
Assembly-to-Assembly Translation for

Instrumenting User Code

David W. Vorbrich

Department of Computer Science

Brown University

Providence, Rhode Island 02912

May 1994

This research project by David W. Vorbrich is accepted in its present form by the

Department of Computer Science at Brown University

in partial fulfillment of the requirements for the

Degree of Master of Science.

May 1994

Date: t~-1-11 Rofi1eurF

Assembly-to-Assembly Translation for

Instrumenting User Code

David W. Vorbrich

Department of Computer Science

Brown University

Providence, RI, 02912-1910

E-mail: dwv@cs.brown.edu

The end result of this project is an assembly-to-assembly translator
which automatically inserts instrumentation into SPARe code. The
intent of this instrumentation is to provide a means by which mem­
ory references can be traced for future replay of a program's execu­
tion. The tool is general-purpose, allowing the user to link with a
library of different hook functions for different tracing and replay
algorithms. In this paper we present the design choices, inherent
difficulties, and limitations involved in instrumenting assembly
code and tracing memory references, along with a description of the
tool itself.

1.0 Introduction

The ability to record a program's execution and replay it exactly in the future is an invalu­

able debugging aid. To record the execution, we trace information and save it into a trace­

file. This file is later used during replay to provide details of the original execution (here­

after called execution), insuring the replay behaves exactly the same as the original. It has

been shown that a replay is guaranteed to behave identically to the execution provided

every read from memory made during the replay receives exactly the same value as it did

during execution. [1] The tool implemented in this project supports this method of trac­

ing.

We instrument the user's assembly code by inserting calls to hook functions provided by

the user. These hooks are discussed in detail in the next section. The general idea is that

for every event of importance to the trace, we call a hook function and provide it with the

information necessary to record the event. Our instrumentation makes no assumptions

Instrumenting User Code June I, 1994

about the hook functions themselves. Instead, we safeguard the user's original code so

that the hooks may be modified frequently. This flexibility allows the user to try different

tracing algorithms or correct errors in a particular method without having to re-instrument

the original source code. Instead, the user simply rewrites the hooks, compiles them sepa­

rately, and re-links the executable to be traced.

Before discussing the previous work on this project, we will first explain the tracing

method being supported along with a description of the hook functions needed to perform

the trace. Later we will discuss in detail the design choices faced during development and

describe the SPARC instructions which can modify memory. The actual instrumenting

tool and it's limitations are then discussed, followed by our test results and a conclusion.

2.0 Hook Functions and the Tracing Algorithm

Netzer and Weaver have developed a tracing algorithm which guarantees every read dur­

ing replay receives the same value as during execution [1]. Not every read and write to

memory need be traced, but for each memory reference the algorithm must check to deter­

mine if the current instruction needs to be saved into the trace file. By dividing the execu­

tion into windows of sequential instructions, the algorithm makes localized decisions

based on recent memory references. The size of each window is determined at compile

time by the user, and is controlled through the hooks the user provides. A software

instruction counter (SIC, explained later) keeps track of when a new window should

occur, and at each window boundary calls a hook function to initialize any information

required by the next window. In order to support this method of tracing the user needs to

provide each of the following hook functions.

• JnithookO	 is called to set up the tracing algorithm at the very beginning of execution.
It is also responsible for setting the initial value of the SIC.

•	 _exithookO is called upon program exit, and should perform any final analysis and

cleanup.

•	 _windowhookO is called at each window boundary and should reset state information
to prepare for the next execution window. It is also responsible for resetting the value
of the SIC.

•	 _signalhookO is called whenever a signal interrupts the execution so the trace algo­

rithm is aware a signal occurred.

Instrumenting User Code	 June 1, 1994 2

- -

•	 _systemhookO is called prior to all system calls so the trace algorithm knows of the
event.

•	 stsyshookO and IdsyshookO are called for stores and loads of memory which will
occur inside a system call. Because the size of these operations varies with each
instance, the size is passed as an argument along with the address in memory.

•	 _ldhookO and _sthookO are called for normal load and store instructions. The sizes of
these instructions can be any of byte, halfword, word, or doubleword, so separate hooks
for each are needed. The address of the reference is passed into these functions.

•	 _restorehookO is called after every restore instruction with a pointer to a buffer con­
taining the values of all 16 registers which are modified by the restore.

•	 _signalhook_speciaIO is called when a signal occurs during another hook function
already in progress. This situation is tricky, as the order of events can get switched in
the trace file. It is up to this hook to figure out the correct action to take to preserve the
accuracy of the trace. This problem is discussed further in a later section.

To instrument a user's code for tracing we need to accomplish three things. We must call

each of these hook functions for every corresponding event, provide each hook with the

information necessary to perform the algorithm, and preserve the original functionality of

the user's code. In the next section we discuss the work which has previously gone into

solving this problem, followed by the many design issues which have led to our current

implementation which meets the above requirements.

3.0 Prior Work and Motivation

The first attempt at inserting instrumentation into user code was made by Adam Stauffer

in the summer of 1992. He directly modified the Gnu C compiler so that code to call the

hook functions was emitted at the same time as the instruction itself. [2] He did this by

editing the internals of gcc which are responsible for generating Gnu's intermediate repre­

sentation of the code. The choice to instrument during this phase of the compilation was

initially appealing, because "The modifications to the compiler are language independent

and therefore any language added to the GNU language family is automatically instru­

mented." [2 pg 2] The Gnu compiler already supports many high level languages, and has

been ported to almost every hardware platform. This flexibility made the Gnu C compiler

a tempting choice to add instrumentation abilities.

Instrumenting User Code	 June 1,1994 3

An inherent problem within the C language, however, made this technique faulty. Argu­

ments to function calls are ill defined in C.

The order of evaluation of arguments is unspecified; take note that
various compiler differ. [6 pg 202]

Due to this ambiguity of the C language, some expressions have no defined execution

order. This makes it impossible for us to know in which order memory references within

the expression will be executed. In the following example, we know the initial and final

values of the variable 'x', but we have no guarantees on the input values for variables 'a'

and 'b' because we do not know which will be evaluated first.

void foo (int a, int b);

void bar 0 {
int x =0;
foo(++x, ++x);

FIGURE 1. Example ofargument ambiguity in C

Exact knowledge of the order of memory references is paramount to insure correct replay.

This ambiguity makes it impossible to instrument the C language at a level close to the

source representation.

A second effort to instrument user code was undertaken by Mitch Cherniack in the fall of

1993, and focused on the assembly representation of the user's high-level code. [3] At

this level, there is no ambiguity as to the execution order of statements, thus avoiding the

idiosyncracies of C or any other high level language the user might have used. This

method requires that the source code be translated into assembly before instrumentation

can occur, but this functionality is easily provided by any compiler the user chooses.

At first, a translator was written in awk [5] to read in the original assembly representation

of the user's code, and emit the assembly containing the instrumentation to call hook func­

tions. This initial tool worked for some simple tests, but it was evident that a more

detailed and robust tool was required to handle complex programs and optimized code.

Instrumenting User Code June 1, 1994 4

The fact that the tool almost worked, and its original results, indicated that the method of

translating assembly-to-assembly to instrument the user's code was a promising one. It

was especially appealing because the assembly representation of a user's program is so

much more straighforward than the high level code, and it was also possible to insert the

instrumentation without altering as complex a tool as the Gnu C compiler.

This project continues where the second translator left off. We chose to build a new trans­

lator in perl [7] instead of awk, because perl has better support for standard coding and

calculations as well as the raw pattern-matching abilities of awk. Several bugs in the awk

version of the translator have been solved, and much more design has gone into this ver­

sion of the tool. The design issues faced, and the choices we made in implementing our

tool are discussed in the next section.

4.0 Design Choices and Implementation

The design of our instrumenting tool revolved around two basic needs:

•	 Inserting calls to hook functions for any instruction which might be a memory refer­

ence

•	 Providing all information and functionality required by the tracing algorithm.

Locating memory references in assembly code is very straightforward, as most are just

load or store commands (or versions thereof). The save and restore commands proved to

be the only instructions which can reference memory that we could not trace, which we

discuss in detail below. Providing hooks for window boundaries involved implementing a

software instruction counter (SIC), and we also needed to call the initialization and

cleanup hooks at the correct times. These requirements were obvious, but implementing

them so that the program's functionality remained unchanged made them quite difficult.

Each issue faced during our design of the tool, along with our implementation of the

choices we made, is discussed in this section.

4.1 Registers

Almost every instruction in SPARC assembly involves the use of a register. The user's

code is already using most registers, but our code, too, executes instructions which use

Instromenting User Code	 June 1. 1994 5

registers. The SPARC architecture actually does us a favor in this case, however, as it

leaves 3 global registers available for our use. Some other registers, however, are either

inherently volatile, or are required by our instrumentation to pass arguments to the hook

functions, and care needed to be taken to safeguard the original values in these registers.

4.1.1 Use of registers by our instrumentation

The instrumentation we add into a user's code requires the use of at least one scratch reg­

ister. While it would be possible to store needed information in memory, and pull out

what we need one at a time into this register, it would also be nice if more than one register

were available for use. If we are to use any registers also used by the user's code, we must

preserve the value in the register before our use, and subsequently restore it when we are

finished. This would have been required of all registers we used, except for a very nice

feature provided in the SPARC guidelines.

The convention used by the SPARC Application Binary Interface
(ABI) is that %gl is assumed to be volatile across procedure calls,
%g2...%g4 are reserved for use by the application program (for
example, as global register variables), and %g5...%g7 are assumed
to be nonvolatile and reserved for (as-yet-undefined) use by the
execution environment. [4]

We thus assume that the global registers %g5, %g6, and %g7 are not used by the user's

code, and are free for our own use. We scan the user's code during translation to make

sure of this, reporting an error if we find these registers already in use.

As our design began to coalesce, we found that three values would be required continu­

ously throughout our instrumentation, and would be referenced with high frequency.

These three values are the SIC, the address in memory we set up for extra storage, and a

value representing our in-hook-jiag. Each of the available three global registers was

assigned to one of these three values, which are discussed later in this section. One of the

three, the in-hook-jiag, is only needed periodically, so we can also use its register for tem­

porary scratch space as needed.

Instrumenting User Code June I, 1994 6

4.1.2 Preservation of volatile registers in the user's code

There are some registers we could not avoid using, even if there were infinitely available

global registers, simply because of specifications for the SPARC architecture. One such

register, %00, we needed to use to pass a single variable of information to each hook as it

is called, while another, %gl, is written by the kernel when we perform a trap to obtain the

value of the condition code (CC). In addition, %gl,%07, and other registers are volatile

across function calls, and must be protected even if their use is not required by our instru­

mentation or hooks.

We set up an area of memory within the data section of the program which we use as a vir­

tual warehouse. Sometimes very little information needs to be stored there, and at other

times the entire section is filled with information. The address of this area is stored in

%g6, making it easy to access.

Original Code Translated code
<user code> set .MYSTORAGE, %g6

<user code> <user code>

<user code>

.seg "data"

.align 4
.MYSTORAGE:

.word 0

.word 0

FIGURE 2. Instrumentation storage area

We always store the same information at the same offset within this storage area, so stor­

ing and retrieving a value require only a single store or load instruction. We could also

have saved our values on the user stack, using the stack pointer (SP) to access the area.

We chose not to store values on the stack, however, for two reasons. First, we do not have

our own reserved area of memory for each stack frame. Whenever we would store a value

on the stack, we would have to increment the SP to prevent the user from walking on the

Instrumenting User Code June I, 1994 7

same areas. Secondly, there are several areas which are reserved for each stack frame, but

the size of this storage is not constant. For each new stack frame created, some area of

memory is reserved for such things as arguments and register windows. Some of these

areas are constantly sized, but others vary depending on the specifics of that stack frame.

This ambiguity means we would not have an easy way of knowing where within the stack

frame to begin our storage area. Some calculations per stack frame might be able to over­

come this problem, but the fact that we would still have to use two instructions (a store

followed by a modification of the SP) versus a single instruction to store values into the

data section led us to chose the latter fonn of storage.

By utilizing this memory storage area, we are able to save the value of any register before

we either use it or it becomes volatile, and then restore its original value when we are

through with that section of instrumentation.

Original Code Translated code
<user code> <user code>
<user code> st %00,[%g6+8]

<call hook function>
<set up %00 input to hook>
Id [%g6+8],%oO
<user code>

FIGURE 3. Protecting %00 when entering a hook function

4.2 Supporting functionality for the tracing algorithm

The tracing algorithm this instrumentation is designed to support requires some function­

ality beyond calling hooks for every memory reference. Initialization and cleanup func­

tions must be called at the execution's start and finish. In addition, much of the algorithm

is based on dividing the execution into contiguous windows of dynamic instructions. A

hook function is also required for each of these windows.

Instrumenting User Code June I, 1994 8

4.2.1 Initialization hook

Before the user's program begins, a hook must be called to initialize the algorithm and any

data structures used within the hooks. Implementing this proved quite trivial, as we sim­

ply insert a call to this hook at the beginning of the user's mainO routine.

Original Code Translated code
main: main:

<user code> <save volatile registers>
call _inithook
nop
<restore volatile registers>
<user code>

FIGURE 4. Calling the initialization hook

If the C run-time library is used, this step can be taken during the start function. Another

possibility would be to take advantage of the .init instruction of newer versions of the

SPARC architecture. [10] Any code contained in this section will be executed before

mainO is executed.

4.2.2 Cleanup hook

When the program exits, some final analysis must be performed by the algorithm. We first

provided this functionality in the same way as the initialization hook, by calling the

cleanup hook at the very end of the mainO routine. This method worked, provided the

execution played straight through the code with no errors or purposely made calls to

exitO. Considering the user is wanting to find errors in their code, the assumption that it

will flow straight through the end of mainO is an illogical one. Instead, we instrumented

the exitO routine itself, inserting a call to the cleanup hook. Since exitO is also called

when the mainO routine is finished, it was no longer necessary to call the cleanup hook at

the end of mainO. We could also take advantage of newer versions of the SPARC archi­

tecture here, as we could for initialization. The .fini section is called after mainO com­

pletes so we could insert any cleanup functionality at this point. [l0]

Instrumenting User Code June 1, 1994 9

4.2.3 Window hook

The tracing algorithm wants to create a new execution window for some dynamic constant

number of events (usually instructions). In order to create the concept of a window, a

hook function must be called at the beginning of each new window. Our instrumentation

keeps a software instruction counter (SIC) which starts at a given limit, and calls the win­

dow hook when the counter reaches zero. The limit is provided by the user and is set dur­

ing the initialization hook and reset each time the window hook is called. Our translator

then instruments the assembly code to decrements the SIC at each event, and calls the

hook when needed.

Keeping an actual count of instructions would either require hardware support or the addi­

tion of instrumentation between every assembly instruction to increment the counter.

Since hardware support is not available on most machines, we must use a software

approach. Incrementing the SIC with every instruction is both costly and unnecessary.

Mellor-Crummey and LeBlanc proposed a method for maintaining a SIC which imposes

much less overhead. [8] Instead of keeping a count of instructions, they keep a count of

backward branches and procedure calls.

We have implemented this SIC to keep track of window boundaries. The user provides a

constant value during the inithook, and when the SIC reaches this value a call is made to

the window hook and the SIC is reset. While our SIC does not represent the actual num­

ber of instructions executed, the user can calculate an average number of instructions exe­

cuted per branch or function call, and set their window size variable accordingly. In our

implementation, the SIC is maintained in %g7. Since registers are 32 bits in size, one lim­

itation we impose on the user is that the value given as the window size for the SIC must

be less than 4 gigabytes.

4.3 Standard load and store instructions

In SPARC assembly, there are many different load and store instructions, but the use of

each is very straightforward and easy to recognize. In our translator, we scan the code for

any instruction which performs a load or store (or both). Upon finding one, we break

down the expression representing the memory address being referenced and perfonn the

Instrumenting User Code June 1, 1994 10

calculation ourselves. The result of this calculation is stored in %00 and passed to the

appropriate hook function as the single input argument. When the hook returns, the origi­

nal instruction is executed, and the program continues.

The calculation of the memory address is uniform across all load and store instructions.

The size of the memory reference can be detennined by the assembly instruction itself.

Based on whether the instruction is accessing a byte, halfword, word, or double word, we

call the appropriate sized hook function with the calculated address.

Original Code Translated code
<user code> <user code>
st %00,[%fp-20] <save volatile registers>
<user code> sub %fp,20,%00

call _stwhook
nop
<restore volatile registers>
st %00,[%fp-20]
<user code>

FIGURE 5. Calculating memory address and caUing book for a store instruction

In the above figure, the store instruction is accessing memory at an offset of 20 from the

current frame pointer (fp). To pass this information to the store hook, we insert a subtrac­

tion instruction to calculate the exact memory address, and store this value in %00 to pass

to the hook. The address could be a subtraction, as in this example, or it could be addition

or a constant value as well. In these cases, the subtraction is replaced by an add or set

instruction respectively.

4.4 Register windows

In SPARe architecture a concept known as register windows is used to maintain separate

registers for different functions. Each function has it's own window, and when it calls

another, a new register window is assigned to the new function. The total number of reg­

ister windows is limited, however. Sometimes a new register window is needed, but none

is available. At this time, the least-recently-used register window is dumped by the oper­

ating system to the user stack, and is then assigned to the new function. When the values

Instrumenting User Code June I, 1994 II

of the old register window are needed, they are loaded back from the stack into the register

window. New windows are assigned or relinquished via the save and restore commands,

respectively. When a save occurs, it checks if a register window is available. If it is not

available, it dumps the oldest register window to the stack and then resets the current reg­

ister window. Likewise, the restore instruction either adjusts the window to the correct set

of registers, or if they were dumped to the stack, it loads the register values from memory.

For each new stack frame created, an area of the stack is reserved for a register dump

should it become needed.

Because save and restore instructions do not access memory every time they are executed,

they are much trickier to trace than standard load and store instructions. Due to their sub­

tleties, each is discussed separately in this section.

4.4.1 The save instruction

When a save requires a register window to be dumped to the stack, it is the least-recently­

used window which will be dumped. Each stack frame has a reserved area for register

dumps, so the window being dumped will actually be stored in the stack frame of its orig­

inal function, not in the current stack frame. This makes it easy to locate the saved register

window for a particular frame, as it is stored in the same area on the stack as the function

which needs it. This feature, however, introduces a very subtle problem which makes it

impossible to trace save instructions accurately. If a save instruction is executed inside the

kernel, it might cause a register dump of a user register window onto the user stack. This

is actually very likely, because the least-recently-used window will have been in the user

stack before entering the kernel.

Even though the kernel and user have their own respective stacks, through the save

instruction it is very likely the kernel will modify the user stack. To see this phenomenon

in action, we wrote a very simple program which is included as an appendix. In this pro­

gram, we nested several functions on the stack, and then called a trap into the kernel.

Prior to the trap we examine the register dump areas of the user stack, and do so again

upon the return from the trap. Our test showed 5 different register dump areas had been

Instrumenting User Code June 1. 1994 12

modified during the trap into the kernel, indicating that 5 separate save instructions had

modified the user stack.

This problem alone, however, is not enough to prevent us from tracing stores to memory

caused during save instructions. We could perform a check of all user stack areas prior to

every trap into the kernel, and again upon return, and trace the modified values. While

potentially slow, this wouldn't occur too often and would accurately preserve memory.

The bigger problem is posed by hardware interrupts. Hardware interrupts also cause a

trap into the kernel, but they can occur at any time during the execution, between any two

single assembly instructions. The brute force solution to this would seem to be obvious;

simply check the user stack between every assembly instruction to see if an interrupt

occurred which altered the stack. Even this broad a solution, however, will still not suf­

fice. Because the interrupt can occur between any two instructions, it could occur between

our memory check and the next instruction of the program. We would not detect the refer­

ence until after the next instruction during our next memory check, potentially causing

two references to be out of order.

Luckily, the only areas of the user stack which will be modified by the kernel are those

areas reserved for register dumps. We must make the assumption that the user's code will

not read or write to these areas of the stack. Based on this assumption, we had two choices

for our implementation:

•	 Since we assume the user will not access these restricted areas, and we are unable to
trace them, we simply proceed with our instrumentation. If the user's code actually
does access these areas of thesiack, it is the programmer's error.

•	 We are unable to trace the memory in the restricted stack areas, however we can check
the user's code to make sure the areas are not being referenced. This involves a costly
check for each load and store operation, but assures the programmer that the replay pro­
vided by the trace is correct.

Accurate replay is our goal, so we chose to implement the second option. Beyond wanting

to guarantee correct replay, the second option also reports the memory violations to the

user. Although this aborts the replay, it does notify the user of a bug, thus making our

implementation choice more useful to the programmer.

Instrumenting UseT Code	 June 1. 1994 13

In our implementation we maintain a 2-level bit vector [9] to represent memory. When a

new stack frame is created, we mark the restricted register area of the stack in our bit vec­

tor. When a stack frame is destroyed, we then unmark the bits indicating the area is no

longer restricted. For each load and store instruction, we first call our own hook function

which compares the address of the reference to our bitmap. If the address is in a restricted

area, we report an error and dump core. If not, we let the execution proceed as normal.

These actions are similar to the tracing algorithm used in the hook functions, and later we

propose moving this memory checking functionality into the hooks to speed up perfor­

mance.

4.4.2 The restore instruction

When a restore is executed, it destroys the current register window and restores the previ­

ous one. In doing this, it mayor may not read the values from a previous register dump to

the stack. Whether the values were on the stack, or still in the old window, the values con­

tained in the registers will be modified by the restore, and the new register values will be

needed during replay to guarantee identical execution. Thus, we must save the values of

the modified registers for every restore instruction. Not all 32 registers are modified by

the restore, as some are global and others overlap between windows. In the end, only 16

registers actually need to be traced to provide the correct values during replay.

In addition to tracing the values of modified registers, it is also necessary to perform some

upkeep on our memory bit vector. When a restore occurs, a stack frame is destroyed. We

thus unset the bits in our vector indicating the area is no longer restricted. This operation

must be performed before the restore, while we still know the current SP. Dumping the

register values, however, must be done following the restore, which is difficult if the

restore appears in the delay slot of a function return. To avoid this, we chose to move the

restore before the return, thus removing the delay slot optimization, but not altering the

functionality of the program.

Instrumenting User Code June I, 1994 14

Original Code Translated code
<user code> <user code>
ret ! uses %i7 as targ st %i7,[%g6+32]
restore <save volatile registers>

call _unsecmemtbl
mov %sp,%oO
<restore volatile registers>
restore
st %iO,[%g6+40]
st %il,[%g6+44]

st %17,[%g6+100]
<save volatile registers>
set (.MYSTORAGE+4O),%oO
call _restorehook
nop
<restore volatile registers>
ld [%g6+32],%o7
jmpl %o7+8,%gO
nop

FIGURE 6. Unsetting protected memory area and tracing new register values

4.5 Maintaining condition codes

Condition codes are extremely volatile, and must be carefully preserved. To find the cur­

rent value of the ce, we do a trap into the kernel, which writes the ce into %gl. Another

possibility conceived by Shuang Ji, is to perform a series of tests and branches to deter­

mine and reset the ee, but we chose to use the trap in our implementation for simplicity.

To preserve all original information before the trap, we first store the value of %gl to our

memory storage area. After this, we call the trap, and store the value of the ee into stor­

age as well. Following whatever instrumentation we are performing, we simply reverse

these steps to restore the ee and the original value of %gl.

Instrumenting UseT Code June I, 1994 15

Original Code Translated code
<user code> <user code>
<load instruction> st %gl,[%g6+4]
<user code> t Ox20

st %gl,[%g6+0]
<instrumentation>
Id [%g6+0],%gl
t Ox21
Id [%g6+4],%gl

. <load instruction>
<user code>

FIGURE 7. Preserving %gl and the CC when inserting instrumentation

While this is very straightforward, it is also quite expensive as it involves a trap into the

kernel. To avoid this as much as possible, we perform some basic flow analysis to deter­

mine when the CC is volatile, and when we can safely ignore preserving its value.

Instead of blindly emitting instrumented assembly code, we maintain two buffers in our

translator. One buffer contains the assembly which preserves CCs for all instrumentation,

the other buffer does not. The base of the algorithm is simple. For any instruction which

reads the CC, emit the buffer which preserves the CC prior to the read. If we encounter an

instruction which writes to the CC, thus erasing it's previous value without reading it, we

emit the buffer which does not preserve the CC. This basic approach must be modified,

however, as control flow through basic blocks is unpredictable. Consider the following

example:

1: set CC
jump 2

2: straight line code with no branches
and nothing that modifies the CC

3: jump 4

4: read CC

FIGURE 8. Example of tricky CC Dow through basic blocks

Instrumenting User Code June 1, 1994 16

In this example, the CC is set in block 1, and is not read until block 4. While we are

instrumenting block 2 we have no idea if the CC is volatile or not. Because of this, we

must always assume the CC is volatile inside a basic block until we encounter an instruc­

tion which writes a new value to the Cc. If no such instruction is encountered before the

end of the basic block or a branch instruction, we must assume the CC was volatile and

emit the assembly which preserves its value. A more detailed data-flow analysis involv­

ing an extra pass or more through the code could overcome this assumption.

4.6 Signals

When signals occur, a signal handler is called to process the event. Signals can occur at

any time, just like hardware interrupts, but unlike interrupts, the signal handler runs in

user mode. This allows us to catch signals before they are processed, and call a hook

function to record that a signal was received.

4.6.1 Catching signals

To catch signals before the handler takes over, we reset the signal handler for all signals at

the very beginning of the user's execution. We also keep a record of what the old handler

for each signal was, so we may later call the correct function. Once this is set up, our stub

handler will be called for every signal that occurs. Inside our stub, we call the signal

hook, and then check the value of the previous signal handler for this signal. If the old

handler was a declared function, we simply call that function with the signal. If the old

value was set to ignore the signal (SIG_IGN) we return from our function, otherwise the

value was set to the default (SIG_DFL) and we take the appropriate action depending on

what the signal was. Usually this involves exiting the program, but for some signals a

core dump is also required.

Problems can arise when the signal occurs during a hook function which is aheady in

progress. The hook is trying to record that one event occurred, and the signal will also

record that a signal occurred. Depending on when the signal interrupts the hook, the

record of these two events might be out of order. To catch this, before we enter a hook

function we first set a specific flag (the in-hook-flag). Inside the signal handler we check

Instrumenting User Code June 1, 1994 17

the value of this flag. If it is not zero, the signal has occurred inside a hook, and the events

might be traced out of order. Instead of calling the nonnal signal hook, we call a special

signal hook which is only used in this situation. We provide the hook with the value of the

flag, which uniquely identifies which hook function was interrupted, along with the SIC so

the hook will know where in the current window we currently are. It is then up to the user

to take the necessary action to insure these events are traced in the correct order.

Because we have no control over the hook function being interrupted, we have no way of

knowing when it is dangerous for the signal to interrupt the function. The best we can cur­

rently do is to set our in-hook-jiag immediately before calling the hook function (in the

delay slot actually), and unset it upon return.

4.6.2 Catching resets of the signal handler

During the execution it is possible that the user will request that a new signal handler be

installed for certain signals. If we ignore this, the new handler will be installed instead of

our stub hook, and subsequent signals of that type will not be traced. Requests to change

the signal handler are processed by the signalO function, so we have modified this func­

tion to meet our needs. Instead of changing the handler for the signal to the requested new

handler, we leave our stub function as the handler. We do not ignore the new handler,

however, but modify our own records of which function should be called by our stub when

a signal is received. After the user calls signalO to reset the handler, when that signal type

occurs our stub is called as always, but instead of calling the original handler for that sig­

nal, we now call the newly requested handler.

4.7 System calls

System calls provide the user with the ability to trap into the kernel to perfonn certain

tasks. Most of these tasks involve memory references, which must be traced, but as before

we have no way of tracing code inside the kernel. Luckily, in this case we have another

option. Based on the system call id (SYSid) and the arguments provided, we can calculate

what memory references to the user's address space will occur inside the trap to the ker­

nel. In our implementation we have our own systemO function which is similar in func-

Instrumenting User Code June I, 1994 18

tion to the signal handler discussed above, only it is not called automatically. When our

translator comes across a trap into the kernel, it simply inserts a call to an internal hook

function first. We calculate what addresses will be modified and how large the reference

will be, and then call_stsyshookO or JdsyshookO with the information to be traced.

When we are done with our calculations, we return from our systemO hook, and the exe­

cution will continue with the trap into the kernel.

4.8 Instrumenting delay slot instructions

In SPARC assembly the instruction immediately following some branch type instructions

is executed even though the instruction appears after the branch. This type of instruction

is called a delayed instruction, and it's location right after the branch is called the delay

slot. Instructions which cause a transfer of control, and which also have this delay slot,

are referred to as Delayed Control Transfer Instructions (DCTI). For many DCTIs, the

delay slot is executed regardless of whether or not the branch is taken. If the instruction in

the delay slot happens to be a load or store, it is sufficient in this case to insert the instru­

mentation before the DCTI as we know the memory reference will occur.

In some cases, however, whether or not the delayed instruction is executed depends on

whether or not the conditional branch is taken. We cannot simply put our instrumentation

before the DCTI, for if the delayed instruction is not executed, we would have falsely

traced that it had. To get around this problem, we modify the assembly code to make it

safe to instrument the delayed instruction, without the fear of false tracing.

In the following example, bicc represents a conditional branch who's delay slot will

always be executed, and bicc,a will only execute its delay slot if the branch is taken. We

use the symbol -bicc to indicate the logically opposite conditional branch, and ba is the

branch-always command. We show two examples, one is a sequence of assembly with a

delayed store which is always executed, and below is a conditionally executed delayed

store. The assembly that we will translate this code in to is shown on the right of the fig­

ure.

Instrumenting User Code June 1, 1994 19

Original Code Translated code
12: bicc 40 8: instrumentation
16: store A 12: bicc 40

16: store A
40: foobar

40: foobar

12: bicc.a 40 12: -bicc,a ME
16: store A 16: nop

20: instrumentation
40: foobar 24: store A

28: ba,a40
ME:

40: foobar

FIGURE 9. Instrumenting delay slots and conditionally executed delay slots

4.9 Libraries

We have already discussed how we instrument the user's code to call the hook functions

for our tracing algorithm, but we must go beyond this to get a true trace of the execution.

Many function calls are to routines contained in system libraries. These library functions

run in user space, and can be instrumented and traced just as the user's code can. We are

thus able to trace all library calls by recompiling the source code for each library, instru­

menting it with our tool during the process.

It is important to note that within our hook functions we do not want to call instrumented

library routines, as we could end up in an endless loop. For example, if our hook function

calls printfO, and the version we call is contained in an instrumented library, we might

recursively call printfO forever. We maintain a small library of uninstrumented code for

the functions required within our hooks.

4.10 Limited size immediate values

Some SPARe instructions take an immediate value limited to 13 bits in size as an argu­

ment (SIMM13s). Problems arise with these instructions when the SIMM13 is an expres­

sion containing two or more local labels. Because we are inserting numerous instructions

into the user's code, the relative position of local labels previously in the code can change

Instrumenting User Code June 1, 1994 20

greatly. Prior to instrumentation, an expression containing one label minus another might

have been within the SIMM13 size limit, but after our instrumentation this might no

longer be true. To fix this problem, we extract the expression from the assembly instruc­

tion, and replace it with a scratch register. Then, before this instruction, we insert a com­

mand to store the result of the original expression in the scratch register. Registers can

hold a full 32 bit value, so this removes the 13 bit limit.

Changing the position of the expression itself, however, causes its own difficulties. Many

of these expressions contain the label '.' referring to the current line. When we move the

expression to another line to place its value in a scratch register, care must be taken to add

or subtract a proper constant to take into account the repositioning of '.'.

Original Code Translated code
<user code> <user code>
add %12,(L3-.-4),%12 sethi %hi(L3-.-4-8),%g5
<user code> or %g5,%lo(L3-.-4-4),%g5

add %12,%g5,%12
<user code>

FIGURE 10. Rewriting expressions to use 32 bit register instead of immediate slot

5.0 Implementation Details of our Instrumenting Tool

As mentioned before, we chose to implement our translator in perl. [7]. Perl is a high­

level programming language which is a super-set of awk, sed, grep, and other conunon

system utilities. Perl is already in wide use, and should be available on most systems. If a

user does not have perl already installed, it is easily obtainable via anonymous ftp. The

code for our translator is included as an appendix, and the details of what each file does is

left to a road map introducing that section. Here we will present the basic algorithm used

to perform the translation to give an idea of what is happening when our tool is invoked.

The translation is broken into two main phases: pass 1 and pass 2. Before we begin the

first pass, we first initialize some variables and load the supporting perl files we will need.

We then prepare to read the user's assembly code through STDIN, open a temporary out­

put work file, and finally emit the instrumented assembly through STDOUT.

Instrumenting User Code June I, 1994 21

Pass 1 prepares the user's assembly file for instrumentation by doing some initial tasks.

Firstly, it scans the assembly to make sure the user's code does not make use of the global

registers %g5-7 which are used by our instrumentation. We have found that the Sun C

compiler, cc, makes use of %g5 in rare circumstances. Since we only use %g5 to repre­

sent our in-hook-jiag, its value is only needed temporarily during instrumentation, not

throughout the execution as the SIC and memory address are. If we detect the use of %g5

during passl, we print a warning and set a flag telling pass2 to preserve the value in %g5

just like other volatile registers during instrumentation. For most assembly files this is not

necessary, and we make free use of %g5 without saving its value. If we detect the use of

%g6 or %7 during passl, we report an error and abort.

The other primary action performed during pass 1 is to rewrite any DCTI expressions

which contain conditionally executed delay slots. We use the translation discussed in sec­

tion 3.7 to find an identical sequence of instructions which will allow safe and accurate

instrumentation. The final action made in pass 1 is to emit the assembly necessary to set

up our memory storage area. This area is marked with the label .MYSTORAGE, who's

address is loaded into %g6 at the beginning of the execution. All of these modifications to

the user's assembly code are written into a temporary output file which is then fed into

pass 2 for further translation.

In pass 2 we perform all of the actions discussed in the last section. Primarily, we insert

hook function calls for all memory references (including delayed instructions), maintain a

bit vector of reserved memory areas on the stack, fix potentially too large immediate val­

ues in instructions, and perform CC flow analysis to reduce the number of system traps

required to preserve the CC. All of these actions take place during a single pass through

the temporary assembly file created in pass 1. Once we are finished instrumenting a

sequence of assembly instructions, they are output to STDOUT.

6.0 Other Considerations and Limitations

While our translator will work for compiler generate assembly code, there are some situa­

tions which might arise in hand written code which our instrumentation might break. In

addition, adding instrumentation to a user's code might incur a few unavoidable problems.

Inslromenting User Code June 1. 1994 22

We have tried to pinpoint exactly what problems might arise, and discuss them in this sec­

tion.

6.1 Use of libraries by the book functions

The user must provide the hook functions, which we call from within our instrumentation

and link with at compile time. Since we have no control over the user's code, it is up to

the user to follow a few restrictions. When the user compiles their hook code, they must

link statically with the system libraries. If not, the user's hooks will be calling the instru­

mented libraries which are linked with the original program to provide tracing. If the

hooks call the instrumented libraries, which in turn call the hooks, we will get unpredict­

able results. Furthermore, the user must not use the malloeO routine within their hooks,

or functions which use malloeO, like printfO and its siblings. The malloc routine is not

re-enterable, making nested calls destructive. The user's hooks must not call malloeO

because the hook might be called during a call to malloeO made by the original program.

Due to this restriction, the user must use statically allocated memory, and make frequent

use of the writeO routine instead of printfO. If using malloeO is unavoidable, we have

provided a shared memory version of alloc and free which are safe for use in the hooks.

6.2 Potential stack overflow

The stack size can only grow to a set limit. If the original program uses a stack which is

close to this limit, but does not exceed it, adding calls to hook functions might cause an

overflow error. This problem is unavoidable, but should not occur in ordinary programs.

If this situation does arise, there is most likely a bug in the user's code which caused the

stack to grow so large. The error encountered after adding instrumentation will potentially

help locate the problem.

6.3 Label on a delay slot

While we have not encountered this situation in compiler generated assembly code, it is

theoretically possible that a delayed instruction might be marked with a local label. This

would allow a control flow to jump to the delay slot without executing the corresponding

instrumentation if the delayed instruction was a memory reference. To catch such situa-

Instrumenting User Code June 1. 1994 23

tions, new assembly instructions would need to be written to insure the proper instrumen­

tation.

One possible method for dealing with labels on delay slots is to rewrite the instructions as

shown in the following figure.

Original Code Translated code
instrumentation instrumentation
biccX bicc X

Ll: MYl:
store A store A

jumpLl jumpMY2

MY2:
instrumentation
jumpMYl

FIGURE 11. Translating labels on delay slots for proper instrumentation

When we encounter a label on a delay slot that needs to be instrumented, we change the

label name to a newly created one, and later in the code we emit our own basic block

beginning with a second newly created label which contains the needed instrumentation

along with a jump back to the first label. While doing this, we keep a table which remem­

bers we need to change all labels 'Ll' with our own label, 'MY2' in this case. After pass

2 is complete, we can then make a 3rd pass and change all instances of 'Ll' to 'MY2',

insuring the proper instrumentation will be called if there is a jump to that delay slot.

6.4 Protection of our memory storage area

To perform our instrumentation, we have already shown the need for a memory location to

temporarily store values we need to preserve. We set up our own private memory area

during the translation phase, which the user's code has no knowledge of. If the user's

code contains dangling pointers, however, it is possible it will reference our storage area.

If the reference is a read from memory, our instrumentation will trace the event, and the

value will be stored by the tracing algorithm if needed for replay. In this case, the memory

reference is traced just like any other. If the memory reference is a write to this location,

lnstromenting User Code June I, 1994 24

however, our stored data might become corrupt. If the user modifies our storage area the

results are unpredictable. Some methods for dealing with this are discussed later in the

enhancements section.

6.5 neTI pairs

In SPARC assembly, some combinations of DCTI pairs are defined, but cause very

unusual control flow, and should never occur in compiler generated code. It is also

unlikely that they will ever occur in hand generated assembly unless the control flow is

extremely intricate. In our implementation, if a DCTI pair is encountered, we notify the

user and abort the translation. Here, we present a possible translation for dealing with this

situation should it arise.

Due to the complexities of conditional branches, the SPARC manual clearly states the

control flow for defined situations, and indicates all others are undefined (or machine

dependent). [4 pg 54] The primary limitation stated is the first DCTI of a pair must be an

unconditional branch. The second DCTI can be either an unconditional branch, a condi­

tional branch, or an annulled conditional branch. Thus three possible DCTI pairs are pos­

sible, and the following figures show translations for each. Note that in all examples, the

instruction at location 20 is never executed.

Original Code Translated code
16 taken: 12, 16,40,60,64...
16 not taken: 12, 16,40,44."

12: -bicc,a 40
12: ba40 16: foobarB
16: bicc 60 20: ba,a60
20: foobarA 24: foobarA

40: foobarB 40: foobarB
44: foobarC 44: foobarC

60: foobarD 60: foobarD
64: foobarE 64: foobarE

FIGURE 12. DeTI pair with conditional second instruction

Instrumenting User Code June I, 1994 25

Original Code Translated code
16 trlken: 12, 16,40,60,64...
16 not trlken: 12, 16,44,48...

12: -bicc,a 44
12: ba40 16: foobarB
16: bicc,a 60 20: ba,a60
20: foobarA 24: foobarA

40: foobarB 40: foobarB
44: foobarC 44: foobarC

60: foobarD 60: foobarD
64: foobarE 64: foobarE

FIGURE 13. DCn pair with annuUed conditional second instruction

Original Code Translated code
16 always trlken: 12, 16,60,64...

12: ba 40 12: ba,a 60
16: ba,a 60 16: foobarA
20: foobarA

40: foobarB
40: foobarB 44: foobarC
44: foobarC

60: foobarD
60: foobarD 64: foobarE
64: foobarE

FIGURE 14. DCn pair with annuUed unconditional second instruction

For each example, once the translation is performed, no instructions remain in a delay slot,

making them safe to instrument.

7.0 Potential Enhancements

While functional, several enhancements could be made to the instrumenting tool to reduce

its run-time overhead and refine its accuracy for detecting some problems.

7.1 Preserve only volatile global registers

Currently we save %g2-4 before calling a hook function, and restore them upon return.

Global registers are volatile across function calls, and without knowledge of the hook

Instrumenting User Code June I, 1994 26

functions we must preserve them to guarantee our instrumentation will work. It would be

possible, however, to refine this by scanning the assembly code for the hook functions if it

were available. If so, we could note which (if any) of the global registers are used within

the hook function, and only preserve those specific registers.

7.2 Utilizing all unused registers

Many functions do not make use of all local registers available to them. If another pass

were added to the translating algorithm, we could record every register that is not used

within each specific function of the users code. Then, we could go back and store some of

our values in these free registers during instrumentation instead of writing to our memory

storage area. This still requires the same number of instructions, but a move from one reg­

ister to another is faster than a store to memory, and would help bring down the overhead.

7.3 Manual control of the in-hook-flag

Currently we raise our in-hook-flag in the delay slot of the hook function call, and lower it

immediately upon the function's return. If a signal occurs during the hook, we call a spe­

cial signal hook as discussed earlier. Depending on where in the first hook the signal

occurred, however, the user might want to take a different action. We could move the

responsibility of raising and lowering the in-hook-flag into the hook function itself. The

user could then position the flag to precisely the correct point where receiving a signal

would result in an inaccurate trace.

7.4 Manual control of the memory bit vector

We maintain a 2 level bit vector and mark those memory areas which are reserved for reg­

ister storage on the stack. Then, for each load or store instruction we check the address of

the instruction against this vector to catch memory violations. This functionality is very

similar to that of the tracing algorithm itself. It could be possible to set up two new hook

functions, one for saves and one for restores, which would allow the user to set up and

maintain the volatile memory bit vector. Then, for each load and store, the user could do

the address check within the hook that is called. This would reduce the number of func­

tion calls made per memory reference by half.

Instrumenting User Code June I, 1994 27

8.0 Functionality Testing and Results

We tested our instrumentation on Sun SPARC 10 machines running SunGS 4.1.3. All

instrumentation was done using the Sun C compiler (cc). We selected a test suite of three

programs to instrument, each representing a different style of program.

•	 gzip/gunzip - is a file compression utility. It represents computationally intensive
program executions.

•	 gee - is the Gnu C compiler. It is a very large and complex program.

•	 nethaek - is fairly large as well, but also represents interactive programs. It is a popu­
lar dungeon adventure computer game.

For each program, we compiled four separate test cases, linking with Sun libraries com­

piled with the same instrumentation as the test program. The four tests were:

1) Uninstrumented - is the program with no instrumentation.

2) CC flow + manual registers - includes our basic data flow
analysis to reduce the number of traps needed to preserve CCs. We
also manually save volatile local registers surrounding each block
of instrumentation to our memory storage area.

3) CC flow + save/restore - includes our data flow analysis as
before, but this time we surround each block of instrumentation
with a set of save and restore instructions to preserve volatile local
registers.

4) CC always + save/restore - does no data flow analysis, and
always traps to obtain and reset the CC with every block of instru­
mentation. This test also includes the same save/restore method of
preserving volatile local registers as in the last test.

The hook functions called by each of the three instrumented test cases were simply empty

function declarations. This allows us to see the overhead of the instrumentation and hook

function calls alone, without the added overhead that will be introduced by the tracing

algorithm used. We ran each test 10 separate times and took the average user times of

each to calculate the run times reported in figure 15. The window size used in all tests was

20 Meg. This figure is not that significant in our timing results, as the window hook is

called so rarely in comparison to the other hooks that minor changes in its frequency have

little effect on the overhead.

Instrumenting User Code	 JWle 1, 1994 28

gzip gunzip gcc nethack

1) Uninstrumented run time I 33.0 2.3 157.4 -30 min

2) CC flow + manual registers
running time
slowdown I

1854.7
56.2

152.8
66.4

9270.9
58.9

-30 min
not noticed

3) CC flow + save!restore
running time
slowdown I

1811.7
54.9

149.7
65.1

10119.5
64.3

-30 min
not noticed

4) CC always + save/restore
running time I 2669.4 187.9 10805.9 -30 min
slowdown 80.9 81.7 68.65 minimal

FIGURE 15. Overheads of varying instrumentation techniques

The overheads for tests #2 and #3 ranged from 55 to 66 times the uninstrumented ver­

sions, showing there is little difference between manually saving volatile registers during

instrumentation vs. using the save and restore instructions. This fact will be significant,

however, if the instrumentation is modified to pass more arguments to the hook functions.

Currently, only one argument is passed to each hook, so we must save %00 to pass the

value. If other arguments are needed, more %0 registers will need to be used. This will

slow down test #2, but because test #3 uses the save/restore instructions provided by

SPARC to save all local registers, its run time will remain unchanged.

In test #4, slowdowns ranging from 69 to 82 times the original execution were encoun­

tered. This clearly shows that performing data flow analysis to reduce the number of traps

to preserve CCs is a win. Even better flow analysis could be performed if an additional

pass were added to the translator, allowing us to keep track of volatile CCs across basic

block boundaries.

For all tests, the performance of nethack was not noticeably slowed down. This was

expected, as nethack is a user interactive game. Interactive programs typically have large

periods of dead time while waiting for a user's action. This dead time far outweighs any

slowdown introduced by our instrumentation, making the program change invisible to the

user. In test #4 the game did seem to lag occasionally. This lag could have been due to

Instrumenting User Code June I, 1994 29

temporary intense loads on our network, or may have been due to the slower instrumenta­

tion used in test #4. For most of the test, however, test #4 performed as quickly as all oth­

ers.

1) Uninstrumented run time I
gzip

33.0

gunzip

2.3

gee

157.4

2) CC flow + manual registers
running time
slowdown I 701.1

21.3
98.6
42.9

4211.4
26.8

FIGURE 16. Overheads for test #2 without stack memory correctness checking

To detennine how much time was being taken up by our stack memory correctness func­

tions, we recompiled our three non-interactive programs to execute test #2 without the

added function calls. For these tests, we call the user's hook functions as before, but do

not call the extra function before each hook to verify a valid memory access. Our results

show that much of the execution overhead is incurred in these added functions. Without

the memory checks, gzip ran 2.6 times faster than before, gunzip ran 1.6 times faster, and

gcc ran 2.2 times faster. The functionality of the stack memory checks could be easily

added to the user's hook functions. This would add to the overhead once again, but by

removing the extra function call before each hook the run times would still remain faster

than those reported in figure 15.

After running our tests with empty hooks to determine the run time overheads, we re­

linked the executables with our counting hooks. These hook functions increment individ­

ual counters for each hook function called, and print out the total counts upon exit. Figure

17 shows the total number of times each hook was called for each of the test cases. The

signals received by nethack were manually generated, as nethack nicely catches all signals

to make sure you really want to send them. This allowed us to send a I\Z and I\C during

the game, without having to abort the execution.

Instrumenting User Code June 1, 1994 30

windowhook-
restorehook

-_signalhook
_ldbhook

ldhhook
]dwhook
_lddhook

stbhook-
sthhook
stwhook-
stdhook

_systemhook
_stsyshook
_ldsyshook

gzip gunzip gee nethaek

3625 416 1373 223
3126535 7222 3972077 1552261

0 0 0 2
104518603 10263717 14680968 5979585
72506146 1876059 10112707 50715

393130231 34695558 84533275 5177922
0 0 4 0

3944860 2355174 4005446 1101672
19268434 45757 725843 4618

153660417 13676930 39898398 1197169
0 0 18 0

206 173 5658 5804
124 40 4912 2804
70 120 283 2910

FIGURE 17. Total number oftimes each hook was called

9.0 Conclusion

Dynamic tracing techniques show strong potential as future debugging aids, making their

implementation desirable. Our compiler wrappers and translation code make it easy for

the user to compile instrumented source files and link with tracing hook functions. Many

subtleties of the SPARC architecture made instrumentation tricky, but our tool overcomes

almost all of them. We found the SPARC save instruction impossible to instrument prop­

erly, so additional code was added to check all memory references and notify the user of

any which might conflict with a register window save. This additional correctness check­

ing could be easily moved into the hook functions themselves, lowering the run time over­

heads of the instrumentation. Our current instrumentation implementations introduced

slow downs ranging from 55 to 82 times the originals, with average overheads around 60

times. Our results lead us to believe these overheads could be brought down by a factor of

-2 by shifting the responsibility of stack memory verification into the user hooks. The

overheads could be further reduced by using more intricate data flow analysis to lessen the

number of CC traps around instrumentation blocks.

Our instrumenting tool provides full support for current dynamic tracing techniques,

allowing the development of more complete and faster tracing algorithms It is hoped

through the use of this tool, a full tracing and replay tool will soon be realized.

Instrumenting User Code June I, 1994 31

10.0 Acknowledgments

Thanks go to Rob Netzer for his support in seeing this project through to its conclusion

and Shuang Ji for his time saving advice and motivation. We also thank Katuya Tomioka

for play testing all versions of nethack.

Instrumenting User Code June 1. 1994 32

11.0 References

[1] Robert H.B. Netzer and Mark H. Weaver, "Optimal Tracing and Incremental Re-exe­

cution for Debugging Long-Running Programs," SIGPLAN '94 PLDI Conf. (June 1994).

[2] Adam Stauffer, "Instrumenting Variable References in GNU cc, Part 2," Final Project

Submission (August 1992).

[3] Mitch Cherniack, "Issues in Instrumenting Compiler-Generate Code," Final Project

Submission (December 1993).

[4] The SPARC Architecture Manual: Version 8, Sun Microsystems (1990).

[5] AY. Aho, B.W. Kernighan, and P.J. Weinberger, "The AWKProgramming Language,"

Addison-Wesley Publishing Company (1988).

[6] B.W. Kernighan and D.M. Ritchie, "The C Programming Language," Prentice-Hall

(1978).

[7] Larry Wall and Randal L. Schwartz, "Prograrruning perl," O'Reilly & Associates, Inc.

(1990).

[8] J.M. Mellor-Crummey and T.J. LeBlanc, "A Software Instruction Counter," Proc. of

the Third ASPLOS (April 1989).

[9] Robert Wahbe, Steven Lucco, and Susan L. Graham, "Practical Data Breakpoints:

Design and Implementation," SIGPLAN '93 PLDI Conf. (June 1993).

[10] Assembly Language Reference Manual for SPARC: Revision A, SunSoft of Sun

Microsystems (Nov 1993).

Instrumenting User Code June 1. 1994 33

t661 'I ::lune

inst (1) MISC. REFERENCE MANUAL PAGES inst(l)

NAME
inst - translator for instrumenting assembly code

SYNOPSIS
inst < <sourcefile>.s > <targfile>.s

DESCRIPTION
inst will automatically instrument assembly code for execu­
tion tracing and future replay. Calls to hook functions
which you provide are inserted into the original assembly
file, allowing you to perform any tracing algorithm you have
implemented. In order to ease the instrumenting phase of
compilation, several wrappers have been developed for some
compilers and assemblers. By putting the wrapper directory
first in your path, they will be called at compilation, per­
forming the instrumentation at the correct phase. (see
Wrappers section)

USAGE
Using inst is quite simple assuming the hook code and user
libraries are all correctly in place. Some environment
variables can have an effect on the translation, and are
discussed later. The main step required for using inst is
to prepare a hook file.

To make a hook file, cd /~/rn/public/inst/hooks and copy
one of the existing hook files into a new file. It is
highly recommended that you begin with empty.c as a tem­
plate. Everything that is required in the hook file is
already contained in empty.c, so adding your algorithm or
any other functionality to this file will insure a correct
base. The hooks that must be declared are:

inithook
This function is called at the beginning of the execu­
tion and any initialization should be performed here.
The function setsic mu~t be called specifying the size
limit of the SIC.

exithook
This function is called on program exit, and should
perform any cleanup operations.

windowhook
This function is called when the SIC (see Trace Windows
section) reaches the given size limit. Inside this
function the user must call setsic providing the size
limit so that the SIC can be-reset.

restorehook
This function takes a pointer to a buffer containing
the values of all 16 volatile registers during a

Sun Release 4.1 Last change: 26 May 1994 1

inst (J) MISC. REFERENCE MANUAL PAGES inst (1)

restore instruction.

signalhook
- This function receives the SIC and also the signal type

so that the user can record a signal took place, and
use the SIC to determine the exact time.

signalhook special
- Similar to signalhook except it is called when the

signal has-interrupted another hook in progress. This
function also receives an extra argument indicating
which specific hook was interrupted.

Id[b,h,w,d]hook
These four functions are called with an address indi­
cating a load instruction is going to occur. The
letters b, h, w, and d stand for byte, halfword, word,
and doubleword loads respectively.

st[b,h,w,d]hook
- As with the load hooks just before, only for store

instructions.

systemhook
This function is called with the type of system call
being made, so the user can record a system call
occurred.

stsyshook and Idsyshook
- These two functions are called when load or store

instructions will occur during a system call. Because
memory operations are not restricted to bytes or words,
separate hooks are required for these memory opera­
tions. Both the address and the size of the memory
reference are passed to this function.

It is important that any variables declared within your hook
file be declared as static to avoid name collisions with
other files.

Once the hook code is ready, edit the Makefile to add a rule
for your new file. It should be trivial to copy one of the
other entries and rename the appropriate files. Once done,
simply run make to build the object file and library for
your hooks. Now you should cd .. /lib and create a symbolic
link to your newly created hook library. If you set your
TFILE environment variable to the name of the new library,
the next time you use the wrappers your hook library will be
linked into the executable.

If you ever wish to change tracing algorithms or trace win­
dow sizes, re-instrumentation of the source code is not

Sun Release 4.1 Last change: 26 May 1994 2

inst(l) MISC. REFERENCE MANUAL PAGES inst(l)

required. Instead, simply edit the hook file and relink the
executable.

SUPPORT LIBRARY
The instrumentation requires several functions during execu­
tion, which are stored in a "library in the
/~/rn/public/inst/supportdirectory. In addition, if system
library functions are to be called from within your hooks,
you must make sure the hook is calling an uninstrumented
version of the library call. Within you hook code, call
capitalized versions of all library calls. (for example,
call OPEN instead of open) Now run 'nrn' on the support
library to make sure the functions you call from the hooks
are already supported.

If not, you have a little hunting to do. It is helpful to
use two windows during this procedure: one window should
edit the Makefile in /~/rn/public/inst/supportand the other
window should be scanning the output of nrn /usr/lib/libc.a
(redirect to a file or less to view the output). Hunt
through the nm listing for the definitions of the library
calls you need to make. Add the file that contains them to
the Makefile, and ALL functions defined or undefined within
that file. Repeat this operation as necessary for any func­
tions called from within the newly added library file until
every object file has an entry in the Makefile and every
function name is listed in that entry as arguments to con­
vert.

After all of this, remove the file libhsupport.a and type
make. All library files needed are extracted from
/usr/lib/libc.a automatically, and then all named functions
for that~le are converted to upper-case letters via the
/pro/aard/bin/sun4/convert utility. When the make finishes,
run nrn libhsupport.a to make sure it only contains functions
declared in the instrumenting support code in
/u/rn/public/inst/support/*.c or capitalized library func­
tion names.

The convert function is a program local to the Brown CS
Department. If you do not have access to it, you may have
to edit the sun source to rename the functions, and then
rebuild your own local library.

Trace Windows
To support the concept of run-time trace windows, we have
implemented a software instruction counter (SIC). The ini­
tial value of the SIC is set by your call to setsic within
the inithook function. For every backward branch or func­
tion call, the SIC is decremented. If the new value has
reached zero, we call your windowhook function. Thus, it
is vital that you also call _set sic within your windowhook

Sun Release 4.1 Last change: 26 May 1994 3

inst(l) MISC. REFERENCE MANUAL PAGES inst (1)

function if you wish trace windows to perform as they
should.

COMPILING WITH WRAPPERS
The wrappers we provide are stub functions which we have set
up to perform any necessary instrumentation during the nor­
mal compilation of a file. If you put /~/rn/public/inst/bin

first in your path, the wrappers contained in that directory
will be called when you compile a file. (Note: It is
important you call your compiler by name, and not provide
the full path. Some Makefiles contain explicit paths) We
support the gcc, cc, and acc compilers with our wrappers.

In order for the wrappers to work correctly, it is necessary
to have the environment variables TFILE and TLIB set
correctly.

ENVIRONMENT VARIABLES
TFILE

should contain the base name of the hook library you
wish to link with. The library is already assumed to
be in /~/rn/public/inst/lib. For example, if you wish
to link with the counting hooks, set this variable to
count.

TLIB
contains the name of the C library you wish to link
with. The current choices are vanilla, norm, save_res,
and okill, which are tests #1-4 in the paper, respec­
tively.

BUILDING LIBC
should be set only if you are compiling the C library
source. If set to a non-null value it prevents linking
with crtO and the hook and support libraries.

ALWAYS SR
should be defined if you wish to force a save and
restore around each block of instrumentation. The
default is to do manual saves of volatile registers.

ALWAYS CC
should be defined if you wish to force a trap before
and after each block of instrumentation to get and
reset the condition code. The default is to perform
our basic data-flow analysis to reduce the number of
these traps.

The following environment variables were included for debug­
ging purposes. For normal use, you do not need to define
them.

Sun Release 4.1 Last change: 26 May 1994 4

inst(l) MISC. REFERENCE MANUAL PAGES inst (1)

NO SLOTS
- if defined tells the translator to ignor potential

instrumenting errors involving delay slots. The
default is to report any DCTI pairs or labels on delay
slots.

NO SIC
- if defined disables the software instruction counter

and thus all calls to windowhook. The default is to
leave the SIC on.

NO STACK
if defined disables the correctness checking performed
to make sure the instrumented program is not reading
from reserved register window areas of the stack. The
default is to perform these checks.

NO REGS
- if defined disables the translator from reporting

register conflicts with the user's code. The default
is to check for %g5-7 and report a warning if they are
used. If only %g5 is used, we set a flag to make sure
%g5 will be saved with the volatile registers during
instrumentation. If %g6 or %g7 are used, the instru­
mentation will not work, and most likely the program
will break.

TT USEGCC
over-rides whatever compiler was called, and forces gcc
to be called. We have never needed to use this option,
as the other wrappers seem to work perfectly well.

FILES
/u/rn/public/inst/ Base directory
+bin/inst Actual translator
+bin/cc,gcc,as,etc Wrappers for compilation
+perl/*.pl Perl source of the translator
+hooks/*. [c, 0] User hook code and object files
+support/* Code required by instrumentation
+lib/*.a libc, crtO, hook, and support
libraries

AUTHOR
inst was written by:

David W. Vorbrich (dwv@cs.brown.edu)

in partial fulfillment of the Brown University Department of
Computer Science Master's degree project under the guidance
of Robert H.B. Netzer (rn@cs.brown.edu).

13.0 Appendix B: Road Map of Source Directory

The root of the source tree is located in /u/rn/public/inst and contains all of the source

code, wrappers, hook files, supporting libraries, and documentation. Each directory con­

tains a README file describing the files contained at that level. The general layout of

the directories is as follows:

•	 bin - contains all wrapper functions along with the inst executable. This directory
must appear first in your path in order for the wrappers to function properly.

•	 docs - contains this paper, the man page, and several data files used in compiling
results for this paper.

•	 hooks - contains all user hook code source. The file empty.c is an excellent template
for beginning a new hook file.

•	 lib - contains links to all supporting libraries required by the instrumented code.
These include crtO.o, versions of libc.a, user hook files, and instrumentation specific
functions.

•	 perl - contains all of the source code for the inst translator.

•	 support - contains support functions required by the instrumentation and hooks.
These include some hand written files along with renamed functions extracted from the
uninstrumented libc.a.

instrumenting User Code	 June 1, 1994 41

14.0 Appendix C: Hook File Template

/*
This file contains simple hook functions showing all of the hooks
necessary to trace code using our instrumenter. Each hook is
listed in the following table along with its ID. This number
uniquely identifies the hook function, and is used by the tracer to
identify which hook it is currently executing should it happen to
be interrupted by a signal.

*/

/*
TABLE OF HOOK FUNCTION IDS

1 inithook

2 <not used>

3 windowhook

41dbhook

51dhhook

61dwhook

71ddhook

8 stbhook

9 sthhook

10 stwhook

11 stdhook

*/

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include "supporcfuncs.c"

#define WINSIZE (400*1024)

int tracefile;

int signalfile;

/*******************1

1** General Hooks **1

/*******************/

void _inithook () {

tracefile = OPEN("TraceFile",O_WRONLY);

signalfile = FOPEN("SignalFile",O_WRONLY);

_setsic(WlNSIZE);

void _windowhook 0 {

_setsic(WlNSIZE);

void _exithook 0 {

WRITE(2, "Inside _exithook\n", 17);

CLOSE(tracefile);

CLOSE(signalfile);

void Jestorehook(char *but) {

}

1******************1

1** Signal Hooks **1

/******************1

Instromenting User Code June 1, 1994 42

void _signalhook(unsigned sic, int sig) {
}

void _signalhook_special(int hook, unsigned sic, int sig) I
}

/****************/
/** LOAD HOOKS **/
/****************/

void _ldbhook (void *add) I
}

void _ldhhook (void *add) {
}

void _ldwhook (void *add) {
}

void _lddhook (void *add) I
}

/*****************/
/** STORE HOOKS **/
/*****************/

void _stbhook (void *add) {
}

void _sthhook (void *add) I
}

void _stwhook (void *add) {
}

void _stdhook (void *add) {
}

/*********************/
/* SYSTEM CALL HOOKS */
/*********************/

void _systemhook (int sysid) {
}

void _stsyshook (unsigned add, unsigned sz) {
}

void _ldsyshook (unsigned add, unsigned sz) {

}

Instrumenting User Code June 1, 1994 43

15.0 Appendix D: Wrapper Source Code

15.1 ee

#!/usr/locallbin/perl
Script: cc
Author: David W. Vorbrich <dwv@cs.brown.edu>

$ttpath = "/u/rn/public/inst/bin";
$cc = "/usr/bin/cc";

$#cmd = -1;

if ($ENV{'TT_USEGCC'})
{
$ENV{'COMPILER]ATH'} = "$ttpath";

@cmd= ("/cs/bin/gcc",@ARGV);

I
else
{
@cmd = ($cc,"-Qpath",$ttpath,@ARGV);

}

#print '\x 1b\XSb\X37\x6d",join(" ",@cmd),'\x Ib\XSb\X6d\n";
exec(@cmd);

15.2 gee

#!/usr/locallbin/perl
Script: gcc
Author: David W. Vorbrich <dwv@cs.brown.edu>

$ttpath = "/u/rn/public/inst/bin";
$cc = "/cs/bin/gcc";

$ENV ('COMPILER]ATH' I = "$ttpath";

$cmd = "/cslbinjgcc @ARGV";

print "\x1b\xSb\x37\x6d$cmd\x1b\XSb\X6d\n";
exec("$cmd");

Instrumenting User Code June 1, 1994 44

15.3 as

#J/usr/local/bin/perl
Script: as
Author: David W. Vorbrich <dwv@cs.brown.edu>

$args = "";
$as = "/usr/bin/as";

for ($i = 0; $i <= $#ARGV; $i++) {
if ($ARGV[$i] !- /f'{*)\S$/ && $ARGV[$i] !- !,'-O/) {

$args .= " $ARGV[$i]";
}

$cmd = "$as -S@ARGV";
$cmd .= " I tee /tmp/tmpas.as";
$cmd .= " I/u/m/public/inst/bin/inst";
$cmd .= " I tee /tmp/tmpas.inst";
$cmd1 =" $as $args -";

if «$pid =fork()) == 0)
{

open(STDIN,"$cmd ''');

exec("$cmd1");

}

waitpid($pid,O);
exit $?;

15.4 gas

#!/usr/local/bin/perl
Script: gas
Author: David W. Vorbrich <dwv@cs.brown.edu>

for ($i = 0; $i <= $#ARGV; $i++)

{

if ($ARGV[$i] =- /"(.*)\s$/)

{

die("instgas: multiple .s files\n") if ($base ne 'U');

$base = $1;

else

$args .= " $ARGV[$i]";

die("instgas: no .s file specified.\n") if ($base eq "");

$cmd = "/cslbin/gas -S @ARGV";

$cmd .= " I/u/m/public/inst/bin/inst";

$cmd .= " I/cs/bin/gas $args -";

exec("$cmd");

Instrumenting User Code June 1, 1994 45

15.5 Id

#!/usr/local/bin/perl

Script: Id

Author: David W. Vorbrich <dwv@cs.brown.edu>

$libpath = "/u/m/public!inst/lib";

$finallink = 0;

$tfile = $ENV {'TFILE' };

$tlib = $ENV{'TLIB ' };

for ($i = 0; $i <= $#ARGV; $i++)

{
if ($ARGV[$i] eq "/usr/lib/crtO.o" II $ARGV[$i] eq "/lib/crtO.o")

{
$finallink = I;
$ARGV[$i] = "$libpath/crtO_inst.o" if (! $ENV{'BUILDING_LIBC'});

}
if ($ARGV[$i] eq "-Ie")

{
$ARGV[$i] = "";

I

$cmd = "/usr/bin/ld ";

if ($finallink && ! $ENV {'BUILDING_LIBC'})
{
$cmd .= "-Ulibpath @ARGV -lhsupport -l$tfile -Ie_${ tlib I -lhsupport";

I
else
{
$cmd.= "@ARGV";

}

print "\xlb\xSb\x37\x6d**** $cmd\xlb\XSb\X6cf\n";

exec($cmd);

Instrumenting User Code June 1, 1994 46

16.0 Appendix E: Source for supporting functions

/*
* File: supporcfuncs.c
* Author: David W. Vorbrich <dwv@cs.brown.edu>
*/

int int2char(unsigned i, char *buf)
{
int j;

char mybuf[20];

if (i = 0)
{

mybuf[O] = '0';

j = 1;

}
else

for (j = 0; i; i /= 10, j++)

mybuf[j] = '0' + (i % 10);

for (i = 0, --j; j; ++i, --j) {
buf[i] = mybuf[j];

}

buf[i] = mybuf[j];

buf[++i] = 0;

retum(i);

I

! global.s by David W. Vorbrich <dwv@cs.brown.edu>
! Functions to provide C code direct access to global registers
.text
.align 4
.global Jetflag
.procOl6
Jetflag:
mov %g5,%00
jmpl %07+8,%gO
nop
.align 4
.global Jetsic
.procOl6
Jetsic:
mov %g7,%00
jmpl %07+8,%gO
nop
.align 4
.global _setsic
.proc 016
_setsic:
mov %00,%g7
jmpl %07+8,%gO
nop

Instrumenting User Code June I, 1994 47

/*
* File: malloc
* Author: David W. Vorbrich <dwv@cs.brown.edu>
*/

#include<sys/types.h>
#include<sys/ipc.h>
#include<sys/shm.h>

char *my_alloc(int size) {
char *ret;
int id;

if «id = SHMGET(IPC_PRIVATE,size,0700» < 0)
return NULL;

ret = SHMAT(id,NULL,O);

SHMCTL(id,IPC_RMID,NTJLL);

if «int) ret = -1)

return NULL;

return ret;

void my_free(char *p) {
SHMDT(p);

Instrumenting UseT Code June 1, 1994 48

/*
* File: stack.c
* Author: David W. Vorbrich <dwv@cs.brown.edu>
*
* Taken largely from tracing code written by Rob Netzer and modified
* for use here.

*/

#define NULL 0

definePAGESIZEBITS21
definePAGEMASK«(1<<PAGESIZEBITS)-l)
definePAGESIZE(1 «PAGESIZEBITS)
defineINDEXSIZE(1«(32-PAGESIZEBITS))

static unsigned int masks[] = {
OxOOOOOOOl,OxOOOOOOO2,OxOOO00004,OxOOO00008,
OxOOOOOOlO,OxOO000020,OxOOO00040,OxOOO00080,
OxOOOOOlOO,OxOO000200,OxOO000400,OxOOOO0800,
OxOOOOlOOO,Ox00002000,OxOO004000,OxOOO08000,
OxOOOlOOOO,Ox00020000,OxOO040000,OxOOO80000,
OxOOlOOOOO,Ox00200000,Ox00400000,Ox00800000,
OxOlOOOOOO,Ox02000000,Ox04000000,Ox08000000,
OxIOOOOOOO,0x20000000,Ox40000000,Ox80000000,

};

unsigned int *tbl[INDEXSIZE];

void _secmemtbI2(unsigned a) {
unsigned int page, byte, byte_shiftS, mask;

page = (unsigned int)a»PAGESIZEBITS;

byte = (unsigned int)a & PAGEMASK;

byte_shiftS = byte»S;

mask = masks[byte&Oxlf];

if (tbl[page] == NULL) {
tbl[page] = (unsigned int *)my_alloc(PAGESIZE/8);
BZERO(tbl[page], PAGESIZE/8);

} .

tbl[page][byte_shiftS] 1= mask;

void _set_memtbl(unsigned a) I

int i;

for (i=O ; i < 64; ++i,++a)

_set_memtbl2(a);
}

void _unset_memtbl2(unsigned a) I

unsigned int page, byte, byte_shiftS, mask;

page = (unsigned int)a»PAGESIZEBITS;

byte = (unsigned int)a & PAGEMASK;

byte_shiftS = byte»S;

mask = masks[byte&Oxlf];

tbl[page][byte_shiftS] &= -mask;

void _unsecmemtbl(unsigned a) {

int i;

for (i=O ; i < 64; ++i,++a)

_unset_memtbI2(a);

}

Instrumenting User Code June I, 1994 49

void _check_memtbl(unsigned a) {
unsigned int page, byte, byte_shiftS, mask;

page =(unsigned int)a»PAGESIZEBITS;

byte =(unsigned int)a & PAGEMASK;

byte_shiftS = byte»S;

mask =masks[byte&Oxlf];

if (tbl[page] != NULL && (tbl[page] [byte_shiftS] & mask)) {
WRITE(2, "==> PROGRAM READ FROM REGISTER AREA OF STACK <= \on", SI);
abortO;

}

void _delete_memtblO {
int i;
for (i=O; i < INDEXSIZE; ++i) {

if (tbl[i] != NULL) my_free(tbl[i]);
}

Instrumenting User Code June 1,1994 50

/*
* File: mysighandler.c
* Author: David W. Vorbrich <dwv@cs.brown.edu>
* Created: Fri May 13 1994

*/

#include "mysignal.h"
#include <ermo.h>
#include <stdio.h>

#define NUM_SIGS 31

extern int ermo;
void (*mysig_table[NUM_SIGS + 1])0;

void _mysig_handler(int sig, int code, struct sigcontext *scp, char *addr) {
int pid, inhook, len;
char buffer[80];
unsigned sic;

inhook = ~etflagO;

sic = ~etsicO;

if (inhookLsignalhook_special(inhook, sic, sig);

else _signalhook(sic, sig);

if (mysig_table[sig] = SIG_DFL)
switch (sig) I
case SIGHUP:
case SIGINT:
case SIGPIPE:
case SIGALRM:
case SIGTERM:
case SIGXCPU:
case SIGXFSZ:
case SIGVTALRM:
case SIGPROF:
case SIGUSR1:
case SIGUSR2:

exit(1);

case SIGQUIT:

case SIGILL:

case SIGTRAP:

case SIGABRT:

case SIGEMT:

case SIGFPE:

case SIGBUS:

case SIGSEGV:

case SIGSYS:

case SIGLOST:

SIGNAL(SIGABRT, SIG_DFL);
exit(1);

case SIGURG:

case SIGCONT:

case SIGCHLD:

case SIGIO:

case SIGWINCH:

return;

case SIGTSTP:

case SIGTI1N:

case SIGTTOU:

pid =GETPIDO;

KILL(pid, SIGSTOP);

break;

Instrumenting User Code June 1, 1994 51

else if (mysi!Ltable[sig] == SIG_IGN) return;

else mysig_table[sig]O;

void _mysig_setupO {
int i;
void (* tmp)O;
for (i = 1; i <= NUM_SIGS; ++i) {

tmp = SIGNAL(i, _mysig_handler);
if (unp != -1) {

mysig_table[i] = tmp;

void *signal(int sig, void (*fune)) {
if (sig <= 0 II sig > NUM_SIGS II sig == SIGSTOP II sig == SIGKll...L) {

ermo = EINVAL;
return (-1);

}
mysig_table[sig] = fune;

/*
* File: mysystem.e
* Author: David W. Vorbrieh <dwv@es.brown.edu>
*
* Taken largely from the vmon source eode by Steve Reiss and modified
* for use here.

*/

#define NULL 0
#define TRUE 1
#define FALSE 0
#define SYS_syseall 0

#inelude <sys/types.h>
#include <sys/stat.h>
#inelude <sys/syseall.h>
#inelude <sys/file.h>
#inelude <sys/signal.h>
#inelude <sys/time.h>
#include <sys/resouree.h>
#include <sys/vfs.h>
#include <ustat.h>
#include <sys/uio.h>
#inelude <sys/utsname.h>

void _mysystem (int sysid,unsigned *args) {

int i, write;

unsigned address, size;

_systemhook(sysid);

if (sysid == SYS_syseall) {
sysid = *args;
args++;

}

for (i = 0; _mysystem2(i,sysid,args,&address,&size,&write); ++i) {

if (write) {

_stsyshook(address,size);

Instrumenting User Code June 1. 1994 52

}
else {

_ldsyshook(address,size);

int _mysystem2 (int cnt, int id, unsigned *args, unsigned *address,
unsigned *size, int *write) {

struct iovec *iov;

int ct;

*write =TRUE;

if (cnt == 0) {

switch (id) {

default :

return FALSE;

case SYS_recvmsg :

case SYS_sendrnsg :

case SYS-£etmsg :

case SYS_putmsg :

case SYS aioread:

case SYS- aiowrite :

return FALSE;

case SYS read:

case SYS~etdents :

case SYS_recv :

case SYS-£etdirentries :

case SYS recvfrom:

*address = (int) args[l];

*size = (int) args[2];

break:

case SYS write:

case SYS-send :

case SYS- sendto :

*address = (int) args[l];

*size = (int) args[2];

*write = FALSE;

break;

case SYS_stat :

case SYS lstat:

case SYS::::rstat :

*address = (int) args[l];

*size = sizeof(struct stat);

break;

case SYS ioctl:

*address = (int) args[2];

*size = 64;

*write = TRUE;

break;

case SYS readlink:

*address = (int) args[l];

*size = (int) args[2];

break;

case SYS-£ethostname:

*address = (int) args[O];

*size = (int) args[l];

break;

case SYS_fcntI :

*address = (int) args[2];

if (*address == NULL) return FALSE;

*size = sizeof(struct flock);

break;

Instrumenting User Code June I, 1994 53

case SYS_sigvec :
*address = (int) args[2];
if (*address = NULL) return FALSE;
*size = sizeof(struct sigvec);
break;

case SYS~ettimeofday:
*address =(int) args[O];
*size =sizeof(struct timeval);
if (*address = NULL) {

*address = (int) args[l];

if (*address = NULL) return FALSE;

*size =sizeof(struct timezone);

};

break;

case SYS~etrusage :
*address =(int) args[l];
if (*address = NULL) return FALSE;
*size =sizeof(struct rusage);
break;

case SYS~etsockopt:
*address = (int) args[3];
*size = *((int *) args[4]):
if (*address = NULL" *size = 0) return FALSE;
break;

case SYS~etpeemame:
case SYS~etsockname :

*address =(int) args[l];
if (*address = NULL) return FALSE;
size =«int *) args[2]);
if (*address = NULL " *size = 0) return FALSE;
break;

case SYS~etrlimit :
*address =(int) args[l];
if (*address = NULL) return FALSE;
*size = sizeof(struct rlimit);
break;

case SYS statfs:
case SYS=:fstatfs :

*address = (int) args[l];
if (*address = NULL) return FALSE;
*size =sizeof(struct statfs);
break;

case SYS~etdomainname:
*address =(int) args[O];
if (*address = NULL) return FALSE;
*size = (int) args[1];
break;

case SYS_ustat :

*address =(int) args[l];

if (*address = NULL) return FALSE;

*size =sizeof(struct ustat);

break;

case SYS_uname :

*address =(int) args[O];

if (*address = NULL) return FALSE;

*size = sizeof(struct utsname);

break;

case SYS readv:

ct =(int) args[2];

if (ct = 0) return FALSE;

iov =(struct iovec *) args[1];

*address =(int) iov->iov_base;

*size =iov->iov_len;

break;

case SYS_writev :

Instrumenting User Code June I, 1994 54

et = (int) args[2];

if (et = 0) return FALSE;

iov = (struet iovee *) args[l];

*address = (int) iov->iov_base;

*size = iov->iov_len;

*write = FALSE;

break;

}

}

else {

switch (id) {

case SYS~ettimeofday:
if (ent > 1) return FALSE;
*address = (int) args[O];
if (*address = NULL) return FALSE;
*address = (int) args[l];
if (*address = NULL) return FALSE;
*size = sizeof(struet timezone);
break;

case SYS~etdirentries :
if (ent > 1) return FALSE;
*address = (int) args[3];
if (*address = NULL) return FALSE;
*size = sizeof(1ong);
break;

case SYS_readv :
et = (int) args[2];
if (ent >= et) return FALSE;
iov = (struet iovee *) args[l];
iov += ent;
*address = (int) iov->iov_base;
*size = iov->iov_len;
break;

case SYS writev:
et = (int) args[2];
if (ent >= et) return FALSE;
iov = (struet iovee *) args[l];
iov += ent;
*address = (int) iov->iov_base;
*size = iov->iov_len;
*write = FALSE;
break;

case SYS recvfrom:
if (ent >-1) return FALSE;

*address = (int) args[4];

if (*address = NULL) return FALSE;

*size = (int) args[5];

break;

case SYS sendto:
if (ent >-1) return FALSE;
*address = (int) args[4];
if (*address = NULL) return FALSE;
*size = (int) args[5];
*write = FALSE;
break;

default :

return FALSE;

I
I

return TRUE;
I

Instrumenting User Code June 1, 1994 55

17.0 Appendix F: Perl Source Code for inst

The source for inst is broken into seven separate perl files.

•	 instrument.pi - is the main driver of the program. It includes all other files, sets up
the input and output files, and calls passl and pass2 in turn.

•	 passl.pl - contains code for the initial pass over the user's code. During this phase we
rewrite DCTI instructions with conditionally executed delay slots, check the user's
code for global registers we reserve for instrumentation, and set up our memory storage
area.

•	 pass2.pl - contains code for the primary pass over the user's code. During this phase
we perform all instrumentation, inserting calls to the hook functions for all events
required by the tracing algorithm.

•	 funes.pl - contains all sub functions needed by passl and pass2 to keep track of state
information and standard utilities.

•	 hooks.pl - contains sub functions for generating the assembly required to call each
hook function.

•	 rgxp.pl - contains definitions for all regular expressions used to match the user's
assembly file and trigger instrumentation output.

•	 opposites.pl - contains a single associative array indexed by DCTI's which provides
the logically opposite instruction for each DCn.

Instrumenting User Code	 June 1, 1994 56

#!/usr/local/bin/perl
Script: instrument
Author: David W. Vorbrich <dwv@cs.brown.edu>

$DIR = "/u/m/public!inst!perl";
require("${DIR} /rgxp.pl");
require("$ {DIR} /opposites.pl");
require("${DIR}/hooks.pl");
require("${ DIR} /passl.pl");
require("$ {DIR}/pass2.pl");
require(H${ DIR}/funcs.pl");
require("f1 ush.pl");

$USE_SIC =! defined($ENV ('NO_SIC'});
$CI-IlCSLOTS = ! defined($ENV {'NO_SLOTS'});
$CHK_STACK =! defined($ENV{ 'NO_STACK'});
$CHK_REGS =! defined($ENV{'NO_REGS'});
$ALWAYS_SR = defined($ENV{ 'ALWAYS_SR'});
$ALWAYS_CC= defined($ENV{'ALWAYS_CC'});

TMP file is used as output from passl and read as input by pass2
$TMP = H.$$_pass1.s";

open(SRC, "<& STDIN");
open(TMP, "> $TMP");

&PASS_IO;

&f1ush(TMP);
open(TMP, H$TMP");

&PASS_20;

unlink ($TMP);

Instrumenting User Code June 1, 1994 57

#!/usr/local/binjperl
Script: pass 1
Author: David W. Vorbrich <dwv@cs.brown.edu>

sub PASS_l {
while(<SRc» {

Skip blank lines and comments except !#PROLOGUE

if ((! j"\S*$j && ! j"\s*([!\#llV*)1) II j($R_PRO)1) {

&PARSE_LINEO;
if {/"_('$+):1) {

$FUNC= $1;
}

Check if the code being translated already uses global registers
we depend on, if we encounter %g5, set a flag so we preserve
its value during pass2
if «$CHICREGS) && j($R_ll...LEGAL)j && ! jasciil) {

if (/%g51%r51) {
print STDERR "Used %g5... I will protect it: $_\n";
$SAVE_G5 = 1;
print TMP $_;

}
else {

die "Warning illegal register: $_\n";
}

If we encounter a DCTI which always voids it's delay slot, put a
nop there to avoid future hassels (like a label on the slot)
elsif ($Wl =- j"($R_DCTInoslot)$1) {

print TMP $_, '\t\tnop\t\t\t\t! Put nop in void delay slot\n";

}

If we encounter a DCTI who's delay slot mayor may not be executed
depending on if the branch is taken, rewrite the assembly so it
is not ambiguous for translation
elsif ($Wl =- j"($R_ba)I($R_cba)I($R_fba)$1) {

$A = 1;

$NEW_BRANCH = $OPPOSlTE{ $W I};

++$LABEL;

$OLD=$.

$HEADER'= sprintf

('\t\t${NEW_BRANCH} ${FUNC}.MINE${LABEL}\n\t\tnop\n\t\tba $W2\n");
$FOOTER = sprintf("$ {FUNC} .MINE${LABEL} :\n");

I

If we see a Id/st instruction and we are in the delay slot of an
annulled DCTI from above, then output rewritten assembly
elsif ($A == 1 && $Wl =- j"«$R_LD)I($R_ST)I($R_CLR)I($R_LDST»$1) {

print TMP $HEADER, $_, $FOOTER;

$A=O;

}

For all other instructions, if they were in the delay slot of an

annulled DCTI first output the DCTI, then the current instruction,

otherwise just print the current instruction

else {

($A = 1)?($A = 0, print TMP $OLD,$_):(print TMP $_);
I

I

}
&SETUP_STORAGE;

Instrumenting User Code June 1, 1994 58

This function simply emits the code necessary for temporary storage in

the data section of memory for saving and restoring register values we

need to protect.

sub SETUP_STORAGE {

print TMP '\t\J:\J:\J:\J:! MEMORY STORAGE FOR GLOBALS\n";

print TMP ".seg\l\"data\'\!1";

print TMP '\t\J:.align 4\n";

print TMP ".MYSTORAGE:\n";

for ($1 =0; $1 < 40; ++$1) {

print TMP '\t\J:.word O\n";
I

print TMP '\t\J:\J:\J:\J:! END OF STORAGE AREA\n";

1;

Instrumenting User Code June I, 1994 59

#!/usrflocal/bin/perl
Script: pass2
Author: David W. Vorbrich <dwv@cs.brown.edu>

sub PASS_2 {
while(<TMP» {

$CUR=$_;

&PARSE_LINEO;# Break line into words

&FIX_SIMM130;# Fix complex expressions in SIMM13's

if (f/_('5+):f) {
$FUNC = $1;

}

If we see a new procedure definately print out the SIC code
if (f($R_PRO)f) {

&MY_PRINT(O, $CUR);
&INT_SICHOOKO;

}

If we see the start label, call the initialization
elsif (f/\($R_STARnf) {

&MY_PRINT(O, $CUR);
&INT_INITHOOKO;

}

If we see a save instruction, mark our bitvector
elsif ($W 1 =- j/\($R_SAVE)$f) {

&PRINT_BUFSO;
&FIX_SAVEO;
if ($CHK_STACK) { &DO_SETMEMO; I

}

If we see a restore (maybe in a delay slot) clear the bitvector

and dump the register values into the trace file

elsif ($Wl =- j/\($R_REST)$f) {

if ($DCTI_SEEN) {
&DO_RESTORE(I);# Actually eats the return statement
$DCTCBUF =;

}
else {

&PRINT_BUFSO;

&DO_RESTORE(0);

I
$DCTCSEEN = 0;

$RETURN_TARG = "";

}

If we see a DCTI, buffer info until we know when it's safe to

instrument. Also, if it's a backward or conditional branch, increment

and check the SIC.

elsif ($Wl =- j/\($R_DCTI)$f) {

if ($DCTI_SEEN != 1) {

$DCTI_SEEN = 1;

}

else {

if ($CHK_PAlRS) {

die "==============> Branch in delay slot\n";

}
else {

&PRINT_BUFSO;

Instrumenting User Code June I, 1994 60

&MY_PRINT(O, $CUR);
}

}

if ($W1 =- I"($R_RET)$/) {

($W2 !- I"$/) ? ($RETURN_TARG = $W2) :($RETURN_TARG = "%i7");
}

if ($BACK_BRANCHES {"${W2}:"} == 1) I
&INT_SICHOOKO;

}
if ($W1 =- 1"($R_DCTInoslot)$/) {

$NO_INST= 1;
}

$DCTI_BUF = $CUR;
}

For all instructions which touch memory, insert a call to the

appropriate hook function and clear up any delay slot buffering

from prior DCTI's.

elsif ($W1 =- I"($R_LD)$/) {

($NO_INST = 1) ? $NO_INST = °:&INT_LDHOOK10;

&PRINT_BUFSO;

&MY_PRINT(O, $CUR);

}
elsif ($W1 =- 1"($R_Sn$/) {

($NO_INST = 1) ? $NO_INST = °:&INT_STHOOK10;
&PRINT_BUFSO;
&MY_PRINT(O, $CUR);

}
e1sif (f($R_CLR)/) {

($NO_INST = 1) ? $NO_INST = °:&INT_STH00K20;
&PRINT_BUFSO;
&MY_PRINT(O, $CUR);

}
elsif ($W1 =- 1"($R_LDSn$/) {

($NO_INST = 1) ? $NO_INST = 0: &INT_LDSTHOOK10;
&PRINT_BUFSO;
&MY]RINT(O, $CUR);

}

Ifwe encounter a trap into the system, insert a call to the syscal1

hook

elsif (f($R_SYSCALL)/) I

&INT_SYSHOOKO;
&MY]RINT(O, $CUR);

}

For every label encountered, record it's name to keep track of

backward branches.

elsif ($W1 =- I"($R_LABEL)$/) {

$BACK_BRANCHES{$W1} = 1;
if ($DCTCSEEN == 1) I

if ($CHK_SLOTS) {
die "============> Label on delay slot detected'n";

}
else {

&PRINT_BUFSO;
}

}
&MY_PRINT(O, $CUR);

}

The default action is to clear up our buffers and print out the

current instruction

else {

Instrumenting User Code June I, 1994 61

&PRINT._BUFSO;
&MYYRINT(O, $CUR);

}

This function actually emits the code once it knows if we need to

preserve the CCs or not.

&CC_CHECKO;

Simply here to catch the last buffer when the loop exits
($ALWAYS_CC) ? (print $OUTPUTcc) : (print $OUTPUT);

1;

Instrumenting User Code June 1, 1994 62

#!/usr/local/bin/perl
Script: funcs
Author: David W. Vorbrich <dwv@cs.brown.edu>

Doesn't actually print, but rather appends a string to one or more
buffers based on a provided key. 1 = don't save CC, 2 = save CC
sub MY]RINT {

local ($WHICH, $SlR) = @_;
if ($WHICH = 1) {

$OUTPUT .= $SlR;
}

elsif ($WHICH == 2) {
$OUTPUTcc .= $SlR;

}
else {

$OUTPUT .= $SlR;
$OUTPUTcc .= $SlR;

}

Actually only one buf, but the name stuck. Here we append the buffer
left over from a DCTI onto the actual output buffers.
sub PRINT_BUFS {

if ($DCTCSEEN = 1) {
&MY]RINT(O, $DCTI_BUF);
$DCTI BUF = "".
$DCTI-SEEN = 0;
$SLOT-='SEEN = 1;

i

Break the input line into seperate words
sub PARSE_LINE {

(jA\s*0S+)\s+1) ? ($W1 = $1) : ($Wl = "");
(/A\s*\S+\s+0S+)I)? ($W2 = $1) : ($W2 = "");
(/A\s*\S+\s+\S+\s+0S+)I)? ($W3 = $1): ($W3 = "");

}

Split the arguments to a memory reference in order to determine what

address it will be referencing. These variables are referred to globally

within other functions. Namely, START_CALLO.

sub GET_OPS {

10cal($ARG) = @_;
if ($ARG =-!\+-I) {

$WH = index($ARG, "+");

$01 = substr($ARG, 1, $WH - 1);

sOP = "add";

$02 = substr($ARG, $WH + 1, length($ARG) - $WH - 2);

if ($01 + 0 != 0) {

$TEMP= $01;

$01 = $02;

$02= $TEMP;

}

}

elsif ($ARG =-/-1) {

$WH = index($ARG, "_");

$01 = substr($ARG, 1, $WH - 1);

SOP = "sub";

$02 = substr($ARG, $WH + 1, length($ARG) - $WH - 2);

}
else {

$01 = substr($ARG, 1, length($ARG) - 2);

SOP = "";

$02 = "";

Instrumenting User Code June I, 1994 63

Trap to get the CC and put it into storage
sub SAVE_CC (

&MY_PRINT(2, '\1\tt\1Ox2Q\J:\t\t! Saving Can");
&MY_PRINT(2, '\1\tst\1%gl,[%g6+0]\n");

}

Get a value from storage and trap to restore the CC
sub REST_CC (

&MY_PRINT(2, '\1\tld't[%g6+0),%gl\n");
&MY_PRINT(2, '\1\tt\tOx21\t\t\t! Restoring old Can");

}

Save volatile registers into storage. Add other %oX registers if

future hook functions take more than one argument. Currently we

only protect %00.

sub SAVE_REGS (

&MY]RINT(O, '\1\tst\t%gl,[%g6+4)\t\t! Saving global registers'rl");

&MY]RINT(O, '\1\tst\t%g2,[%g6+8]\n");

&MY]RINT(O, '\1\tst\t%g3,[%g6+12]\n");

&MY_PRINT(O, '\1\tst\t%g4,[%g6+l6]\n");

if ($SAVE_G5 = 1) (&MY_PRINT(O. "\t\tst\t%g5,[%g6+20]\n"); }

if ($ALWAYS_SR) I

&MY_PRINT(O, "\t\tsave\t%sp,-96,%sp\t\t! Saving non-global registers\n");
}

else (
&MY_PRINT(O, "\t\tst\t%oO,[%g6+32)\t\t! Saving non-global registers\n");
&MY_PRINT(O, "\t\tst\t%o7,[%g6+36]\n");

}

Get values from storage and restore them to the correct registers
sub REST_REGS (

&MY_PRINT(O. '\1\tld\t[%g6+4),%gl\t\t! Restoring global registers\n");
&MY_PRINT(O, '\1\tld\t[%g6+8),%g2\n");
&MY_PRINT(O, '\1\tld\t[%g6+l2),%g3\n");
&MY]RINT(O, '\1\tld\t[%g6+l6),%g4\n");
if ($SAVE_G5 = 1) (&MY]RINT(O, "\t\tld't[%g6+20),%g5\n"); }
if ($ALWAYS_SR) (

&MY_PRINT(O, "\t\trestore\t\t\t! Restoring non-global registers'rl");
}

else (
&MY_PRINT(O, "\t\tld't[%g6+32),%oO\t\t! Restoring non-global registers\n");
&MY_PRINT(O, "\t\tld't[%g6+36),%o7\t\t\n");

}

Emit a helpful comment and do any set up requried to call a hook

function. If we are passed a flag telling us this is a memory reference,

also set up the correct argument to the hook.

sub START_CALL (

local($CMT, $KND, $MEM_REF) =@_;

&MY_PRINT(O, '\1\t\t\t\t! BEGIN INSTR-${CMT}: $ (KND}'rI");

if ($MEM_REF == 1) {

if ($OP) (
&MY_PRINT(O,'\t\t${ OP}\t${ 01 },${ 02},%g5\n");

}
else {

&MY_PRINT(O,'\t\tmov\t${O 1},%g5\n");
}

&MY_PRINT(O, "\t\tst\t%g5,[%g6+116]\n");
}

Instrumenting User Code June 1, 1994 64

&SAVE_REGS();

&SAVE_CC();

if ($MEM_REF == 1) {

if ($CHK_STACK) { &DO_CHECKMEM(); }
&MY_PRINT(O, "\l:\tld\t[%g6+116],%0O'\n");

}

Restore CCs and volatile registers and print out a closing comment
sub END_CALL {

10cal($CMT, $KND) =@_;
&REST_CC();
&REST_REGS();
&MY_PRINT(O, '\J:\t\t\t\t! END INSTR-${CMT}: ${KND}\n");

}

Actually prints the output buffers. This is the only place real code

is emitted. If we are in a delay slot, reading the CC, or just entered

a new basic block, we must print out the buffer which preserves CCs.

If we are writing a new value over the old CC, we can emit the prior

buffers which do not protect the CC.

sub CC_CHECK {

if ($SLOT_SEEN = 1 II
$WI =- I"'C$R_LABEL)$J II
$Wl =- l\($R_RDccplain)$/) {
print $OUTPUTcc;
$SLOT SEEN = 0;
$OUTPUTcc ="";
$OUTPUT = "";

}
elsif ($Wl =- JA($R_WRcc)$/) {

($ALWAYS_CC) ? (print $OUTPUTcc) : (print $OUTPUT);
$OUTPUTcc = ;
$OUTPUT= ;

}

Store the values of all registers which will be modified by a restore

instruction into a specified area of our storage.

sub DUMP_REGS {

&MY_PRINT(O, '\J:\tst\t%iO,[%g6+52]\n");

&MY_PRINT(O, "\t\tst\t%il,[%g6+56]\n");

&MY_PRINT(O, '\J:\tst\t%i2,[%g6+60]\n");

&MY_PRINT(O, '\J:\tst\t%i3,[%g6+64]\n");

&MY_PRINT(O, '\J:\tst\t%i4,[%g6+68]\n");

&MY_PRINT(O, '\J:\tst\t%i5,[%g6+72]\n");

&MY_PRINT(O, '\J:\tst\t%i6,[%g6+76]\n");

&MY_PRINT(O, '\J:\tst\t%i7,[%g6+80]\n");

&MY_PRINT(O, '\J:\tst\t%10,[%g6+84]\n");

&MY_PRINT(O, '\J:\tst\t%11,[%g6+88]\n");

&MY_PRINT(O, '\J:\tst\t%12,[%g6+92]\n");

&MY_PRINT(O, '\J:\tst\t%13,[%g6+96]\n");

&MY_PRINT(O, '\J:\lSt\t%14,[%g6+100]\n");

&MY_PRINT(O, '\J:\tst\t%15,[%g6+104]\n");

&MY_PRINT(O, '\J:\tst\t%16,[%g6+108]\n");

&MY_PRINT(O, '\J:\lSt\t%17,[%g6+112]\n");

More complex than it seems. First, unmark our bitvector before the
restore, then print the restore itself. After this, dwnp the modified
registers via DUMP_REGS() above, then call the restore hook providing
a pointer into the storage area where the register values are buffered.
After all of this is done, set up a jmpl to the original return target.

Instrumenting User Code June 1, 1994

I

65

sub DO_RESTORE {
local ($RET) = @_;
if ($RET) {

&MY_PRINT(O,'\t\1st\t${RETURN_TARG },[%g6+120]\t\1! Save ret arg\n");
if ($CHICSTACK) { &DO_UNSETMEMO; }

}
&MY_PRINT(O, $CUR);

&DUMP_REGS();

&START_CALL("RESTORE_HOOK","restore",0);

&MY_PRINT(O, "\t\tset\1(.MYSTORAGE+52),%00\n");

&MY_PRINT(O, "\Ncall\t_restorehook,O\n\t\tnop\n");

&END_CALL("RESTORE_HOOK","restore");

if ($RET) {

&MY_PRINT(O, ''\t\tld\1[%g6+120],%07\t\1! Restore ret arg\n");
&MY_PRINT(O, ''\t\1jmpN%07+8,%gO\n"); # replaces return statement
&MY_PRINT(O, ''\t'\1nop\n'');

}

Pass the stack pointer to the set call to set our bitvector
sub DO_SETMEM {

&START_CALL("SET_MEMTBL","_secmemtbl",O);
&MY_PRINT(O, ''\t\1call\t_secmemtbl,O\n'');
&MY_PRINT(O, ''\t\1mov\1%sp,%00\n");
&END_CALL("SET_MEMTBL","_secmemtbl");

}

Pass the stack pointer to the unset call to unset our bitvector
sub DO_UNSETMEM {

&START_CALL("UNSET_MEMTBL"," _unsecmemtbl",0);
&MY]RINT(O, ''\t\1call\t_unsecmemtbl,O\n'');
&MY]RINT(O, ''\t\1mov\1%sp,%00\n");
&END_CALL("UNSET_MEMTBL","_unset_memtbl");

}

Set up the address being referenced and then pass it to the check function

to see if we are accessing a restricted area.

subDO_CHECKMEM {

&MY]RINT(O, ''\t\1Id\1[%g6+116],%00\n");

&MY]RINT(O, ''\t\1call\t_check_memtbl,<N:! Check if valid address\n");

&MY]RINT(O, ''\t\1nop\n'');

}

sub FIX_SAVE {
($A, SB, $C) = split(/j, $W2, 3);
if ($B =- 1"(% [rglio] [0123456789]+)$/) {

&MY_PRINT(O, ''\t\tsub\1S{ 1},96,${ 1}\1\1! Insuring stack size\n");
&MY_PRINT(O, $CUR);

}
else {

$B .= "-96";
$W2 = join(' " , $A, $B, $C);
$CUR = ''\t\1'' . $Wl . ''\t'' . $W2 . "" . $W3 . "\n";
&MY_PRINT(O, $CUR);

}

Looks ugly, but it's not that bad. This function looks for parenthetical
expressions. If it finds one containing two local labels, then the
result might be out of range if the expression is in a SIMM13 slot.
Simply, the expression might be more than 13 bites, so we remove the
expression in question, put it's result into a 32 bit register, and
modify the original instruction to take this register. We only do this
for expressions containing two or more labels, and also take special
care of the label '.' indicating current line, since we might move the

Instrumenting User Code June I, 1994 66

- -

line during instrumentation.
sub FIX_SIMM13 {

return if /word/;
return if f\s*sethi/;
return if f\s*or/;
return if /GLOBAL/;

($A, $B, $C, $D) = split(/j, $W2, 4);

if ($A =- N.*($R_LABEL_REF).*[+-]($R_LABEL_REF).*\)/) {
$EXP=$A;
$W2 = join(',' , "%g5", $B, $C, $D);

}
elsif ($B =- N.*($R_LABEL_REF).*[+-]($R_LABEL_REF).*\)/) (

$EXP= $B;
$W2 = join(',', $A, "%g5", $C, $D);

}
elsif ($C =- N..*($R_LABEL_REF).*[+-]($R_LABEL_REF).*\)/) (

$EXP= $C;
$W2 = join(' ,', $A, $B, "%g5", $D);

}
elsif ($D =- N..*($R_LABEL_REF).*[+-]($R_LABEL_REF).*\)/) (

$EXP= $D;
$W2 = join(' " , $A, $B, $C, "%g5");

}

if (SEXP) {
if ($W2 =-/"(.*),+$/) {

$W2 = $1;# Strip trailing extra commas
}

$CUR = ''\I:\t'' . $Wl . ''\I:'' . $W2 . "" . $W3 . "\11";

if ($DCTCSEEN == 1) {
if ($EXP =-/("\(\.[+-])I([+-]\[+-])I([+-]\\»/) {

($EXPl = $EXP) =- sl\)/-12\)/;
($EXP2 = $EXP) =- sl\)/-fN/;

}
else {

$EXPl = $EXP2 = $EXP;

}

$NEW = sprintf(''\t\tsethi\t%%hi($EXP1),%%g5\n'');

$NEW.= sprintf(''\t\tor\t%%g5,%%lo($EXP2),%%g5\n");

}$DCTI BUF = $NEW . $DCTI BUF;

else {
if ($EXP =-/("\(\.[+-])I([+-]\[+-])I([+~]\\»/) {

($EXPl = $EXP) =- sl\)/-fN/;

($EXP2 = $EXP) =- sl\)/-4\)/;

}

else {

$EXPl = $EXP2 = $EXP;

}

$NEW = sprintf(''\t\tsethi\t%%hi$EXP1,%%g5\n");

$NEW .= sprintf(''\t\tor\t%%g5,%%lo$EXP2,%%g5\n");

$CUR = $NEW . $CUR;

}
}

else {

$EXP_SEEN = 0;

}

$EXP = $EXPl = $EXP2 = $A = $B = $C = $D = $NEW = "";
}

1;

Instrumenting User Code June 1, 1994 67

#!/usr/locallbin/perl
Script: inChooks
Author: David W. Vorbrich <dwv@cs.brown.edu>

sub INT_LDHOOKI {
$KIND = C$Wl =- /"ld$/? "w" : substrC$Wl, lengthC$Wl) - 1));
@T=split(lJ, $W2);
&GET_OPSC@T[O]);
&START_CALLC"LOAD (1)", $KIND, 1);
&MY_PRINTCO,'\1\tcall\l_ld${KIND} hook,O\n");
&INT_HOOK_FLAGC"ld", $KIND);
&END_CALLC"LOAD Cl)", $KIND);

}

sub INT_STHOOKI {
$KIND = C$Wl =- /"st$/? "w" : substr($Wl, lengthC$W1) - 1));
@T = split(lJ, $W2);
&GET_OPSC@T[l]);
&START_CALLC"STORE (1)", $KIND, 1);
&MY_PRINTCO,'\1\tcall\l_st${KIND} hook,O\n");
&INT_HOOK_FLAG("st", $KIND);
&END_CALLC"STORE (1)", $KIND);

}

sub INT_STHOOK2 {
$KIND = C$Wl =- /"clr$/? "w" : substrC$Wl, lengthC$W1) - 1));
&GET_OPSC$W2);
&START_CALLC"STORE (2)", $KIND, 1);
&MY_PRINTCO,'\1\tcall\l_st${KIND Ihook,O\n");
&INT_HOOK_FLAGC"st", $KIND);
&END_CALLC"STORE (2)", $KIND);

}

sub INT_LDSTHOOKI {
$KIND = C$Wl =- /"swap$/ ? "w" : "b");
@T = split(lJ, $W2);

&GET_OPSC@T[O]);

&START_CALLC"LOAD/SIDRE (1)", $KIND, 1);

&MY_PRINTCO,'\1\tcall\l_ld${KIND} hook,O\n");

&INT_HOOK_FLAG("ld", $KIND);

if C$OP) {

&MY_PRINTCO,'\1\t${OP} ${OI },${02},%oO\n");
}

else {
&MY_PRINTC0,'\1\tmov ${OII,%oO\n");

}

&MY_PRINTCO,'\1\tcall\l_st$ {KIND} hook,O\n");

&INT_HOOK_FLAGC"st", $KIND);

&END_CALLC"LOAD/STORE (1)", $KIND);

}

sub INT_INITHOOK {
&MY_PRINTCO, '\t\tset\t.MYSTORAGE, %g6\t\t! Setting address of storage\n");
&START_CALLC"INIT_HOOK","init", 0);
&MY_PRINTCO, '\t\tcall\t_mysig_setup,O\t\t! Setting up signal handler\n");
&MY_PRINTCO, '\t\tnop\n");
&MY_PRINTCO, '\t\tcall\t_inithook,O\t\t! INIT HOOKS\n");
&INT_HOOK_FLAGC"init");
&END_CALLC"INIT_HOOK", "illit");

sub INT_SYSHOOK {

Instrumenting User Code June I, 1994

I

68

&MY_PRINT(O, ''\1\J:\J:\J:\J:! Beginning of SYS_CALL hook\n");

&MY_PRINT(O, ''\1\J:save\J:%sp,-96,%sp\n"); # -SA(MINFRAME) in asm_linkage.h

&MY]RINT(O, ''\1\J:st\J:%g1,[%g6+0]\n");

&MY]RINT(O, ''\1\J:st\J:%iO,[%fp+Ox44]\n'');

&MY]RINT(O, ''\1\J:st\J:%i1,[%fp+Ox48]\n");

&MY_PRINT(O, ''\1\J:st\J:%i2,[%fp+Ox4c]\n'');

&MY]RINT(O, ''\1\J:st\J:%i3,[%fp+Ox50]\n'');

&MY]RINT(O, ''\1\J:st\J:%i4,[%fp+Ox54]\n'');

&MY]RINT(O, ''\1\J:st\J:%i5,[%fp+Ox58]\n'');

&MY_PRINT(O, ''\1\J:mov\J:%gl,%oO\n'');

&MY_PRINT(O, ''\1\J:add\t%fp,Ox44,%ol\n");

&MY_PRINT(O, ''\1\J:call\t_mysystem\n\J:\J:nop\n'');

&MY]RINT(O, ''\1\J:ld\t[%g6+0],%gl\n");

&MY_PRINT(O, ''\1'trestore\n'');

&MY]RINT(O, ''\1\J:\J:\t\t! End SYScall hook\n");

I

sub !NT_HOOK_FLAG {
local($TYPE, $SIZE) = @_;
if ($TYPE =- !"st$/) {

if ($SIZE =-!"b$/) {
&MY]RINT(O, ''\1\J:ot\t%gO,8,%g5\J:\J:! Raising flag: 8\n");

}
if ($SIZE =-!"h$/) {

&MY_PRINT(O, ''\1\J:ot\t%gO,9,%g5\J:\J:! Raising flag: 9\n");
}

if ($SIZE =-!"w$/) {
&MY]RINT(O, ''\1\J:ot\t%gO,lO,%g5\J:\J:! Raising flag: 1(N)");

}
if ($SIZE =-!"dS/) {

&MY]RINT(O, ''\1\J:ot\t%gO,ll,%g5\J:\J:! Raising flag: ll\n");
}

I

elsif ($TYPE =-!"ld$/) {

if ($SIZE =- I"b$/) {
&MY]RINT(O, ''\1\J:ot\t%gO,4,%g5\J:\J:! Raising flag: 4\n");

}
if ($SIZE =- I"h$/) {

&MY]RINT(O, ''\1\J:ot\t%gO,5,%g5\J:\J:! Raising flag: 5\n");
}

if ($SIZE =- I"w$/) {
&MY]RINT(O, ''\1\J:ot\t%gO,6, %g5\J:\J:! Raising flag: 6\n");

}
if ($SIZE =- l"dS/) {

&MY]RINT(O, ''\1\J:ot\t%gO,7,%g5\J:\J:! Raising flag: 7\n");
}

}

elsif ($TYPE =- I"init$/) {

&MY]RINT(O, ''\1\J:ot\t%gO,l,%g5\J:\J:! Raising flag: l\n");

}
elsif ($TYPE =- I"win$/) {

&MY]RINT(O, ''\1\J:ot\t%gO,3,%g5\J:\J:! Raising flag: 3\n");

}
else {

die "Unknown in-hook-f1ag type received\n";
}

&MY]RINT(O, ''\1\J:mov\J:%gO,%g5\J:\J:\J:! Lowering f1ag\n");
}

sub !NT_SICHOOK {
if ($USE_SIC == 0) { return; }
&MY]RINT(O, ''\1\J:\J:\J:\J:! Beginning of SIC code\n");
&MY]RINT(O, ''\1\J:st\J:%gl,[%g6+32]\n'');
&SAVE_CCO;
&MY]RINT(O, ''\1\J:subcc\J:%g7,1,%g7\n'');

Instrumenting UseT Code June 1, 1994 69

++$LABEL;

&MY_PRINT(O, ''\1\J:bpos''1${FUNC}.MYSKIP${LABEL}\n'');

&MY]RINT(O, ''\1\J:nop\n'');

&SAVE_REGS0;

&MY]RINT(O, ''\1\J:call\t_windowhook,O\n");

&INT_HOOK_FLAG("win");

&REST_REGS0;

&MY_PRINT(O, "${FUNC}.MYSKIP${LABEL}:\n");

&REST_CCO;

&MY_PRINT(O, ''\1\J:ld\J:[%g6+32],%gl\n");

&MY_PRINT(O, ''\1\J:\J:\J:\J:! End of SIC code\n");

}

1;

Instrumenting User Code June 1. 1994 70

#!/usr/local/bin/perl

Script: rgxp

Author: David W. Vorbrich <dwv@cs.brown.edu>

This file contains all regular expressions used throughout passl and

pass2. Names should be self explanitory, notes have been made where

things are not quite obvious.

$R_ILLEGAL ="%g51%g61%g71%r51%r6I%r7";

$R_SYSCALL ="("f\\s+)(t\\s+Olta\\s+Olt\\s+%gOlta\\s+%gO)";

The gcc source contains a line [.ascii "!#PROLOGUE# 0"] which is

emitted during compilation. We don't want to trigger our expression

on this comment, but only on the real PROLOGUE comments... thus this

expression _muse be anchored to beginning of line.

$R_PRO = ""\\s*!#PROLOGUE# 0";

#$R START = "start:";

$R START ="_main:";

$R-RET = "(retljmplljmplretllrett)";

$R-CALL ="call";

$R::::LD = "Id(sblshlubluhld)?";

$R ST = "st(blublsblhluhlshld)?";

$R-CLR = "elr \\(Iclrblclrh";

$R-LDST ="swaplldstub";

$R-SAVE = "save";

$R::::REST = "restore";

$R_b ="b(nelnzlelzlgileigeiligulleulcclgeulcsilulposlneglvclvs)";

$R ba ="($R_b),a";

$R::::bnocc = "b(nlaln,a1a.a1,a)?";

$R_Bicc = "($R_b)I($R_ba)I($R_bnocc)";

$R_cb = "cb(312123111 131 121123101031021023101 10131012)";

$R_cba = "($R_cb),a";

$R_cbnocc = "cb(nlaln,ala,a)";

$R_CBccc ="($R_cb)I($R_cba)I($R_cbnocc)";

$R_fb = "fb(ulgluglIlul/lglnelnzlelzluelgelugelIelulelo)";

$R_fba = "($R_fb),a";

$R_fbnocc ="fb(nlaln,a1a.a)";

$R_FBfcc ="($R_fb)I($R_fba)I($R_fbnocc)";

$R_t ="t(nelnzlelzlgileigeiligulleullulcclgeulcsiposineglvclvs)";

$R_tnocc = "t(nla)?";

$R_Ticc = "($R_t)I($R_tnocc)";

$R_WRcc ="cmpltstJbtstlcpop21([a-z] [a-z]+cc[a-z]*)";

$R_RDccbranch = "($R_b)1($R_ba)I($R_cb)I($R_cba)I($R_fb)1($R_fba)I($R_t)";

$R_RDccplain = "addxladdxcclsubxlsubxcc";

$R_RDcc ="($R_RDccbranch)I($R_RDccplain)";

$R_UDCTI = "($R_CALL)I($R_RET)";

$R_DCTI ="($R_UDCTI)1($R_Bicc)1($R_CBccc)I($R_FBfcc)";

$R_CTI = "($R_Ticc)/($R_DCTI)";

This expression represents branches which are unconditional, and always

annul their delay slot

$R_DCTlnoslot = "bn\alfbn\alcbn\alba\a1b\alfba\alcba\a";

$R_LABEL_REF = "[a-zA-Z_\$.] [a-zA-Z_\$.0-9]*";

$R_LABEL = "[a-zA-Z_~.][a-zA-Z_\$.0-9]*:";

Instrumenting User Code June I, 1994 71

