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The end result of this project is an assembly-to-assembly translator 
which automatically inserts instrumentation into SPARe code. The 
intent of this instrumentation is to provide a means by which mem­
ory references can be traced for future replay of a program's execu­
tion. The tool is general-purpose, allowing the user to link with a 
library of different hook functions for different tracing and replay 
algorithms. In this paper we present the design choices, inherent 
difficulties, and limitations involved in instrumenting assembly 
code and tracing memory references, along with a description of the 
tool itself. 

1.0 Introduction 

The ability to record a program's execution and replay it exactly in the future is an invalu­

able debugging aid. To record the execution, we trace information and save it into a trace­

file. This file is later used during replay to provide details of the original execution (here­

after called execution), insuring the replay behaves exactly the same as the original. It has 

been shown that a replay is guaranteed to behave identically to the execution provided 

every read from memory made during the replay receives exactly the same value as it did 

during execution. [1] The tool implemented in this project supports this method of trac­

ing. 

We instrument the user's assembly code by inserting calls to hook functions provided by 

the user. These hooks are discussed in detail in the next section. The general idea is that 

for every event of importance to the trace, we call a hook function and provide it with the 

information necessary to record the event. Our instrumentation makes no assumptions 
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about the hook functions themselves. Instead, we safeguard the user's original code so 

that the hooks may be modified frequently. This flexibility allows the user to try different 

tracing algorithms or correct errors in a particular method without having to re-instrument 

the original source code. Instead, the user simply rewrites the hooks, compiles them sepa­

rately, and re-links the executable to be traced. 

Before discussing the previous work on this project, we will first explain the tracing 

method being supported along with a description of the hook functions needed to perform 

the trace. Later we will discuss in detail the design choices faced during development and 

describe the SPARC instructions which can modify memory. The actual instrumenting 

tool and it's limitations are then discussed, followed by our test results and a conclusion. 

2.0 Hook Functions and the Tracing Algorithm 

Netzer and Weaver have developed a tracing algorithm which guarantees every read dur­

ing replay receives the same value as during execution [1]. Not every read and write to 

memory need be traced, but for each memory reference the algorithm must check to deter­

mine if the current instruction needs to be saved into the trace file. By dividing the execu­

tion into windows of sequential instructions, the algorithm makes localized decisions 

based on recent memory references. The size of each window is determined at compile 

time by the user, and is controlled through the hooks the user provides. A software 

instruction counter (SIC, explained later) keeps track of when a new window should 

occur, and at each window boundary calls a hook function to initialize any information 

required by the next window. In order to support this method of tracing the user needs to 

provide each of the following hook functions. 

• JnithookO	 is called to set up the tracing algorithm at the very beginning of execution. 
It is also responsible for setting the initial value of the SIC. 

•	 _exithookO is called upon program exit, and should perform any final analysis and
 
cleanup.
 

•	 _windowhookO is called at each window boundary and should reset state information 
to prepare for the next execution window. It is also responsible for resetting the value 
of the SIC. 

•	 _signalhookO is called whenever a signal interrupts the execution so the trace algo­

rithm is aware a signal occurred.
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•	 _systemhookO is called prior to all system calls so the trace algorithm knows of the 
event. 

•	 stsyshookO and IdsyshookO are called for stores and loads of memory which will 
occur inside a system call. Because the size of these operations varies with each 
instance, the size is passed as an argument along with the address in memory. 

•	 _ldhookO and _sthookO are called for normal load and store instructions. The sizes of 
these instructions can be any of byte, halfword, word, or doubleword, so separate hooks 
for each are needed. The address of the reference is passed into these functions. 

•	 _restorehookO is called after every restore instruction with a pointer to a buffer con­
taining the values of all 16 registers which are modified by the restore. 

•	 _signalhook_speciaIO is called when a signal occurs during another hook function 
already in progress. This situation is tricky, as the order of events can get switched in 
the trace file. It is up to this hook to figure out the correct action to take to preserve the 
accuracy of the trace. This problem is discussed further in a later section. 

To instrument a user's code for tracing we need to accomplish three things. We must call 

each of these hook functions for every corresponding event, provide each hook with the 

information necessary to perform the algorithm, and preserve the original functionality of 

the user's code. In the next section we discuss the work which has previously gone into 

solving this problem, followed by the many design issues which have led to our current 

implementation which meets the above requirements. 

3.0 Prior Work and Motivation 

The first attempt at inserting instrumentation into user code was made by Adam Stauffer 

in the summer of 1992. He directly modified the Gnu C compiler so that code to call the 

hook functions was emitted at the same time as the instruction itself. [2] He did this by 

editing the internals of gcc which are responsible for generating Gnu's intermediate repre­

sentation of the code. The choice to instrument during this phase of the compilation was 

initially appealing, because "The modifications to the compiler are language independent 

and therefore any language added to the GNU language family is automatically instru­

mented." [2 pg 2] The Gnu compiler already supports many high level languages, and has 

been ported to almost every hardware platform. This flexibility made the Gnu C compiler 

a tempting choice to add instrumentation abilities. 
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An inherent problem within the C language, however, made this technique faulty. Argu­

ments to function calls are ill defined in C. 

The order of evaluation of arguments is unspecified; take note that 
various compiler differ. [6 pg 202] 

Due to this ambiguity of the C language, some expressions have no defined execution 

order. This makes it impossible for us to know in which order memory references within 

the expression will be executed. In the following example, we know the initial and final 

values of the variable 'x', but we have no guarantees on the input values for variables 'a' 

and 'b' because we do not know which will be evaluated first. 

void foo (int a, int b); 

void bar 0 { 
int x =0; 
foo(++x, ++x); 

FIGURE 1. Example ofargument ambiguity in C 

Exact knowledge of the order of memory references is paramount to insure correct replay. 

This ambiguity makes it impossible to instrument the C language at a level close to the 

source representation. 

A second effort to instrument user code was undertaken by Mitch Cherniack in the fall of 

1993, and focused on the assembly representation of the user's high-level code. [3] At 

this level, there is no ambiguity as to the execution order of statements, thus avoiding the 

idiosyncracies of C or any other high level language the user might have used. This 

method requires that the source code be translated into assembly before instrumentation 

can occur, but this functionality is easily provided by any compiler the user chooses. 

At first, a translator was written in awk [5] to read in the original assembly representation 

of the user's code, and emit the assembly containing the instrumentation to call hook func­

tions. This initial tool worked for some simple tests, but it was evident that a more 

detailed and robust tool was required to handle complex programs and optimized code. 
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The fact that the tool almost worked, and its original results, indicated that the method of 

translating assembly-to-assembly to instrument the user's code was a promising one. It 

was especially appealing because the assembly representation of a user's program is so 

much more straighforward than the high level code, and it was also possible to insert the 

instrumentation without altering as complex a tool as the Gnu C compiler. 

This project continues where the second translator left off. We chose to build a new trans­

lator in perl [7] instead of awk, because perl has better support for standard coding and 

calculations as well as the raw pattern-matching abilities of awk. Several bugs in the awk 

version of the translator have been solved, and much more design has gone into this ver­

sion of the tool. The design issues faced, and the choices we made in implementing our 

tool are discussed in the next section. 

4.0 Design Choices and Implementation 

The design of our instrumenting tool revolved around two basic needs: 

•	 Inserting calls to hook functions for any instruction which might be a memory refer­

ence
 

•	 Providing all information and functionality required by the tracing algorithm. 

Locating memory references in assembly code is very straightforward, as most are just 

load or store commands (or versions thereof). The save and restore commands proved to 

be the only instructions which can reference memory that we could not trace, which we 

discuss in detail below. Providing hooks for window boundaries involved implementing a 

software instruction counter (SIC), and we also needed to call the initialization and 

cleanup hooks at the correct times. These requirements were obvious, but implementing 

them so that the program's functionality remained unchanged made them quite difficult. 

Each issue faced during our design of the tool, along with our implementation of the 

choices we made, is discussed in this section. 

4.1 Registers 

Almost every instruction in SPARC assembly involves the use of a register. The user's 

code is already using most registers, but our code, too, executes instructions which use 
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registers. The SPARC architecture actually does us a favor in this case, however, as it 

leaves 3 global registers available for our use. Some other registers, however, are either 

inherently volatile, or are required by our instrumentation to pass arguments to the hook 

functions, and care needed to be taken to safeguard the original values in these registers. 

4.1.1 Use of registers by our instrumentation 

The instrumentation we add into a user's code requires the use of at least one scratch reg­

ister. While it would be possible to store needed information in memory, and pull out 

what we need one at a time into this register, it would also be nice if more than one register 

were available for use. If we are to use any registers also used by the user's code, we must 

preserve the value in the register before our use, and subsequently restore it when we are 

finished. This would have been required of all registers we used, except for a very nice 

feature provided in the SPARC guidelines. 

The convention used by the SPARC Application Binary Interface 
(ABI) is that %gl is assumed to be volatile across procedure calls, 
%g2...%g4 are reserved for use by the application program (for 
example, as global register variables), and %g5...%g7 are assumed 
to be nonvolatile and reserved for (as-yet-undefined) use by the 
execution environment. [4] 

We thus assume that the global registers %g5, %g6, and %g7 are not used by the user's 

code, and are free for our own use. We scan the user's code during translation to make 

sure of this, reporting an error if we find these registers already in use. 

As our design began to coalesce, we found that three values would be required continu­

ously throughout our instrumentation, and would be referenced with high frequency. 

These three values are the SIC, the address in memory we set up for extra storage, and a 

value representing our in-hook-jiag. Each of the available three global registers was 

assigned to one of these three values, which are discussed later in this section. One of the 

three, the in-hook-jiag, is only needed periodically, so we can also use its register for tem­

porary scratch space as needed. 
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4.1.2 Preservation of volatile registers in the user's code 

There are some registers we could not avoid using, even if there were infinitely available 

global registers, simply because of specifications for the SPARC architecture. One such 

register, %00, we needed to use to pass a single variable of information to each hook as it 

is called, while another, %gl, is written by the kernel when we perform a trap to obtain the 

value of the condition code (CC). In addition, %gl,%07, and other registers are volatile 

across function calls, and must be protected even if their use is not required by our instru­

mentation or hooks. 

We set up an area of memory within the data section of the program which we use as a vir­

tual warehouse. Sometimes very little information needs to be stored there, and at other 

times the entire section is filled with information. The address of this area is stored in 

%g6, making it easy to access. 

Original Code Translated code 
<user code> set .MYSTORAGE, %g6 

<user code> <user code> 

<user code> 

.seg "data" 

.align 4 
.MYSTORAGE: 

.word 0 

.word 0 

FIGURE 2. Instrumentation storage area 

We always store the same information at the same offset within this storage area, so stor­

ing and retrieving a value require only a single store or load instruction. We could also 

have saved our values on the user stack, using the stack pointer (SP) to access the area. 

We chose not to store values on the stack, however, for two reasons. First, we do not have 

our own reserved area of memory for each stack frame. Whenever we would store a value 

on the stack, we would have to increment the SP to prevent the user from walking on the 
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same areas. Secondly, there are several areas which are reserved for each stack frame, but 

the size of this storage is not constant. For each new stack frame created, some area of 

memory is reserved for such things as arguments and register windows. Some of these 

areas are constantly sized, but others vary depending on the specifics of that stack frame. 

This ambiguity means we would not have an easy way of knowing where within the stack 

frame to begin our storage area. Some calculations per stack frame might be able to over­

come this problem, but the fact that we would still have to use two instructions (a store 

followed by a modification of the SP) versus a single instruction to store values into the 

data section led us to chose the latter fonn of storage. 

By utilizing this memory storage area, we are able to save the value of any register before 

we either use it or it becomes volatile, and then restore its original value when we are 

through with that section of instrumentation. 

Original Code Translated code 
<user code> <user code> 
<user code> st %00,[%g6+8] 

<call hook function> 
<set up %00 input to hook> 
Id [%g6+8],%oO 
<user code> 

FIGURE 3. Protecting %00 when entering a hook function 

4.2 Supporting functionality for the tracing algorithm
 

The tracing algorithm this instrumentation is designed to support requires some function­


ality beyond calling hooks for every memory reference. Initialization and cleanup func­


tions must be called at the execution's start and finish. In addition, much of the algorithm
 

is based on dividing the execution into contiguous windows of dynamic instructions. A
 

hook function is also required for each of these windows.
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4.2.1 Initialization hook 

Before the user's program begins, a hook must be called to initialize the algorithm and any 

data structures used within the hooks. Implementing this proved quite trivial, as we sim­

ply insert a call to this hook at the beginning of the user's mainO routine. 

Original Code Translated code 
main: main: 

<user code> <save volatile registers> 
call _inithook 
nop 
<restore volatile registers> 
<user code> 

FIGURE 4. Calling the initialization hook 

If the C run-time library is used, this step can be taken during the start function. Another 

possibility would be to take advantage of the .init instruction of newer versions of the 

SPARC architecture. [10] Any code contained in this section will be executed before 

mainO is executed. 

4.2.2 Cleanup hook 

When the program exits, some final analysis must be performed by the algorithm. We first 

provided this functionality in the same way as the initialization hook, by calling the 

cleanup hook at the very end of the mainO routine. This method worked, provided the 

execution played straight through the code with no errors or purposely made calls to 

exitO. Considering the user is wanting to find errors in their code, the assumption that it 

will flow straight through the end of mainO is an illogical one. Instead, we instrumented 

the exitO routine itself, inserting a call to the cleanup hook. Since exitO is also called 

when the mainO routine is finished, it was no longer necessary to call the cleanup hook at 

the end of mainO. We could also take advantage of newer versions of the SPARC archi­

tecture here, as we could for initialization. The .fini section is called after mainO com­

pletes so we could insert any cleanup functionality at this point. [l0] 
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4.2.3 Window hook 

The tracing algorithm wants to create a new execution window for some dynamic constant 

number of events (usually instructions). In order to create the concept of a window, a 

hook function must be called at the beginning of each new window. Our instrumentation 

keeps a software instruction counter (SIC) which starts at a given limit, and calls the win­

dow hook when the counter reaches zero. The limit is provided by the user and is set dur­

ing the initialization hook and reset each time the window hook is called. Our translator 

then instruments the assembly code to decrements the SIC at each event, and calls the 

hook when needed. 

Keeping an actual count of instructions would either require hardware support or the addi­

tion of instrumentation between every assembly instruction to increment the counter. 

Since hardware support is not available on most machines, we must use a software 

approach. Incrementing the SIC with every instruction is both costly and unnecessary. 

Mellor-Crummey and LeBlanc proposed a method for maintaining a SIC which imposes 

much less overhead. [8] Instead of keeping a count of instructions, they keep a count of 

backward branches and procedure calls. 

We have implemented this SIC to keep track of window boundaries. The user provides a 

constant value during the inithook, and when the SIC reaches this value a call is made to 

the window hook and the SIC is reset. While our SIC does not represent the actual num­

ber of instructions executed, the user can calculate an average number of instructions exe­

cuted per branch or function call, and set their window size variable accordingly. In our 

implementation, the SIC is maintained in %g7. Since registers are 32 bits in size, one lim­

itation we impose on the user is that the value given as the window size for the SIC must 

be less than 4 gigabytes. 

4.3 Standard load and store instructions 

In SPARC assembly, there are many different load and store instructions, but the use of 

each is very straightforward and easy to recognize. In our translator, we scan the code for 

any instruction which performs a load or store (or both). Upon finding one, we break 

down the expression representing the memory address being referenced and perfonn the 
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calculation ourselves. The result of this calculation is stored in %00 and passed to the 

appropriate hook function as the single input argument. When the hook returns, the origi­

nal instruction is executed, and the program continues. 

The calculation of the memory address is uniform across all load and store instructions. 

The size of the memory reference can be detennined by the assembly instruction itself. 

Based on whether the instruction is accessing a byte, halfword, word, or double word, we 

call the appropriate sized hook function with the calculated address. 

Original Code Translated code 
<user code> <user code> 
st %00,[%fp-20] <save volatile registers> 
<user code> sub %fp,20,%00 

call _stwhook 
nop 
<restore volatile registers> 
st %00,[%fp-20] 
<user code> 

FIGURE 5. Calculating memory address and caUing book for a store instruction 

In the above figure, the store instruction is accessing memory at an offset of 20 from the 

current frame pointer (fp). To pass this information to the store hook, we insert a subtrac­

tion instruction to calculate the exact memory address, and store this value in %00 to pass 

to the hook. The address could be a subtraction, as in this example, or it could be addition 

or a constant value as well. In these cases, the subtraction is replaced by an add or set 

instruction respectively. 

4.4 Register windows 

In SPARe architecture a concept known as register windows is used to maintain separate 

registers for different functions. Each function has it's own window, and when it calls 

another, a new register window is assigned to the new function. The total number of reg­

ister windows is limited, however. Sometimes a new register window is needed, but none 

is available. At this time, the least-recently-used register window is dumped by the oper­

ating system to the user stack, and is then assigned to the new function. When the values 
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of the old register window are needed, they are loaded back from the stack into the register 

window. New windows are assigned or relinquished via the save and restore commands, 

respectively. When a save occurs, it checks if a register window is available. If it is not 

available, it dumps the oldest register window to the stack and then resets the current reg­

ister window. Likewise, the restore instruction either adjusts the window to the correct set 

of registers, or if they were dumped to the stack, it loads the register values from memory. 

For each new stack frame created, an area of the stack is reserved for a register dump 

should it become needed. 

Because save and restore instructions do not access memory every time they are executed, 

they are much trickier to trace than standard load and store instructions. Due to their sub­

tleties, each is discussed separately in this section. 

4.4.1 The save instruction 

When a save requires a register window to be dumped to the stack, it is the least-recently­

used window which will be dumped. Each stack frame has a reserved area for register 

dumps, so the window being dumped will actually be stored in the stack frame of its orig­

inal function, not in the current stack frame. This makes it easy to locate the saved register 

window for a particular frame, as it is stored in the same area on the stack as the function 

which needs it. This feature, however, introduces a very subtle problem which makes it 

impossible to trace save instructions accurately. If a save instruction is executed inside the 

kernel, it might cause a register dump of a user register window onto the user stack. This 

is actually very likely, because the least-recently-used window will have been in the user 

stack before entering the kernel. 

Even though the kernel and user have their own respective stacks, through the save 

instruction it is very likely the kernel will modify the user stack. To see this phenomenon 

in action, we wrote a very simple program which is included as an appendix. In this pro­

gram, we nested several functions on the stack, and then called a trap into the kernel. 

Prior to the trap we examine the register dump areas of the user stack, and do so again 

upon the return from the trap. Our test showed 5 different register dump areas had been 
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modified during the trap into the kernel, indicating that 5 separate save instructions had 

modified the user stack. 

This problem alone, however, is not enough to prevent us from tracing stores to memory 

caused during save instructions. We could perform a check of all user stack areas prior to 

every trap into the kernel, and again upon return, and trace the modified values. While 

potentially slow, this wouldn't occur too often and would accurately preserve memory. 

The bigger problem is posed by hardware interrupts. Hardware interrupts also cause a 

trap into the kernel, but they can occur at any time during the execution, between any two 

single assembly instructions. The brute force solution to this would seem to be obvious; 

simply check the user stack between every assembly instruction to see if an interrupt 

occurred which altered the stack. Even this broad a solution, however, will still not suf­

fice. Because the interrupt can occur between any two instructions, it could occur between 

our memory check and the next instruction of the program. We would not detect the refer­

ence until after the next instruction during our next memory check, potentially causing 

two references to be out of order. 

Luckily, the only areas of the user stack which will be modified by the kernel are those 

areas reserved for register dumps. We must make the assumption that the user's code will 

not read or write to these areas of the stack. Based on this assumption, we had two choices 

for our implementation: 

•	 Since we assume the user will not access these restricted areas, and we are unable to 
trace them, we simply proceed with our instrumentation. If the user's code actually 
does access these areas of thesiack, it is the programmer's error. 

•	 We are unable to trace the memory in the restricted stack areas, however we can check 
the user's code to make sure the areas are not being referenced. This involves a costly 
check for each load and store operation, but assures the programmer that the replay pro­
vided by the trace is correct. 

Accurate replay is our goal, so we chose to implement the second option. Beyond wanting 

to guarantee correct replay, the second option also reports the memory violations to the 

user. Although this aborts the replay, it does notify the user of a bug, thus making our 

implementation choice more useful to the programmer. 
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In our implementation we maintain a 2-level bit vector [9] to represent memory. When a 

new stack frame is created, we mark the restricted register area of the stack in our bit vec­

tor. When a stack frame is destroyed, we then unmark the bits indicating the area is no 

longer restricted. For each load and store instruction, we first call our own hook function 

which compares the address of the reference to our bitmap. If the address is in a restricted 

area, we report an error and dump core. If not, we let the execution proceed as normal. 

These actions are similar to the tracing algorithm used in the hook functions, and later we 

propose moving this memory checking functionality into the hooks to speed up perfor­

mance. 

4.4.2 The restore instruction 

When a restore is executed, it destroys the current register window and restores the previ­

ous one. In doing this, it mayor may not read the values from a previous register dump to 

the stack. Whether the values were on the stack, or still in the old window, the values con­

tained in the registers will be modified by the restore, and the new register values will be 

needed during replay to guarantee identical execution. Thus, we must save the values of 

the modified registers for every restore instruction. Not all 32 registers are modified by 

the restore, as some are global and others overlap between windows. In the end, only 16 

registers actually need to be traced to provide the correct values during replay. 

In addition to tracing the values of modified registers, it is also necessary to perform some 

upkeep on our memory bit vector. When a restore occurs, a stack frame is destroyed. We 

thus unset the bits in our vector indicating the area is no longer restricted. This operation 

must be performed before the restore, while we still know the current SP. Dumping the 

register values, however, must be done following the restore, which is difficult if the 

restore appears in the delay slot of a function return. To avoid this, we chose to move the 

restore before the return, thus removing the delay slot optimization, but not altering the 

functionality of the program. 
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Original Code Translated code 
<user code> <user code> 
ret ! uses %i7 as targ st %i7,[%g6+32] 
restore <save volatile registers> 

call _unsecmemtbl 
mov %sp,%oO 
<restore volatile registers> 
restore 
st %iO,[%g6+40] 
st %il,[%g6+44] 

st %17,[%g6+100] 
<save volatile registers> 
set (.MYSTORAGE+4O),%oO 
call _restorehook 
nop 
<restore volatile registers> 
ld [%g6+32],%o7 
jmpl %o7+8,%gO 
nop 

FIGURE 6. Unsetting protected memory area and tracing new register values 

4.5 Maintaining condition codes
 

Condition codes are extremely volatile, and must be carefully preserved. To find the cur­


rent value of the ce, we do a trap into the kernel, which writes the ce into %gl. Another
 

possibility conceived by Shuang Ji, is to perform a series of tests and branches to deter­


mine and reset the ee, but we chose to use the trap in our implementation for simplicity.
 

To preserve all original information before the trap, we first store the value of %gl to our
 

memory storage area. After this, we call the trap, and store the value of the ee into stor­


age as well. Following whatever instrumentation we are performing, we simply reverse
 

these steps to restore the ee and the original value of %gl.
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Original Code Translated code 
<user code> <user code> 
<load instruction> st %gl,[%g6+4] 
<user code> t Ox20 

st %gl,[%g6+0] 
<instrumentation> 
Id [%g6+0],%gl 
t Ox21 
Id [%g6+4],%gl 

. <load instruction> 
<user code> 

FIGURE 7. Preserving %gl and the CC when inserting instrumentation 

While this is very straightforward, it is also quite expensive as it involves a trap into the 

kernel. To avoid this as much as possible, we perform some basic flow analysis to deter­

mine when the CC is volatile, and when we can safely ignore preserving its value. 

Instead of blindly emitting instrumented assembly code, we maintain two buffers in our 

translator. One buffer contains the assembly which preserves CCs for all instrumentation, 

the other buffer does not. The base of the algorithm is simple. For any instruction which 

reads the CC, emit the buffer which preserves the CC prior to the read. If we encounter an 

instruction which writes to the CC, thus erasing it's previous value without reading it, we 

emit the buffer which does not preserve the CC. This basic approach must be modified, 

however, as control flow through basic blocks is unpredictable. Consider the following 

example: 

1: set CC 
jump 2 

2: straight line code with no branches 
and nothing that modifies the CC 

3: jump 4 

4: read CC 

FIGURE 8. Example of tricky CC Dow through basic blocks 
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In this example, the CC is set in block 1, and is not read until block 4. While we are 

instrumenting block 2 we have no idea if the CC is volatile or not. Because of this, we 

must always assume the CC is volatile inside a basic block until we encounter an instruc­

tion which writes a new value to the Cc. If no such instruction is encountered before the 

end of the basic block or a branch instruction, we must assume the CC was volatile and 

emit the assembly which preserves its value. A more detailed data-flow analysis involv­

ing an extra pass or more through the code could overcome this assumption. 

4.6 Signals 

When signals occur, a signal handler is called to process the event. Signals can occur at 

any time, just like hardware interrupts, but unlike interrupts, the signal handler runs in 

user mode. This allows us to catch signals before they are processed, and call a hook 

function to record that a signal was received. 

4.6.1 Catching signals 

To catch signals before the handler takes over, we reset the signal handler for all signals at 

the very beginning of the user's execution. We also keep a record of what the old handler 

for each signal was, so we may later call the correct function. Once this is set up, our stub 

handler will be called for every signal that occurs. Inside our stub, we call the signal 

hook, and then check the value of the previous signal handler for this signal. If the old 

handler was a declared function, we simply call that function with the signal. If the old 

value was set to ignore the signal (SIG_IGN) we return from our function, otherwise the 

value was set to the default (SIG_DFL) and we take the appropriate action depending on 

what the signal was. Usually this involves exiting the program, but for some signals a 

core dump is also required. 

Problems can arise when the signal occurs during a hook function which is aheady in 

progress. The hook is trying to record that one event occurred, and the signal will also 

record that a signal occurred. Depending on when the signal interrupts the hook, the 

record of these two events might be out of order. To catch this, before we enter a hook 

function we first set a specific flag (the in-hook-flag). Inside the signal handler we check 
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the value of this flag. If it is not zero, the signal has occurred inside a hook, and the events 

might be traced out of order. Instead of calling the nonnal signal hook, we call a special 

signal hook which is only used in this situation. We provide the hook with the value of the 

flag, which uniquely identifies which hook function was interrupted, along with the SIC so 

the hook will know where in the current window we currently are. It is then up to the user 

to take the necessary action to insure these events are traced in the correct order. 

Because we have no control over the hook function being interrupted, we have no way of 

knowing when it is dangerous for the signal to interrupt the function. The best we can cur­

rently do is to set our in-hook-jiag immediately before calling the hook function (in the 

delay slot actually), and unset it upon return. 

4.6.2 Catching resets of the signal handler 

During the execution it is possible that the user will request that a new signal handler be 

installed for certain signals. If we ignore this, the new handler will be installed instead of 

our stub hook, and subsequent signals of that type will not be traced. Requests to change 

the signal handler are processed by the signalO function, so we have modified this func­

tion to meet our needs. Instead of changing the handler for the signal to the requested new 

handler, we leave our stub function as the handler. We do not ignore the new handler, 

however, but modify our own records of which function should be called by our stub when 

a signal is received. After the user calls signalO to reset the handler, when that signal type 

occurs our stub is called as always, but instead of calling the original handler for that sig­

nal, we now call the newly requested handler. 

4.7 System calls 

System calls provide the user with the ability to trap into the kernel to perfonn certain 

tasks. Most of these tasks involve memory references, which must be traced, but as before 

we have no way of tracing code inside the kernel. Luckily, in this case we have another 

option. Based on the system call id (SYSid) and the arguments provided, we can calculate 

what memory references to the user's address space will occur inside the trap to the ker­

nel. In our implementation we have our own systemO function which is similar in func-
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tion to the signal handler discussed above, only it is not called automatically. When our 

translator comes across a trap into the kernel, it simply inserts a call to an internal hook 

function first. We calculate what addresses will be modified and how large the reference 

will be, and then call_stsyshookO or JdsyshookO with the information to be traced. 

When we are done with our calculations, we return from our systemO hook, and the exe­

cution will continue with the trap into the kernel. 

4.8 Instrumenting delay slot instructions 

In SPARC assembly the instruction immediately following some branch type instructions 

is executed even though the instruction appears after the branch. This type of instruction 

is called a delayed instruction, and it's location right after the branch is called the delay 

slot. Instructions which cause a transfer of control, and which also have this delay slot, 

are referred to as Delayed Control Transfer Instructions (DCTI). For many DCTIs, the 

delay slot is executed regardless of whether or not the branch is taken. If the instruction in 

the delay slot happens to be a load or store, it is sufficient in this case to insert the instru­

mentation before the DCTI as we know the memory reference will occur. 

In some cases, however, whether or not the delayed instruction is executed depends on 

whether or not the conditional branch is taken. We cannot simply put our instrumentation 

before the DCTI, for if the delayed instruction is not executed, we would have falsely 

traced that it had. To get around this problem, we modify the assembly code to make it 

safe to instrument the delayed instruction, without the fear of false tracing. 

In the following example, bicc represents a conditional branch who's delay slot will 

always be executed, and bicc,a will only execute its delay slot if the branch is taken. We 

use the symbol -bicc to indicate the logically opposite conditional branch, and ba is the 

branch-always command. We show two examples, one is a sequence of assembly with a 

delayed store which is always executed, and below is a conditionally executed delayed 

store. The assembly that we will translate this code in to is shown on the right of the fig­

ure. 
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Original Code Translated code 
12: bicc 40 8: instrumentation 
16: store A 12: bicc 40 

16: store A 
40: foobar 

40: foobar 

12: bicc.a 40 12: -bicc,a ME 
16: store A 16: nop 

20: instrumentation 
40: foobar 24: store A 

28: ba,a40 
ME: 

40: foobar 

FIGURE 9. Instrumenting delay slots and conditionally executed delay slots 

4.9 Libraries 

We have already discussed how we instrument the user's code to call the hook functions 

for our tracing algorithm, but we must go beyond this to get a true trace of the execution. 

Many function calls are to routines contained in system libraries. These library functions 

run in user space, and can be instrumented and traced just as the user's code can. We are 

thus able to trace all library calls by recompiling the source code for each library, instru­

menting it with our tool during the process. 

It is important to note that within our hook functions we do not want to call instrumented 

library routines, as we could end up in an endless loop. For example, if our hook function 

calls printfO, and the version we call is contained in an instrumented library, we might 

recursively call printfO forever. We maintain a small library of uninstrumented code for 

the functions required within our hooks. 

4.10 Limited size immediate values
 

Some SPARe instructions take an immediate value limited to 13 bits in size as an argu­


ment (SIMM13s). Problems arise with these instructions when the SIMM13 is an expres­


sion containing two or more local labels. Because we are inserting numerous instructions
 

into the user's code, the relative position of local labels previously in the code can change
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greatly. Prior to instrumentation, an expression containing one label minus another might 

have been within the SIMM13 size limit, but after our instrumentation this might no 

longer be true. To fix this problem, we extract the expression from the assembly instruc­

tion, and replace it with a scratch register. Then, before this instruction, we insert a com­

mand to store the result of the original expression in the scratch register. Registers can 

hold a full 32 bit value, so this removes the 13 bit limit. 

Changing the position of the expression itself, however, causes its own difficulties. Many 

of these expressions contain the label '.' referring to the current line. When we move the 

expression to another line to place its value in a scratch register, care must be taken to add 

or subtract a proper constant to take into account the repositioning of '.'. 

Original Code Translated code 
<user code> <user code> 
add %12,(L3-.-4),%12 sethi %hi(L3-.-4-8),%g5 
<user code> or %g5,%lo(L3-.-4-4),%g5 

add %12,%g5,%12 
<user code> 

FIGURE 10. Rewriting expressions to use 32 bit register instead of immediate slot 

5.0 Implementation Details of our Instrumenting Tool 

As mentioned before, we chose to implement our translator in perl. [7]. Perl is a high­

level programming language which is a super-set of awk, sed, grep, and other conunon 

system utilities. Perl is already in wide use, and should be available on most systems. If a 

user does not have perl already installed, it is easily obtainable via anonymous ftp. The 

code for our translator is included as an appendix, and the details of what each file does is 

left to a road map introducing that section. Here we will present the basic algorithm used 

to perform the translation to give an idea of what is happening when our tool is invoked. 

The translation is broken into two main phases: pass 1 and pass 2. Before we begin the 

first pass, we first initialize some variables and load the supporting perl files we will need. 

We then prepare to read the user's assembly code through STDIN, open a temporary out­

put work file, and finally emit the instrumented assembly through STDOUT. 
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Pass 1 prepares the user's assembly file for instrumentation by doing some initial tasks. 

Firstly, it scans the assembly to make sure the user's code does not make use of the global 

registers %g5-7 which are used by our instrumentation. We have found that the Sun C 

compiler, cc, makes use of %g5 in rare circumstances. Since we only use %g5 to repre­

sent our in-hook-jiag, its value is only needed temporarily during instrumentation, not 

throughout the execution as the SIC and memory address are. If we detect the use of %g5 

during passl, we print a warning and set a flag telling pass2 to preserve the value in %g5 

just like other volatile registers during instrumentation. For most assembly files this is not 

necessary, and we make free use of %g5 without saving its value. If we detect the use of 

%g6 or %7 during passl, we report an error and abort. 

The other primary action performed during pass 1 is to rewrite any DCTI expressions 

which contain conditionally executed delay slots. We use the translation discussed in sec­

tion 3.7 to find an identical sequence of instructions which will allow safe and accurate 

instrumentation. The final action made in pass 1 is to emit the assembly necessary to set 

up our memory storage area. This area is marked with the label .MYSTORAGE, who's 

address is loaded into %g6 at the beginning of the execution. All of these modifications to 

the user's assembly code are written into a temporary output file which is then fed into 

pass 2 for further translation. 

In pass 2 we perform all of the actions discussed in the last section. Primarily, we insert 

hook function calls for all memory references (including delayed instructions), maintain a 

bit vector of reserved memory areas on the stack, fix potentially too large immediate val­

ues in instructions, and perform CC flow analysis to reduce the number of system traps 

required to preserve the CC. All of these actions take place during a single pass through 

the temporary assembly file created in pass 1. Once we are finished instrumenting a 

sequence of assembly instructions, they are output to STDOUT. 

6.0 Other Considerations and Limitations 

While our translator will work for compiler generate assembly code, there are some situa­

tions which might arise in hand written code which our instrumentation might break. In 

addition, adding instrumentation to a user's code might incur a few unavoidable problems. 
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We have tried to pinpoint exactly what problems might arise, and discuss them in this sec­

tion. 

6.1 Use of libraries by the book functions 

The user must provide the hook functions, which we call from within our instrumentation 

and link with at compile time. Since we have no control over the user's code, it is up to 

the user to follow a few restrictions. When the user compiles their hook code, they must 

link statically with the system libraries. If not, the user's hooks will be calling the instru­

mented libraries which are linked with the original program to provide tracing. If the 

hooks call the instrumented libraries, which in turn call the hooks, we will get unpredict­

able results. Furthermore, the user must not use the malloeO routine within their hooks, 

or functions which use malloeO, like printfO and its siblings. The malloc routine is not 

re-enterable, making nested calls destructive. The user's hooks must not call malloeO 

because the hook might be called during a call to malloeO made by the original program. 

Due to this restriction, the user must use statically allocated memory, and make frequent 

use of the writeO routine instead of printfO. If using malloeO is unavoidable, we have 

provided a shared memory version of alloc and free which are safe for use in the hooks. 

6.2 Potential stack overflow 

The stack size can only grow to a set limit. If the original program uses a stack which is 

close to this limit, but does not exceed it, adding calls to hook functions might cause an 

overflow error. This problem is unavoidable, but should not occur in ordinary programs. 

If this situation does arise, there is most likely a bug in the user's code which caused the 

stack to grow so large. The error encountered after adding instrumentation will potentially 

help locate the problem. 

6.3 Label on a delay slot 

While we have not encountered this situation in compiler generated assembly code, it is 

theoretically possible that a delayed instruction might be marked with a local label. This 

would allow a control flow to jump to the delay slot without executing the corresponding 

instrumentation if the delayed instruction was a memory reference. To catch such situa-
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tions, new assembly instructions would need to be written to insure the proper instrumen­

tation. 

One possible method for dealing with labels on delay slots is to rewrite the instructions as 

shown in the following figure. 

Original Code Translated code 
instrumentation instrumentation 
biccX bicc X 

Ll: MYl: 
store A store A 

jumpLl jumpMY2 

MY2: 
instrumentation 
jumpMYl 

FIGURE 11. Translating labels on delay slots for proper instrumentation 

When we encounter a label on a delay slot that needs to be instrumented, we change the 

label name to a newly created one, and later in the code we emit our own basic block 

beginning with a second newly created label which contains the needed instrumentation 

along with a jump back to the first label. While doing this, we keep a table which remem­

bers we need to change all labels 'Ll' with our own label, 'MY2' in this case. After pass 

2 is complete, we can then make a 3rd pass and change all instances of 'Ll' to 'MY2', 

insuring the proper instrumentation will be called if there is a jump to that delay slot. 

6.4 Protection of our memory storage area 

To perform our instrumentation, we have already shown the need for a memory location to 

temporarily store values we need to preserve. We set up our own private memory area 

during the translation phase, which the user's code has no knowledge of. If the user's 

code contains dangling pointers, however, it is possible it will reference our storage area. 

If the reference is a read from memory, our instrumentation will trace the event, and the 

value will be stored by the tracing algorithm if needed for replay. In this case, the memory 

reference is traced just like any other. If the memory reference is a write to this location, 
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however, our stored data might become corrupt. If the user modifies our storage area the 

results are unpredictable. Some methods for dealing with this are discussed later in the 

enhancements section. 

6.5 neTI pairs 

In SPARC assembly, some combinations of DCTI pairs are defined, but cause very 

unusual control flow, and should never occur in compiler generated code. It is also 

unlikely that they will ever occur in hand generated assembly unless the control flow is 

extremely intricate. In our implementation, if a DCTI pair is encountered, we notify the 

user and abort the translation. Here, we present a possible translation for dealing with this 

situation should it arise. 

Due to the complexities of conditional branches, the SPARC manual clearly states the 

control flow for defined situations, and indicates all others are undefined (or machine 

dependent). [4 pg 54] The primary limitation stated is the first DCTI of a pair must be an 

unconditional branch. The second DCTI can be either an unconditional branch, a condi­

tional branch, or an annulled conditional branch. Thus three possible DCTI pairs are pos­

sible, and the following figures show translations for each. Note that in all examples, the 

instruction at location 20 is never executed. 

Original Code Translated code 
16 taken: 12, 16,40,60,64... 
16 not taken: 12, 16,40,44." 

12: -bicc,a 40 
12: ba40 16: foobarB 
16: bicc 60 20: ba,a60 
20: foobarA 24: foobarA 

40: foobarB 40: foobarB 
44: foobarC 44: foobarC 

60: foobarD 60: foobarD 
64: foobarE 64: foobarE 

FIGURE 12. DeTI pair with conditional second instruction 
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Original Code Translated code 
16 trlken: 12, 16,40,60,64... 
16 not trlken: 12, 16,44,48... 

12: -bicc,a 44 
12: ba40 16: foobarB 
16: bicc,a 60 20: ba,a60 
20: foobarA 24: foobarA 

40: foobarB 40: foobarB 
44: foobarC 44: foobarC 

60: foobarD 60: foobarD 
64: foobarE 64: foobarE 

FIGURE 13. DCn pair with annuUed conditional second instruction 

Original Code Translated code 
16 always trlken: 12, 16,60,64... 

12: ba 40 12: ba,a 60 
16: ba,a 60 16: foobarA 
20: foobarA 

40: foobarB 
40: foobarB 44: foobarC 
44: foobarC 

60: foobarD 
60: foobarD 64: foobarE 
64: foobarE 

FIGURE 14. DCn pair with annuUed unconditional second instruction 

For each example, once the translation is performed, no instructions remain in a delay slot, 

making them safe to instrument. 

7.0 Potential Enhancements 

While functional, several enhancements could be made to the instrumenting tool to reduce 

its run-time overhead and refine its accuracy for detecting some problems. 

7.1 Preserve only volatile global registers 

Currently we save %g2-4 before calling a hook function, and restore them upon return. 

Global registers are volatile across function calls, and without knowledge of the hook 
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functions we must preserve them to guarantee our instrumentation will work. It would be 

possible, however, to refine this by scanning the assembly code for the hook functions if it 

were available. If so, we could note which (if any) of the global registers are used within 

the hook function, and only preserve those specific registers. 

7.2 Utilizing all unused registers 

Many functions do not make use of all local registers available to them. If another pass 

were added to the translating algorithm, we could record every register that is not used 

within each specific function of the users code. Then, we could go back and store some of 

our values in these free registers during instrumentation instead of writing to our memory 

storage area. This still requires the same number of instructions, but a move from one reg­

ister to another is faster than a store to memory, and would help bring down the overhead. 

7.3 Manual control of the in-hook-flag 

Currently we raise our in-hook-flag in the delay slot of the hook function call, and lower it 

immediately upon the function's return. If a signal occurs during the hook, we call a spe­

cial signal hook as discussed earlier. Depending on where in the first hook the signal 

occurred, however, the user might want to take a different action. We could move the 

responsibility of raising and lowering the in-hook-flag into the hook function itself. The 

user could then position the flag to precisely the correct point where receiving a signal 

would result in an inaccurate trace. 

7.4 Manual control of the memory bit vector 

We maintain a 2 level bit vector and mark those memory areas which are reserved for reg­

ister storage on the stack. Then, for each load or store instruction we check the address of 

the instruction against this vector to catch memory violations. This functionality is very 

similar to that of the tracing algorithm itself. It could be possible to set up two new hook 

functions, one for saves and one for restores, which would allow the user to set up and 

maintain the volatile memory bit vector. Then, for each load and store, the user could do 

the address check within the hook that is called. This would reduce the number of func­

tion calls made per memory reference by half. 

Instrumenting User Code June I, 1994 27 



8.0 Functionality Testing and Results 

We tested our instrumentation on Sun SPARC 10 machines running SunGS 4.1.3. All 

instrumentation was done using the Sun C compiler (cc). We selected a test suite of three 

programs to instrument, each representing a different style of program. 

•	 gzip/gunzip - is a file compression utility. It represents computationally intensive 
program executions. 

•	 gee - is the Gnu C compiler. It is a very large and complex program. 

•	 nethaek - is fairly large as well, but also represents interactive programs. It is a popu­
lar dungeon adventure computer game. 

For each program, we compiled four separate test cases, linking with Sun libraries com­

piled with the same instrumentation as the test program. The four tests were: 

1) Uninstrumented - is the program with no instrumentation. 

2) CC flow + manual registers - includes our basic data flow 
analysis to reduce the number of traps needed to preserve CCs. We 
also manually save volatile local registers surrounding each block 
of instrumentation to our memory storage area. 

3) CC flow + save/restore - includes our data flow analysis as 
before, but this time we surround each block of instrumentation 
with a set of save and restore instructions to preserve volatile local 
registers. 

4) CC always + save/restore - does no data flow analysis, and 
always traps to obtain and reset the CC with every block of instru­
mentation. This test also includes the same save/restore method of 
preserving volatile local registers as in the last test. 

The hook functions called by each of the three instrumented test cases were simply empty 

function declarations. This allows us to see the overhead of the instrumentation and hook 

function calls alone, without the added overhead that will be introduced by the tracing 

algorithm used. We ran each test 10 separate times and took the average user times of 

each to calculate the run times reported in figure 15. The window size used in all tests was 

20 Meg. This figure is not that significant in our timing results, as the window hook is 

called so rarely in comparison to the other hooks that minor changes in its frequency have 

little effect on the overhead. 
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gzip gunzip gcc nethack 

1) Uninstrumented run time I 33.0 2.3 157.4 -30 min 

2) CC flow + manual registers 
running time 
slowdown I 

1854.7 
56.2 

152.8 
66.4 

9270.9 
58.9 

-30 min 
not noticed 

3) CC flow + save!restore 
running time 
slowdown I 

1811.7 
54.9 

149.7 
65.1 

10119.5 
64.3 

-30 min 
not noticed 

4) CC always + save/restore 
running time I 2669.4 187.9 10805.9 -30 min 
slowdown 80.9 81.7 68.65 minimal 

FIGURE 15. Overheads of varying instrumentation techniques 

The overheads for tests #2 and #3 ranged from 55 to 66 times the uninstrumented ver­

sions, showing there is little difference between manually saving volatile registers during 

instrumentation vs. using the save and restore instructions. This fact will be significant, 

however, if the instrumentation is modified to pass more arguments to the hook functions. 

Currently, only one argument is passed to each hook, so we must save %00 to pass the 

value. If other arguments are needed, more %0 registers will need to be used. This will 

slow down test #2, but because test #3 uses the save/restore instructions provided by 

SPARC to save all local registers, its run time will remain unchanged. 

In test #4, slowdowns ranging from 69 to 82 times the original execution were encoun­

tered. This clearly shows that performing data flow analysis to reduce the number of traps 

to preserve CCs is a win. Even better flow analysis could be performed if an additional 

pass were added to the translator, allowing us to keep track of volatile CCs across basic 

block boundaries. 

For all tests, the performance of nethack was not noticeably slowed down. This was 

expected, as nethack is a user interactive game. Interactive programs typically have large 

periods of dead time while waiting for a user's action. This dead time far outweighs any 

slowdown introduced by our instrumentation, making the program change invisible to the 

user. In test #4 the game did seem to lag occasionally. This lag could have been due to 
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temporary intense loads on our network, or may have been due to the slower instrumenta­

tion used in test #4. For most of the test, however, test #4 performed as quickly as all oth­

ers. 

1) Uninstrumented run time I 
gzip 

33.0 

gunzip 

2.3 

gee 

157.4 

2) CC flow + manual registers 
running time 
slowdown I 701.1 

21.3 
98.6 
42.9 

4211.4 
26.8 

FIGURE 16. Overheads for test #2 without stack memory correctness checking 

To detennine how much time was being taken up by our stack memory correctness func­

tions, we recompiled our three non-interactive programs to execute test #2 without the 

added function calls. For these tests, we call the user's hook functions as before, but do 

not call the extra function before each hook to verify a valid memory access. Our results 

show that much of the execution overhead is incurred in these added functions. Without 

the memory checks, gzip ran 2.6 times faster than before, gunzip ran 1.6 times faster, and 

gcc ran 2.2 times faster. The functionality of the stack memory checks could be easily 

added to the user's hook functions. This would add to the overhead once again, but by 

removing the extra function call before each hook the run times would still remain faster 

than those reported in figure 15. 

After running our tests with empty hooks to determine the run time overheads, we re­

linked the executables with our counting hooks. These hook functions increment individ­

ual counters for each hook function called, and print out the total counts upon exit. Figure 

17 shows the total number of times each hook was called for each of the test cases. The 

signals received by nethack were manually generated, as nethack nicely catches all signals 

to make sure you really want to send them. This allowed us to send a I\Z and I\C during 

the game, without having to abort the execution. 
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windowhook-
restorehook 

-_signalhook 
_ldbhook 

ldhhook 
]dwhook 
_lddhook 

stbhook-
sthhook 
stwhook-
stdhook 

_systemhook 
_stsyshook 
_ldsyshook 

gzip gunzip gee nethaek 

3625 416 1373 223 
3126535 7222 3972077 1552261 

0 0 0 2 
104518603 10263717 14680968 5979585 
72506146 1876059 10112707 50715 

393130231 34695558 84533275 5177922 
0 0 4 0 

3944860 2355174 4005446 1101672 
19268434 45757 725843 4618 

153660417 13676930 39898398 1197169 
0 0 18 0 

206 173 5658 5804 
124 40 4912 2804 
70 120 283 2910 

FIGURE 17. Total number oftimes each hook was called 

9.0 Conclusion 

Dynamic tracing techniques show strong potential as future debugging aids, making their 

implementation desirable. Our compiler wrappers and translation code make it easy for 

the user to compile instrumented source files and link with tracing hook functions. Many 

subtleties of the SPARC architecture made instrumentation tricky, but our tool overcomes 

almost all of them. We found the SPARC save instruction impossible to instrument prop­

erly, so additional code was added to check all memory references and notify the user of 

any which might conflict with a register window save. This additional correctness check­

ing could be easily moved into the hook functions themselves, lowering the run time over­

heads of the instrumentation. Our current instrumentation implementations introduced 

slow downs ranging from 55 to 82 times the originals, with average overheads around 60 

times. Our results lead us to believe these overheads could be brought down by a factor of 

-2 by shifting the responsibility of stack memory verification into the user hooks. The 

overheads could be further reduced by using more intricate data flow analysis to lessen the 

number of CC traps around instrumentation blocks. 

Our instrumenting tool provides full support for current dynamic tracing techniques, 

allowing the development of more complete and faster tracing algorithms It is hoped 

through the use of this tool, a full tracing and replay tool will soon be realized. 
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inst (1) MISC. REFERENCE MANUAL PAGES inst(l) 

NAME 
inst - translator for instrumenting assembly code 

SYNOPSIS 
inst < <sourcefile>.s > <targfile>.s 

DESCRIPTION 
inst will automatically instrument assembly code for execu­
tion tracing and future replay. Calls to hook functions 
which you provide are inserted into the original assembly 
file, allowing you to perform any tracing algorithm you have 
implemented. In order to ease the instrumenting phase of 
compilation, several wrappers have been developed for some 
compilers and assemblers. By putting the wrapper directory 
first in your path, they will be called at compilation, per­
forming the instrumentation at the correct phase. (see 
Wrappers section) 

USAGE 
Using inst is quite simple assuming the hook code and user 
libraries are all correctly in place. Some environment 
variables can have an effect on the translation, and are 
discussed later. The main step required for using inst is 
to prepare a hook file. 

To make a hook file, cd /~/rn/public/inst/hooks and copy 
one of the existing hook files into a new file. It is 
highly recommended that you begin with empty.c as a tem­
plate. Everything that is required in the hook file is 
already contained in empty.c, so adding your algorithm or 
any other functionality to this file will insure a correct 
base. The hooks that must be declared are: 

inithook 
This function is called at the beginning of the execu­
tion and any initialization should be performed here. 
The function setsic mu~t be called specifying the size 
limit of the SIC. 

exithook 
This function is called on program exit, and should 
perform any cleanup operations. 

windowhook 
This function is called when the SIC (see Trace Windows 
section) reaches the given size limit. Inside this 
function the user must call setsic providing the size 
limit so that the SIC can be-reset. 

restorehook 
This function takes a pointer to a buffer containing 
the values of all 16 volatile registers during a 
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restore instruction. 

signalhook 
- This function receives the SIC and also the signal type 

so that the user can record a signal took place, and 
use the SIC to determine the exact time. 

signalhook special 
- Similar to signalhook except it is called when the 

signal has-interrupted another hook in progress. This 
function also receives an extra argument indicating 
which specific hook was interrupted. 

Id[b,h,w,d]hook 
These four functions are called with an address indi­
cating a load instruction is going to occur. The 
letters b, h, w, and d stand for byte, halfword, word, 
and doubleword loads respectively. 

st[b,h,w,d]hook 
- As with the load hooks just before, only for store 

instructions. 

systemhook 
This function is called with the type of system call 
being made, so the user can record a system call 
occurred. 

stsyshook and Idsyshook 
- These two functions are called when load or store 

instructions will occur during a system call. Because 
memory operations are not restricted to bytes or words, 
separate hooks are required for these memory opera­
tions. Both the address and the size of the memory 
reference are passed to this function. 

It is important that any variables declared within your hook 
file be declared as static to avoid name collisions with 
other files. 

Once the hook code is ready, edit the Makefile to add a rule 
for your new file. It should be trivial to copy one of the 
other entries and rename the appropriate files. Once done, 
simply run make to build the object file and library for 
your hooks. Now you should cd .. /lib and create a symbolic 
link to your newly created hook library. If you set your 
TFILE environment variable to the name of the new library, 
the next time you use the wrappers your hook library will be 
linked into the executable. 

If you ever wish to change tracing algorithms or trace win­
dow sizes, re-instrumentation of the source code is not 
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required. Instead, simply edit the hook file and relink the 
executable. 

SUPPORT LIBRARY 
The instrumentation requires several functions during execu­
tion, which are stored in a "library in the 
/~/rn/public/inst/supportdirectory. In addition, if system 
library functions are to be called from within your hooks, 
you must make sure the hook is calling an uninstrumented 
version of the library call. Within you hook code, call 
capitalized versions of all library calls. (for example, 
call OPEN instead of open ) Now run 'nrn' on the support 
library to make sure the functions you call from the hooks 
are already supported. 

If not, you have a little hunting to do. It is helpful to 
use two windows during this procedure: one window should 
edit the Makefile in /~/rn/public/inst/supportand the other 
window should be scanning the output of nrn /usr/lib/libc.a 
(redirect to a file or less to view the output). Hunt 
through the nm listing for the definitions of the library 
calls you need to make. Add the file that contains them to 
the Makefile, and ALL functions defined or undefined within 
that file. Repeat this operation as necessary for any func­
tions called from within the newly added library file until 
every object file has an entry in the Makefile and every 
function name is listed in that entry as arguments to con­
vert. 

After all of this, remove the file libhsupport.a and type 
make. All library files needed are extracted from 
/usr/lib/libc.a automatically, and then all named functions 
for that~le are converted to upper-case letters via the 
/pro/aard/bin/sun4/convert utility. When the make finishes, 
run nrn libhsupport.a to make sure it only contains functions 
declared in the instrumenting support code in 
/u/rn/public/inst/support/*.c or capitalized library func­
tion names. 

The convert function is a program local to the Brown CS 
Department. If you do not have access to it, you may have 
to edit the sun source to rename the functions, and then 
rebuild your own local library. 

Trace Windows 
To support the concept of run-time trace windows, we have 
implemented a software instruction counter (SIC). The ini­
tial value of the SIC is set by your call to setsic within 
the inithook function. For every backward branch or func­
tion call, the SIC is decremented. If the new value has 
reached zero, we call your windowhook function. Thus, it 
is vital that you also call _set sic within your windowhook 
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function if you wish trace windows to perform as they 
should. 

COMPILING WITH WRAPPERS 
The wrappers we provide are stub functions which we have set 
up to perform any necessary instrumentation during the nor­
mal compilation of a file. If you put /~/rn/public/inst/bin 

first in your path, the wrappers contained in that directory 
will be called when you compile a file. (Note: It is 
important you call your compiler by name, and not provide 
the full path. Some Makefiles contain explicit paths) We 
support the gcc, cc, and acc compilers with our wrappers. 

In order for the wrappers to work correctly, it is necessary 
to have the environment variables TFILE and TLIB set 
correctly. 

ENVIRONMENT VARIABLES 
TFILE 

should contain the base name of the hook library you 
wish to link with. The library is already assumed to 
be in /~/rn/public/inst/lib. For example, if you wish 
to link with the counting hooks, set this variable to 
count. 

TLIB 
contains the name of the C library you wish to link 
with. The current choices are vanilla, norm, save_res, 
and okill, which are tests #1-4 in the paper, respec­
tively. 

BUILDING LIBC 
should be set only if you are compiling the C library 
source. If set to a non-null value it prevents linking 
with crtO and the hook and support libraries. 

ALWAYS SR 
should be defined if you wish to force a save and 
restore around each block of instrumentation. The 
default is to do manual saves of volatile registers. 

ALWAYS CC 
should be defined if you wish to force a trap before 
and after each block of instrumentation to get and 
reset the condition code. The default is to perform 
our basic data-flow analysis to reduce the number of 
these traps. 

The following environment variables were included for debug­
ging purposes. For normal use, you do not need to define 
them. 
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NO SLOTS 
- if defined tells the translator to ignor potential 

instrumenting errors involving delay slots. The 
default is to report any DCTI pairs or labels on delay 
slots. 

NO SIC 
- if defined disables the software instruction counter 

and thus all calls to windowhook. The default is to 
leave the SIC on. 

NO STACK 
if defined disables the correctness checking performed 
to make sure the instrumented program is not reading 
from reserved register window areas of the stack. The 
default is to perform these checks. 

NO REGS 
- if defined disables the translator from reporting 

register conflicts with the user's code. The default 
is to check for %g5-7 and report a warning if they are 
used. If only %g5 is used, we set a flag to make sure 
%g5 will be saved with the volatile registers during 
instrumentation. If %g6 or %g7 are used, the instru­
mentation will not work, and most likely the program 
will break. 

TT USEGCC 
over-rides whatever compiler was called, and forces gcc 
to be called. We have never needed to use this option, 
as the other wrappers seem to work perfectly well. 

FILES 
/u/rn/public/inst/ Base directory 
+bin/inst Actual translator 
+bin/cc,gcc,as,etc Wrappers for compilation 
+perl/*.pl Perl source of the translator 
+hooks/*. [c, 0] User hook code and object files 
+support/* Code required by instrumentation 
+lib/*.a libc, crtO, hook, and support 
libraries 

AUTHOR 
inst was written by: 

David W. Vorbrich (dwv@cs.brown.edu) 

in partial fulfillment of the Brown University Department of 
Computer Science Master's degree project under the guidance 
of Robert H.B. Netzer (rn@cs.brown.edu). 



13.0 Appendix B: Road Map of Source Directory
 

The root of the source tree is located in /u/rn/public/inst and contains all of the source 

code, wrappers, hook files, supporting libraries, and documentation. Each directory con­

tains a README file describing the files contained at that level. The general layout of 

the directories is as follows: 

•	 bin - contains all wrapper functions along with the inst executable. This directory 
must appear first in your path in order for the wrappers to function properly. 

•	 docs - contains this paper, the man page, and several data files used in compiling 
results for this paper. 

•	 hooks - contains all user hook code source. The file empty.c is an excellent template 
for beginning a new hook file. 

•	 lib - contains links to all supporting libraries required by the instrumented code. 
These include crtO.o, versions of libc.a, user hook files, and instrumentation specific 
functions. 

•	 perl - contains all of the source code for the inst translator. 

•	 support - contains support functions required by the instrumentation and hooks. 
These include some hand written files along with renamed functions extracted from the 
uninstrumented libc.a. 
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14.0 Appendix C: Hook File Template 

/* 
This file contains simple hook functions showing all of the hooks 
necessary to trace code using our instrumenter. Each hook is 
listed in the following table along with its ID. This number 
uniquely identifies the hook function, and is used by the tracer to 
identify which hook it is currently executing should it happen to 
be interrupted by a signal. 

*/ 

/* 
TABLE OF HOOK FUNCTION IDS 

1 inithook
 
2 <not used>
 
3 windowhook
 
41dbhook
 
51dhhook
 
61dwhook
 
71ddhook
 
8 stbhook
 
9 sthhook
 
10 stwhook
 
11 stdhook
 

*/ 

#include <stdio.h>
 
#include <sys/types.h>
 
#include <sys/stat.h>
 
#include <fcntl.h>
 
#include "supporcfuncs.c"
 
#define WINSIZE (400*1024)
 

int tracefile;
 
int signalfile;
 

/*******************1

1** General Hooks **1
 
/*******************/
 

void _inithook () {
 
tracefile = OPEN("TraceFile",O_WRONLY);
 
signalfile = FOPEN("SignalFile",O_WRONLY);
 
_setsic(WlNSIZE);
 

void _windowhook 0 {
 
_setsic(WlNSIZE);
 

void _exithook 0 {
 
WRITE(2, "Inside _exithook\n", 17);
 
CLOSE(tracefile);
 
CLOSE(signalfile);
 

void Jestorehook(char *but) {
 
}
 

1******************1
 
1** Signal Hooks **1
 
/******************1
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void _signalhook(unsigned sic, int sig) { 
} 

void _signalhook_special(int hook, unsigned sic, int sig) I 
} 

/****************/ 
/** LOAD HOOKS **/ 
/****************/ 

void _ldbhook (void *add) I 
} 

void _ldhhook (void *add) { 
} 

void _ldwhook (void *add) { 
} 

void _lddhook (void *add) I 
} 

/*****************/ 
/** STORE HOOKS **/ 
/*****************/ 

void _stbhook (void *add) { 
} 

void _sthhook (void *add) I 
} 

void _stwhook (void *add) { 
} 

void _stdhook (void *add) { 
} 

/*********************/ 
/* SYSTEM CALL HOOKS */ 
/*********************/ 

void _systemhook (int sysid) { 
} 

void _stsyshook (unsigned add, unsigned sz) { 
} 

void _ldsyshook (unsigned add, unsigned sz) {
 
}
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15.0 Appendix D: Wrapper Source Code 

15.1 ee 

#!/usr/locallbin/perl 
# Script: cc 
# Author: David W. Vorbrich <dwv@cs.brown.edu> 

$ttpath = "/u/rn/public/inst/bin"; 
$cc = "/usr/bin/cc"; 

$#cmd = -1; 

if ($ENV{'TT_USEGCC'}) 
{ 
$ENV{'COMPILER]ATH'} = "$ttpath";
 
@cmd= ("/cs/bin/gcc",@ARGV);
 
I 
else 
{ 
@cmd = ($cc,"-Qpath",$ttpath,@ARGV); 

} 

#print '\x 1b\XSb\X37\x6d",join(" ",@cmd),'\x Ib\XSb\X6d\n"; 
exec(@cmd); 

15.2 gee 

#!/usr/locallbin/perl 
# Script: gcc 
# Author: David W. Vorbrich <dwv@cs.brown.edu> 

$ttpath = "/u/rn/public/inst/bin"; 
$cc = "/cs/bin/gcc"; 

$ENV ( 'COMPILER]ATH' I = "$ttpath";
 
$cmd = "/cslbinjgcc @ARGV";
 

print "\x1b\xSb\x37\x6d$cmd\x1b\XSb\X6d\n"; 
exec("$cmd"); 
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15.3 as 

#J/usr/local/bin/perl 
# Script: as 
# Author: David W. Vorbrich <dwv@cs.brown.edu> 

$args = ""; 
$as = "/usr/bin/as"; 

for ($i = 0; $i <= $#ARGV; $i++) { 
if ($ARGV[$i] !- /f'{*)\S$/ && $ARGV[$i] !- !,'-O/) { 

$args .= " $ARGV[$i]"; 
} 

$cmd = "$as -S@ARGV"; 
# $cmd .= " I tee /tmp/tmpas.as"; 
$cmd .= " I/u/m/public/inst/bin/inst"; 
# $cmd .= " I tee /tmp/tmpas.inst"; 
$cmd1 =" $as $args -"; 

if «$pid =fork()) == 0) 
{
 
open(STDIN,"$cmd ''');
 
exec("$cmd1");
 

} 

waitpid($pid,O); 
exit $?; 

15.4 gas 

#!/usr/local/bin/perl 
# Script: gas 
# Author: David W. Vorbrich <dwv@cs.brown.edu> 

for ($i = 0; $i <= $#ARGV; $i++)
 
{
 

if ($ARGV[$i] =- /"(.*)\s$/)
 
{
 

die("instgas: multiple .s files\n") if ($base ne 'U');
 
$base = $1;
 

else 

$args .= " $ARGV[$i]"; 

die("instgas: no .s file specified.\n") if ($base eq ""); 

$cmd = "/cslbin/gas -S @ARGV";
 
$cmd .= " I/u/m/public/inst/bin/inst";
 
$cmd .= " I/cs/bin/gas $args -";
 
exec("$cmd");
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15.5 Id 

#!/usr/local/bin/perl
 
# Script: Id
 
# Author: David W. Vorbrich <dwv@cs.brown.edu>
 

$libpath = "/u/m/public!inst/lib";
 
$finallink = 0;
 
$tfile = $ENV {'TFILE' };
 
$tlib = $ENV{'TLIB ' };
 

for ($i = 0; $i <= $#ARGV; $i++)
 
{ 
if ($ARGV[$i] eq "/usr/lib/crtO.o" II $ARGV[$i] eq "/lib/crtO.o") 

{ 
$finallink = I; 
$ARGV[$i] = "$libpath/crtO_inst.o" if (! $ENV{'BUILDING_LIBC'}); 

} 
if ($ARGV[$i] eq "-Ie") 

{ 
$ARGV[$i] = ""; 

I 

$cmd = "/usr/bin/ld "; 

if ($finallink && ! $ENV {'BUILDING_LIBC'}) 
{ 
$cmd .= "-Ulibpath @ARGV -lhsupport -l$tfile -Ie_${ tlib I -lhsupport"; 

I 
else 
{ 
$cmd.= "@ARGV"; 

} 

print "\xlb\xSb\x37\x6d**** $cmd\xlb\XSb\X6cf\n"; 

exec($cmd); 
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16.0 Appendix E: Source for supporting functions 

/*
* File: supporcfuncs.c 
* Author: David W. Vorbrich <dwv@cs.brown.edu> 
*/ 

int int2char(unsigned i, char *buf) 
{ 
int j;
 
char mybuf[20];
 

if (i = 0) 
{
 
mybuf[O] = '0';
 
j = 1;
 

} 
else
 

for (j = 0; i; i /= 10, j++)
 
mybuf[j] = '0' + (i % 10);
 

for (i = 0, --j; j; ++i, --j) { 
buf[i] = mybuf[j];
 

}
 
buf[i] = mybuf[j];
 
buf[++i] = 0;
 
retum(i);
 

I 

! global.s by David W. Vorbrich <dwv@cs.brown.edu> 
! Functions to provide C code direct access to global registers 
.text 
.align 4 
.global Jetflag 
.procOl6 
Jetflag: 
mov %g5,%00 
jmpl %07+8,%gO 
nop 
.align 4 
.global Jetsic 
.procOl6 
Jetsic: 
mov %g7,%00 
jmpl %07+8,%gO 
nop 
.align 4 
.global _setsic 
.proc 016 
_setsic: 
mov %00,%g7 
jmpl %07+8,%gO 
nop 
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/*
* File: malloc 
* Author: David W. Vorbrich <dwv@cs.brown.edu> 
*/ 

#include<sys/types.h> 
#include<sys/ipc.h> 
#include<sys/shm.h> 

char *my_alloc(int size) { 
char *ret; 
int id; 

if «id = SHMGET(IPC_PRIVATE,size,0700» < 0) 
return NULL; 

ret = SHMAT(id,NULL,O);
 
SHMCTL(id,IPC_RMID,NTJLL);
 
if «int) ret = -1)
 

return NULL; 

return ret; 

void my_free(char *p) { 
SHMDT(p); 
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/* 
* File: stack.c 
* Author: David W. Vorbrich <dwv@cs.brown.edu> 
* 
* Taken largely from tracing code written by Rob Netzer and modified 
* for use here.
 
*/
 

#define NULL 0 

# definePAGESIZEBITS21 
# definePAGEMASK«(1<<PAGESIZEBITS)-l) 
# definePAGESIZE(1 «PAGESIZEBITS) 
# defineINDEXSIZE(1«(32-PAGESIZEBITS)) 

static unsigned int masks[] = { 
OxOOOOOOOl,OxOOOOOOO2,OxOOO00004,OxOOO00008, 
OxOOOOOOlO,OxOO000020,OxOOO00040,OxOOO00080, 
OxOOOOOlOO,OxOO000200,OxOO000400,OxOOOO0800, 
OxOOOOlOOO,Ox00002000,OxOO004000,OxOOO08000, 
OxOOOlOOOO,Ox00020000,OxOO040000,OxOOO80000, 
OxOOlOOOOO,Ox00200000,Ox00400000,Ox00800000, 
OxOlOOOOOO,Ox02000000,Ox04000000,Ox08000000, 
OxIOOOOOOO,0x20000000,Ox40000000,Ox80000000, 

}; 

unsigned int *tbl[INDEXSIZE]; 

void _secmemtbI2(unsigned a) { 
unsigned int page, byte, byte_shiftS, mask; 

page = (unsigned int)a»PAGESIZEBITS;
 
byte = (unsigned int)a & PAGEMASK;
 
byte_shiftS = byte»S;
 
mask = masks[byte&Oxlf];
 

if (tbl[page] == NULL) { 
tbl[page] = (unsigned int *)my_alloc(PAGESIZE/8); 
BZERO(tbl[page], PAGESIZE/8); 

} .
 
tbl[page][byte_shiftS] 1= mask;
 

void _set_memtbl(unsigned a) I
 
int i;
 
for (i=O ; i < 64; ++i,++a)
 

_set_memtbl2(a); 
} 

void _unset_memtbl2(unsigned a) I
 
unsigned int page, byte, byte_shiftS, mask;
 

page = (unsigned int)a»PAGESIZEBITS;
 
byte = (unsigned int)a & PAGEMASK;
 
byte_shiftS = byte»S;
 
mask = masks[byte&Oxlf];
 

tbl[page][byte_shiftS] &= -mask; 

void _unsecmemtbl(unsigned a) {
 
int i;
 
for (i=O ; i < 64; ++i,++a)
 

_unset_memtbI2(a);
 
}
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void _check_memtbl(unsigned a) { 
unsigned int page, byte, byte_shiftS, mask; 

page =(unsigned int)a»PAGESIZEBITS;
 
byte =(unsigned int)a & PAGEMASK;
 
byte_shiftS = byte»S;
 
mask =masks[byte&Oxlf];
 

if (tbl[page] != NULL && (tbl[page] [byte_shiftS] & mask)) { 
WRITE(2, "==> PROGRAM READ FROM REGISTER AREA OF STACK <= \on", SI); 
abortO; 

} 

void _delete_memtblO { 
int i; 
for (i=O; i < INDEXSIZE; ++i) { 

if (tbl[i] != NULL) my_free(tbl[i]); 
} 
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/* 
* File: mysighandler.c 
* Author: David W. Vorbrich <dwv@cs.brown.edu> 
* Created: Fri May 13 1994
 
*/
 

#include "mysignal.h" 
#include <ermo.h> 
#include <stdio.h> 

#define NUM_SIGS 31 

extern int ermo; 
void (*mysig_table[NUM_SIGS + 1])0; 

void _mysig_handler(int sig, int code, struct sigcontext *scp, char *addr) { 
int pid, inhook, len; 
char buffer[80]; 
unsigned sic; 

inhook = ~etflagO;
 
sic = ~etsicO;
 
if (inhookLsignalhook_special(inhook, sic, sig);
 
else _signalhook(sic, sig);
 

if (mysig_table[sig] = SIG_DFL) 
switch (sig) I 
case SIGHUP: 
case SIGINT: 
case SIGPIPE: 
case SIGALRM: 
case SIGTERM: 
case SIGXCPU: 
case SIGXFSZ: 
case SIGVTALRM: 
case SIGPROF: 
case SIGUSR1: 
case SIGUSR2: 

exit(1);
 
case SIGQUIT:
 
case SIGILL:
 
case SIGTRAP:
 
case SIGABRT:
 
case SIGEMT:
 
case SIGFPE:
 
case SIGBUS:
 
case SIGSEGV:
 
case SIGSYS:
 
case SIGLOST:
 

SIGNAL(SIGABRT, SIG_DFL); 
exit(1);
 

case SIGURG:
 
case SIGCONT:
 
case SIGCHLD:
 
case SIGIO:
 
case SIGWINCH:
 

return;
 
case SIGTSTP:
 
case SIGTI1N:
 
case SIGTTOU:
 

pid =GETPIDO;
 
KILL(pid, SIGSTOP);
 
break;
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else if (mysi!Ltable[sig] == SIG_IGN) return; 

else mysig_table[sig]O; 

void _mysig_setupO { 
int i; 
void (* tmp)O; 
for (i = 1; i <= NUM_SIGS; ++i) { 

tmp = SIGNAL(i, _mysig_handler); 
if (unp != -1) { 

mysig_table[i] = tmp; 

void *signal(int sig, void (*fune)) { 
if (sig <= 0 II sig > NUM_SIGS II sig == SIGSTOP II sig == SIGKll...L) { 

ermo = EINVAL; 
return (-1); 

} 
mysig_table[sig] = fune; 

/* 
* File: mysystem.e 
* Author: David W. Vorbrieh <dwv@es.brown.edu> 
* 
* Taken largely from the vmon source eode by Steve Reiss and modified 
* for use here.
 
*/
 

#define NULL 0 
#define TRUE 1 
#define FALSE 0 
#define SYS_syseall 0 

#inelude <sys/types.h> 
#include <sys/stat.h> 
#inelude <sys/syseall.h> 
#inelude <sys/file.h> 
#inelude <sys/signal.h> 
#inelude <sys/time.h> 
#include <sys/resouree.h> 
#include <sys/vfs.h> 
#include <ustat.h> 
#include <sys/uio.h> 
#inelude <sys/utsname.h> 

void _mysystem (int sysid,unsigned *args) { 

int i, write;
 
unsigned address, size;
 

_systemhook(sysid); 

if (sysid == SYS_syseall) { 
sysid = *args; 
args++; 

} 

for (i = 0; _mysystem2(i,sysid,args,&address,&size,&write); ++i) {
 
if (write) {
 

_stsyshook(address,size);
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} 
else { 

_ldsyshook(address,size); 

int _mysystem2 (int cnt, int id, unsigned *args, unsigned *address, 
unsigned *size, int *write) { 

struct iovec *iov;
 
int ct;
 

*write =TRUE; 

if (cnt == 0) {
 
switch (id) {
 

default :
 
return FALSE;
 

case SYS_recvmsg :
 
case SYS_sendrnsg :
 
case SYS-£etmsg :
 
case SYS_putmsg :
 
case SYS aioread:
 
case SYS- aiowrite :
 

return FALSE;
 
case SYS read:
 
case SYS~etdents :
 
case SYS_recv :
 
case SYS-£etdirentries :
 
case SYS recvfrom:
 

*address = (int) args[l];
 
*size = (int) args[2];
 
break:
 

case SYS write:
 
case SYS-send :
 
case SYS- sendto :
 

*address = (int) args[l];
 
*size = (int) args[2];
 
*write = FALSE;
 
break;
 

case SYS_stat :
 
case SYS lstat:
 
case SYS::::rstat :
 

*address = (int) args[l];
 
*size = sizeof(struct stat);
 
break;
 

case SYS ioctl:
 
*address = (int) args[2];
 
*size = 64;
 
*write = TRUE;
 
break;
 

case SYS readlink:
 
*address = (int) args[l];
 
*size = (int) args[2];
 
break;
 

case SYS-£ethostname:
 
*address = (int) args[O];
 
*size = (int) args[l];
 
break;
 

case SYS_fcntI :
 
*address = (int) args[2];
 
if (*address == NULL) return FALSE;
 
*size = sizeof(struct flock);
 
break;
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case SYS_sigvec : 
*address = (int) args[2]; 
if (*address = NULL) return FALSE; 
*size = sizeof(struct sigvec); 
break; 

case SYS~ettimeofday: 
*address =(int) args[O]; 
*size =sizeof(struct timeval); 
if (*address = NULL) { 

*address = (int) args[l];
 
if (*address = NULL) return FALSE;
 
*size =sizeof(struct timezone);
 

};
 
break;
 

case SYS~etrusage : 
*address =(int) args[l]; 
if (*address = NULL) return FALSE; 
*size =sizeof(struct rusage); 
break; 

case SYS~etsockopt: 
*address = (int) args[3]; 
*size = *((int *) args[4]): 
if (*address = NULL" *size = 0) return FALSE; 
break; 

case SYS~etpeemame: 
case SYS~etsockname : 

*address =(int) args[l]; 
if (*address = NULL) return FALSE; 
*size =*«int *) args[2]); 
if (*address = NULL " *size = 0) return FALSE; 
break; 

case SYS~etrlimit : 
*address =(int) args[l]; 
if (*address = NULL) return FALSE; 
*size = sizeof(struct rlimit); 
break; 

case SYS statfs: 
case SYS=:fstatfs : 

*address = (int) args[l]; 
if (*address = NULL) return FALSE; 
*size =sizeof(struct statfs); 
break; 

case SYS~etdomainname: 
*address =(int) args[O]; 
if (*address = NULL) return FALSE; 
*size = (int) args[1]; 
break; 

case SYS_ustat :
 
*address =(int) args[l];
 
if (*address = NULL) return FALSE;
 
*size =sizeof(struct ustat);
 
break;
 

case SYS_uname :
 
*address =(int) args[O];
 
if (*address = NULL) return FALSE;
 
*size = sizeof(struct utsname);
 
break;
 

case SYS readv:
 
ct =(int) args[2];
 
if (ct = 0) return FALSE;
 
iov =(struct iovec *) args[1];
 
*address =(int) iov->iov_base;
 
*size =iov->iov_len;
 
break;
 

case SYS_writev : 
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et = (int) args[2];
 
if (et = 0) return FALSE;
 
iov = (struet iovee *) args[l];
 
*address = (int) iov->iov_base;
 
*size = iov->iov_len;
 
*write = FALSE;
 
break;
 

}
 
}
 

else {
 
switch (id) {
 

case SYS~ettimeofday: 
if (ent > 1) return FALSE; 
*address = (int) args[O]; 
if (*address = NULL) return FALSE; 
*address = (int) args[l]; 
if (*address = NULL) return FALSE; 
*size = sizeof(struet timezone); 
break; 

case SYS~etdirentries : 
if (ent > 1) return FALSE; 
*address = (int) args[3]; 
if (*address = NULL) return FALSE; 
*size = sizeof(1ong); 
break; 

case SYS_readv : 
et = (int) args[2]; 
if (ent >= et) return FALSE; 
iov = (struet iovee *) args[l]; 
iov += ent; 
*address = (int) iov->iov_base; 
*size = iov->iov_len; 
break; 

case SYS writev: 
et = (int) args[2]; 
if (ent >= et) return FALSE; 
iov = (struet iovee *) args[l]; 
iov += ent; 
*address = (int) iov->iov_base; 
*size = iov->iov_len; 
*write = FALSE; 
break; 

case SYS recvfrom: 
if (ent >-1) return FALSE;
 
*address = (int) args[4];
 
if (*address = NULL) return FALSE;
 
*size = (int) args[5];
 
break;
 

case SYS sendto: 
if (ent >-1) return FALSE; 
*address = (int) args[4]; 
if (*address = NULL) return FALSE; 
*size = (int) args[5]; 
*write = FALSE; 
break; 

default :
 
return FALSE;
 

I 
I 

return TRUE; 
I 
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17.0 Appendix F: Perl Source Code for inst 

The source for inst is broken into seven separate perl files. 

•	 instrument.pi - is the main driver of the program. It includes all other files, sets up 
the input and output files, and calls passl and pass2 in turn. 

•	 passl.pl - contains code for the initial pass over the user's code. During this phase we 
rewrite DCTI instructions with conditionally executed delay slots, check the user's 
code for global registers we reserve for instrumentation, and set up our memory storage 
area. 

•	 pass2.pl - contains code for the primary pass over the user's code. During this phase 
we perform all instrumentation, inserting calls to the hook functions for all events 
required by the tracing algorithm. 

•	 funes.pl - contains all sub functions needed by passl and pass2 to keep track of state 
information and standard utilities. 

•	 hooks.pl - contains sub functions for generating the assembly required to call each 
hook function. 

•	 rgxp.pl - contains definitions for all regular expressions used to match the user's 
assembly file and trigger instrumentation output. 

•	 opposites.pl - contains a single associative array indexed by DCTI's which provides 
the logically opposite instruction for each DCn. 
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#!/usr/local/bin/perl 
# Script: instrument 
# Author: David W. Vorbrich <dwv@cs.brown.edu> 

$DIR = "/u/m/public!inst!perl"; 
require("${DIR} /rgxp.pl"); 
require("$ {DIR} /opposites.pl"); 
require("${DIR}/hooks.pl"); 
require("${ DIR} /passl.pl"); 
require("$ {DIR}/pass2.pl"); 
require(H${ DIR}/funcs.pl"); 
require("f1 ush.pl"); 

$USE_SIC =! defined($ENV ('NO_SIC'}); 
$CI-IlCSLOTS = ! defined($ENV {'NO_SLOTS'}); 
$CHK_STACK =! defined($ENV{ 'NO_STACK'}); 
$CHK_REGS =! defined($ENV{'NO_REGS'}); 
$ALWAYS_SR = defined($ENV{ 'ALWAYS_SR'}); 
$ALWAYS_CC= defined($ENV{'ALWAYS_CC'}); 

# TMP file is used as output from passl and read as input by pass2 
$TMP = H.$$_pass1.s"; 

open(SRC, "<& STDIN"); 
open(TMP, "> $TMP"); 

&PASS_IO; 

&f1ush(TMP); 
open(TMP, H$TMP"); 

&PASS_20; 

unlink ($TMP); 
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#!/usr/local/binjperl 
# Script: pass 1 
# Author: David W. Vorbrich <dwv@cs.brown.edu> 

sub PASS_l { 
while(<SRc» { 

# Skip blank lines and comments except !#PROLOGUE
 
if ((! j"\S*$j && ! j"\s*([!\#llV\*)1) II j($R_PRO)1) {
 

&PARSE_LINEO; 
if {/"_('$+):1) { 

$FUNC= $1; 
} 

# Check if the code being translated already uses global registers 
# we depend on, if we encounter %g5, set a flag so we preserve 
# its value during pass2 
if «$CHICREGS) && j($R_ll...LEGAL)j && ! jasciil) { 

if (/%g51%r51) { 
print STDERR "Used %g5... I will protect it: $_\n"; 
$SAVE_G5 = 1; 
print TMP $_; 

} 
else { 

die "Warning illegal register: $_\n"; 
} 

# If we encounter a DCTI which always voids it's delay slot, put a 
# nop there to avoid future hassels (like a label on the slot) 
elsif ($Wl =- j"($R_DCTInoslot)$1) { 

print TMP $_, '\t\tnop\t\t\t\t! Put nop in void delay slot\n";
 
}
 

# If we encounter a DCTI who's delay slot mayor may not be executed 
# depending on if the branch is taken, rewrite the assembly so it 
# is not ambiguous for translation 
elsif ($Wl =- j"($R_ba)I($R_cba)I($R_fba)$1) { 

$A = 1;
 
$NEW_BRANCH = $OPPOSlTE{ $W I};
 
++$LABEL;
 
$OLD=$ .
 
$HEADER'= sprintf
 

('\t\t${NEW_BRANCH} ${FUNC}.MINE${LABEL}\n\t\tnop\n\t\tba $W2\n"); 
$FOOTER = sprintf("$ {FUNC} .MINE${LABEL} :\n"); 

I 

# If we see a Id/st instruction and we are in the delay slot of an 
# annulled DCTI from above, then output rewritten assembly 
elsif ($A == 1 && $Wl =- j"«$R_LD)I($R_ST)I($R_CLR)I($R_LDST»$1) { 

print TMP $HEADER, $_, $FOOTER;
 
$A=O;
 

} 

# For all other instructions, if they were in the delay slot of an
 
# annulled DCTI first output the DCTI, then the current instruction,
 
# otherwise just print the current instruction
 
else {
 

($A = 1)?($A = 0, print TMP $OLD,$_):(print TMP $_); 
I
 

I
 
} 
&SETUP_STORAGE; 
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# This function simply emits the code necessary for temporary storage in
 
# the data section of memory for saving and restoring register values we
 
# need to protect.
 
sub SETUP_STORAGE {
 

print TMP '\t\J:\J:\J:\J:! MEMORY STORAGE FOR GLOBALS\n";
 
print TMP ".seg\l\"data\'\!1";
 
print TMP '\t\J:.align 4\n";
 
print TMP ".MYSTORAGE:\n";
 
for ($1 =0; $1 < 40; ++$1) {
 

print TMP '\t\J:.word O\n"; 
I 

print TMP '\t\J:\J:\J:\J:! END OF STORAGE AREA\n"; 

1; 
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#!/usrflocal/bin/perl 
# Script: pass2 
# Author: David W. Vorbrich <dwv@cs.brown.edu> 

sub PASS_2 { 
while(<TMP» { 

$CUR=$_; 

&PARSE_LINEO;# Break line into words 

&FIX_SIMM130;# Fix complex expressions in SIMM13's 

if (f/\_('5+):f) { 
$FUNC = $1; 

} 

# If we see a new procedure definately print out the SIC code 
if (f($R_PRO)f) { 

&MY_PRINT(O, $CUR); 
&INT_SICHOOKO; 

} 

# If we see the start label, call the initialization 
elsif (f/\($R_STARnf) { 

&MY_PRINT(O, $CUR); 
&INT_INITHOOKO; 

} 

# If we see a save instruction, mark our bitvector 
elsif ($W 1 =- j/\($R_SAVE)$f) { 

&PRINT_BUFSO; 
&FIX_SAVEO; 
if ($CHK_STACK) { &DO_SETMEMO; I 

} 

# If we see a restore (maybe in a delay slot) clear the bitvector
 
# and dump the register values into the trace file
 
elsif ($Wl =- j/\($R_REST)$f) {
 

if ($DCTI_SEEN) { 
&DO_RESTORE(I);# Actually eats the return statement 
$DCTCBUF = ....; 

} 
else {
 

&PRINT_BUFSO;
 
&DO_RESTORE(0);
 

I 
$DCTCSEEN = 0;
 
$RETURN_TARG = "";
 

}
 

# If we see a DCTI, buffer info until we know when it's safe to
 
# instrument. Also, if it's a backward or conditional branch, increment
 
# and check the SIC.
 
elsif ($Wl =- j/\($R_DCTI)$f) {
 

if ($DCTI_SEEN != 1) {
 
$DCTI_SEEN = 1;
 

}
 
else {
 

if ($CHK_PAlRS) {
 
die "==============> Branch in delay slot\n";
 

} 
else {
 

&PRINT_BUFSO;
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&MY_PRINT(O, $CUR); 
}
 

}
 
if ($W1 =- I"($R_RET)$/) { 

($W2 !- I"$/) ? ($RETURN_TARG = $W2) :($RETURN_TARG = "%i7"); 
} 

if ($BACK_BRANCHES {"${W2}:"} == 1) I 
&INT_SICHOOKO; 

} 
if ($W1 =- 1"($R_DCTInoslot)$/) { 

$NO_INST= 1; 
} 

$DCTI_BUF = $CUR; 
} 

# For all instructions which touch memory, insert a call to the
 
# appropriate hook function and clear up any delay slot buffering
 
# from prior DCTI's.
 
elsif ($W1 =- I"($R_LD)$/) {
 

($NO_INST = 1) ? $NO_INST = °:&INT_LDHOOK10;
 
&PRINT_BUFSO;
 
&MY_PRINT(O, $CUR);
 

} 
elsif ($W1 =- 1"($R_Sn$/) { 

($NO_INST = 1) ? $NO_INST = °:&INT_STHOOK10; 
&PRINT_BUFSO; 
&MY_PRINT(O, $CUR); 

} 
e1sif (f($R_CLR)/) { 

($NO_INST = 1) ? $NO_INST = °:&INT_STH00K20; 
&PRINT_BUFSO; 
&MY_PRINT(O, $CUR); 

} 
elsif ($W1 =- 1"($R_LDSn$/) { 

($NO_INST = 1) ? $NO_INST = 0: &INT_LDSTHOOK10; 
&PRINT_BUFSO; 
&MY]RINT(O, $CUR); 

} 

# Ifwe encounter a trap into the system, insert a call to the syscal1
 
# hook
 
elsif (f($R_SYSCALL)/) I
 

&INT_SYSHOOKO; 
&MY]RINT(O, $CUR); 

} 

# For every label encountered, record it's name to keep track of
 
# backward branches.
 
elsif ($W1 =- I"($R_LABEL)$/) {
 

$BACK_BRANCHES{$W1} = 1; 
if ($DCTCSEEN == 1) I 

if ($CHK_SLOTS) { 
die "============> Label on delay slot detected'n"; 

} 
else { 

&PRINT_BUFSO; 
} 

} 
&MY_PRINT(O, $CUR); 

} 

# The default action is to clear up our buffers and print out the
 
# current instruction
 
else {
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&PRINT._BUFSO; 
&MYYRINT(O, $CUR); 

} 

# This function actually emits the code once it knows if we need to
 
# preserve the CCs or not.
 
&CC_CHECKO;
 

# Simply here to catch the last buffer when the loop exits 
($ALWAYS_CC) ? (print $OUTPUTcc) : (print $OUTPUT); 

1; 

Instrumenting User Code June 1, 1994 62 



#!/usr/local/bin/perl 
# Script: funcs 
# Author: David W. Vorbrich <dwv@cs.brown.edu> 

# Doesn't actually print, but rather appends a string to one or more 
# buffers based on a provided key. 1 = don't save CC, 2 = save CC 
sub MY]RINT { 

local ($WHICH, $SlR) = @_; 
if ($WHICH = 1) { 

$OUTPUT .= $SlR; 
} 

elsif ($WHICH == 2) { 
$OUTPUTcc .= $SlR; 

} 
else { 

$OUTPUT .= $SlR; 
$OUTPUTcc .= $SlR; 

} 

# Actually only one buf, but the name stuck. Here we append the buffer 
# left over from a DCTI onto the actual output buffers. 
sub PRINT_BUFS { 

if ($DCTCSEEN = 1) { 
&MY]RINT(O, $DCTI_BUF); 
$DCTI BUF = "". 
$DCTI-SEEN = 0; 
$SLOT-='SEEN = 1; 

i 

# Break the input line into seperate words 
sub PARSE_LINE { 

(jA\s*0S+)\s+1) ? ($W1 = $1) : ($Wl = ""); 
(/A\s*\S+\s+0S+)I)? ($W2 = $1) : ($W2 = ""); 
(/A\s*\S+\s+\S+\s+0S+)I)? ($W3 = $1): ($W3 = ""); 

} 

# Split the arguments to a memory reference in order to determine what
 
# address it will be referencing. These variables are referred to globally
 
# within other functions. Namely, START_CALLO.
 
sub GET_OPS {
 

10cal($ARG) = @_; 
if ($ARG =-!\+-I) {
 

$WH = index($ARG, "+");
 
$01 = substr($ARG, 1, $WH - 1);
 
sOP = "add";
 
$02 = substr($ARG, $WH + 1, length($ARG) - $WH - 2);
 
if ($01 + 0 != 0) {
 

$TEMP= $01;
 
$01 = $02;
 
$02= $TEMP;
 

}
 
}
 

elsif ($ARG =-/-1) {
 
$WH = index($ARG, "_");
 
$01 = substr($ARG, 1, $WH - 1);
 
SOP = "sub";
 
$02 = substr($ARG, $WH + 1, length($ARG) - $WH - 2);
 

} 
else {
 

$01 = substr($ARG, 1, length($ARG) - 2);
 
SOP = "";
 
$02 = "";
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# Trap to get the CC and put it into storage 
sub SAVE_CC ( 

&MY_PRINT(2, '\1\tt\1Ox2Q\J:\t\t! Saving Can"); 
&MY_PRINT(2, '\1\tst\1%gl,[%g6+0]\n"); 

} 

# Get a value from storage and trap to restore the CC 
sub REST_CC ( 

&MY_PRINT(2, '\1\tld't[%g6+0),%gl\n"); 
&MY_PRINT(2, '\1\tt\tOx21\t\t\t! Restoring old Can"); 

} 

# Save volatile registers into storage. Add other %oX registers if
 
# future hook functions take more than one argument. Currently we
 
# only protect %00.
 
sub SAVE_REGS (
 

&MY]RINT(O, '\1\tst\t%gl,[%g6+4)\t\t! Saving global registers'rl");
 
&MY]RINT(O, '\1\tst\t%g2,[%g6+8]\n");
 
&MY]RINT(O, '\1\tst\t%g3,[%g6+12]\n");
 
&MY_PRINT(O, '\1\tst\t%g4,[%g6+l6]\n");
 
if ($SAVE_G5 = 1) ( &MY_PRINT(O. "\t\tst\t%g5,[%g6+20]\n"); }
 
if ($ALWAYS_SR) I
 

&MY_PRINT(O, "\t\tsave\t%sp,-96,%sp\t\t! Saving non-global registers\n"); 
} 

else ( 
&MY_PRINT(O, "\t\tst\t%oO,[%g6+32)\t\t! Saving non-global registers\n"); 
&MY_PRINT(O, "\t\tst\t%o7,[%g6+36]\n"); 

} 

# Get values from storage and restore them to the correct registers 
sub REST_REGS ( 

&MY_PRINT(O. '\1\tld\t[%g6+4),%gl\t\t! Restoring global registers\n"); 
&MY_PRINT(O, '\1\tld\t[%g6+8),%g2\n"); 
&MY_PRINT(O, '\1\tld\t[%g6+l2),%g3\n"); 
&MY]RINT(O, '\1\tld\t[%g6+l6),%g4\n"); 
if ($SAVE_G5 = 1) ( &MY]RINT(O, "\t\tld't[%g6+20),%g5\n"); } 
if ($ALWAYS_SR) ( 

&MY_PRINT(O, "\t\trestore\t\t\t! Restoring non-global registers'rl"); 
} 

else ( 
&MY_PRINT(O, "\t\tld't[%g6+32),%oO\t\t! Restoring non-global registers\n"); 
&MY_PRINT(O, "\t\tld't[%g6+36),%o7\t\t\n"); 

} 

# Emit a helpful comment and do any set up requried to call a hook
 
# function. If we are passed a flag telling us this is a memory reference,
 
# also set up the correct argument to the hook.
 
sub START_CALL (
 

local($CMT, $KND, $MEM_REF) =@_;
 
&MY_PRINT(O, '\1\t\t\t\t! BEGIN INSTR-${CMT}: $ (KND}'rI");
 
if ($MEM_REF == 1) {
 

if ($OP) ( 
&MY_PRINT(O,'\t\t${ OP}\t${ 01 },${ 02},%g5\n"); 

} 
else { 

&MY_PRINT(O,'\t\tmov\t${O 1},%g5\n"); 
} 

&MY_PRINT(O, "\t\tst\t%g5,[%g6+116]\n"); 
} 
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&SAVE_REGS();
 
&SAVE_CC();
 
if ($MEM_REF == 1) {
 

if ($CHK_STACK) { &DO_CHECKMEM(); } 
&MY_PRINT(O, "\l:\tld\t[%g6+116],%0O'\n"); 

} 

# Restore CCs and volatile registers and print out a closing comment 
sub END_CALL { 

10cal($CMT, $KND) =@_; 
&REST_CC(); 
&REST_REGS(); 
&MY_PRINT(O, '\J:\t\t\t\t! END INSTR-${CMT}: ${KND}\n"); 

} 

# Actually prints the output buffers. This is the only place real code
 
# is emitted. If we are in a delay slot, reading the CC, or just entered
 
# a new basic block, we must print out the buffer which preserves CCs.
 
# If we are writing a new value over the old CC, we can emit the prior
 
# buffers which do not protect the CC.
 
sub CC_CHECK {
 

if ($SLOT_SEEN = 1 II 
$WI =- I"'C$R_LABEL)$J II 
$Wl =- l\($R_RDccplain)$/) { 
print $OUTPUTcc; 
$SLOT SEEN = 0; 
$OUTPUTcc =""; 
$OUTPUT = ""; 

} 
elsif ($Wl =- JA($R_WRcc)$/) { 

($ALWAYS_CC) ? (print $OUTPUTcc) : (print $OUTPUT); 
$OUTPUTcc = ; 
$OUTPUT= ; 

} 

# Store the values of all registers which will be modified by a restore
 
# instruction into a specified area of our storage.
 
sub DUMP_REGS {
 

&MY_PRINT(O, '\J:\tst\t%iO,[%g6+52]\n");
 
&MY_PRINT(O, "\t\tst\t%il,[%g6+56]\n");
 
&MY_PRINT(O, '\J:\tst\t%i2,[%g6+60]\n");
 
&MY_PRINT(O, '\J:\tst\t%i3,[%g6+64]\n");
 
&MY_PRINT(O, '\J:\tst\t%i4,[%g6+68]\n");
 
&MY_PRINT(O, '\J:\tst\t%i5,[%g6+72]\n");
 
&MY_PRINT(O, '\J:\tst\t%i6,[%g6+76]\n");
 
&MY_PRINT(O, '\J:\tst\t%i7,[%g6+80]\n");
 
&MY_PRINT(O, '\J:\tst\t%10,[%g6+84]\n");
 
&MY_PRINT(O, '\J:\tst\t%11,[%g6+88]\n");
 
&MY_PRINT(O, '\J:\tst\t%12,[%g6+92]\n");
 
&MY_PRINT(O, '\J:\tst\t%13,[%g6+96]\n");
 
&MY_PRINT(O, '\J:\lSt\t%14,[%g6+100]\n");
 
&MY_PRINT(O, '\J:\tst\t%15,[%g6+104]\n");
 
&MY_PRINT(O, '\J:\tst\t%16,[%g6+108]\n");
 
&MY_PRINT(O, '\J:\lSt\t%17,[%g6+112]\n");
 

# More complex than it seems. First, unmark our bitvector before the 
# restore, then print the restore itself. After this, dwnp the modified 
# registers via DUMP_REGS() above, then call the restore hook providing 
# a pointer into the storage area where the register values are buffered. 
# After all of this is done, set up a jmpl to the original return target. 
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sub DO_RESTORE { 
local ($RET) = @_; 
if ($RET) { 

&MY_PRINT(O,'\t\1st\t${RETURN_TARG },[%g6+120]\t\1! Save ret arg\n"); 
if ($CHICSTACK) { &DO_UNSETMEMO; } 

} 
&MY_PRINT(O, $CUR);
 
&DUMP_REGS();
 
&START_CALL("RESTORE_HOOK","restore",0);
 
&MY_PRINT(O, "\t\tset\1(.MYSTORAGE+52),%00\n");
 
&MY_PRINT(O, "\Ncall\t_restorehook,O\n\t\tnop\n");
 
&END_CALL("RESTORE_HOOK","restore");
 
if ($RET) {
 

&MY_PRINT(O, ''\t\tld\1[%g6+120],%07\t\1! Restore ret arg\n"); 
&MY_PRINT(O, ''\t\1jmpN%07+8,%gO\n"); # replaces return statement 
&MY_PRINT(O, ''\t'\1nop\n''); 

} 

# Pass the stack pointer to the set call to set our bitvector 
sub DO_SETMEM { 

&START_CALL("SET_MEMTBL","_secmemtbl",O); 
&MY_PRINT(O, ''\t\1call\t_secmemtbl,O\n''); 
&MY_PRINT(O, ''\t\1mov\1%sp,%00\n"); 
&END_CALL("SET_MEMTBL","_secmemtbl"); 

} 

# Pass the stack pointer to the unset call to unset our bitvector 
sub DO_UNSETMEM { 

&START_CALL("UNSET_MEMTBL"," _unsecmemtbl",0); 
&MY]RINT(O, ''\t\1call\t_unsecmemtbl,O\n''); 
&MY]RINT(O, ''\t\1mov\1%sp,%00\n"); 
&END_CALL("UNSET_MEMTBL","_unset_memtbl"); 

} 

# Set up the address being referenced and then pass it to the check function
 
# to see if we are accessing a restricted area.
 
subDO_CHECKMEM {
 

&MY]RINT(O, ''\t\1Id\1[%g6+116],%00\n");
 
&MY]RINT(O, ''\t\1call\t_check_memtbl,<N:! Check if valid address\n");
 
&MY]RINT(O, ''\t\1nop\n'');
 

} 

sub FIX_SAVE { 
($A, SB, $C) = split(/j, $W2, 3); 
if ($B =- 1"(% [rglio] [0123456789]+)$/) { 

&MY_PRINT(O, ''\t\tsub\1S{ 1},96,${ 1}\1\1! Insuring stack size\n"); 
&MY_PRINT(O, $CUR); 

} 
else { 

$B .= "-96"; 
$W2 = join(' " , $A, $B, $C); 
$CUR = ''\t\1'' . $Wl . ''\t'' . $W2 . "" . $W3 . "\n"; 
&MY_PRINT(O, $CUR); 

} 

# Looks ugly, but it's not that bad. This function looks for parenthetical 
# expressions. If it finds one containing two local labels, then the 
# result might be out of range if the expression is in a SIMM13 slot. 
# Simply, the expression might be more than 13 bites, so we remove the 
# expression in question, put it's result into a 32 bit register, and 
# modify the original instruction to take this register. We only do this 
# for expressions containing two or more labels, and also take special 
# care of the label '.' indicating current line, since we might move the 
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- -

# line during instrumentation. 
sub FIX_SIMM13 { 

return if /word/; 
return if f\s*sethi/; 
return if f\s*or/; 
return if /GLOBAL/; 

($A, $B, $C, $D) = split(/j, $W2, 4); 

if ($A =- N.*($R_LABEL_REF).*[+-]($R_LABEL_REF).*\)/) { 
$EXP=$A; 
$W2 = join(',' , "%g5", $B, $C, $D); 

} 
elsif ($B =- N.*($R_LABEL_REF).*[+-]($R_LABEL_REF).*\)/) ( 

$EXP= $B; 
$W2 = join(',', $A, "%g5", $C, $D); 

} 
elsif ($C =- N..*($R_LABEL_REF).*[+-]($R_LABEL_REF).*\)/) ( 

$EXP= $C; 
$W2 = join(' ,', $A, $B, "%g5", $D); 

} 
elsif ($D =- N..*($R_LABEL_REF).*[+-]($R_LABEL_REF).*\)/) ( 

$EXP= $D; 
$W2 = join(' " , $A, $B, $C, "%g5"); 

} 

if (SEXP) { 
if ($W2 =-/"(.*),+$/) { 

$W2 = $1;# Strip trailing extra commas 
} 

$CUR = ''\I:\t'' . $Wl . ''\I:'' . $W2 . "" . $W3 . "\11"; 

if ($DCTCSEEN == 1) { 
if ($EXP =-/("\(\.[+-])I([+-]\[+-])I([+-]\\»/) { 

($EXPl = $EXP) =- sl\)/-12\)/; 
($EXP2 = $EXP) =- sl\)/-fN/; 

} 
else {
 

$EXPl = $EXP2 = $EXP;
 
}
 

$NEW = sprintf(''\t\tsethi\t%%hi($EXP1),%%g5\n'');
 
$NEW.= sprintf(''\t\tor\t%%g5,%%lo($EXP2),%%g5\n");
 

}$DCTI BUF = $NEW . $DCTI BUF; 

else { 
if ($EXP =-/("\(\.[+-])I([+-]\[+-])I([+~]\\»/) {
 

($EXPl = $EXP) =- sl\)/-fN/;
 
($EXP2 = $EXP) =- sl\)/-4\)/;
 

}
 
else {
 

$EXPl = $EXP2 = $EXP;
 
}
 

$NEW = sprintf(''\t\tsethi\t%%hi$EXP1,%%g5\n");
 
$NEW .= sprintf(''\t\tor\t%%g5,%%lo$EXP2,%%g5\n");
 
$CUR = $NEW . $CUR;
 

} 
}
 

else {
 
$EXP_SEEN = 0;
 

}
 

$EXP = $EXPl = $EXP2 = $A = $B = $C = $D = $NEW = ""; 
} 

1; 
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#!/usr/locallbin/perl 
# Script: inChooks 
# Author: David W. Vorbrich <dwv@cs.brown.edu> 

sub INT_LDHOOKI { 
$KIND = C$Wl =- /"ld$/? "w" : substrC$Wl, lengthC$Wl) - 1)); 
@T=split(lJ, $W2); 
&GET_OPSC@T[O]); 
&START_CALLC"LOAD (1)", $KIND, 1); 
&MY_PRINTCO,'\1\tcall\l_ld${KIND} hook,O\n"); 
&INT_HOOK_FLAGC"ld", $KIND); 
&END_CALLC"LOAD Cl)", $KIND); 

} 

sub INT_STHOOKI { 
$KIND = C$Wl =- /"st$/? "w" : substr($Wl, lengthC$W1) - 1)); 
@T = split(lJ, $W2); 
&GET_OPSC@T[l]); 
&START_CALLC"STORE (1)", $KIND, 1); 
&MY_PRINTCO,'\1\tcall\l_st${KIND} hook,O\n"); 
&INT_HOOK_FLAG("st", $KIND); 
&END_CALLC"STORE (1)", $KIND); 

} 

sub INT_STHOOK2 { 
$KIND = C$Wl =- /"clr$/? "w" : substrC$Wl, lengthC$W1) - 1)); 
&GET_OPSC$W2); 
&START_CALLC"STORE (2)", $KIND, 1); 
&MY_PRINTCO,'\1\tcall\l_st${KIND Ihook,O\n"); 
&INT_HOOK_FLAGC"st", $KIND); 
&END_CALLC"STORE (2)", $KIND); 

} 

sub INT_LDSTHOOKI { 
$KIND = C$Wl =- /"swap$/ ? "w" : "b"); 
@T = split(lJ, $W2); 

&GET_OPSC@T[O]);
 
&START_CALLC"LOAD/SIDRE (1)", $KIND, 1);
 
&MY_PRINTCO,'\1\tcall\l_ld${KIND} hook,O\n");
 
&INT_HOOK_FLAG("ld", $KIND);
 
if C$OP) {
 

&MY_PRINTCO,'\1\t${OP} ${OI },${02},%oO\n"); 
} 

else { 
&MY_PRINTC0,'\1\tmov ${OII,%oO\n"); 

}
 
&MY_PRINTCO,'\1\tcall\l_st$ {KIND} hook,O\n");
 
&INT_HOOK_FLAGC"st", $KIND);
 
&END_CALLC"LOAD/STORE (1)", $KIND);
 

} 

sub INT_INITHOOK { 
&MY_PRINTCO, '\t\tset\t.MYSTORAGE, %g6\t\t! Setting address of storage\n"); 
&START_CALLC"INIT_HOOK","init", 0); 
&MY_PRINTCO, '\t\tcall\t_mysig_setup,O\t\t! Setting up signal handler\n"); 
&MY_PRINTCO, '\t\tnop\n"); 
&MY_PRINTCO, '\t\tcall\t_inithook,O\t\t! INIT HOOKS\n"); 
&INT_HOOK_FLAGC"init"); 
&END_CALLC"INIT_HOOK", "illit"); 

sub INT_SYSHOOK { 
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&MY_PRINT(O, ''\1\J:\J:\J:\J:! Beginning of SYS_CALL hook\n");
 
&MY_PRINT(O, ''\1\J:save\J:%sp,-96,%sp\n"); # -SA(MINFRAME) in asm_linkage.h
 
&MY]RINT(O, ''\1\J:st\J:%g1,[%g6+0]\n");
 
&MY]RINT(O, ''\1\J:st\J:%iO,[%fp+Ox44]\n'');
 
&MY]RINT(O, ''\1\J:st\J:%i1,[%fp+Ox48]\n");
 
&MY_PRINT(O, ''\1\J:st\J:%i2,[%fp+Ox4c]\n'');
 
&MY]RINT(O, ''\1\J:st\J:%i3,[%fp+Ox50]\n'');
 
&MY]RINT(O, ''\1\J:st\J:%i4,[%fp+Ox54]\n'');
 
&MY]RINT(O, ''\1\J:st\J:%i5,[%fp+Ox58]\n'');
 
&MY_PRINT(O, ''\1\J:mov\J:%gl,%oO\n'');
 
&MY_PRINT(O, ''\1\J:add\t%fp,Ox44,%ol\n");
 
&MY_PRINT(O, ''\1\J:call\t_mysystem\n\J:\J:nop\n'');
 
&MY]RINT(O, ''\1\J:ld\t[%g6+0],%gl\n");
 
&MY_PRINT(O, ''\1'trestore\n'');
 
&MY]RINT(O, ''\1\J:\J:\t\t! End SYScall hook\n");
 

I 

sub !NT_HOOK_FLAG { 
local($TYPE, $SIZE) = @_; 
if ($TYPE =- !"st$/) { 

if ($SIZE =-!"b$/) { 
&MY]RINT(O, ''\1\J:ot\t%gO,8,%g5\J:\J:! Raising flag: 8\n"); 

} 
if ($SIZE =-!"h$/) { 

&MY_PRINT(O, ''\1\J:ot\t%gO,9,%g5\J:\J:! Raising flag: 9\n"); 
} 

if ($SIZE =-!"w$/) { 
&MY]RINT(O, ''\1\J:ot\t%gO,lO,%g5\J:\J:! Raising flag: 1(N)"); 

} 
if ($SIZE =-!"dS/) { 

&MY]RINT(O, ''\1\J:ot\t%gO,ll,%g5\J:\J:! Raising flag: ll\n"); 
}
 

I
 
elsif ($TYPE =-!"ld$/) { 

if ($SIZE =- I"b$/) { 
&MY]RINT(O, ''\1\J:ot\t%gO,4,%g5\J:\J:! Raising flag: 4\n"); 

} 
if ($SIZE =- I"h$/) { 

&MY]RINT(O, ''\1\J:ot\t%gO,5,%g5\J:\J:! Raising flag: 5\n"); 
} 

if ($SIZE =- I"w$/) { 
&MY]RINT(O, ''\1\J:ot\t%gO,6, %g5\J:\J:! Raising flag: 6\n"); 

} 
if ($SIZE =- l"dS/) { 

&MY]RINT(O, ''\1\J:ot\t%gO,7,%g5\J:\J:! Raising flag: 7\n"); 
}
 

}
 
elsif ($TYPE =- I"init$/) {
 
&MY]RINT(O, ''\1\J:ot\t%gO,l,%g5\J:\J:! Raising flag: l\n");
 

} 
elsif ($TYPE =- I"win$/) {
 
&MY]RINT(O, ''\1\J:ot\t%gO,3,%g5\J:\J:! Raising flag: 3\n");
 

} 
else { 

die "Unknown in-hook-f1ag type received\n"; 
} 

&MY]RINT(O, ''\1\J:mov\J:%gO,%g5\J:\J:\J:! Lowering f1ag\n"); 
} 

sub !NT_SICHOOK { 
if ($USE_SIC == 0) { return; } 
&MY]RINT(O, ''\1\J:\J:\J:\J:! Beginning of SIC code\n"); 
&MY]RINT(O, ''\1\J:st\J:%gl,[%g6+32]\n''); 
&SAVE_CCO; 
&MY]RINT(O, ''\1\J:subcc\J:%g7,1,%g7\n''); 
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++$LABEL;
 
&MY_PRINT(O, ''\1\J:bpos''1${FUNC}.MYSKIP${LABEL}\n'');
 
&MY]RINT(O, ''\1\J:nop\n'');
 
&SAVE_REGS0;
 
&MY]RINT(O, ''\1\J:call\t_windowhook,O\n");
 
&INT_HOOK_FLAG("win");
 
&REST_REGS0;
 
&MY_PRINT(O, "${FUNC}.MYSKIP${LABEL}:\n");
 
&REST_CCO;
 
&MY_PRINT(O, ''\1\J:ld\J:[%g6+32],%gl\n");
 
&MY_PRINT(O, ''\1\J:\J:\J:\J:! End of SIC code\n");
 

} 

1; 
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#!/usr/local/bin/perl
 
# Script: rgxp
 
# Author: David W. Vorbrich <dwv@cs.brown.edu>
 

# This file contains all regular expressions used throughout passl and
 
# pass2. Names should be self explanitory, notes have been made where
 
# things are not quite obvious.
 

$R_ILLEGAL ="%g51%g61%g71%r51%r6I%r7";
 
$R_SYSCALL ="("f\\s+)(t\\s+Olta\\s+Olt\\s+%gOlta\\s+%gO)";
 

# The gcc source contains a line [ .ascii "!#PROLOGUE# 0" ] which is
 
# emitted during compilation. We don't want to trigger our expression
 
# on this comment, but only on the real PROLOGUE comments... thus this
 
# expression _muse be anchored to beginning of line.
 
$R_PRO = ""\\s*!#PROLOGUE# 0";
 

#$R START = "start:";
 
$R START ="_main:";

$R-RET = "(retljmplljmplretllrett)";

$R-CALL ="call";
 
$R::::LD = "Id(sblshlubluhld)?";
 
$R ST = "st(blublsblhluhlshld)?";

$R-CLR = "elr \\(Iclrblclrh";
 
$R-LDST ="swaplldstub";

$R-SAVE = "save";
 
$R::::REST = "restore";
 

$R_b ="b(nelnzlelzlgileigeiligulleulcclgeulcsilulposlneglvclvs)";
 
$R ba ="($R_b),a";
 
$R::::bnocc = "b(nlaln,a1a.a1,a)?";
 
$R_Bicc = "($R_b)I($R_ba)I($R_bnocc)";
 

$R_cb = "cb(312123111 131 121123101031021023101 10131012)";
 
$R_cba = "($R_cb),a";
 
$R_cbnocc = "cb(nlaln,ala,a)";
 
$R_CBccc ="($R_cb)I($R_cba)I($R_cbnocc)";
 

$R_fb = "fb(ulgluglIlul/lglnelnzlelzluelgelugelIelulelo)";
 
$R_fba = "($R_fb),a";
 
$R_fbnocc ="fb(nlaln,a1a.a)";
 
$R_FBfcc ="($R_fb)I($R_fba)I($R_fbnocc)";
 

$R_t ="t(nelnzlelzlgileigeiligulleullulcclgeulcsiposineglvclvs)";
 
$R_tnocc = "t(nla)?";
 
$R_Ticc = "($R_t)I($R_tnocc)";
 

$R_WRcc ="cmpltstJbtstlcpop21([a-z] [a-z]+cc[a-z]*)";
 
$R_RDccbranch = "($R_b)1($R_ba)I($R_cb)I($R_cba)I($R_fb)1($R_fba)I($R_t)";
 
$R_RDccplain = "addxladdxcclsubxlsubxcc";
 
$R_RDcc ="($R_RDccbranch)I($R_RDccplain)";
 

$R_UDCTI = "($R_CALL)I($R_RET)";
 
$R_DCTI ="($R_UDCTI)1($R_Bicc)1($R_CBccc)I($R_FBfcc)";
 

$R_CTI = "($R_Ticc)/($R_DCTI)";
 

# This expression represents branches which are unconditional, and always
 
# annul their delay slot
 
$R_DCTlnoslot = "bn\alfbn\alcbn\alba\a1b\alfba\alcba\a";
 

$R_LABEL_REF = "[a-zA-Z_\$.] [a-zA-Z_\$.0-9]*";
 
$R_LABEL = "[a-zA-Z_~.][a-zA-Z_\$.0-9]*:";
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