
the relation between the input sets or the record for size of the intersection of the two input
sets (maintained in the Schema Manager for certain sets), we do not know how to calcu­
late the size of the resultant set. Besides we cannot calculate the sizes of sets if they use an
equality rather than an equivalence. When we do not have information about the intersec­
tion of sets, we use a constant selectivity. This is defined in the file Globals.H as
#define DEFAULT_INT_FRACTION 0.2

The naming convention used when the operator apply is used on nested sets is misleading.
Consider the query,

Q =ftatten (apply (lambda (j) apply (lambda (p) p.address) (j) (Families»

Here Families has type Set/Set/Person]]. In the above query we are trying to get the set

of addresses at which any member of each family lives. We are calling this set Fami­

lies.address. Since Families is a set of set of Persons, we are trying to find the set of

addresses Families.person.address and not Families.address as the type Family does not

have any attribute address. Thus the above set is named incorrectly.

so

We also need to add another query operator partition. This operator takes a set and a user
defined equality function eq. It then groups the elements of the input set into different
equivalence classes according to the user defined equality function eq. The resultant set is
then a set of sets where each set is the set of elements that are equal according to the user
defined equality function eq. The user defined equality function is similar to the function
defined for dup_elim. Also the size of the resultant set is calculated in a similar manner.

Consider a query Q =partition (lambda (x,y) pred) (Set). Let the size of the resultant set
beR.
Then R.size = pred.size. (This is calculated in a manner similar to dup_elim, Section

4.1.13).
Let the choose record of the set be Choose(R).
Then Choose(R).size =Set.size/pred.size.
The original input set Set, is then set to be the smallest known superset (SKS) of this
choose record.

8.0 Conclusion

Due to the complex nature of the data being manipulated by Object Oriented Databases,
built-in heuristics cannot be used to optimize queries. Query Optimization is data depen­
dant and hence cost estimations have to be used to decide whether a particular query
rewrite is valid or not. An important component of this cost model of the optimizer is the

(techniques used for estimating the cardinalities of sets.

In this paper we have described the implementation of various techniques to estimating set
cardinalities. We have used the notion of sets and supersets to estimate the sizes of query
sets. It is seen that in order to perform efficient size estimations we have to maintain a lot
of cost and size related information in the Schema Manager. We maintain the size of
image sets to atleast one level and also the extent records for the intersection of any two
sets which have the same supertype as long as one is not the superset of the other.

We have presented the techniques used to evaluate the sizes of sets formed as a result of
various query operations. The sizes calculated can be used to estimate the cost of perform­
ing certain query operations. This can then be used by the optimizer to evaluate different
optimization strategies.

S1

References

[1] Mitch Chemiack. Estimating Image Set Cardinalities

[2] Gail Mitchell. Extensible Query Processing in an Object-Oriented Database. Ph.D.
thesis, Brown University, 1993.

[3] Marian H. Nodine, M. Cherniack, T.W. Lueng. Estimating Query Cost in an Object
Oriented Database

[4] Marian H. Nodine, F.B. Abbas, M. Cherniack. The EPOQ Query Optimizerfor Object­
Oriented Databases, Design Specification

52

