
BROWN UNIVERSITY

Department of Computer Science

Master's Project

CS-95-M2

"A Visual Interface for Producing Queries the AQUA Algebra"

by

Brian G. Anderson

1

.•.

A Visual Interface for Producing Queries
the AQUA Algebra

Brian G. Anderson

Department Of Computer Science
Brown University

\

Submitted in partial fulfillment of the requirements for the degree of

Master of Science in the Department of Computer Science at Brown

University

March 1995.

S~~:(

A Visual Interface for Producing Queries in the AQUA
Algebra

Brian Anderson

bga@cs.brown.edu

Dept. of Computer Science

Brown University

Box 1910

Providence, RI 02912

Abstract

This paper presents a visual interface for generating queries on object-oriented
databases based on the AQUA data model and query algebra. We introduce a dis
play emphasizing the navigation of paths through the member functions of abstract
data types and a procedural interaction technique based on line gestures. We
explain how to use silVIA (Visual Interface to AQUA) and demonstrate an exam

\
ple query in a sample session.

1.0 Introduction

This paper presents silVIA (Visual Interface to AQUA), a program for visually producing object

oriented database queries in the AQUA [LMS+93] algebra. This interface offers a gestural inter

action style to manipulate views of the database into the desired query. It addresses the issues of

path navigation and the procedural nature of AQUA in ways not found in existing visual query

languages. In conjunction with the GROOVE visualizer for query optimization, it forms a visual

environment for query formation and optimization.

In the AQUA data model, named global sets provide access to the database; these global sets form

the initial display in the silVIA interface. The user can navigate paths through the structure of the

database schema, starting with the global sets and expanding member functions of abstract data

types to reach the desired information. Gestures allow the user to alter the views into the data

base, creating new named sets. As the user manipulates the display of the schema, silVIA keeps

track of the underlying AQUA syntax for the actions, so that when a displayed view matches the

user's query, its AQUA representation can be submitted as a query to the query optimizer.

1

The display of the schema and views is based on a nested-tree structure that emphasizes path-nav

igation and many-to-one relationships. Expanded member functions are placed within the exist

ing display structure to visually preserve transitive relationships, which sometimes are not

apparent in graph-based visual languages.

Line gestures are based on metaphors representing the actions of selection, join, union, and

extraction. A line crossing the display of a set generates a selection, just as a selection divides a

set in half based on a predicate function. Joins and unions are accomplished by drawing a line

that connects the sets. An instance deep in a path from the named global sets can be extracted to

create a new view into the database by drawing a line from the instance out of its containing sets.

Section 2 compares the silVIA interface to related research in visual interfaces. A brief overview

of the AQUA data model and algebra is given in Section 3. The silVIA interface's display and

interaction techniques are described in Section 4. Then, a sample query produced with silVIA is

demonstrated, with conclusions and future work proposed in the final section.

In this paper, text referring to silVIA's display and names for abstract data types appear in bold

face, AQUA expressions appear in italics.

2.0 Existing visual languages

[VA093] reported in 1993 that since the introduction of QBE, over fifty visual languages for que

rying databases have been developed. The majority of these languages are designed for the rela

tional model In most cases the method for creating a query uses a declarative, as opposed to a

procedural, language. The AQUA data model and syntax defines a procedural method of query

ing object-oriented databases, so a visual interface for AQUA needs to reflect this in its interac

tion techniques. The silVIA interface is distinctive in its display of path navigation through

member functions of objects and its gestural interaction techniques.

2.1 Relational vs. object-oriented model

QBE [Zlo75] began the movement to create visual techniques for querying databases. Many of

the visual techniques and display styles introduced in QBE have been continued in other visual

query language designs, including the table based display and the declarative style of creating a

query. In table-based displays, a table represents a relation, each field in a tuple placed in a col

umn. Predicates on specific fields are entered within the column. Instance variables can be

placed in the columns of two different relations to convey relationships across the database.

2

The PICASSO [Kim88] interface deals with the relational model by displaying the fields of the

relations as areas on the screen with ovals representing the relations. An oval surrounds the fields

that are contained in that relation such that relations that share a field are displayed with overlap

ping ovals.

Although some techniques from relational visual languages can be used in object-oriented visual

languages, relational visual languages cannot properly display abstract data types or handle inher

itance and path navigation.

2.2 Declarative vs. procedural models

Many visual languages are based on declarative styles of querying. Instead of instructing how to

construct a query, the user specifies what the correct answer should look like. Declarative query

languages such as DATALOG for relational models and F-Iogic [KL89] for object-oriented mod

els form the basis for some visual languages; for instance, the DOODLE [Cru92] visual language

is based upon F-Iogic queries.

Instance variables are used in declarative languages to relate between relations or sets of objects

in the database. The variable may appear in columns of tables as in VQL [VA093], or as nodes in

a graph with arcs connecting the instance variable to the sets, as in GOOD [GPV90].

Though a declarative method is appropriate for certain query languages, the AQUA model is pro

cedural, so the visual model for an interface for AQUA needs to address this in its interaction

style. silVIA uses a set of gestures to modify views of the database, thereby constructing new

views. At each step in the process, the displayed sets represent the result of applying AQUA pro

cedures to the existing database global sets. By manipulating the display, the user instructs how

the query should be constructed. This style of interacting with a display differs from existing

visual languages, and better fits the AQUA model.

2.3 Direct manipulation

An alternative style of visual querying is direct manipulation[Shn93]. In this model, the values in

the database are displayed in a format dependent on the data; queries are made by manipulating

sliders and other input devices. The display is updated as the user manipulates the query; in order

to maintain an interactive response time, query results must be produced at an update rate of 100

msec.

Since the display of the data is dependent on the values in the database; different application pro

3

grams need to be written for each type of data being queried. Although input techniques can be

transferred from one database type to another, a different application has to be written for each

database schema. Because the silVIA display is dependent only on the structure of the schema,

and not what types are actually in the database, the interface can be used on different schemas

without changing the interaction method a user uses to create a query.

The AQUA data model does not assume that queries can be made quick enough for the direct

manipulation method. With AQUA, a query is fonnulated and then submitted to a query opti

mizer, which considers the structure of the database. In some databases, including distributed

databases, a interactive response time may not be feasible.

2.4 Table and graph displays

Visual query languages generally use one of two different techniques for display: tables or graphs.

The table display originated in the relational model, although VQL [VA093] is table-based and

can be used to query object-oriented databases. Relationships between tables are implied through

instance variables repeated in different tables. However, because of the complex relationships

between objects in the object-oriented model, table-based displays are not necessarily the best

way to convey these relationships.

Figure I shows an example VQL query illustrating a table-based display. The relationship

between the manufacturer of vehicles c and d is implied by the repetition of the instance variable

m. However, there is no visual cue to this relationship beyond recognizing that the letter m has

appeared in two tables.

II cannodel
BlueCars II 0

c: Vehicle d:Vehicle
model manufacturer COlor manufacturer color

0 m "blue" m "green"

m:ComDanv (mpl CA
presloem ars [Jp CA

Figure 1: Example VQL query showing table-based display. [VA093]

A graph based display is used in GOOD [GPV90] and G+ [Cru89]. Instances are nonnally

4

@]

color
1 ~Cblue

expressed as nodes in the graph; member functions or fields in tuples are expressed by arcs. The

GOOD method of display makes it hard to visually tell a "many to one" relationship, because the

only visual cue is the a double headed arrow, but the basic arc diagram remains the same between

many-to-one and one-to-one relationships. An arc in G+ is labelled "instanceof' to signify one

instance of a set. Figure 2 illustrates a G+ query for the Blue Cars query that will be presented in

the sample session part of this paper. Notice the need for nodes representing instance variables

(w,x,y,z) in order to define relationships across sets. The arcs in this example define a better

visual cue for these relationships than the VQL table-based display; however, when the size of the

query increases, the transitive relationships, such as the cars owned by the president of a company

(the arcs connecting COMPANY to w to z to y in Figure 2), may not be as easy to read.

The silVIA display introduces an alternative to the graph-based display which conveys these rela

tionships through a nested-tree structure that does not require nodes and arcs.

~
---+ <D

m=manufacturer

Figure 2: Example G+ query showing graph-based display.[VA093]

The Hy+ query language [CM92] displays the result of a query in a hygraph that can lead to

crowded displays if there are many nO,des and arcs. In addition, transitive relationships are some

times hard to distinguish in complex hygraph displays. The silVIA display uses a nested tree dia

gram to display the schema, instead of the actual values in the database, that makes many-to-one

and transitive relationships more apparent. Because of the importance of these relationships in

object-oriented databases, the silVIA techniques may be more appropriate when navigating a path

through object member functions.

2.5 Nested tree diagram of silVIA

Object-oriented databases are accessed through named global sets of objects. The objects within

5

these sets can contain member functions that return other objects, or sets of objects. These objects

can in tum return objects in their member functions. In this way, a path can be constructed

through the database, accessing certain objects through their relationships to others. This naviga

tion forms the basis for silVIA's display technique.

In silVIA, the initial display of a named global set consists of the name of the set and a rectangle

containing an instance of the type contained within that set. The rectangle expresses the many-to

one relationship of the multiple instances within the set to the one set name. The instance within

the set rectangle can be expanded to display its member functions. These member functions and

their return types are displayed within the original rectangle, preserving the many-to-one relation

ship. If People is a set of Person, and name is a member function on Person returning a string,

People could be used to access a set of names. The nested nature of the silVIA display makes this

apparent, whereas displays that use arcs to represent member functions [GPV90],[GSKZ85]

sometimes lose this distinction.

If Person has a member function cars that returns a set of Vehicle, then another set rectangle is

drawn. The instance drawn within cars is two set rectangles removed from the top level People.

Therefore, People can be used to access a set of sets of Vehicle. Because of the nested tree dis

play of silVIA, this transitive many-to-one relationship between People and cars is maintained.

Section 4.1 will discuss the silVIA display in more detail.

People: I p..:_!,_,!~!~~ [!]
name: String
cars: l-c-:":v:"'e-h-iC-le--[j]-~--'1

Figure 3: Nested-tree structure showing set People of type Person with name and cars as
member functions of Person.

Because of the various models of database querying, many different visual interaction styles have

been developed. The silVIA interface offers unique solutions for the issues of object-oriented

navigation and the procedural nature of the AQUA data model and algebra.

3.0 AQUA Model and Syntax

In order to explain the results of actions in silVIA, the syntax of the AQUA query algebra is pre

6

sented briefly here. A detailed explanation of the AQUA data model and algebra can be found in

[LMS+93].

3.1 Types

Types in AQUA are built up from the set of four base types: integer, float, boolean, and string.

New types can be built from combinations of these base types and other constructed types.

Abstract data types are defined through a type definition and a collection of functions to access

values within the type. Single inheritance between types is supported, so that an Employee type

can be constructed by subclassing from an existing Person type.

3.2 Syntax

The syntax for AQUA consists of terms: either a variable, constant or function symbol, a lambda

abstraction, or an application. In the AQUA expression apply(A(p) p.name)(Persons), apply and

name are function symbols, p is a variable, and 'A(p) p.name is a lambda abstraction. The apply

function iterates through the set Persons assigning p to each element in the set and then invoking

the function on p. In this case, the member function name is applied to each Person, returning a

string. The expression I.fis a shortcut for the invoke function: invoke(/,j) calls functionjon

instance I. For example, p.name invokes the name function on the object p. The result of the

complete expression is a set of strings representing the set of names of each person in the Persons

set.

3.3 Operators

The set operators in AQUA commonly used by silVIA during gestures are introduced here. The

apply operator was illustrated above; it takes a function,j, and a set, A, and appliesjto each ele

ment in A. A new set of the type returned byjis produced.

The select operator chooses elements from a set, A, based on a predicate function, p. Each ele

ment in A is included in the resulting set ifpea) is true. A common predicate function used in

selection is the mem operator. The arguments for mem are a set, A,an element, x, and an equality

function defined on the type contained in the set. The mem function returns true if there is an

element in A that is equal to x.

The fold operator reduces a set to a single value. It takes three arguments (u,j, Ea) and a set, A.

The functionjis applied to each element in A and the results are combined using the function, Ea.

U is the result of applying the fold to the empty set. The operators select and mem could be

7

implemented using fold, for instance:

select(p)(A) =!old({J, 'A(x) ijp(x) then set(x) else (J, union(id,T))(A).

The binary set operators union, intersection, and difference differ from the traditional definitions

in that they require a type parameter. This is the resulting type of the binary set operation. For

union, this type must be some common supertype of the two inputs. For intersection, this type

can be either of the two input types. For difference, this type must be the type of the first input

set.

The join operator takes a predicate and a function. The predicate argument can be used to specify

natural- or equi-joins, or to do a selection on the result of the join. The function argument defines

how the two sets will be joined. The following expression demonstrates how to join Hotels and

Monuments into a set of tuples so that each HotellMonument pair is in the same city.

join(A(h, m) (h. address.city=m.address.city),A(h,m) <<hotel:h,monument:m»)
(Hotels, Monuments)

The expression «hotel:h,monument:m» creates a tuple from the variables h "and m. The fields

are named "hotel" and "monument" respectively. The operator tup_select(name)(T) extracts out

the field name from the tuple T. The operator tup_concat(Tl,12) combines tuples Tl and 12 into

one tuple.

The silVIA interface allows the user to produce AQUA queries without a complete understanding

of the AQUA syntax. The operators described above can be executed through the use of mouse

clicks and gestures.

4.0 silVIA Display and Interaction

After reading a pair of schema and global sets files, silVIA allows the user to display the sets in

the database, navigate through the different types, and manipulate the display with a set of ges

tures to produce a query in AQUA syntax.

The silVIA interface consists of a global sets list, a message box, a work area, and buttons for

deletion and applying functions. Selecting a set from the globals list displays the set in the work

area. Within the work area, the displayed sets can then be expanded and manipulated to produce

the desired AQUA query. Messages related to the actions being taken, and the AQUA syntaxfor

a selected instance, are displayed in the message box below the work area.

8

The next section describes how the user can display and navigate through the schema representing

the database. Then the set of gestures that manipulate the schema is introduced. Section 4.3

explains how functions and folds are applied to the sets. Lastly, two sample queries are presented

to illustrate the full process of producing a query.

4.1 Display of the Schema
The first step in creating a query with silVIA involves choosing which global sets from the data

base will be involved in the query. A representation of each set is displayed in the work area.

Figure 4 illustrates how Tours, a set of type Tour would be displayed.

Tours: It: Tour [j] I

Figure 4: Initial display of Tours, set of Tour objects.

The initial display of a set consists of the set name followed by a colon. The rectangle to the right

of the name is the set marker. The lower case t represents the unique lambda name that will be

applied to the set. After the lambda name is the type of the items within the set; in this case,

objects of type Tour.

The set marker represents a distinction between single and multiple instances of objects. There is

one instance of the set called Tours, so it is placed outside of the set marker. Within the set, there

are multiple instances of objects of type Tour. The application of A(t) iterates over the set Tours

so that t can be used to represent each object within the set.

The icon of a down arrow within a box signifies that the object type Tour has member functions

that can be applied to it. The number of member functions for this type has been defined in the

schema file that silVIA has loaded upon execution. Clicking on the down arrow icon expands the

display of the Tour type, presenting the member functions.

9

Tours:· I t: Tour [!]
----capacity: Integer

availability: Integer
theme: String

description: Id: Stage [j] I
price: Money

Figure 5: Type Tour has been expanded to show member functions.

In this example, the type Tour has five members functions: capacity, availability, theme, descrip

tion, and price. Mter each of these member functions is the type returned by the function. Notice

that description returns a set of type Stage, represented by another set marker. There is another

arrow down icon after Stage because this type also has member functions. However, there is no

icon next to price of type Money, because this type does not have any member functions defined

in the schema file.

The user can then click on the icon next to Stage and display the member functions applicable to

this type. In this way the schema can be navigated, creating a path through the object types. One

of the member functions of type Stage is what of type Place_TG (place to go). The instances of

type Place_TG are now two set levels deep from the set name Tours. Therefore, by applying

functions to the set Tours, the user can create a set of sets of type Place_TG. Later in the paper, .

a method for extracting and flattening these places to go will be described, so that it will be possi

ble to create a set of Place_TG that represents all of the places that some tour in the database vis

its.

The arrow icon next to Tour now contains an up arrow to represent that it has been expanded.

Clicking on this icon will return the display to its previous appearance.

4.1.1 Inheritance
Sometimes in the schema, a type is defined as a subclass of another object type. When this type is

expanded, the member functions for this type and the inherited functions for its parent type are all

listed. In addition, the parent type is displayed in parentheses next to the original type.

'.

10

Monuments: I !!I~_~_~!I_~~~!!~{Pl~~~....TG) ~
building_date: Date
architect: Person [j]
name: String
picture: Bitmap
address: Address [j]

Figure 6: Type Monument inherits member functions from type Place_TG.

In this example, the set Monuments consists of a set of type Monument. Monument inherits

functions from the type Place_TG. The functions building_date and architect are from type

Monument, the others are defined in type Place_TG.

4.1.2 Active areas in the display
When the user clicks on an object in the work area, the item is highlighted with a dotted underline.

In addition, the AQUA string representing the item is displayed in the message box below the

work area.

There are two types of active areas in the display: an instance of an object or a set of objects. The

set of objects is represented with the set's name and a rectangle surrounding the instances within

the set. The display of an instance of an object consists of the name and type of the object.

Instances are selected by clicking within the bounding box surrounding the name and type. A set

can be selected by clicking either on the set's name or on any empty area within the rectangle

marking the extent of the set.

4.1.3 Mouse click as a path
Each pixel on the display actually represents a path of objects. For instance, in the figure above, a

mouse click on name: String constructs a path from the set Monuments, through the instance m

of type Monument to name of type String. This path represents the AQUA steps required to

access name: apply A(m) to the set Monuments, invoking the member function name on each ele

ment in the set. The result is a set of strings, the names of all of the monuments in the database.

4.1.4 Constructing AQUA
Each instance in the display keeps track of its portion of the AQUA query. When a path is con

structed by the user's input, a traversal of the path produces the AQUA text that represents the

11

query. In the above example, name:String contributes its AQUA name to the query: name.

Then m:Monuments adds m to the beginning of the AQUA string, resulting in m.name. Now the

path crosses the set rectangle, so an apply function is added. The set Monuments knows that it

represents the global set Monuments, so it adds to the AQUA text producing:

apply (A(m) m.name) (Monuments)

The path could have crossed more than one set rectangle, so that more than one apply function

could have been added to the AQUA text. Also, actions by the user could have changed the

underlying representation of the set Monuments, changing the AQUA text for the set in the

apply function. For instance, after a selection the AQUA text may appear as:

apply (A(m) m.name) (select (A(m) (marchitect.name = "Wright))

4.2 Gestures

The user manipulates the display with a series of gestures. By pressing and holding the mouse

button down while moving the pointer in the work area, a line is drawn on the screen. Depending

on the start and ending positions of the line, actions such as selections, unions, and joins are exe

cuted.

With these gestures, the user can produce new sets by manipulating the display of the global sets

in the database. These new sets, or instances within them, can then be submitted as a query.

The gestures are designed as metaphors for the actions that they represent. Because a selection

divides a set in two based on a predicate, the gesture for selection involves drawing a line that

divides the set in half. Joins and unions take the contents of two sets and combine them into one,

so the gesture involves drawing a line from one set to the other. The first is removed from the dis

play to reinforce the idea that the contents of the first set are now added to the second. A member

function of a type within a set can be extracted out of the set to form a new set of its own. For

instance, the name field can be extracted from a set of Person to form a set of names. The gesture

for this extraction involves drawing a line from the instance within the set to an icon on the top

level of the display.

4.2.1 Selection
The gesture for selection on a set involves drawing a line that crosses the set. The line should

begin and end outside of the set and the midpoint should be over the set.

12

Tours: t:Tour ~

capacity: Integer
, availability: Integer
theme: String

description: ~
what: Place_TG [j]
time: String

price: Money

Figure 7: Selection on t.description, a set of Stage objects.

Once the set that is to be selected is detennined by the gesture, and the predicate for the selection

is then entered into a dialog box. While the dialog box is visible, the user can click on items in the

display and the AQUA representation of the items will be automatically entered into the dialog

box. The AQUA representation is produced in relation to the set being selected; for instance, if

the selection is on Tours, a set of type Tour, a mouse click on theme will return t.theme, not

apply (lambda (t) t.theme) (TOUTS).

The selection predicate dialog box has a row column of shortcut buttons. Clicking on one of these

buttons enters the text on the button into the predicate. In this way, the user can click on an

instance in the work area, click on the "=" shortcut button, and then click on the other instance in

the work area; entering the predicate without having to use the keyboard.

Once the selection predicate has been entered, the display is updated so that the predicate is con

tained within the set rectangle, in italic letters to differentiate from the instances within the set.

The underlying AQUA representation of the original set is altered to reflect the selection. If the

underlying set had already been selected, then the two predicates are combined with the and oper

ator. If the underlying set was the result of a join, then the selection is added to the join predicate.

4.2.2 Unions/Joins

When the user draws a line from one set to another, a number of actions are possible. The user's

gesture defines a pairing between these two sets and silVIA then decides what actions are feasible

based on the types within the sets. The contents of the sets are compared; a set can contain a sin

gle type, another set of types, or a tuple of types, sets, or other tuples. If the sets are both single

13

types, then the types are compared to see if they are compatible. For instance, a set of type Per

son is compatible with a set of type Employee because Employee is derived from Person. If

both are sets of tuples, then the fields of the tuples are compared. If the sets are determined to be

compatible, then the user is given a dialog box of join options. The options could include set

union, intersection, difference, or a join. The display is altered after the user chooses the desired

action. If the sets are not compatible, then a join is done automatically.

TOZUS"People: t: Tour [j]
p: Person [j]

To sxHotels: 12: Tour
h: Hotel

[j]
[j]

Figure 8: Join of two sets of tuples.

Joining sets of tuples can result in more options. Two sets of tuples can be unioned only if their

field names and types are the same. However, compatible types within tuples can be form predi

cates for the join. A set of tuples of type <<t:Tour,p:Person> > can be joined with a set of tuples

«t2:Tour,h:Hotel» such that the Tours are equal. If this case is possible, then another option,

equi-join, is added to the join action dialog box. The user can then select predicates to add to the

join and decide which fields from the two tuples will be in the result. For this join example, the

user could choose the predicate tup_select(t)(x)=tup_select(t2)(y) and choose not to include the

field t2 in the result. The resulting set would contain tuples «t:Tour,p:Person,h:Hotel».

4.2.3 Creating Thples

There is another way of creating tuples besides joining two sets. A set of Tours and a set of Mon

uments could be combined so that the resulting set contains a tuple consisting of a Tour and a set

of Monuments. Each Tour would be paired with its individual copy of the set of Monuments,

so that a selection can be done on the Monuments set depending on values in the Tour instance.

The gesture for this action differs from the join gesture in its release point. A line from Monu

ments to the set Tours results in a join, but a line from Monuments to the instance t:Tour within

the set Tours creates a set of tuples «t:Tour,Monuments:Set[Monumentl».

14

Tours: I t: Tour 00
Monuments: 1m: Monumentoo

Figure 9: Set of tuples containing a Tour object and a set of Monuments.

4.2.4 Nested Queries
The display illustrated in Figure 6 can be used to represent a tuple or a nested query. If the set

Tours is selected, then the displayed query is :

apply(lambda(t) <<t:t,Monuments:Monuments> >)(Tours)

However, if the set Monuments is selected, then the query is:

apply(lambda(t) Monuments)(Tours)

In this way it is possible to select on Monuments relative to each Tour, t, without creating a tuple

in the query. After a selection on Monuments, the following query could be produced, selecting

the Monuments that are in a the same city as the places to which each tour goes:

'" apply(lambda(t) select (lambda(m) (mem(=, m.address.city)(apply (lambda (d)
d. what.address. city) (t.description))))

(Monuments))

(Tours)

This query produces a set of sets of Monuments, one set for each Tour. One of the example que

ries at the end of this paper will give a another (perhaps better) example of the use of nested que

ries.

4.2.5 Extraction and Flatten
When the user expands the member functions for types, she can navigate a path through the

schema. By highlighting an instance deep within the path it is possible to create query results

such as: a set of sets of facilities for each hotel in the database. The user however may want to

construct a new set that represents this query so that she can work with it like the other global sets

on the top level of the display. Also, the user may want to flatten this set so that it consists of only

a single set of facilities. This action is accomplished by drawing a line from the instance to the

New Set Icon in the upper left corner of the work area. The gesture stands for extracting the

instance out of the path and up to the top level.

15

[!]
name: String
address: Address [j]
'~~s: Integer

faciiMes: I....f-:-S-tn-·n-g-

!!:_tt_~!!!.

Figure 10: Extracting facilities from Hotel to the New Set Icon.

If the extracted set consists of nested sets (Le. a set of sets of strings), then the user is given the

option of flattening the set. A dialog box gives a list of types that are possible, specifying whether

and how much to flatten the set.

4.2.5 Partial Extraction
The gestures for extraction can be combined with the gestures for joins and tuple creation. It is

possible to extract an instance partially up the path, without creating a new set at the top level.

For instance, it is possible to create a set of tuples «e:Employee,birthdate:Date» where the

Date field is the employee's birth date. birthdate is a member function of Employee, so it will be

displayed when the type Employee is expanded. If a line is drawn from birthdate:Date to

e:Employee, then a tuple is created just as in the Monuments and Tour example. In this case,

however, the AQUA that stands for birthdate is relative to e:Employee. If birthdate was extracted

to the New Set Icon, then the AQUA would be apply(lambda (e) e.birthdate)(Employees); but in

this case the AQUA is e.birthdate because the gesture did not cross a set rectangle.

EmploYi!es: 1!'.P-~~Y_~~J~_~~~n) [!]
eniority: Integer
'tle: String
s~lary: Money
n~e:String
fi~'t-name: String
birtttdate: Date

Figure 11: A partial extraction of birthdate, creating a set of tuples
«e:Employee,birthdate:Date»

16

It is also possible to extract and do joins and unions at the same time. If the gesture line crosses a

set rectangle, but the release point is on a set of instances instead of the New Set Icon, silVIA cal

culates the extraction and then looks for possibilities for unions or joins.

4.3 Apply FunctionIFold

Below the schema list, on the right of the silVIA display, is a button that applies a function or fold

to an object. The function or fold is applied to the highlighted object; a function is applied to an

instance, a fold is applied to a set.

If the highlighted object is a set, then a dialog box is displayed that asks for the conditions for the

fold. A fold requires three items: a null case, a function to apply, and a conjunction function. The

fold starts with the null case and then iterates through the set, applying a function to each item in

the set and then combining the results using the conjunction. The default case in the dialog box

returns a count of the items in the setjold(O, lambda(x) 1, lambda(x,y) x+y). Figure 12 illustrates

how a fold that counts the number of elements in a Tour's description set is displayed as if it were

a new member function, number_oj_stops, of Tour.

Tours: I t: Tour [i]
capacity: Integer
availability: Integer
theme: String

description: Id: Stage [!]

price: Money

!l~~~_~!.,..~_f=~~~p..~~J~~~ger

Figure 12: A fold counting the elements in description appears as a new member function,
number_oCstops, for Tour

If the highlighted object is not a set, then a dialog box asks for the name of the function to apply to

the instance. In this way, new member functions can be added to a type. For instance, a string

length function could be applied to the theme of a Tour, creating a new member function repre

senting the string length of the tour's theme. A selection could then be made on the set of tours

(based on the string length of the theme.

17

5.0 Sample Queries

To illustrate the use of silVIA to create a query, a sample session is described based on an exam

ple proposed in [Cru89], a variation of the Blue-Cars query from [KKD89]. The query is Get all

the blue cars that are driven by the president ofthe company that also manufactures green cars.

The relevant parts of the schema for these objects are:

Class Vehicle{
color: String
manufacturer: Company

}
Class Company{

president: Person
}
Class Person {

cars: Set [Vehicles]
}

To start the query, the user chooses the set "Vehicles" from the global list. The set Vehicles is dis

played in the work area. Because the type Vehicle has member functions, a down arrow icon

appears next to the type. When the user clicks on the arrow icon, the member functions color and

manufacturer are displayed.

The user then selects the green cars from this set by drawing a line that crosses the Vehicles set.

At the selection predicate dialog, the user clicks on color:String. The AQUA expression v.color

is entered into the dialog box and the user then adds ="green" to the predicate.

Cl
Vehicles:

------~. ~
color: Sbing
manufacturer: Company 00

Figure 13: Selection on Vehicles such that color of vehicle is green.

18

The selection predicate is added to the display and the underlying AQUA for the Vehicles set is

changed. The displayed set now represents a set of green cars.

The user now clicks on the arrow icon next to Company which displays the member function:

president:Person. The user then clicks on the arrow icon next to Person and displays the mem

ber function cars, a set of Vehicle. This set represents the cars owned by the presidents of compa

nies that make green cars. A click on the arrow icon next to Vehicle within this set of cars shows

the color and manufacturer for each car within this set.

It is possible for the president to own cars that are not manufactured by his company, but the

Blue-Cars query that this example is based on requires that we only get the cars that are manufac

tured by the company for which the president works. Therefore, we must select from the cars set

such that the manufacturer of the cars within the set under president is the same as the manufac

turer of the Vehicle in the original set. The user draws a line that crosses the set cars and clicks

on the two manufacturers when the predicate dialog is displayed, creating the predicate c.manu

facturer=v. manufacturer.

I Vehicles: Iv.color="green"
\ v: Vehicle ~

color: String
manufacturer: Company ~

president: Person ~

cars: I~_:_~~~
color: String
manufacturer: Company [j]

Figure 14: Selecting set "cars" so that c.manufacturer=v.manufacturer.

The set cars is imbedded with the original set vehicles, so we really have a set of sets of vehicles.

The result of the query should be a single set of vehicles. To extract out the set of cars, the user

draws a line from cars to the New Set Icon at the top of the work area. This gesture extracts out

the cars set to the top level of the display. A dialog box is displayed that asks the user if the set of

sets of Vehicle should be flattened to a single set of Vehicle. In this example we want to flatten

the set so the user selects "Set[Vehicle]".

19

[!]
color: String

anufacturer: Company [!]
~sident: Person [!]
~s: Ic.manufacturer= v.manufacturer

v.coior="green"
v: Vehicle

-S~:::;;;.:::.::;::;;;*~;.t\i..~~t:':ii~;~:.j::;Jf:;;:·;.::.~:.::.: ..::
~:_~-~~!~!!- ~

-Figure 15: Extracting and flattening "cars" to produce a new set of type Set[Vehicle].

A new set is created and displayed in the work area. This is the set of cars that are owned by the

president of the company that manufactures it, provided that the company also manufacturers

green cars.

The relationships between the company and the president and the cars are all included in the path

nature of the silVIA display. Declarative based visual interfaces require the user to specify these

relationships through instance variables; however, in silVIA the display handles these relation

ships automatically.

The only thing left is to get all of the blue cars out of the new set. One last selection is perfonned

on the new set such that the Vehicle's color equals "blue". The user can then highlight the new set

and the AQUA expression of this set will be displayed in the message area. This expression can

then be submitted to the query optimizer. The AQUA expression for this query, as produced by

silVIA is:

select (lambda(c2) (c2.color= "blue"»
(jiatten(apply (lambda (v) select (lambda(c) (c.manufacturer= v.manufacturer»
(v. manufacturer.president. cars»

(select (lambda(v) (v.color= "green"»

(Vehicles))))

5.1 A Second Sample Query

The second sample query is based on the TravelScema file that is used in the Ipro/oodb directo

ries. The query is For each place to go, find all the tours with capacity more than 20 that have the

same theme as some tour that already visits the place to go. The result should be a set oftuples

«place: Place_TG, tours: Set! Tour] ».

20

This query illustrates the use of nested queries. There are many ways to produce this query, the

one illustrated here will produce the shortest AQUA string.

First, the sets Places_to_go and Tours are displayed from the global sets list. Then the set Tours

is put inside the Places_to...;.go set, producing a nested query.

Places_to_go:

To~,; I t: Tour

Figure 16: Nesting Tours within Places_to_go

Then the Tours set can be selected such that p is in the description set of t. The user clicks on the

"mem(=,)O" shortcut button on the selection predicate dialog box, and positions the cursor

between the comma and the end parentheses. The user clicks on p:Place_TG, and "p" is inserted

into the dialog box. Then the user positions the cursor between the two parentheses at the end and

clicks on what:Place_TG within the description set. The final predicate is:

mem(=,p)(apply (lambda (d) d.what) (t.description))

p: Place_TG [j] L
Tours: I t: Tour ~ 7'

capac~nteger

av,~i1ity: Integer
~eme: String

description: 1-~-_~-~-~~-_9-~-.--~-------
what: Place_TG [j]
time: String

price: Money

Figure 17: Selecting the Tours set relative to p:Place_TG

Now a new set of Tours is chosen from the global sets list. This selis selected so that its capacity

is greater than 20, and then placed within the Places_to~o set. Doing the selection before adding

the set to the tuple produces a shorter query.

21

Places_to_go:

t4.capacity>20

~~~!~!!.-:. !j] 

Figure 18: Adding a second set of Tours to the tuple 

When the second Tours set is added to the tuple there is a duplicate name, so the second Tours 

becomes "15". The user could have renamed either tours set before this gesture to avoid the 

renaming. However, in this example we will rename the tuple fields at the end of the query. 

Now the themes of the two sets of tours need to be compared. The user selects the "15" set so that 

t4.theme is in the set of themes in the "Tours" set. Again the user uses the "mem(=,)O" shortcut 

button on the selection dialog box; this time clicking on the theme member function in each of the 

sets of tours. When the user clicks on the theme item in the set ''Tours'', the AQUA representation 

for the tuple field "Tours" is included in the memo This enables us to delete the field ''Tours'' now. 

Places_to_go: Ip: Place_TG!j] L 
IS: It4.capacity>2$' 

t4:Tou ... 
:. pacity: Integer 
availability: Integer 
theme: String 

description: Id2: Sla! 

price: Money 

Tours: Imem(=, p)( apply (Iambcil 

~:.!~~!_- ~ 
capacity: Integer 
availability: Integer 
theme: String 

description: Id: S' 

price: Money 

'. 
Figure 19: Selecting "tS" set of tours comparing themes with Tours 

22 



The set is deleted by first clicking on the "Tours:" string, the set is then highlighted with an dotted 

underline, and then pressing the trashcan button in the bottom right of the display. 

Only two fields are left in the tuple, "p" and "t5". The user renames them to be "place" and 

"tours"; and then clicks on the outside set "Places_to-£o." The AQUA syntaxfor this query is 

displayed in the message box and can be output to the query visualizer. 

~'-~~~_~,="~~=9~: I place: Place TG [j] 
--=--....:;:;;;;;~----

tours: It4.capacity>20 
mem(=, t4.theme)( apply 
t4: Tour [j] 

Figure 20: The final tuple 

The AQUA query produced by silVIA for this example is: 

apply(lambda(p) <<place:p,
 
tours:select (lambda(t4) (mem(=, t4.theme)( apply (lambda (t) t.theme)
 

(select (lambda(t) (mem(=,p )(apply (lambda (d) d.what) (t.description) )))
 
(Tours)))))
 

(Tours»»
 
(Places_to-$o)
 

6.0 ConclusionslFuture Work 

[BWFH92] writes that "For the casual user, the greatest obstacle to query formulation is typically 

poor knowledge of the database's constituent structure. If one does not understand what is in the 

database, then it is difficult to anticipate the correct table and attribute headings." 

An advantage of a visual interface is that it helps the user understand the database's structure. 

The database's objects and member functions can be displayed so that the user can see her options 

and experiment with different techniques for getting at the information she wants. Even without 

producing a query, the silVIA interface could be used to explore paths through the database, and 

see how objects and instances are related. When trying to fonnulate a query,. an exact understand

ing of the AQUA syntax is not necessary. As the AQUA syntax continues to evolve, only 

changes to the program's output have to be made, the gestures that a user has learned can remain 

the same. 

23 



Further work on silVIA could introduce new visual cues for the varied types of bulk types sup

ported by AQUA. Multisets, lists and trees maintain the many-to-one relationship of sets, but 

their special characteristics warrant unique visual representations. 

To complete the visual environment offered by the combination of silVIA for creating queries and 

GROOVE for visualizing the query optimization, a method should be developed to display the 

result of the query. [Cru93] describes a system for user-defined visual languages for the display 

of data. In this way, the user can define rules for how to display the results of the query. An alter

native style of display could be based o,n the type of the result. Each type within the schema 

would have a function that displayed its data. For instance, a instance of the Place_TG type con

tains a name, a picture, and an address; so its display function would create a form to arrange the 

information and then call the display functions for types String, Bitmap, and Address. A String 

may be displayed as a text field, a Bitmap as a pixmap, and the Address field would create 

another form to display its results. The inheritance and abstract data type principles of object-ori

ented paradigms could be used in the display of information. 

The silVIA interface expands the visual environment that began with the GROOVE optimization 

visualizer. Further work could lead to unified visual system for query formulation, submission 

and display of results. 

References 
[BWFH92] Hans Brunner, Greg Whittemore, Kathleen Ferrara, Jianiene Hsu. An Assessment of Written! 

Interactive Dialogue for Information Retrieval Applications. In Human Computer Interaction, 7, 1992, 
pp.l97-249. 

[CM92] Mariano P. Consens, Alberto O. Mendelzon. HY+:A Hygraph-based Query and Visualization Sys
tem. InACM SIGMOD, March 1992, pp.511-516. 

[Cru89] Isabel F. Cruz. Declarative Query Languages for Object-oriented Databases. F. H. Lochovsky, edi
tor, Office and Database Systems Research, 1989. 

[Cru92] Isabel F. Cruz. Doodle: A Visual Language for Object-oriented Databases. Proceedings ofthe ACM 
SIGMOD, 1992, pp. 71-80. 

[Cru93] Isabel F. Cruz. User-Defined Visual Languages for Querying Data. Technical Report CS-93-58, 
Dept. of Computer Science, Brown University, 1993 

[GPV90] Marc Gyssens, Jan Paredaens, Dirk Van Gucht. A Graph-Oriented Object Model for Database 
End-User Interfaces. ACM SIGMOD Record, May 1990, pp. 24-33. 

[GSKZ85] KJ.Goldman, S.A. Goldman, P.C. Kanellakis, and S.B. Zdonik. ISIS: Interface for a Semantic 
Information System. In ACM-SIGMOD International Conference on Management ofData, 1985, p. 328
342. 

[Kim88] H.J. Kim, H.F. Korth, and A. Silberschatz. PICASSO: A Graphical Query Language, Software: 
'. Practice and Experience 18, 3, 1988, pp.l69-203. 

[KKD89] K	 Kim, W. Kim, A.Dale. Cyclic Query Processing in Object-oriented Databases. In IEEE Inti. 
Conference on Data Engineering, 1989. 

[KL89] Michael Kifer, Georg Lausen. F-Logic: A Higher-order Language for Reasoning about Objects, 

24 



Inheritance, and Scheme. In ACM-SIGMOD, June 1989, pp.l34-146. 
[LMS+93] T.W. Leung, G.Mitehell, B. Subramanian, B. Vance, S.L.Vandenberg, S.B.Zdonik. The AQUA 

Data Model and Algebra. In Proc. 4th Int'l. Workshop on Database Programming Languages, New York, 
New York, August 1993, Springer-Verlag. 

[MS95] Kevin Mullet, Darrell Sano. Designing VLSualInterj'aces, Communication Oriented Techniques. 
SunSoft Press, Mountain View, California, 1995. 

[Shn93] Ben Shneiderman. Dynamic Queries for Visual Information Seeking. Technical Report SRC-TR
93-3, Dept. of Computer Science, University of Maryland, 1993. 

[VA093] K,Vadaparty, Y.A. Aslandogan, G. Ozsoyoglu. Towards a Unified Visual Database Access. In 
ACM-SIGMOD, June 1993, pp.357-366. 

[Zlo75] M. Zloof. Query-by-Example. Proc. 1975 National Computer Conference, June 1975. 

( 

\ 

25 



silVIA· Visual Interface to AQUA 

Design Document 

Brian Anderson
 
March 21st, 1995
 

.This document describes ~he objects, data structures, and flow of control for 
the Silvia program. I will give an overview of the program design and help 
point out what code is in each of the.files, so that if you need to find something 
in the code,this paper should help you locate it and understand what the 
existing code is doing. I am assuming that the reader has used Silvia before, 
this paper describes how the program works; there is a user's manual in this 
directory that explains how to use the program. 

I 

o 
\ 

~ 

~ 
i 

i 
, 

CJ 
-ours:1 

price: Money 

. t.capacity>20 
t: Tour [!] 

capacity: Integer 
lvailability: Integer 

~!~!i _~~1j!!.9 

'~ion: Id: Stage 

2 

descrip. 

I 
00 I. 

t 

I 
!X~:I*:;:t;;;;;:;:;~:=:;:;:;:;;;>;;:;:;:ifa.:::~(;x.~;;f":;:;:=:;:=:ID:;:;:;:;;; 

§{ :::ll:$:~~~u::::<~.$:::~~:~~:P::-::~:;~~U@::::q 
....:: .~.. .., III II 

Ii 1'1 

1 



Overview of Classes and Objects 

The main class in Silvia is a SILmainApplication. It contains all of the other objects and controls 
what actions should be taken at what time. The other objects each have a pointer to the one SIL
mainApplication. The other objects in Silvia are organized into three main groups: schema 
objects, interface objects, and the tree data structure. 

When Silvia starts, it parses two files in the directory defined by EPOQ...SCHEMA_INI: Trav
elSchema and TravelGlobals. The data from TravelSchema is kept in the schema objects (SIL
ClassTable), and the globals sets are kept in SILschemaList (the selection box on the right of the 
display). 

The interface objects control the initial Motif appearance and the dialog boxes that appear along 
the way. They pass mouse events to the SILmainApplication, which actually performs actions on 
the data structure. 

The main data structure is in the form of a tree. Within one SILMainArea object, a list of pointers 
to the top level sets in the work area is contained. These top level sets point to lists of items in the 
set. These, in tum, point to lists of member functions which could point to new objects and sets. 
The actual classes contained in this data structure will be described later. 

"" 

SILmainApplication 

Schema Objects: 

SILClassTable 
contains array of: 

SILClassEntry 
contains array of: 

ISILClassAttribu3 

Data Structure: Interface: 

c"rrpnt (mllinA) SILmainDisplay 
SILMainArea 
contains tree structure of: In main window: 

SILsetList SlLmenubar 
SILfoldIcon SILscbemaList 
SlLclassSet SILtrasb 
SILsetMarker SILfunction 

SILmessage 
SILsetArea 

backuo (backuoMainA) Dialog boxes:
 
SM"inATea
 SILpredicate 
contains tree structure of: SlLflatten 

SILsetList SILbelp 
SILfoldIcon SILrename 
SlLclassSet SILeditAQUA 
SILsetMarker SILfuncApply 

SILfileSaver 
SILjoinDialog 
SILpjoinDialog 
SILfoldDialog 

2
 



Schema Objects 

The code for the objects that keep track of the schema are in SILschema.C The SILmainApplica

tion contains one SILClassTable, which contains an array of SILClassEntry. Each SILClassEntry
 
represents one type defined in the schema file.
 
A SILClassEntry contains the name of the type, a parent type that it inherits member functions
 
from (if there is one), and an array of SILClassAttribute, one for each member function on this
 
type. Each SILClassAttribute contains the name of the member function, the type returned by this
 
function, and whether the return type is a set.
 
When the user expands a type in the work area display by clicking on the arrow icon, the
 
ClassTable tells how many member functions are defined for this type and what the member func

tions are. The SILmainApplication calls the function SILclassSet::Expand on the instance being
 
expanded and passes in a copy of the SILClassTable. The SILclassSet can then get the informa

tion out of the SILclassTable.
 

SILClassTable : represents the schema with an array of SILClassEntry, one for each type 
in the database 

SILClassEntry : represents one type in the database; has fields for name of the type and 
name of the parent type if one exists. Contains array of SILClassAttribute, one for 
each member function on this type. 

SILClassAttribute : represents a member function; contains the name and the return type 
of this function. 

An example TravelSchema file is included in the Appendix. 

( Interface\ 

The Motif interface is separated out in the SILmainDisplay object.
 
To start the application, SILmainApplication calls SILmainDisplay::OpenApplication. This cre

ates the main interface widgets. The code for these objects is in the file SILdisplay.C, except that
 
the code for the work area (SILsetArea) is in SILsetArea.c. Here is a list of which objects control
 
what part of the interface:
 

SILmenubar : the main menubar at the top of the display (File, Edit, Help menus) 
SILschemaList : the global sets list on the right of the display 
SILtrash : the trashcan button in the bottom right 
SILfunction : the function/fold button above the trashcan button 
SILmessage : the message box at the bottom of the display 
SILsetArea : the work area where the tree structure is displayed 

When a dialog box needs to be displayed, the SILmainApplication tells the SILmainDisplay 
object to pop up the appropriate dialog box. The SILmainDisplay object then routes the message 
to the object responsible for that type of dialog box. Here is a list of the dialog box objects and 
which file they are in. 

SILpredicate : used for entering a selection predicate (SILdisplay.C)
 
SILflatten : asks the user whether and how much to flatten a set of sets (SILdisplay.C)
 
SILhelp : displays list of help topics, with text and a pixmap for each topic (SILhelp.C)
 
SILrename : asks for new name for a set or tuple field (SILdialogs.C)
 
SILeditAQUA: allows user to edit AQUA string before saving, or change AQUA repre


sentation of an instance in the tree structure (SILdialogs.C) 

3 



SILfuncApply : displayed when f(x) button is pressed when an instance is highlighted, 
asks for function to apply and the name and type of the result (SILdialogs.C) 

SILfoldDialog : displayed when the f(x) button is pressed when a set is highlighted, asks 
for conditions of fold to apply and name and type of result. (SILdialogs.C) 

SILfileSaver: file selection box that chooses filename in which to save AQUA query. 
(SILdialogs.C) 

SILjoinDialog : asks what type of action to take when pairing two sets: union, intersec
tion, difference, cross-product, or equi-join (SILdialogs.C) 

SILpjoinDialog : Ifequi-join was chosen from the SILjoinDialog, this is displayed, asking 
for predicates for the join and which fields to include in the resulting tuple (SILdia
10gs.C) 

Tree Data Structure 

The display in the work area is based on a tree data structure of objects that are subclassed from
 
the SILset class. There are three subclasses: SILfoldIcon, SILclassSet, and SILsetMarker. Each
 
one of these classes contains an object of type SILsetList, which contains an array of pointers to
 
more SILset instances.
 
The base of the tree data structure is an object of type SILMainArea. The SILmainApplication
 
contains two SILMainAreas, one for the currently displayed structure, and one for a backup so
 
that the user can undo an action.
 
The top level of the tree structure is a list of global sets. The children of these sets represent the
 
type of objects within the sets. If the type has member functions defined in the schema file, then
 
these functions are placed in the data structure as children of this type. These member functions
 
can return sets or other abstract data types which, in tum, contain their own subtrees.
 

SILfoldlcon
 
The New Set Icon in the upper left of the work area display is represented by an SILfoldIcon.
 
There will only be one SILfoldIcon in the tree structure, and it is the first item in the SILMain

Area's list of children. It is drawn as a small, empty rectangle.
 

SILsetMarker
 
A SILsetMarker represents a set of objects. Its SILsetList points to the instances within the set.
 
The SILsetMarker is drawn by writing the set's name and then a rectangle that surrounds the con

tents of the set. The children of the SILsetMarker are drawn within this set rectangle.
 
When an SILsetMarker is first created, it has one child representing the type of object within the
 
set. After a join or the creation of a tuple, the SILsetMarker will have more than one child, one
 
for each field in the tuple.
 

SILclassSet
 
A SILclassSet represents a single instance of a type. It is drawn by writing its name, followed by
 
a colon, and then its type. The children of a SILclassSet represent the member functions for this
 
type. The children are drawn below the name and type of the SILclassSet.
 
When the SILclassSet is the only child of a SILsetMarker, its name field is the lambda name
 
applied to each element in the set and its type field is the type of the objects within the set.
 

4
 



When the SILclassSet is a child of a SILclassSet, its name field is the name of a member function
 
and its type field is the return type of the function.
 

SILsetList
 
Each of the three classes above contain a SILsetList object. This class does not contain any infor

mation about the database or the queries, it simply manages the list of pointers to child SILsets.
 

To illustrate how the display in the work area is represented in the tree structure; here is an exam

ple work area display and the underlying tree structure.
 

Cl
 

Tours:
 t.cOfJocity>20 
t: Tour	 [!] 

capacity: Integer 
availability: Integer 

!~~I!!~~ _~!I:i!!V 
description: Id: Stage [j] I 
price: Money 

Monuments: 1 m: Monument[j] 

\ 

SILfoldIcon 
(New Set Icon) 

Sll..setList (0 items) 

SILMainArea 

SlLsetList (3 items)- -SlLsetMarker SlLsetMarker 
(Tours :) (Monuments :) 

SlLsetList (1 item) SlLsetList(1 item) 

t .............
 
Sll..classSet
 Sll..classSet 

(m : Monument) (t: Tour) 
SlLsetList (0 items) SILsetList (5 items) 

Sll..classSet 
(capacity: Integer) 

Sll..setList (0) 

/ ~~ 
SlLsetMarkerSll..classSet Sll..classSetSll..classSet ' 
(description: ) (price: Money) (availability: Integer) (theme: String) 

SILsetList (0) SlLsetList (1) SlLsetList (0) SlLsetList (0) 

1 

Sll..classSet 

(d : Stage) 

SlLsetList(O) 

5
 



Each node in the tree keeps track of its own representation in the AQUA syntax. A path in the 
tree creates an AQUA query. When actions are taken, the AQUA representation for the sets at the 
top level are changed. For instance, in the diagram above, a selection has been taken on the Tours 
set; so the AQUA representation of the set is now: select( lambda(t) t.capacity>20)(Tours). A 
path from theme to the Sll...MainArea would produce the query: apply( lambda (t) t.theme)(select( 
lambda(t) t.capacity>20) (Tours). 

Mouse Events 

When a mouse event occurs in the work area, the SILsetArea passes the X event to SILmainAp
plication::SetAreaEventO. The main application then passes the x and y locations to either SIL
MainArea::MouseDownO or Sll...MainArea::MouseUpO. This causes a traversal of the tree to 
find on which Sll...set the mouse event occurred. Each Sll...set keeps track of its upper left point in 
the display and how much space it needs to draw itself. When the MouseDown function is called, 
the SILset checks to see if the point is within its area. It also passes the point to its children to see 
if the mouse event happened on one of the children. 
A SILaction structure is passed along with the x and y locations to these functions. The traversal 
of the tree fills in the fields of this structure. On a MouseDown event, the traversal creates the 
AQUA string for the path from the down instance to the top level of the tree. This AQUA string 
is displayed in the message area and can be saved as the query. 
When the gesture is interpreted to be a selection, then one more traversal, MouseMidpointO, is 
made to find the set that is underneath the midpoint of the line. This is the set that will be 
selected. 

Sll..action 

The SILaction structure records the information about a mouse gesture that the SILmainApplica
tion needs to decide what action to take. Since this is an important structure in the understanding 
of the Silvia code, a description of the fields is given. The section "Interpreting the Gesture" will 
illustrate how these fields are used. I will use the phrase "down instance" to refer to the SILset on 
which the down event occurred, (and "up instance" for the up event's SILset). 

Sll...set *up : a pointer to the up instance 
Sll...set *down : a pointer to the down instance 
Sll...set *mid : a pointer tothe SILset that is to be selected (midpoint of the gesture line) 
Sll...setList *downparent : the Sll...setList that points to the down instance 
Sll...setList *upparent : the SILsetList that points to the up instance 
Sll...setList *midparent : the SILsetList that points to the SILsetMarker that is to be 

selected 
Sll...setList *splitpoint : the Sll...setList where the path to the up instance and the path to the 

down instance split. This can be NULL if the up and down instances are the same, 
or if they are different lengths down the same path. 

Sll...setMarker *lastSet : on the path from the top level to the up instance, this is the last 
Sll...setMarker on the path. 

int child_oCset : if the up instance is an immediate child of an SILsetMarker, this is set to 
1; this is 0 if there was a Sll...setMarker on the path but the up instance is not an 
immediate child of a Sll...setMarker; this is -1 if there was no Sll...setMarker on the 

6
 



,/ 
\ 
\ 

path. 
int down_sets: the number of Sll..setMarkers crossed on path from splitpoint to the down 

instance 
int up_sets: the number of SILsetMarkers crossed on path from splitpoint to the up 

instance 
int expand_icon: this is set to one if the mouse event was on the arrow icon of the down 

instance 
char down_type[50] : the type of the down instance 
char up_type[50] : the type of the up instance 
char down_name[128] : the name of the down instance 
char up_name[128] : the name of the up instance 
char splicname[128] : the name of the midpoint (selected) set 
Sll..pt upPt : the x and y location of the up event 
Sll..pt downPt : the x and y location of the down event 
char AQUAname[1024] : the AQUA string representing the query for the path taken to the 

down instance 
int AQUA_insert_pos : gives the place to insert more AQUA code, when traversing up the 

path 

When Sll..mainApplication::SetAreaEventO gets a mouse motion event, it draws a line from the 
down point to the current mouse location. It uses an XOR style line so that the old lines can be 
erased when the mouse moves. When the mouse up event occurs, the line is written to the pixmap 
so that expose events will not erase it while a dialog box is being displayed. 

Interpreting the Gesture 

The data in the Sll..action structure allows the Sll..mainApplication to decide what action to take. 
In general, the gesture involves extracting the down instance up to the splitpoint, adding sets for 
each SILsetMarker that it crosses on the way up and then pairing this new set with ~e up 
instance. Sometimes a traversal of the structure is done again from a different starting point to 
create a subtree path, and therefore get the AQUA string for an instance relative to another within 
the tree structure. I will describe the flow of control for each type of gesture, explaining how the 
AQUA representation of the tree is changed. Mter simple cases are explained, more complex 
gestures can be described in tenns of combinations of the simpler actions. 
The Sll..action that the Sll..mainApplication uses with gestures is called "action", so from now on 
I will refer to fields in the SILaction as "action.up", "action.upparent", etc. 

H the Up and Down Instances are the Same 
If the user clicks on an instance, without dragging the line, the action.up and action.down fields 
will be equal, and action.splitpoint will be NULL. The Sll..set is highlighted by passing its 
pointer and its parent to SILmainArea, it will be displayed with a dotted underline. Also, the 
AQUA string in action.AQUAname is displayed in the message box, using SILmainDisplay::Dis
playMessageO. 
If the type clicked on is a classSet, then the value of action.expand_icon is checked. If this is 
equal to I, then the SILclassSet is expanded (compressed if already expanded.) 
Expanding a set involves passing the SILClassTable to the Sll..classSet. The SILclassSet looks up 

7
 



its type in the SILClassTable and finds how many member functions its type has (if any). It then
 
tells its SILsetList to create a new SILset for each member function. It passes the name, type, and
 
a field for whether the function returns a set, to SILsetList::CreateItemO. If the set has already
 
been expanded, then the field "expanded" is set so that the children are no longer drawn.
 

Selection
 

It is possible to draw a gesture line and still have the up and down instances equal. If the up and
 
down events occurred on the same SILsetMarker, or both on the toplevel (action.up =
 
action.down =NULL and action.up_type =action.down_type ="Toplevel"), then the midpoint of
 
the gesture line is checked using MouseMidpoint. If the midpoint is over a set that is below the
 
up instance in the tree structure, then this set is selected.
 
The SILmainApplication tells the display object to display the selection predicate dialog box
 
(SILpredicate). The user enters a selection predicate and then the SILpredicate calls SILmainAp

plication::DoSelectionO, passing the predicate. DoSelection passes the predicate to the SILset

Marker, which adds to its AQUAname so that the selection is recorded. The predicate is also
 
stored in a character string array to be displayed in italics when the set is displayed.
 
While the predicate dialog box is displayed, the SILmainApplication sets its field "waiting" to
 
signify that further mouse events will create AQUA text that should be passed to the SILpredi

cate. In this way, the user can click on items on the display and have the AQUA text appear in the
 
dialog box. The AQUA representation is calculated relative to the selected set using SILMain

Area::SubtreeMouseDownO·
 

Extracting (Up on the New Set Icon) 

A SILset within the tree structure can be pulled out to the top level by drawing a line from the 
instance to the New Set Icon in the upper left comer of the work area. The field action.AQUAn
arne has already calculated the AQUA representation for this SILset relative to the toplevel during 
the MouseDown traversal. All that has to be done is to add a copy of the instance to the top level 
and set its AQUA representaion to equal action.AQUAname. 
When extracting an instance to the top level, we need to preserve how many sets deep the instance 
is in the tree structure. The field action.down_sets keeps track of how many SILsetMarkers have 
been crossed on the way to the instance. If this is more than one, then the user has the option of 
flattening the set of sets to just a set of a type. SILmainApplication tells the display object to dis
play the SILflatten dialog box. This dialog box will return how much to flatten the set to SIL
mainApplication::DoFlattenO. If the set is flattened, the action.AQUAname is changed to reflect 
the application of "flattenO". 
Now we know how many sets to surround the instance that we are copying. The function 
SILsetList::AddItem is called on the SILsetList of the SILMainArea, passing a pointer to the 
down instance and an integer for how many sets to place around the copy of the instance. 
If the mouse up event occurred on the New Set Icon the action is finished. However, this step of 
extracting the down instance to the top level is done whenever action.splitpoint does not equal 
NULL. The actions for union, join, and apply tuple all involve getting of a copy of the down 
instance to the top level temporarily. Then this set is incorporated into the up instance according 
to the type of the up instance, and the temporary set is deleted. 
The exact flow of control involves calling SILmainApplication::AddDownSetsO to get a copy of 
the up instance to the top level. This function may display the SILflatten dialog box if necessary. 
When the down instance has been brought to the top level, then the function SILmainApplica

8
 



tion::RouteActionO looks at the SILaction structure to see what action to take next. In the case of 
the up event on the New Set Icon, the action is finished and the pixmap is refreshed. 

Joins and Unions (Up on an SILsetMarker on the top level) 
If the up event occurred on a SILsetMarker, then the types of the up set and the copy of the down 
set are compared in SILmainApplication::AskJoinTypeO. In this function, SILset::QueryTypeO 
is called on each of these SILsets. The type is returned as a string in a format like: "Set[ city:City, 
hotels: Set[ Hotel]]". This string would represent a set of tuples consisting of a City named 
"city" and a set of Hotel named "hotels". The file SILviewcode.C handles the parsing of this for
mat; all functions is this file start with "vc "(ie. VCisTupleO). It could be possible in the future 
to save a query for later use by writing this format to a file, along with the set's name and its 
AQUA representation. 
The function SILmainApplicationO::AreSetsCompatibleO is called to see how compatible these 
sets are. The functions for calculating the compatiblity are in the file SILcompatible.C 
If the sets are compatible enough for a union, the supertype of the set types is returned so that it 
can be used in the application of the "union" function. 
Then the sets are compared to see if an equi-join is possible. If both of these sets are tuples, then 
certain fields may be of compatible types without the whole set being compatible enough for a 
union. The function SILmainApplication::PartialJoinPossibleO (in SILcompatible.C) calculates 
which fields are compatible enough and constructs a list of strings that could be used in the equi
join. The equi-join dialog box (SILpjoinDialog) will display these possible predicates and a list 
of the tuples that could be in the resulting tuple. These two character string arrays are passed to 
the SILpjoinDialog to set up its data, even if the dialog never ends up being displayed. 

( If the sets were not compatible at all, a cross product of the two sets is done automatically. If the
 
sets were compatible, or an equi-join was possible, the join dialog box (SILjoinDialog) is dis

played, asking the user which action to take.
 
When the user makes a selection, the SILjoinDialog calls the appropriate function in SILmainAp

plication. There are six possible functions that it could call:
 

DoUnionExactMatehO: the sets had exactly the same type, so the information from the 
down set is added directly into the up set. 

DoUnionCompatibleO : a new set needs to be created of the supertype of the two sets, 
then the information from the up and down instances are added to this set. 

DoBinarySetOpO : an intersection or difference is done, the name of the set operator is 
passed in to this function. The resulting set needs to be the same type as the down 
instance, so the information from the up instance is added to the down instance. 

DoPartialJoinO : display the equi-join dialog box and construct a predicate for the join.
 
DoJoinO : do a join with the default predicate "true"
 
AbortJoinO : the user pressed cancel, remove the temporary set.
 

The three functions DoUnionExactMatch, DoUnionCompatible, and BinarySetOp do similar 
things. They copy the predicates from the sets into whichever set will remain, change the set 
name for the resulting set to reflect the operation, remove the extra sets, and call SILset
Marker::AddUnionAQUAO passing in the binary set function name, the union type, and the 
AQUA name for the set to union with. Then the SILmainApplication function changes the 
AQUAname for the SILsetMarker to reflect the binary set operation. 
Do PartialJoinO displays the equi-join dialog box, which will call DoJoin with the predicate that 

9 



the user has constructed.
 
DoJoinO takes three arguments: the predicate function ("true" if a cross product), an array of Is
 
and Os for which fields to include in the resulting tuple (NULL if a cross product), and a count of
 
the number of elements in this array of Is and Os. It joins the SILsetLists from the two sets,
 
removing elements later if there are Os in the array. It then constructs a join function based on the
 
elements in the Is and Os array. It passes the predicate and the join function to SILset

Marker::AddJoinAQUAO which updates the AQUAname. It also changes the name of the set to
 
represent the cross product and removes extra sets.
 

Applying Tuples (Up on a SD...classSet that is the immediate child of a SD...setMarker)
 

If the up event is on a classSet whose parent is an SILsetMarker, then the down instance is added
 
to the set and a tuple is created. Again, the down instance is brought to the top level using SIL

mainApplication::AddDownSetsO. Then SILmainApplication::RouteActionO passes the tempo

rary copy of the down instance to SILmainApplication::DoApplyTupleO if action.child_oCset
 
equals 1. At this point, action.lastSet points to the set that is the parent of the up instance. By
 
calling SILsetMarker::GetSubObjectsO on action.lastSet, we can get the SILsetList that contains
 
the tuple fields. The name of the down copy is checked against the name in this tuple list to make
 
sure there will be no duplicate names. Then a "name:AQUA" string is created for the down copy
 
with "name" as the name of the down copy (or newname if there was a duplicate) and "AQUA" as
 
action.AQUAname. This string is passed to action.lastSet, so that it can add the application of the
 
tuple function to its AQUAname. The copy of the down instance is added to the tuple list
 
(SILsetList::AddItemO ) and its AQUAname is set to a unique lambda name.
 

Pushing the Data Out
 

Since the majority of the AQUA representation of the display is kept at the top level sets, it is
 
sometimes necessary to push AQUA string information out to the top level. This happens in two
 
situations, when a set in a tuple is selected and when a tuple is created (or added to) within a set in
 
a tuple.
 
The function SILmainApplication::PushDataOutO takes the SILsetMarker, whose AQUA repre

sentation has changed, as a parameter. It checks to see if this set is an immediate child of another
 
SILsetMarker. If this is the case, then it calls the function SILsetMarker::SelectionOnSetInTu

pleO on the parent set. This function looks at its down child and incorporates the new AQUA
 
string for the down child into its own representation. Then PushDataOutO removes the AQUA
 
string from the original set, replacing it with a unique lambda name. This process continues until
 
the data is pushed out to the top level, or to a set that is a member function of a SILclassSet.
 
The tree data structure has no parent pointers, so the only way to tell if an SILset is the immediate
 
child of a SILsetMarker is the action.child_oCset field. PushDataOutO uses a temporary SILac

tion structure to traverse the tree for the original changed set, looking for its parent set.
 

How the SILsetMarkers Change their AQUAname 

The actual changing of AQUA strings occurs in the SILsetMarkers. The SILmainApplication 
simply says to add text for a union, selection, join, etc. and passes in the predicate and/or the 
AQUA string to union or join with. Most of the functions are straight forward additions to the 
existing AQUAname using sprintf, but there are a few occasions that are worth special mention. 

10
 



• .. 

Selection Shortcuts 
If a set is selected, normally we just create a new statement: "select( lambdaO predicate)(old 
AQUAname)" string putting in the predicate and old AQUAname. However, in some circum
stances, the predicate can be added directly into the existing AQUAname. 
If the set had been selected previously, then there already is a select operator in the AQUAname, 
so we can just add the new predicate in with the old by adding "and" and the new predicate. 
Also, if the set is the result of a join, sometimes we can add the predicate to the join predicate that 
already exists in the AQUAname. If the previous predicate was "true" then we remove the "true" 
and add in the new predicate. In order to add in the predicate, we have to make sure that the 
lambda names for the fields are bound. This happens if there are only two fields in the tuple, oth
erwise one of the lambda names is bound to a tuple, and we cannot access member functions in 
fields in this tuple directly. The next section will discuss the problem of binding lambda names in 
tuples further. 

Shortcut for Applying tuples 
When we create a tuple through the gesture where the up instance is the child of a set, we nor
mally add AQUA such that an application of the tuple function ("« »") is applied to the previ
ous set. However, if we are adding a field to an already existing tuple, the "«" and "»" strings 
are already in the AQUA string (from either a join or a previous apply tuple). 
We can then search for the "«" string and add the new tuple field directly into the old AQUA 
name at this position. This shortcut is done in SILsetMarker::AddApplyTupleAQUA(). 

( Selection after Apply Thple 
. Ifwe have just done an apply tuple, and the user selects the set within the tuple, then we should be 

able to put the new AQUAstring into the tuple definition. For instance, if we have this tuple: 
apply(lambda(h2) «h2:h2,Clients:Clients») (Hotels) 

and the user then selects the Clients set within the tuple, we should be able to change the text after 
the "Clients:" string. The resulting AQUAname would be: 

apply(lambda(h2) «h2:h2,Clients:select (lambda(c2) 
(c2.address. city=h2.address.city)) 
(Clients» >) 
(Hotels) 

This shortcut is done in SILsetMarker::LookForSelectInTupleShortcut(). 

Shortcut for tup_select 

When doing nested queries, the Silvia program generates tuples by default. However, a tuple may 
not be necessary for completing the query. We can do nested queries by looking for times that we 
are doing a tup_select immediately after doing an apply tuple. For instance, one way to get the 
Clients field out of the query above is to say "apply( lambda(x) tup_select(Clients)(x)) (... the 
query listed above...)". However, we could also just recognize that the AQUA for Clients is writ
ten right after the "Clients:" string within the tuple definition. So we could remove the tuple defi
nition (from "«" to "»") and just leave the definition for Clients. The resulting AQUA string 
would be: 

apply(lambda(h2) select (lambda(c2) (c2.address.city=h2.address.city)) 
(Clients)) 

11 



(Hotels) 

We now have produced a nested query without applying the tuple function. The function that 
looks for this shortcut is Sll..setMarker::LookForAddTupSelectShortcutO. 

Deletion 

There are some circumstances where an Sll..set cannot be deleted from the display; for instance, it 
does not make any sense to delete a member function from a type (although in the future a way to 
hide it, to compress the display, may be a good idea). Also, fields in tuples may not be able to be 
deleted if the AQUAname cannot be altered easily to reflect the deletion. 
I decided to allow deletion of sets on the top level, and tuple fields if the tuple has more than two 
fields in it. Being able to delete tuple fields allows the user to create a tuple by extracting the 
name and age field from a student and then delete the original "Student" type. This will leave just 
a <name,age> tuple. 
Sll..setMarker::RemoveTupleFieldO searches the AQUA string for the definition of the field 
within "«" and "»". It then removes the section of AQUA text that belongs to that field. 
Removing a set at the top level involves removing the SILsetMarker from the SILMainArea's 
Sll..setList using SILsetList::ExtractItemO. 

Menu items 

The choices in the menubar follow a similar pattern. The Sll..menubar calls the appropriate func
tion in SILmainApplication, which usually tells the Sll..mainDisplay object to display a dialog 
box. The Sll..mainApplication sets its "wiating" field so that mouse events will be ignored when 
the dialog box is displayed. The dialog box calls a function in SILmainApplication when OK or 
Cancel is pressed. The Sll..mainApplication then changes the data structure accordingly. I will 
give an example for "Rename" in the "Edit" menu; the other menu items respond in similar ways. 
Clicking on "Rename" calls the EdiccbO callback, passing in that Rename was chosen. 
EdiccbO calls SILmainApplication::PopRenameO passing the name of the highlighted Sll..set. 
PopRename calls Sll..mainDisplay::PopRenameO, which sets up the Sll..rename dialog box and 
then displays it. The application returns to the XtMainLoopO, until the user clicks on OK or Can
cel. Then the Sll..rename callback calls SILmainApplication::RenameO passing in the new name. 
RenameO changes the name for the highlighted SILset. 

The apply function/fold button above the trashcan button follows a pattern similar to the menubar 
items. The only special concern of applying a function is that if the highlighted instance is the 
child of a set, then a tuple is created. This is handled using the same function as when the user 
makes an apply tuple gesture: Sll..mainApplication::DoApplyTupleO. 

Conclusion 

This paper has just given an overview of the objects and the flow of control for the Silvia pro
gram. A more detailed explanation of the actual steps followed in each function is contained in 
the comments within the code itself. This paper should help point you to the right files and func

12
 



"
 " 

tions, and the overview should help you to understand what the code is doing when you look at 
the *.C files yourself. 

(
 

13
 



~ 

Appendix 

Format for the "TraveISchema" file:
 
Class Place_TG : none (3 attr)
 
attribute name: none none String
 
attribute picture: none none Bitmap
 
attribute address: none none Address
 

Class Monument: Place_TG (2 attr)
 
attribute building_date: none none Date
 
attribute architect: none none Person
 

Class Bitmap : none (0 attr)
 

Class Country: none (2 attr)
 
attribute name: none none String
 
attribute cities: set none City
 

The string after "Class" defines the name of the type; after the colon is the parent type or "none".
 
In this example Monument inherits from Place_TO. In parentheses is the number of member
 
functions. The name of the member function is listed after "attribute". then a colon. then what
 
type of bulk type the function returns ("none" if a single instance). The last item on the line is the
 
base type of the result. For instance. Country.cities returns a set of type City.
 
This file is read and parsed in SILClassTable::ReadFileO.
 

Format for the "TraveIGlobals" file:
 
Cities:
 
Type: set none City
 
Size : 100 100
 
SKS: NIL
 
Range: -1 -1
 
SizeSSet : -1 -1
 

Monuments :
 
Type: set none Monument
 
Size: 10 10
 
SKS : Places_to~o
 

Range: -1 -1
 
SizeSSet : -1 -1
 

Most of the information in this file is for the query optimizer. The only information that the Silvia
 
program uses is the name of the set and what type the set is. For instance. for "Cities :". Silvia
 
would find that this is a set of City called "Cities". The rest of the information is skipped over.
 
This file is read and parsed in SILschemaList::LoadSchemaO.
 

14 




