
BROWN UNIVERSITY

Department of Computer Science

Master's Project

CS-95-M7

"Braitenberg Vehicles in a Virtual Environment"

by

Laura Ann Dorival Paglione

1

Braitenberg Vehicles in a Virtual Environment

Laura Ann Dorival Paglione

Department of Computer Science
Brown University

Submitted in partial fulfillment of the requirements for the
Degree of Master of Science in the Department of Computer

(Science at Brown University

May 1995

~

May 14,1995

Braitenberg Vehicles in a
Virtual Environment

By Laura Dorival Paglione

This is a paper to report the work done
under Leslie Pack Kaelbling at Brown
University during CS0298 Reading and
Research from Spring 1994 through Spring
1995.

Valentino Braitenberg, in his book Vehicles: Experiments in Synthetic Psychology.
describes a series of hypothetical, self-operating machines which he calls "vehicles."
All of the vehicles have a very simple internal structure, and are discussed as though
they exhibit some sort of civilized "behavior." His vehicle's behaviors are borne out of a
direct connection of input sensors to output actuators. This connection allows the vehi
cles to be able to directly translate what they sense into how they react. In this paper I
discuss a simulator for Braitenberg-type vehicles in a virtual environment.

Introduction

user
defined C
function

III Light Sensor

ffij] Obstacle Sensor

~ Motors

All of Braitenberg's early vehicles have one or two motors (actuators) and one or more
sensors. He connects the sensors to the motors directly with either inhibitory or excita
tory connections. Each sensor can be connected to each actuator in one of three ways:
straight, crossed, or combination. In a straight connection a sensor would be connected
to the actuator on the same side of the vehicle. A crossed connection is made when the
sensor is attached to the actuator on the opposite side of the vehicle. Combination con
nections are a combination of straight and crossed connections.

The simulator described in this paper allows vehicles (called Agents in this paper) witl}
a fixed set of sensors and actuators to simulate different sensor-actuator combinations.
The Agents are configured to have two light sensors, two obstacle sensors, and two
actuators. The Agents are symmetrical with two different sensors and one actuator on
each side (see the figure to the left). The Agents' movements are determined from a C
function written by the user. This function specifies all of the sensor-actuator connec
tions through equations.

1

Materials and Libraries

Materials

The virtual world consists of Light Sources, Agents and Walls. Agents move around in
this world by sensing the Lights and other objects, and reacting to them according to the
user-defined function.

Implement Braitenberg vehicle behavior on an actual vehicle is trivial, because the
physics of turning and reacting to a source are inherent in the vehicle's physics of move
ment. To recreate this behavior in a virtual environment is more difficult because mod
els for physical movement and for sensor behavior must also be created. In addition, a
graphical representation of the vehicle and its environment must be developed.

The models for the physical movement and sensor behavior are based on assumptions
which will be discussed in the body of this paper. The graphical representation is devel
oped using graphics libraries created by the Graphics Group of Brown University.
Although simplified by the use of these libraries, the graphical representation presents
some challenges. Movement in the virtual world needs to be specified through an alter
ation of transformation matrices which correspond to the changes of the physical move
ment model for the vehicle.

This paper describes the methods used to create this simulator. In addition, it describes
possible uses, future work, and the materials and libraries needed to make the simulator
work.

Materials

This project is designed to be easily portable to other systems. As a result, there is a lim
itation on the materials that could be used.

An accelerated SPARC 10 with a Leo graphics accelerator card and 32 MB of memory
is used for this project. This machine allows for real-time, three-dimensional rendering
of the vehicle and its environment, despite its computational complexity.

Two packages, WAY and OD, developed by the Brown Graphics Group are used for the
graphical rendering for this project. They are chosen primarily because of their portabil
ity to other platforms. WAY is a class which encapsulates windows and views for 3D
graphics. OD is a class of objects that can be drawn in WAY windows. When compiled
on a SPARC station, these packages access Silicon Graphic International's XGL library,
a high-end 3D graphical package.

Other libraries that are used include Motif for the user interface and windows, and vari
ous matrix, camera, and lighting packages developed by the Brown Graphics Group.

Methods

The structure of the program has three parts: the Environment, the Agents, and the Pro
gram Interface. These area are described in the section "Program Structure". When a

Braitenberg Vehicles in a Virtual Environment 2

Program Structure

Methods

simulation is started, the Agents move through a series of incremental steps. These steps
depend on the sensor and physical movement models, and represent the bulk of work
for this project. These steps are described in detail in the section "The Steps of the
Incremental Move."

The Environment. The virtual environment consists of Lights, Walls and Agents, all of
which are also considered to be obstacles. Agents are discussed at length in the next sec
tion, but it is important to note that they can sense lights and obstacles. Lights can be
used for attracting or repulsing Agents, and Walls are primarily used as static obstacles
for an Agent to avoid.

The application maintains lists for each of the three items that exist in the world. In
addition, it maintains a list for a special type of object called a Point Obstacle. This
object is used to simplify the way that the agent detects obstacles by modeling each
potential obstacle as one or more spheres that occupy the same area as the item. All of
these point obstacles are kept in a list which the Agent uses to determine if its obstacle
sensors detect anything.

Below are the internal structures of the Application, Light and Obstacle classes. The
Agent class is described in the next section.

FIGURE 1. Application Class

class IAVRApplication {
private:

AgentList agenclisc;

LightList lighClisC;

WallList wall_lisCo

PtObsList Pcobstacle_lisc;

[...J
}

The internal structure of the Application class. The application manages lists of agents,
lights, and walls. In addition, it maintains a list of point obstacles.

Braitenberg Vehicles in a Virtual Environment 3

Methods

FIGURE 2, Light Class

class fAVRLight {
private:

Location lighc1ocation-,'
ODlist* light-picture-,'
int drawn-,'

[.,,]
}

Internal structure of the Light class. The light knows its global location, its graphical
representation, if it is drawn, and how to draw itself.

FIGURE 3. Wall Class

class fAVRWall {
private:

Location wall_location~

ODlist* wall-picture-,'
int drawn-,'

[.oo]
}

Internal structure of the Wall class. The light knows its global location, its graphical
representation, if it is drawn, and how to draw itself.

The Agents. Agents consist of two light sensors, two obstacle sensors, and two motors.
The agent also knows its global position in the world, and the sensors and motors attain
their global positions and directions from a relative position from the agent's global
position. The agent knows if it has completed its run of the simulation, and if it is cur
rently displayed on the screen.

Figure 4 shows the internal structure of the agent class. Figures 5, 6 and 7 show the
internal representation of the motors and the sensors.

Braitenberg Vehicles in a Virtual Environment 4

Methods

FIGURE 4. Agent Class

class fAVRAgent {
private:

Motor lejcmotor-,'
Motor righcmotor-,'
LightSensor lejclighcsensor-,'
LightSensor righclighcsensor-,'
ObsSensor left_obstacLe_sensor-,'
ObsSensor righcobstacle_sensor-,'
Location agenclocation-,'
Direction agencdirection-,'
ODlist* agentJJicture-,'
int is-.stopped-,·
int drawn-,'

[...J
}

Internal structure of the Agent class. The Agent has two motors and two light sensors. It
knows its global location, its graphical representation, if it is stopped, and if it is drawn.

The Motors of the agent know their global position and direction in the virtual world.
They obtain their value from the global user defined function.

FIGURE 5. Motor Class

class fAVRMotor {
private:

Location motor_location~

Direction motor_direction-,'
int motor_value-,'

[...J
}

Internal structure of the Motor class. The Motor knows its global location (which is
determined though a relative offset from its associated agent), and its value. The motor
value is an integer between 0 and MAX_MOTOR_VALUE_READING_.

The light and obstacle sensors also know their global position and direction. They can
calculate their value based on their proximity to the lights or obstacles in the virtual
environment. Each sensor determines its value from a list of things that it senses which
is passed to it from the virtual world. For example, when it is time for a light sensor to
calculate its value, the Application passes the sensor a list of lights. The sensor deter
mines which lights it can see, and sets its value accordingly. More information about

Braitenberg Vehicles in a Virtual Environment 5

Methods

this process is in the section "The Steps of the Incremental Move." Figures 6 and 7
show the internal structure of the sensors.

FIGURE 6. Light Sensor Class

class fAVRLightSensor {
private:

Location lighcsensor_location-,'
Direction lighcsensor_direction-,'
int lighcsensor_value-,'

[' .. J
}

Internal structure of the Light Sensor class. The Light Sensor knows its global location
(which is determined through a relative offset from its associated agent), and its value.
The light sensor value is an integer between 0 and MAX_UGHT_SENSOR_VALUE_.

FIGURE 7. Obstacle Sensor Class

class fAVRObstacleSensor {
private:

Location obstacle_sensor_location-,'
Direction obstacle_sensor_direction-,'
int obstacle_sensor_value-,'

[... J
}

Internal structure of the Obstacle Sensor class. The Obstacle Sensor knows its global
location (which is determined through a relative offset from its associated agent), and
its value. The Obstacle Sensor value is an integer between 0 and
MAX OBSTACLE SENSOR VALUE.

Movement of the agents is accomplished by a series of incremental moves. Performing
movement calculations in discrete steps allow the agent to react to its surroundings
while it is moving, and makes the movement of the graphical representation look
smooth. On each incremental move seven things happen:

1.	 The sensor readings for each of the light sensors is determined.

2.	 The sensor readings for each of the obstacle sensors is determined.

3.	 The values of all four sensors are stored in a global input structure.

4.	 The values for the actuators are determined by calling a user defined function IAVR
PropagateO. (This function describes the connections of the sensors to the actua
tors.)

5.	 The values for the actuators are stored in a global output structure.

Braitenberg Vehicles in a Virtual Environment 6

Methods

6.	 The agent reads the output structure and moves accordingly.

7.	 Check if the simulation has completed.

Each of these sub items for the incremental move are discussed in the next section: The
Steps of an Incremental Move.

The Interface. The interface consists of a number of Motif widgets which allow the
user to change the simulation in the virtual environment. The user can start the simula
tion, quit, and move, remove and add Lights, Agents or Obstacles. The implementation
of the interface is not discussed here, but information on how to use the interface can be
found in the accompanying paper, Braitenberg Vehicles in a Virtual Environment: Users
Guide.

The Steps of the Incremental For each step of its incremental move, the agent
Move

1.	 The sensor readings for each of the light sensors is determined.

2.	 The sensor readings for each of the obstacle sensors is determined.

3.	 The values of all four sensors is stored in a global input structure.

4.	 The values for the actuators are determined by calling a user defined function IAVR
Propagate(). (This function describes the connections of the sensors to the actua
tors.)

5.	 The values for the actuators are stored in a global output structure.

6.	 The agent reads the output structure and moves accordingly.

7.	 Check if the simulation has completed.

This section of the paper describes each of these items in detail.

Braitenberg Vehicles in a Virtual Environment 7

Methods

1. The sensor readings for each of the light sensors is determined. Each light sensor
determines its value based on a list of light sources that it is passed. For each Light, the
sensor learns its distance from it using vector algebra, and determines its value from a
linear equation based on its distance from the light. Figure 8 describes this equation in
detail. In an actual environment, a light could be sufficiently far away that the sensor
could no longer detect it. In this program this distance is called the MaxEffectiveLtDis
tance. For distances greater than the maximum, the sensor value is equal to zero.

FIGURE 8. Linear Equation for Light Sensors

MaxLight
SensorReading

sensorValue

distance FromLight	 MaxEffective
LightDistance

distanceFromLight)
sensorValue = MaxLtSensorReading (1- MaxEffectiveLtDis tan ce (EQ 1

The sensor reading is inversely proportional to the distance it is from the light. The light
sensor asks the light how far it is away from the light, and uses this value in equation 1
shown above.

Once the value of the light sensor has been determined from its distance from the light,
it is adjusted to account for directionality inherent in most light sensors (for example, a
light sensor is the most sensitive in the direction in which it is pointing.) This adjust
ment is accomplished by multiplying the sensor value obtained earlier by the vector
dot-product of the direction the light sensor is pointing, to the direction from the light
sensor to the light. This equation is described in further detail in Figure 9.

Braitenberg Vehicles in a Virtual Environment 8

Methods

FIGURE 9. Equation for Directional Light Sensors

Direction
of the Light Sensor

LnOtmalized)

e	 Direction
to the Light
(notmalized)

,

100

cos e
% of max ~ ~
Light Sensor
value

o -
o	 90 270 360

e (degrees)

MaxLightSensor = LightSensorDirection. DirectionToLight (EQ2(

The light sensors on the agent are directional. If the light is directly facing the light (Le.
the angle between the sensor direction and the direction to the light is 0) then the value
of the light sensor is equal to 100% of the amount found through equation 1. The per
centage of the sensor value diminishes as the angle increases, with a value of 0% if the
angle is greater than 90 degrees. A cosine model is used allowing the sensor value to
have larger percentage values with a quick drop off in value as the angle approaches 90
degrees.

Another advantage of using cosine to model the sensor value falloff is that it can be cal
culated by taking the dot product of the normalized sensor direction and direction to
light vectors, a computationally easy procedure.

So far I have discussed how the value of the sensor is determined from one light, but, in
actuality, a list of lights are passed to the sensor. The light sources have a cumulative
effect on the sensors. Therefore, once the sensor value due to each source is determined,
they are summed, resulting in the light sensor's net reading. Since each sensor has a
maximum possible reading, if the net reading is higher than the maximum, the value for
the sensor is set to the maximum.

2. The sensor readings for each of the obstacle sensors is determined. As with the
light sensors, each obstacle sensor determines its value from a list a point obstacles that
is passed. Calculations similar to those done to detetmine the light sensor values are
perfotmed to determine the obstacle sensor values.

Braitenberg Vehicles in a Virtual Environment 9

Methods

3. The values of aU four sensors is stored in the input structure. In the file IAVR
RexInterface.H there are two structures, input and output. These structures are global so
that they can be used by all of the classes in the program and by the global function
IAVRPropagateO, which is used to determine the values for the motors. Once the values
for the sensors are determined, they are copied into the following structure:

struct fAVRJnput
{

int lejclighcsensor, II value between 0 and 100
int righclighcsensor, II value between 0 and 100

int left_obstacie_sensor, II value between 0 and 100
int righcobstacie_sensor, Ilvalue between 0 and 100

};

4. The values for the actuators are determined by caUing a user defined function
IAVRPropagateO. A global function named IAVRPropagateO describes the connec
tions of the four sensors to the two motors. It was made global so that it could be easily
exchanged with other like functions. Since this function is usually defined by the user
(although there is a default version), it is not discussed here. For further explanation of
this function and how to define it, refer to the document, Braitenberg Vehicles in a Vir
tual Environment: Users Guide.

5 The values for the actuators are stored in a global output structure. The function
IAVRPropagateO is responsible for copying the motor values that it determines into the
following structure which is used by the agent to move in the world:

struct fAVR_Output
{

int left_wheel, Ilvalue between 0 and 100
int righcwheel, II value between 0 and 100

};

6. The agent reads the output structure and moves accordingly. The Agent reads
the values from the output structure and determines its next position. The model used
for the calculation of the distance traveled is shown in figure 10.

Figure 10 is example of one possible scenario in which the motor value of the left wheel
is higher than that of the right wheel. In this example, the vehicle starts with its left
wheel at point (xl, yl), and its right wheel at point (x2, y2). For the incremental step, the
left wheel moves faster than the right wheel in a ratio of vI:v2 where vI is the value of
the left motor, and v2 is the value of the right motor. (Note: this assumes that the value
of the motor is directly proportional to the distance that that wheel will travel.) This
ratio will cause the vehicle to turn in a clockwise circle. By using geometrical properties
(described below), the next position for the vehicle (point D) and its final direction (vec
tor n') can be determined in coordinates relative to the initial position of the vehicle.
The values of D and n' can then be translated to the global coordinate system.

Braitenberg Vehicles in a Virtual Environment 10

Methods

FIGURE 10. Calculation of the Distance Travelled

Derivation of the equation to determine the distance traveled by the agent. The work in
this paper is on a model that moves in only 2 dimensions. A 3D model derivation would
be similar, but it would be based on a sphere, not a circle.

. Determining the relative ending position for the vehicle is dependent on the assumption
\ that a wheeled vehicle will travel in a circle. In this case, the ratio of the arcs v1 and v2

is the same as the ratio of their relative circles, or

VI 21tr (EQ 3)
V; = 21t(r+2w)

Equation 3 can be used to find the value of r, the radius of the inner circle, or the dis
tance from the point of rotation to the right wheel

2wv2
(EQ 4)r=V -V

I 2

The angle a. can also be found using properties of chords.

V2 a
(EQ 5)

21tr = 21t

a=~ (EQ 6)
r

Once r and a. are known, the ending positions for each of the wheels can be found

Xl' = Xl + (r + 2w) (1- cos a) (EQ 7)

Braitenberg Vehicles in a Virtual Environment 11

Methods

Yt' = Yt + (r+ 2w) sinet. (EO 8)

x2' = X2 + r(1- coset.) (EO 9)

h' = Y2 + rsinet. (EO 10)

The new location and direction for the vehicle can be found from the final positions of
the wheels.

The new global position for the agent is found by converting the relative location and
direction of the vehicle from local coordinates to global coordinates through linear alge
bra. The motors and light sensors of the Agent are then sent the Agent's new global
location so that they can update their locations.

The graphical representation of the Agent also needs to be updated. Translations are
implemented on a 50 to 1 scale so that the movement looks smooth. Both translations
and rotations for the representation are achieved through transformation matrix manipu
lations on the graphical model (an in depth discussion of transformation matrices can be
found in Computer Graphics: Principles and Practice Second Edition by Foley, van
Dam, Finer, Hughes page 201 - 226.) The screen is refreshed after each change to the
Agent so that the change is seen.

Further calculation is needed to prevent Agents from ending up in the same place as
another item in the virtual world. When the Agent is determining the values for the
obstacle sensors, it created a list of point obstacles that it sensed. This list contains a
good estimation of point obstacles that the Agent may crash into during this incremental
move. If the new position for the agent conflicts with the position of any of these point
obstacles, the Agent stops so as to not occupy the same spot as another object.

7. Check if the simulation has completed. There are three ways to determine if a sim
ulation is completed: the stop simulation button was pressed, the speed of both of the
wheels are zero, or the global location of the agent has not changed.

When both wheels have a value of zero, the agent has stopped. When the Agent stops, it
is not going to sense the world any differently than on its last incremental move. In this
situation, the simulation has effectively ended. In some cases (i.e. when the Agent stops
at an obstacle) the Agent's wheels are not zero, but the Agent has effectively stopped
because there is no way that it can move unless the obstacle is moved.

When the agent stops, its value for its is_stopped_ member is set to TRUE. If something
is changed externally (such as a light being added, or an obstacle being moved), the
is_stopped_ member is set back to FALSE so that it can react to the new surroundings.

In some cases the agent can not see the light (Le. the light is behind the agent). The pro
gram has a cut-off of 100 steps. If the agent does not stop at the light by then, it stops,
reports that it could not find the light, and returns control to the user.

Braitenberg Vehicles in a Virtual Environment 12

Discussion

Discussion

Sensing the World

"

Moving in the World

There are two areas of extreme difficulty for this project: (1) Creating the proper sensor
model for the agents including the proper placement of the sensors to get interesting
behavior, and (2) Developing a movement model that is both believable, yet computa
tionally simple enough to keep movement smooth. Doing calculations quickly became a
theme in both the sensing and movement models for the agent., and although I make an
effort to maintain simplicity, movement performance in the final project still suffers
somewhat.

The agent starts each step of its movement by sensing the virtual world. The ability of
the sensors to detect the world with some accuracy is an important stage in the move
ment of the agent. The first time that I created it, the sensors on either side of the agent
seemed to always see the items in the world at the same level (e.g., the values for the
sensors on both 'sides of the agent are always the same). After some investigating, I real
ized that, since the sensors were not sufficiently far enough from each other, there was
not enough of a differential in the distances of the sensors to the object they were trying
to detect. To resolve the problem, I could either (1) make the measurement of distance
to a higher precision, or (2) widen the distance between the sensors so that there is more
of a difference in the readings.

In the final program, as many calculations as possible are done using integers because
calculations can be done faster than when using floating point numbers. The distance
reading for each of the sensors is also calculated using integer math, and increasing the
precision for calculating the distance would require floating point calculations. I
decided to forgo this method unless others did not work. It is important that the sensor
readings of the Agent are based on calculations that are to the level of precision that the
Agent can actually move. Because of the pixelated nature of computer screens, none of
the objects can be placed anywhere on the screen with any higher precision than integer
values. Sensor readings based on floats when locations are based on integers can lead to
unnecessary precision.

Widening the distance between the sensors increases the distance differential enough
such that the sensors end up with different values when the Agent is not directly facing
the detection source. No higher precision is needed to increase this differential, calcula
tion times are kept low, and small differences in sensor distance from a detected object
are ignored.

The movement of the Agent can be based on one of three models: instantaneous -- the
Agent instantly moves to its final destination; constant velocity -- the Agent takes even
steps to get to its destination; acceleration -- the Agent follows acceleration models to
switch between velocities to get to its destination.

Instantaneous Model. The instantaneous model is clearly not acceptable because the
interesting part of the Braitenberg-type vehicles is how they get to their destination,
rather than where they end up. Using the instantaneous model on an incremental scale
(e.g., discrete steps) can lead to realistic movement. I ended up using an instantaneous
model on an incremental scale for this project.

Braitenberg Vehicles in a Virtual Environment 13

Discussion

Continuous Model. The continuous velocity model is accomplished by determining
the path that the agent travels, and then reconstruct this path so that intermediate steps
are evenly spaced. This method is very useful when a single equation for the movement
of an object can be determined, as well as how long it will take the object to get to its
final destination. Creating an equation of the movement of an Agent is very difficult.
Since the movements of the Agent depend not only on the position of all of the other
items in the world, but also on the dynamic position of the Agent, and possibly the
dynamic position of other Agents (and consequently time). Only after this complex
equation is determined (which is no small task), the movement of the Agent(s) begin(s).
At each tick of the clock, the equation is reevaluated for that point in time to determine
the position of the Agent at that time.

This type of computation is not acceptable for all simulation environments since move
ment can not always progress in a smooth manner. However, there are some interesting
aspects of this approach which would make it attractive for some types of applications.

For example, if the simulator was used to analyze a car accident, determining an equa
tion might be a good alternative. The driver can be programmed to have eye sensors,
and actuators that step on the gas and break pedals of the car, as well as actuators that
tum the steering wheel. The wheels of the car could have sensors to detect the torque of
the steering wheel, as well as the depression of each of the pedals. With the assumption
that most reactions during times of stress (in this case, an accident) are reflex reactions,
and therefore can be modeled, it is straight forward to create a virtual world which con
tains objects with the correct sensors and actuators to model the situation. In this case of
an accident, it is often necessary to pinpoint specific points of time during the accident
(for example, the time when the driver recognized the obstacle, the time when the driver
stepped on the break, the point of impact, etc.) If a mathematical model of the accident
existed, a time could be entered, and the simulator could calculate the position of all of
the items in the world at that point in time. This operation could be done without run
ning through the progression that led up to the point, making this method a non-linear
way of seeking time-based information about the accident. The benefit of being able to
do non-linear seeking in this case may outweigh the cost of building the complex equa
tion that would allow the seeking to be done.

Acceleration Model. The acceleration model is perhaps the most accurate model for
object movement. The next position for the object is based, not only on the location of
the other items in the world, but also on the speed of the object at the previous position,
and the length of time between the calculations. Agents gradually arrive at a speed over
time instead of instantly traveling at the speed.

Using an acceleration model allows for some interesting things to be modeled. For
example, one can model travel on a hilly surface, or on a surface with high friction by
including how these factors affect the acceleration model for the world.

The architecture of Braitenberg-type vehicles does not allow for the vehicle to maintain
any state information. Instead, it is supposed to react to the world around it based purely
on what it senses. This architecture leads to a problem in representation for the acceler
ation model. The acceleration model requires that the Agent know how fast it was going
at the previous step before it can assess the speed at which it will travel at this step.

Braitenberg Vehicles in a Virtual Environment 14

Possible Uses

To implement the acceleration model requires extra calculations for each step of the
movement. Some type of equation is needed to determine a new wheel value based on
some acceleration value for the Agent and the previous wheel value. This equation and
the acceleration value would need to be modeled to reflect real-world conditions.

The simulator built for this project has different goals for some of the sample applica
tions described above. It is important for the user to be able to change the world in some
way (for instance, move an object in the world), and quickly be able to see how this
affects the movement of the Agent. In addition, the world may be changing while the
agent is moving so the Agent truly needs to sense its surroundings while it is moving. I
decided to use an incremental move model in which the Agent moves using the instanta
neous model, but each movement is for a very short distance. Unless the world changes
very quickly, the Agent appears to move at smoothly changing distances (velocities) for
each step.

Possible Uses

There are many reasons why a simulator might be used rather than actual robots.

Portability. Computers are generally accessible anywhere. Transporting programs to
other computers is easy, while transporting a robot to another location sometimes even

I
requires taking the robot apart and reassembling it.

\
Reliability. Once a program is on a computer, the program will run the same way each
time it is run. A robot is not always as reliable. Robot behavior can vary based on a
number of factors including the floor covering, the room humidity, abundance of ambi
ent light, etc. Since the simulated environment is more predictable and isolated, it is
often easier to determine what factor is causing a particular behavior, and, in the situa
tion where reproducing a simulation is important (in a proof of concept, for example),
the reliability of the simulator can be very comforting.

Prototyping. Before building an actual robot, it is often desirable to prototype it in a
less expensive environment. A simulator is an excellent way to prototype, allowing for
quick and easy changes, and for testing in a variety of environments. In some situations,
the prototype may provide sufficient information.

Scalability. Some experiments may require a large amount of space, or a facility that is
not accessible to the researcher. A simulator allows the robots to explore anywhere that
can be modeled. Some areas, such as inside a human vein, or on the ocean floor, may be
impossible or too expensive to explore using actual robots.

Accessibility. If the desired task for the robot is to assist a user with computer-related
tasks, the best place for that robot may be on the computer. In these types of situations, a
simulator might easily be transformed to an actual "computer robot."

Braitenberg Vehicles in a Virtual Environment 15

Future Work

Future Work

There are many directions this project could take. This section briefly lists possible
projects to continue this work. Each item listed here is described in detail in Appendix
B.

•	 Multiple Propagation Models. Currently if there are multiple agents in the virtual
world, they all have to use the same sensor-actuator function for their movement.
Having multiple functions would allow agents in a simulation to behave differently.

•	 AUow Agents to Move Independently. All of the Agents in the world start to move
when the Start Simulation button is pressed. There is no user interface for allowing
the agents to move independently.

•	 Make the Control Panel of the Application Work While the Simulation is Run
ning. User actions in the Control Panel are queued while a simulation is running. If
the Panel worked during the simulation, changes could be made to the environment
while the Agent is moving (for example, a light that the agent is approaching could
be moved as the agent arrives.)

•	 Change User Interface to a Drag and Drop Model. To change the position of an
item in the world, the user must know the new coordinates for the object, make sure
that the correct object is shown on the control panel, and type in the new coordi
nates. A better approach would be to have the user click on the object to be moved,
and drag it to its new position.

•	 Change the Underlying Graphics Libraries. The Brown Graphics Group intends
to eventually stop supporting the WAY and OD libraries -- the two libraries neces
sary for most of the images seen during the simulation. The graphics in the simulator
need to be changed to use libraries that will be supported.

•	 Extend the Model to Three Dimensions. Although all of the locations, directions,
and graphical representations in the simulator are internally represented in three
dimensions, the movement of the objects are restricted to two dimensions. Interest
ing results could be obtained from working in 3D.

•	 Add Other Objects to the World, and Sensors to Detect Them. The Agents can
currently only detect Lights and Obstacles. Other objects such as colored lights, or
goals can be added to the world along with sensors for the agent to detect the new
objects.

•	 Add the Ability to Change Sensor Direction. The sensors on the Agents are hard
coded to point in a particular direction relative to the Agent. Functions could be
added to change the direction of the sensors.

References

Braitenberg, V. (1984). Vehicles: Experiments in Synthetic Psychology. the MIT Press

Conner, B (1993). OD: Objects to Draw in WAY windows. Department of Computer
Science, Brown University.

Braitenberg Vehicles in a Virtual Environment 16

References

Conner, B & Grimm, C. (1992). WAV:Classes Encapsulating Windows and Viewers for
3D Graphics - Draft [1.5]. DeparlInent of Computer Science, Brown University.

Foley, J. D., vanDam, A, Feiner, S. K., & Hughes, J. E, (1990). Computer Graphics:
Principles and Practice, Second Edition. Addison-Wesley Publishing Company

Zeltzer, D & Johnson, M. B. (?). Virtual Actors and Virtual Environments: Defining,
Modeling and Reasoning about Motor Skills. Interacting with Virtual Environment, L.
MacDonald & J. Vince eds. John Wiley & Sons.

Zeltzer, D. & Johnson, M. B. (1991). Motor Planning: An Architecture for Specifying
and Controlling the Behavior of Virtual Actors. The Joumal of Visualization and Com
puter Animation, Vol 2, 74 - 80.

Braitenberg Vehicles in a Virtual Environment 17

Appendix A. Class Structure

Appendix A. Class Structure

This section discusses both the coding conventions used for this project, and the class
structure for the project.

Coding Conventions

TABLE 1. Variables

Example Description

other_variable All variables are in all lower case letters, with words separated
by underscores.

member_variable_ Member variables of a class have the same format as other vari
ables, but are followed by an underscore.

pPointer_variable A pointer to a variable have the same format as other or member
variables, but are preceded by a lower case p followed by a cap
ital letter.

TABLE 2. Other Conventions

Example	 Description

functionNameO	 Name of a function starts with a lower case letter with every
new word starting with a capital letter.

IAVRClassName	 Class names start with the program identifier IAVR, and have
capital letters to start every new word.

Class structure Alpbabeticallisting of the classes.

IAVRAgent

File Name(s): IAVRAgent.C IAVRAgent.H

Description: Models a virtual agent with an arbitrary number of sensors and motors

IAVRAgentltem

File Name(s): IAVRAgentItem.H

Description: Models an item in an agent list

IAVRAgentList

File Name(s): IAVRAgentList.C IAVRAgentList.H

Description: Models a list of agents for the virtual world

Braitenberg Vehicles in a Virtual Environment 18

Appendix A. Class Structure

IAVRApplication

File Name(s): IAVRApplication.C IAVRApplication.H IAVRApplicationCon
trols.C IAVRApplicationHandles.C

Description: creates a virtual environment and sets up the virtual agents for the
application. This class handles all user input, and updates for the screen
through motif calls.

IAVRLight

File Name(s): IAVRLight.C IAVRLight.H

Description: Models a light in the virtual world

IAVRLightltem

File Name(s): IAVRLightItem.H

Description: Models an item in a light list

IAVRLightList

File Name(s): IAVRLightList.C IAVRLightList.H

Description: Models a list of light sources for the virtual world.

IAVRLightSensor

File Name(s): IAVRLightSensor.C IAVRLightSensor.H

Description: Models a light sensor from the parent class sensor

IAVRLocation

File Name(s): IAVRLocation.C IAVRLocation.H

Description: Models and x, y, z location and allows for arithmetic

IAVRMotor

File Name(s): IAVRMotor.C IAVRMotor.H

Description: Models a motor for a virtual agent

IAVRObsSensor

File Name(s): IAVRObsSensor.C IAVRObsSensor.H

Description: Models an obstacle sensor from the parent class sensor

IAVRPtObs

File Name(s): IAVRPtObs.C IAVRPtObs.H

Description: Models a point obstacle

Braitenberg Vehicles in a Virtual Environment 19

Appendix A. Class Structure

IAVRPtObsItem

File Name(s): IAVRPtObs.H

Description: Models an item in a point obstacle list

IAVRPtObsList

File Name(s): IAVRPtObsList.C IAVRPtObsList.H

Description: Models a list of point obstacles for the virtual world

IAVRSensor

File Name(s): IAVRSensor.C IAVRSensor.H

Description: Models a generic sensor and is the parent class for other sensors

IAVRWall

File Name(s): IAVRWall.C IAVRWall.H

Description: Models a wall in the virtual world

IAVRWallltem

File Name(s): IAVRWallItem.C IAVRWallItem.H

Description: Models an item in a wall list

IAVRWallList

File Name(s): IAVRWallList.C IAVRWalIList.H

Description: Models a list of walls for the virtual world.

Braitenberg Vehicles in a Virtual Environment 20

Appendix B. Future Projects

Appendix B. Future Projects

This appendix describes the projects described in the Future Work section of this paper.
For each project, a description, suggested procedure, and estimated time is included.

Multiple Propagation Models

Description: Currently if there are multiple agents in the virtual world, they all have to

use the same sensor-actuator function for their movement. Having multiple functions
would allow Agents in a simulation to behave differently from each other.

Estimated Time: 40 - 80+ hours depending on the person's familiarity with the IAVR
code, and with function lists. A knowledge of C++ is essential, and a familiararty with
Makefiles will be helpful. Motif experience will be necessary to build a user interface
for this new function.

Getting Started: This project consists of two parts: determining the best procedure for
implementation, and actually implementing the new model.

Currently the propagation code for the agents is stored in a global function called IAVR
PropagateO. This function is called by IAVRAgent::incrementalMove(int, int, int, int)
which is located in the file iAVRAgent.C. The Application stores a list of agents in its
member variable IAVRApplication: :agenclisc

What needs to be done? You will need to create a list of function pointers for the
IAVRPropagate code (this list would ideally be a dynamic list). You will also need to
devise a scheme for attaching particular Propagate code to different Agents. Each Agent
should know which Propagate code it uses. You will also need to build some sort of user
interface to allow the user to specify which propagate code will be used for each agent
in the virtual world. It would be nice if the different versions of the Propagate code were
easily recognizable from a users point of view (maybe the name of the "brain" is the
name of its function?)

Braitenberg Vehicles in a Virtual Environment 21

Appendix B. Future Projects

Allow Agents to Move Independently

Description: All of the Agents in the world start to move when the Start Simulation
button is pressed. There is no user interface for allowing the Agents to move indepen
dently.

Estimated Time: 10 + hours depending on the person's knowledge of motif and this
project. Some knowledge of motif would be helpful, or at least a strong desire to learn
motif.

Getting Started: Code for moving an Agent independently is located in Agentmove
ToLight(const IAVRLightList&, const IAVRPtObsList&). Calling this function causes
that Agent to move by calling its propagateO code. [NOTE: the name MoveToLight is
named as such due to historical reasons.]

What Needs to be Done? You need to create a motif button and its callback func
tion(s). You should familiarize and understand all of the code in the file IAVRApplica
tionControls.C, and understand how the callbacks are defined in the IAVRApplication.H
file. You can look at the callbacks IAVRApplication::addAgent and IAVRApplica
tion::agentXChanged located in the file IAVRApplicationHandles.C for ideas on how to
implement your callback

Braitenberg Vehicles in a Virtual Environment 22

Appendix B. Future Projects

Make the control Panel of the Application Work While the Simula
tion is Running

Description: User actions in the Control Panel are queued while a simulation is run
ning. If the Panel worked during the simulation, changes could be made to the environ
ment while the Agent is moving (for example, a light that the agent is approaching
could be moved as the agent arrives.)

Estimated Time: 20 + hours depending on the person's knowledge of motif.

Getting Started: Although I don't have extensive knowledge of motif, I believe that
there should be some way to get user events wbile you are doing other code. For exam
ple, when a user starts a simulation, the callback function IAVRApplication::handleM
ove is called (located in IAVRApplicationHandles.C. This function runs through a loop
and move the agent incrementally for each iteration. If you could check for user events,
and handle the ones you want from within this loop, you should be able to dynamically
change the world while the simulation is running.

What Needs to be Done? You need to investigate the motif books and look for a way
to query for user events. You will need to handle these events from within the handleM
ove function. When you are successful with this, you can add a "Stop Simulation" but
ton (or change the Start Simulation button to a Stop button when the simulation is
proceeding), and remove the 100 step limit in this function. This will eliminate the pos

, sibility of the user having to bit the Start Simulation button more than once to see an
\ entire simulation.

Braitenberg Vehicles in a Virtual Environment 23

Appendix B. Future Projects

Change User Interface to a Drag and Drop Model

Description: To change the position of an item in the world, the user must know the
new coordinates for the object, make sure that the correct object is shown on the control
panel, and type in the new coordinates. A better approach would be to have the user
click on the object to be moved, and drag it to its new position.

Estimated Time: Unknown. This project should only be attempted after the underlying
graphics libraries (yVAV and OD) are replaced. Some experience with the graphics
group libraries would be helpful.

Getting Started: If you are not familiar with the Graphics Group libraries for WAY
and OD, you can find user manuals for them in /pro/uga/doc/wav/wav.dvi and /pro/uga/
doc/od/od.dvi.

What Needs to be Done? This would be determined by the replacement graphics
library.

Braitenberg Vehicles in a Virtual Environment 24

Appendix B. Future Projects

Change the Underlying Graphics Libraries

Description: The Brown Graphics Group intends to eventually stop supporting WAY
and OD libraries -- the two libraries necessary for most of the images seen during the
simulation. The graphics in the simulator need to be changed to use libraries that will be
supported.

Estimated Time: Unknown. The time required depends on the new graphic libraries.
Some familiarity with transformation matrices would be extremely helpful, but can be
learned by reading pages 201 - 226 of Computer Graphics: Principles and Practice, Sec
ond Edition (Foley, et. al.)

Getting Started: If you are not familiar with the Graphics Group libraries for WAY and
OD, you can find user manuals for them in /pro/uga/doc/wav/wav.dvi and /pro/uga/doc/
od/od.dvi.

What Needs to be Done? You will need to talk to people in the Graphics Group to
learn what they suggest to replace the graphics libraries WAY and OD. The WAY code
is used in IAVRMain.C and in IAVRAppliction::IAVRApplicationO. You will also need
to replace the createPictureO code for the Light, Agent and Wall.

Braitenberg Vehicles in a Virtual Environment 25

Appendix B. Future Projects

Extend the :Model to Three Dimensions

Description: Although all of the location, directions, and graphical representations in
the simulator are internally represented in three dimensions, the movement of the
objects are restricted to two dimensions. Interesting results could be obtained from
working in 3D.

Estimated Time: This project could be another masters project.

Getting Started: You should familiarize yourself with the class IAVRLocation, and
with the paper Braitenberg Vehicles in a Virtual Environment.

What Needs to be Done? You will minimally need to determine equations for deter
mining the distance travelled in each incremental step. You will have to determine how
the Agents move in three dimensions, and possibly create other types of actuators in
addition to the current wheels. You will also need to add user interface elements.

Braitenberg Vehicles in a Virtual Environment 26

Appendix B. Future Projects

Add Other Objects to the World and Sensors to Detect Them

Description: The Agents can currently only detect Lights and Obstacles. Other objects
such as colored lights or goals can be added to the world along with sensors for the
agent to detect the new objects.

Estimated Time: 60 - 80 + hours for each object/sensor combination. Some experience
in C++ would be helpful.

Getting Started: You should look at either the Wall series or the Light series of code.
The series of code consists of the object (IAVRWaIl or IAVRLight), the object's list item
(IAVRWallItem or IAVRLightItem), and the object's list (lAVRWallList or IAVRLight
List). You will also need to create a sensor to detect the new object. For this, you should
look at the class IAVRLightSensor.

What Needs to be Done? Using the classes suggested above, you should create a new
object and a sensor to detect it. You will need to add the sensors to the Agent member
list, and add a new incremental move function to IAVRAgent which takes a list of the
new object (as well as the other things you want to detect) to get the sensor readings.
You will need to create a member list of the object in the class IAVRApplication.

Braitenberg Vehicles in a Virtual Environment 27

Appendix B. Future Projects

Add Ability to Change Sensor Direction

Description: The sensors on the Agents are hard coded to point in a particular direction
relative to the Agent. Functions could be added to change the direction of the sensors.

Estimated Time: 80 - 130 + hours depending on knowledge of this code.

Getting Started: In the file IAVRAgent::AgentO you will notice that, when the sensors
are created, they are given the direction that the agent is pointing by default. The direc
tion of the sensor is one of its properties (see IAVRSensor.H), but there is currently no
method to change this direction.

What Needs to be Done? You will need to create a method in the class IAVRSensor
that changes the direction of the sensor. You will need to call that function whenever the
direction of the sensor changes. Because of the nature of the agent, you probably want
to save the direction as an offset to the direction that the agent is facing (this is a similar
model as what is done with the sensor locations). You will need to add some sort of user
interface to allow users to access the new functionality.

Braitenberg Vehicles in a Virtual Environment 28

May 14, 1995

Braitenberg Vehicles in a
Virtual Environment:
Users Guide

By Laura Dorival Paglione

This document describes how to use the
simulator VRAgents. For information about
the internals of this project, see the
companion paper: Braitenberg Vehicles in a
Virtual Environment.

Valentino Braitenberg, in his book Vehicles: Experiments in Synthetic Psychology,
describes a series of hypothetical, self-operating machines which he calls ''vehicles.''
All of the vehicles have a very simple internal structure, and are discussed as though
they exhibit some sort of civilized "behavior." His vehicle's behaviors are borne out of a
direct connection of input sensors to output actuators. This connection allows the vehi
cles to be able to directly translate what they sense into how they react.

In this paper I discuss how to use this simulator for Braitenberg-type vehicles. This
paper also serves as a guide to interface this project with others (such as a compiler
which will automatically set up, or link the conditions of a simulation.)

What is in this guide?

This guide is divided into two sections:

•	 Section 1: Guide for using the simulator - describes what the buttons do, how to set
up the environment for a simulation, and how to run the program. This section is
intended for people actually running the simulations.

•	 Section 2: Guide for interfacing with the simulator - describes how to link different
PropagateO code to the simulator, and how to set up various structures for expected
behavior. This section is written for a project coordinator, or person responsible for
linking Rex or C code with the simulator.

This paper assumes that the user is familiar with Braitenberg-type vehicles, and is famil
iar with Rex programming models.

1

Section 1. Guide for using the simulator

Section 1. Guide for using the simulator

Getting Started

The Control Panel

Before using this guide you will need to review some information given to you by the
project coordinator. This should include:

1.	 Location of the program VRAgents. The name of the simulator program is
VRAgents. This is the name that you will type at the UNIX prompt to start the pro
gram.

2.	 Description of how to link your sensor-actuator code. The simulator can use code
that you wrote as the "brains" for the vehicles. Your project coordinator will give
you instructions on how to compile and link your code so that it will be usable by the
simulator.

The simulator uses special libraries written by the Brown Graphics Group which access
Silicon Graphics International's XGL libraries. These libraries will only work if you are
using Open Windows (instead of X Windows, for example). When you log on to the
computer, be sure that you choose Open Windows as your window environment. In
addition, the simulator takes full advantage to any graphics hardware that is in the com
puter. For the best results, use one of the computers that are located in the Sun Lab.
These computers are equipped with Leo cards which will accelerate the graphic redraw
ing, and will cause the pictures to look and run better.

Once you have linked your "brain" code with the simulator, type the following at the
UNIX prompt to start the program:

>	 VRAgents

This will start the simulator.

You will see two new windows open on your screen. The larger window is the Viewer.
This window is where you will see the movement of the vehicles (which are called
Agents in this program). The smaller window is a Control Panel. This window is where
you will make the adjustments in the virtual world to achieve the simulation that you
want.

The Viewer Window does not have any drag or drop capabilities, nor does it detect any
mouse or keyboard commands. This window is only for viewing your simulation.

The Control Panel has:

•	 a menu bar with two sub-menus: file and delete

•	 a start simulation button

•	 a quit button

•	 three sections: Agent, Light, and Wall, all of which contain a drop-down list box to
switch between objects, a button to add an object, and two text boxes to change the x
and y coordinates of the object. The Agent section also contains two text boxes to
change the direction of the Agent.

Braitenberg Vehicles in a Virtual Environment: Users Guide 2

Section 1. Guide for using the simulator

The Menu Bar

The Start Simulation Button

The Quit Button

The Sections

When positioning objects, you should note that the Viewer Window is set up in Carte
sian Coordinates. The center of the Viewer Window is the point (0, 0), and the corners
of the Window are (-45, -45) [lower left corner], (45, -45) [lower right corner], (45,45)
[upper right corner], and (-45, 45) [upperleft corner]. If you try to position an object off
of the screen, the program will force the object back on the screen. For example, if you
tried to put an object a the point (3, 70), the program would actually put the object at the
point (3, 45).

The menu bar of the control panel has two sub menus: File and Delete.

The File Sub Menu. The File sub menu has three choices:

•	 Start Simulation - This option has the same effect as when you press the Start Simu
lation button that is on the Control Panel. Choose this option to start your simulation
(see also "Start Simulation Button" below for more information.)

•	 Reset - This option moves the agent to (0, 0). [This option should be removed. It no
longer has much usefulness]

•	 Quit - Choose this option to quit the program.

The Delete Sub Menu. The Delete Sub Menu has options to delete objects in the vir
tual world. At the time of this writing, none of the options are programmed to do any
thing interesting.

When you press the Start Simulation button, all of the Agents in the world begin to
move according to the "brain" code that you programmed in Rex or another language.
You should click this button after you have set up the positions of all of the objects in
the world.

While a simulation is running, any changes you make or buttons you press will be
queued until the simulation has stopped running. It can become quite frustrating if you
press the start button by mistake, and a long (or possibly even an infinite) simulation
occurs. To help make mistakes like these less disastrous, the program runs the simula
tion until it stops, or until the agent has move 100 "steps," whichever comes first. (The
agents move through a series of incremental steps. Every time that you see the Agent
make a small movement during a simulation, it has taken a step.) Using this method, the
simulation will only run a maximum of 100 Agent steps after the Start Button is
pressed. One downfall of this approach is that, when you press the Start Simulation But
ton, the Agent may not move far enough to complete the simulation. As a result, you
may have to hit the button more than once to run the entire simulation.

When you are finished running you simulation, press the quit button to terminate the
program.

There are three sections (Agent, Light and Wall) on the control panel which allow you
to make changes in the virtual world. All of the sections consist of at least the following
things:

1.	 The name of the object for the section

Braitenberg Vehicles in a Virtual Environment: Users Guide 3

Agents

Section 1. Guide for using the simulator

2. A drop-down list box for changing the current object for the section

3. A button to add a new object

4. Two text boxes to change the x and y location of the current object for the section

1. The name of the object for the section. There are three types of objects that exist in
the world: Agents, Lights, and Walls. To manipulate each of the objects, there is a sec
tion for handling each type of object.

2.Changing the current object for the section. Each of these sections has a concept of
the "current" object for which all of the information is displayed (for example, the loca
tion text boxes show the location of the current object). The first box at the top of each
section is a drop-down list box. On the right side of the drop-down box is a control
which causes the list to show itself when it is clicked. If you select an object from this
list, the item becomes the "current" object, and its information is shown in the other
parts of the section (for example the position information is changed to reflect the new
current object).

3. Adding new objects. Click the Add object button, and a new object of the section's
type will be added to the world. This object is also added to the drop-down list
described in 2 above. If you want to change the position of an object you've just added,
you will have to use the drop-down list box to change the new object to the current
object. Objects are numbered sequentially in the order they were created, so the object
that you just added will always be the highest numbered object on the list.

The program places new objects in default positions in the Viewer Window which may
be the same position as another object in the world. If you click the Add object button,
but don't see a change in the Viewer Window, it may be because the new object was
added where an object already exists. Try changing the object you just added to the cur
rent object, and change its location.

4. Changing the x and y locations of the current object. For each section, the pro
gram shows the location of the current object for that section. To change the location of
the current object, type in the new x and y locations in the text boxed provided. The
change you type will not be in effect until the text box loses focus. You can make your
changes take effect by pressing the tab or return keys, or by clicking the mouse on
another control.

Agents look like spheres in the Viewer Window. The control panel allows you to change
the agents' position and direction, and allow you to add agents to the world. All of these
items work as described in "The Sections" above, with the exception of changing the
direction of the Agent, which is not described above.

Changing Agent direction. As with changing the location of an object, you can change
the direction of an Agent by typing the new x and y directions in the text boxes provided
for the direction. To determine what to type for the new direction:

1. Imagine that the Agent is at the coordinates (0, 0);

2. Pick a point on the screen that the agent should face;

Braitenberg Vehicles in a Virtual Environment: Users Guide 4

Lights

Walls

Mini-Tutorial

Section 1. Guide for using the simulator

3.	 Estimate the coordinates of the point determined in 2 given that the origin of the
coordinate system is at the center of the agent;

4.	 Type in the value of the point the agent should face (from the estimation made in 3.)

It is not necessary to know the scale of the coordinate system when you make your esti
mation because the program is only interested in the ratio of the numbers you type for
the x and y directions, not the actual values.

Lights look like orange cubes in the Viewer Window. The control panel allows you to
change the Lights' position and allows you to add move Lights.

Walls look like yellow cubes in the Viewer Window. The control panel allows you to
change the Wall's position and allows you to add move Walls.

Using the default brains for the agents, try changing the simulation. The default brains
make the agents move toward lights and avoid obstacles.

Move into the directory where the simulator is by using the UNIX command cd.

>	 cd [the directory]

Start the simulator by typing the following at the UNIX prompt.

>	 VRAgents

The simulator program should start. You are now ready to try out your first simulations.

Simulation 1. For the first simulation, try leaving all of the objects where they are. Run
the simulation by pressing the Start Simulation button, or by choosing Start Simulation
from the File menu.

You will see the Agent move to the light. In this simulation, the obstacle is not in the
way, so the Agent doesn't need to avoid it.

Simulation2. Move the agent back to where it started. Its starting position was (0, -40).

•	 Double click in the box for Agent Location X. Type the number 0, and hit the
tab key

•	 Motif controls have similar navigation commands to emacs. Hit C-A to move
the cursor to the beginning of the Y Location text box. Hit C-D a few times to
erase the number that is there, and type in -40. Hit the tab key to make the
change take effect.

Change the direction back to the direction is was pointing originally by changing the
direction to (0, 1). (Do this they same way that you changed the agent's direction)

Change the location of the light to (40, 10)

Change the location of the wall to (5, 0)

Braitenberg Vehicles in a Virtual Environment: Users Guide 5

Section 1. Guide for using the simulator

Add a Light by pressing the Add Light button. (this adds a new light -- Light 2 to the
center of the Viewer Window)

Switch to the new light by selecting if from the Light drop-down list box. You can do
this two ways: (1) click on the small rectangle next to the label "Light 1" and choose
Light 2 from the list, or (2) When the Control Window panel has the focus, press M-L.
The drop-down list will expand. Now you can type the number 2 or click on the label
"Light 2."

Change the location of Light 2 to (-40, 10)

Start the simulation by pressing the Start Simulation button

Simulation 3. You can try out your own environments or press the Quit button to quit
the simulator.

Braitenberg Vehicles in a Virtual Environment: Users Guide 6

Section 2. Guide for interfacing with the simulator

Section 2. Guide for interfacing with the simulator

Linking user defined code is fairly simple, but a few rules must be followed:

1.	 The purpose of the user defined code is to specify the values for the wheels of the
agent given the values of each of the sensors of the agent

2.	 The code must be written in C

3.	 The code consists of at least one global C-function called IAVRPropagateO. This is
the only function that is called by the simulator.

4.	 The code uses the structure IAVR_Input to get the values for the sensors

5.	 The code puts the value of the motors in the structure IAVR_Output

Input and Output Structures	 The two structures IAVR_Input and IAVR_Output are located in the file IAVRRexInte
face. H. Below are the definitions of the structures:

struct Input
{

int left_light_sensor; II value between a and 100
int right_light_sensor; II value between a and 100

int left_obstacle_sensor; II value between a and 100
int right_obstacle_sensor; II value between a and 100

IAVR_Input;
(
\ struct Output

int left_wheel; II value between a and 100
int right_wheel; II value between a and 100

IAVR_Output;

You will need to include IAVRRexInterface.H in your file with the IAVRPropagateO
function to use these structures.

IAVRPropagate() function	 The function IAVRPropagateO has no parameters, and returns no value. It can do any
sort of calculation or function calling allowable by C, but you should keep in mind that
this code is called many times during a simulation, and the less computationally com
plex that you keep the function, the better the simulation will run. Also keep in mind
that integer calculations are faster than floating point ones.

Braitenberg Vehicles in a Virtual Environment: Users Guide 7

Section 2. Guide for interfacing with the simulator

Sample Code

Editing the Makefile

Your file should end up looking something like:

#include IAVRRexInterface.H

void IAVRPropagate()

{

IAVR_output.left_wheel

[some function of

IAVRInput.left_light_sensor,
IAVRInput.right_light_sensor,
IAVRInput.left_obstacle_sensor,
IAVRInput.right_obstacle_sensor] ;

IAVR_Output.right_wheel =
[some function of

IAVRInput.left_light_sensor,
IAVRInput.right_light_sensor,
IAVRInput.left_obstacle_sensor,
IAVRInput.right_obstacle_sensor] ;

}

You can name the file anything that you want.

(In the Makefile, you will see a keyword
\

REX_FILE

Type in the name of your file (that contains the IAVRPropagateO code) after the "="
sign, save the Makefile, and type make at the UNIX prompt.

> make

When the files have finished linking, you will be able to simply type VRAgents at the
UNIX prompt to run the simulation. (You should note that this Makefile requires and
objs/ director, and a dependent Makefile. See someone with more experience with
Makefiles if you have further questions about this.)

[NOTE: a more skilled Makefile writer could probably make this a slightly less painful
process by allowing the name of the file that you want to link be a command line vari
able to the make command.]

Braitenberg Vehicles in a Virtual Environment: Users Guide 8

