
BROWN UNIVERSITY
 
Department of Computer Science
 

Master's Project
 

CS-94-M8
 

"Executing Parallel Programs on a Network of User
 
owned Workstations"
 

by
 

Elizabeth Jean Phalen
 



Executing Parallel Programs on a Network 

of User Owned Workstations 

Elizabeth Jean Phalen 
( 

Department of Computer Science 

Brown University 

Submitted in partial fulfillment of the requirements for the
 

Degree of Master of Science in the Department of Computer Science
 

at Brown University
 

May 1994 



This research project by Elizabeth J. Phalen is accepted in its present form
 

by the Department of Computer Science at Brown University
 

in partial fulfillment of the requirements for the degree of Master of Science.
 

;fdPL~ 
I 

Robert H. B. Netzer
 
Advisor
 

3-//-1£ 

Date 

2 



Table of Contents 

1.0 Introduction 5
 
1.1 Functional Requirements 7
 

1.2 Assumptions 7
 

1.3 Summary of Resldts 8
 

2.0 Design Approaches 10
 
2.1 Implementation Options 10
 

2.1.1 Techniques for Reacting to Decreases in Workstation Availability 11
 
2.1.2 Techniques for Reacting to Increases in Workstation Availability 11
 

2.2 Parallel Paradigm Options 12
 

2.3 Adaptive Design Approaches 13
 
2.3.1 Description 13
 
2.3.2 Relation to Implementation Options .15
 
2.3.3 Relation to Parallel Paradigm Options .15
 

2.4 Load Balancing and Scheduling Design Approaches 16
 
2.4.1 Description 16
 
2.4.2 Relation to Implementation Options .16
 
2.4.3 Relation to Parallel Paradigm Options .17
 

3.0 Taxonomy of Execution Models 18
 
3.1 Runtime Walkthroughs 19
 

3.1.1 Adaptive approach to workstation driven changes 20
 
3.1.2 Adaptive approach to program driven changes .22
 
3.1.3 Load Balancing/ Scheduling approach to workstation driven changes .23
 
3.1.4 Load Balancing/Scheduling Approach to program driven changes 24
 

4.0 Related Work 25
 
4.1 Adaptive Parallel 26
 

4.1.1 Piranha .26
 
4.1.2 Parform .27
 

4.2 Nonadaptive Parallel 28
 
4.2.1 PVM 28
 
4.2.2 Marionette .28
 
4.2.3 Co-scheduling .28
 

4.3 Sequential 29
 
4.3.1 Stealth 29
 
4.3.2 Quahog 29
 

4.4 Summary .30
 

5.0 Collection of Workstation Usage Data 31
 
5.1 Interpretation of Data 33
 

6.0 Simulations 36
 
6.1 Goals .36
 

6.2 Extent of Simulations .37
 

6.3 Parallel Program Traces .38
 

6.4 Simulating Execution 39
 

6.5 Output .41
 

7.0 Simulation Results 42
 
7.1 Statistical Results .43
 

3 



7.2 Results organized by varying number of workstations .44
 
7.2.1 Impact of migration costs on percentage slowdown of execution time .45
 
7.2.2 Rate of increase in percentage slowdown with respect to migration costs .49
 
7.2.3 Impact of number of workstations on percentage slowdown of execution time .51
 

7.3 Results grouped by time period of execution 52
 
7.4 Results by varying workstation activity levels 57
 

8.0 Future Work 61
 

9.0 Conclusions 65
 

10.0 Appendices 67
 
10.1 Supporting Plots 67
 

10.1.1 FFT program 67
 
10.1.2 MSH program 71
 
10.1.3 DET 74
 
10.1.4 lEST program 78
 

10.2 Location of Project Files 82
 

4 



1.0 Introduction 

A lack of sufficient CPU resources for compute-intensive parallel programs continues to 

impede efficiency in many areas of computing. Both in industry and academia, there is 

often a total lack of sufficient resources, or resources that do not provide satisfactory 

throughput. This impacts applications ranging from executions of regression tests, to 

extensive scientific experiments. 

This project investigates networks of user-owned workstations as a potential platform for 

providing the needed resources. This platform is promising for two reasons. First, it is 

available in most technical work environments. Second, recent studies have shown that 

workstation utilization is low, especially at certain hours of the day. 

This project focuses on the difficulties of sharing workstations between owners and 

remote parallel programs. The major difficulty in sharing workstations in this way, is that 

it must have minimal impact on workstation response time. The workstation owner's com

puting demands must be given priority. Addressing this difficulty requires scheduling soft

ware designed for dynamically changing CPU resources. It may also require unique 

approaches to parallel program design. 

A solution must detect when a workstation becomes busy with user activity. It must react 

by reducing the parallel program's use of that workstation's resources. Possible 

approaches to this may be similar to those for other scheduling and load balancing prob

lems. Examples of these approaches are migrating any of the parallel program's processes 

to another workstation or reducing their priority. Another category of approaches relies on 

greater flexibility in the parallel program's concurrency levels and order of execution of 

5 



work. An example of this is to abandon and then reexecute work that is in progress when 

the workstation becomes busy. This may introduce requirements on the design of the par

allel program. 

As a secondary goal, a solution should aim at the greatest possible utilization of worksta

tion resources. This suggests that execution of the parallel program not only adapts to 

decreases in CPU resources, but can also take advantage of increases. 

Although there are existing techniques for executing remote jobs on user-owned worksta

tions[3,4,9,13,14], most of them are not designed for parallel executions. Those tech

niques that support parallel executions, in general do not address sharing resources with 

the workstation owner[l2]. Because of this lack of previous work, this project begins by 

developing a taxonomy of potential execution models. These execution models describe 

\. 
possible runtime scenarios. They are analyzed with respect to their relation to parallel pro

gramming paradigms and implementation techniques. 

The second phase of the project investigates availability of workstation resources on a typ

ical network of user-owned workstations. This was done by gathering empirical data on 

workstation usage within the Brown Computer Science department. The data was col

lected for a period of six months. 

The final phase of the project directly investigates the feasibility of efficiently executing 

parallel programs on a network of user-owned workstations. This is done by simulating 

executions of a set of message-passing parallel programs in the environment described by 

the collected workstation data. The parallel programs are based on traces of four hyper

cube programs. The simulations are currently implemented to investigate one of the poten

6 



tial execution models. In the future they could be used to compare the relative 

performance of different execution models. 

1.1 Functional Requirements 

The software that is being investigated by this project can be described by the following 

functional requirements: 

•	 Allocate workstations for all processes that will execute portions of the parallel pro

grams. This includes initial allocations and any additional allocations required during 

execution. These additional allocations may be required because of program requests to 

spawn processes, or to react to changes in workstation availability. 

•	 Detect increases and decreases in user demands on workstation resources. 

•	 In response to increases, reduce use of CPU's in order to avoid impacting user response 

time. 

•	 Optionally, in response to decreases, expand use of CPU's in order to optimize utiliza

tion. 

The requirement that is most interesting to this project is how reacting to increases and 

decreases in workstation availability should be done for parallel executions. The other 

functionality has been covered by other research projects. 

1.2 Assumptions 

The following assumptions and restrictions have been made on the scope of the consid

ered solutions. 

•	 No operating system changes required. 

7 



•	 No dependency on particular parallel program structure or approach. 

•	 Data accessible through shared file system. 

•	 No requirements for accessing data or invoking system services at originating worksta

tion. 

•	 Homogenous network of workstations. 

•	 Assume that availability of workstations is viewed from a digital perspective. That is, 

based on some criteria a workstation is either available or not for the parallel program's 

use. (Alternatively a workstation may be considered to be available to varying levels, 

this approach is taken by some related work - see section 4.0.) 

1.3 Summary of Results 

The simulation results support the theory that a network of user-owned workstations can 

provide sufficient CPU resources for efficient parallel program executions. Specifically, 

the simulations support the effectiveness of a particular solution to reacting to user activity 

on a workstation. The solution is to migrate the parallel program's process at that worksta

tion to a different workstation. 

The simulations results show how the programs' execution times are impacted by the cost 

of reacting to user activity. The results show that if the cost of migrating a process is 

between one and 50 seconds, the program's execution time increases less than 100%. The 

increase is in comparison to an execution with zero cost for reacting to user activity. If the 

cost of migrating a process is between 50 and 100 seconds, the programs' execution time 

increases less than 350%. During some portions of the day, particularly the hours from 

Midnight to 6 a.m., the program execution times never increased more than 100%. 

8 



In other words, executions in this environment took 2-4 times longer than if the programs 

were executed on a dedicated pool of workstations. Considering the fact that a dedicated 

pool of 17 workstations (the number of subprogram's for the sample parallel programs) is 

often not an available resource, this seem to be a feasible solution. At a minimum, the 

results suggest that further investigation should be done into utilizing this environment for 

parallel executions. 

9 



2.0 Design Approaches 

This section will discuss two categories of designs: adaptive and scheduling. Their runt

ime behavior will be described. Their compatibility with parallel programming paradigms 

and implementation techniques will be evaluated. 

The two design approaches differ in whether they address the problem as: 

•	 a scheduling problem where there are two classes of processes: those owned by the 

workstation user and those involved in the parallel program. The workstation user pro

cesses have priority over the other. 

•	 an environment where CPU's are a dynamic resource, whose level of availability must 

be considered in the design of the parallel programs themselves. 

Throughout this section, parallel programs will be described as consisting of a collection 

of subtasks. A subtask is any portion of the program that may execute autonomously with

out dependencies on other concurrent portions of the parallel program. For example, in the 

case of a message passing program, subtasks are delimited by successive receives. 

2.1 Implementation Options 

Before describing the design approaches, we will introduce potential implementation 

options so that they may be discussed with respect to their compatibility with the designs. 

As stated in the introduction, it is implementation techniques for reacting to workstation 

availability changes that are of most interest to this project. 

10 



2.1.1 Techniques for Reacting to Decreases in Workstation Availability 

The following techniques react to decreases in workstation availability by reducing the 

resource demands of a process ~xecuting as part of the parallel program: 

•	 Migrate the current process state to another workstation. 

•	 Rollback the process state to the beginning of the current subtask and then migrate the 

process. This assumes that the subtasks can be executed idempotently, since their exe

cution may be at least partially repeated. The reason for this approach is the assumption 

that the process state at the beginning of a subtask will be simpler, and therefore less 

costly to migrate. The process state may be simpler as long as the subtask truly defines 

a unit of autonomous work. This would suggest that there would be less transient data 

at the beginning of the subtask. 

•	 Abandon the current process state, but save any completed work and identify any 

uncompleted work. Uncompleted work may be returned to a pool of yet to be com

pleted tasks, or sent to some other process executing on behalf of the parallel program. 

•	 Reduce the priority of the process or suspend the process. The process may need to stay 

resident at the current workstation in a suspended state until another workstation 

becomes available. 

•	 Other techniques could be considered by future work. 

2.1.2 Techniques for Reacting to Increases in Workstation Availability 

The following techniques react to increases in workstation availability: 

•	 Spawn additional processes at workstations that have become available. 

11 



•	 Maintain daemon processes which can execute subtasks when a workstation becomes 

available. 

•	 Restore the priority of a process if it had previously been reduced to react to a decrease 

in workstation availability. 

•	 Send additional work to a process. This amounts to dynamically increasing the granu

larity of the subtask. An example is sending it additional data to process. 

•	 Other techniques could be considered by future work. 

2.2 Parallel Paradigm Options 

Not only will a design choice impact implementation options, it may also place constraints 

on the types of parallel programs that can run in the environment. The following parallel 

programming paradigms are introduced so that their compatibility with potential designs 

may be evaluated. 

•	 Message passing 

In message passing parallel programs, the work is divided among a set of subprograms 

that execute in different processes. Successive subtasks in the same subprogram com

municate through the process state. Subtasks in different processes communicate 

through the send and receipt of messages. A message passing program may include 

spawning and killing of subprocesses as the level of concurrency changes.An example 

of a communication library that supports message passing is PVM (see 4.2.1 ). 

•	 Task oriented parallelism 

In the task oriented approach, a parallel program is defined as a set of tasks, and depen

dencies between the tasks. Tasks are consumed by generic worker processes. The pro

12 



gramming environment controls creating and destroying worker processes and 

assigning tasks to a particular process. Tasks communicate in a process independent 

manner, such as shared memory, since they are not bound to a particular process. The 

Piranha programming environment supports the task oriented parallelism (see 4.1.1 ). 

•	 Other existing or yet to be defined parallel programming paradigms may be suitable to 

executing parallel programs in this environment. For simplicity, this project chose to 

focus on the two paradigms described here. 

2.3 Adaptive Design Approaches 

2.3.1 Description 

The category of adaptive approaches is distinguished by parallel programs designed to 

adapt to changes in CPU resources. It is unique from traditional scheduling where the pro

gram is isolated from CPU allocations. 

Traditionally, concurrency levels are set prior to execution, requiring a certain number of 

CPUs. This does not consider that the number of available CPUs may change during exe

cution of the program, which is the situation on a network of user-owned workstations. 

Software that does recognize CPUs as a dynamic resource may benefit by being able to 

align its CPU requirements with CPU availability. The result being greater utilization of 

CPU resources, and more efficient responses to decreases in CPU resources. 

The following are some of the ways a parallel program design may incorporate adaptivity. 

Since this is a relatively new approach, there are most likely additional techniques, and 

this is potentially an interesting area for future study. 

13 



An adaptive parallel program may allow flexibility in the order of execution of subtasks. 

The order of execution of is controlled by dependencies between the subtasks. (Le., a mes

sage passing subprogram blocks until a receive is satisfied). However, beyond these 

dependencies there should be no limitation on the execution order. A design could take 

advantage of this by: 

•	 Maintaining a pool of all subtasks whose dependencies have been met and allowing 

them to be executed as CPU resources become available. 

•	 Allowing subtasks to be abandoned during execution in response to a workstation 

becoming busy and reexecuted at a later point. 

Closely related to adapting the order of execution is adapting the level of concurrency. If 

subtasks can easily be farmed out to newly available workstations, the level of concur
( 

rency can potentially increase to the level of available CPUs. Likewise, abandoning sub

tasks in response to busy transitions may temporarily decrease levels of concurrency. 

A slightly different approach is changing the granularity of subtasks. Rather than rely on 

pre-runtime definitions of the amount of work to be done by each subtask, work may be 

shifted during execution. This approach could be used to reassign work from an aban

doned task. It could also be used to increase utilization when a workstation's level of 

availability increases. 

Current levels of CPU availability could be used as a factor in program-driven changes in 

concurrency. Such changes include deciding on the number of subtasks to spawn at some 

point during an execution. 

14 



2.3.2 Relation to Implementation Options 

One of the goals of adaptive approaches is that the increased flexibility in the program 

design allows for simpler techniques to respond to busy transitions. For example, if the 

current process can be abandoned, the overhead of process migration can be avoided. The 

program adapts by reexecuting the subtask at a later point, or changing the granularity of 

another subtask by sending it any uncompleted work. 

With respect to reacting to increases in CPU resources, all of the options suggested in Sec

tion 2.1 could potentially be part of an adaptive solution. This includes increasing the 

amount of work to be executed by a process, starting additional processes as workstations 

become available or sending work to waiting daemon processes. 

2.3.3 Relation to Parallel Paradigm Options 

Introducing adaptivity into message passing programs is difficult for two reasons. First, 

message passing is based on process to process communication. This contradicts with 

allowing flexibility in what process a subtask is executed by. Second the structure of hav

ing a sequential ordering of subtasks limits the amount of flexibility in the execution order 

of subtasks. 

However, since a large percentage of the existing parallel programs fall into this category, 

it seems important to consider if and how they could be made to take advantage of some of 

the adaptive techniques suggested here. One possibility would be if the program dynami

cally determines concurrency levels, in a manner that considers the current level of CPU 

availability. 

15 



The Piranha project suggests that defining parallel programs as a set of tasks is the most 

desirable way to take advantage of adaptivity. (footnote) This approach allows for greater 

flexibility in that the subtasks are defined independent of a particular process. They can be 

executed at generic worker processes as workstations become available. They can be 

abandoned and reexecuted as workstations become busy. 

2.4 Load Balancing and Scheduling Design Approaches 

2.4.1 Description 

The alternative to adaptivity is to react to changes in CPU availability through scheduling 

and load balancing techniques. This is a more process oriented design approach. The sub-

tasks execute within a particular process state and it is the process that is manipulated to 

react to CPU availability changes. As opposed to adaptive approaches, the program is iso
( 

\ 
lated from CPU allocations. 

Concurrency levels are defined prior to execution. This makes it difficult or impossible to 

take advantage of increases in CPU availability. It also means that the defined number of 

concurrent process must be maintained even when the available CPU resources decrease. 

2.4.2 Relation to Implementation Options 

Implementation options fall into two categories, those that rely on the operating system 

scheduling of the individual workstations, and those that schedule the processes among 

available workstations on the network. Keeping the process at the same workstation 

requires adjusting the process priority in response to changes in user demands on the sys

tern. Scheduling among available workstations suggests process migration from a work

station when it becomes busy with user activity. 

16 



Implementation options for utilizing increases in CPU availability are somewhat limited 

in a scheduling/load balancing design. Since the level of concurrency is defined prior to 

execution, its difficult to dynamically take advantage of increases in CPU availability. 

2.4.3 Relation to Parallel Paradigm Options 

The same reasons that message passing programs are somewhat unsuited for adaptive 

approaches make them a suitable match for load balancing and scheduling approaches. 

Since the subprograms are bound to a particular process state, scheduling at the process 

level is the logical approach. Maintaining message passing communication between pro

cesses despite changes in process locations should be achievable based on similar routing 

approaches. 

A task oriented paradigm could also be scheduled through priority control, or migrating 

processes between workstations. However these techniques do not take advantage of the 

flexibility that is the key attribute of a task oriented paradigm. 

17 



3.0 Taxonomy of Execution Models 

In order to define all combinations of design approaches and functionality options, this 

section will provide a taxonomy of execution models. The design options, as defined in 

the previous section are adaptivity or scheduling/load balancing. The functionality options 

are: 

• changing CPU allocations in response to increases or decreases in CPU availability 

• changing CPU allocations in response to program requests to spawn/kill processes. 

The taxonomy specifically does not include implementation options nor parallel paradigm 

options. The intent is that these models could be used as a framework for investigating 

which implementation and parallel paradigm options are compatible with the different 

execution models. 
( 

\ 

On the next page, Table I shows the taxonomy of execution models. Each row identifies 

one model. The columns marked by an X in that row identify which attributes are included 

in that model. The first two columns identify the categories of design as defined in 

Section 2.0 . The taxonomy assumes that all models must react to decreases in CPU avail

ability, otherwise user response time would be degraded. The following columns identify 

optional functionality. 

18 



TABLE 1. Taxonomy of Execution Models 

Model 

Adaptive 
Program 
Approach 

Scheduling! 
Load 
Balancing 
Approach 

React to 
Decreases 
in CPU 
availability 

React to 
Increases in 
CPU 
availability 

React to 
Program 
Spawn! 
kill 
commands 

1 X X 

2 X X X 

3 X X X 

4 X X X X 

5 X X 

6 X X X 

7 X X X 

8 X X X X 

3.1 Runtime Walkthroughs 

This section provides a set of walkthroughs to identify the major runtime components and 

events for the models described in TABLE 1. They are provided as a basis for discussion 

of what parallel paradigms and implementation techniques would work best with the exe

cution models. Runtime components are identified by boxes. Runtime events are identified 

by arrows. 

The runtime components include: 

•	 Subtask Resource Manager 

Software that is responsible for identifying subtasks that are ready to be executed. 

•	 CPU Resource Manager 

Software that is responsible for maintaining which CPUs are available for the parallel 

program's use. 

19 



--

• Reduce or expand CPU usage 

This could be implemented by any of the implementation options described in 

Section 2.1 

•	 Busy or idle transitions 

Assumes a digital view of CPU resources. This event marks the workstation state 

changing from idle to busy or vice versa because of user activity. 

To shorten the discussion, each submodel includes reacting to both increases and 

decreases in CPU resources. Although as defined in Table 1 a particular execution may 

potentially only include one of these features. 

3.1.1 Adaptive approach to workstation driven changes 

( This walkthrough illustrates Models 1 and 2. It relies on adaptive interaction with the par
\ 

allel program to react to changes in workstation availability. It is similar to the model 

implemented by the Piranha project (see 4.1.1 ). 

FIGURE 1. Models 1 and 2 Runtime Walkthrough 

CPU 
Parallel Subtask Resource 
Program Resource Manager

Manager --- -.. 

~vailab~3)return or 
pendmg request a CPU 
subtasks pool subtask pool

\.: 

2) reduce or
 
increase
 
CPU
 
usage
 -- workstations 
1) busy
 
or idle
 
transition
 

1. CPU resource manager detects idle or busy transition. Pool of available CPU's is 

updated 

20 



2.	 CPU resource manager reduces CPU usage at busy workstations or increases CPU 

usage at idle workstations. 

3.	 Subtask resource manager is either returned work to be completed later, or requested 

for additional work. 

21 



3.1.2 Adaptive approach to program driven changes 

This walkthrough illustrates Models 3 and 4. It incorporates data on current CPU avail

ability in program driven changes in the level of concurrency. It was not found to be cur

rently implemented by any research projects. 

FIGURE 2. Models 3 and 4 Runtime Walkthrough. 

2)kill or 

Parallel Program 
1'------ __ 

- -
1) query 
cpu 
availabilit) 

penamg 
subtasks pool 

CPUCPU 
usageResource .....Manager 

.el--------- workstations 
*busy

available or idle 
CPU transitior 
pool 

1. Parallel program obtains information on CPU availability, and uses this in decision for 

( amount of subtasks to spawn (or kill). 

2. Parallel program issues kill or spawn commands. 

3. CPU resource manager allocates CPUs for new subtasks or deallocates CPUs for com

pleted subtasks. 

* Busy/idle transitions are being detected and the available CPU pool being maintained. 

3) reduce or 
expand 

22 



--

3.1.3 Load Balancing/ Scheduling approach to workstation driven changes 

This walkthrough illustrates Models 5 and 6. It relies on scheduling processes among 

available workstations to react to changes in workstation availability. This is the model 

that is simulated as part of this project (See Section 6.0). It has not been addressed by 

other research projects. The closest research project were the co-scheduling papers (see 

4.2.3 ). Their approach only differed in that resources were adjusted strictly at the work

station where the CPU availability changed, rather than among workstations. 

FIGURE 3. Models 5 and 6 Runtime Walkthrough 

Parallel Program 

2) reduce or 
expand 
CPUCPU 
usageResource 

Manager ~ 

1) busy 
or idle available transitiorCPU 

pool 

Workstations 

1. CPU resource manager detects idle or busy transition 

2. CPU resource manager expands or reduces amount of CPU resources allocated and bal

ances the currently executing subtasks accordingly. 

23 



3.1.4 Load Balancing/Scheduling Approach to program driven changes 

This walkthrough illustrates Models 7 and 8. It shows a simple allocation environment, 

where the pool of CPUs available for allocations is maintained to reflect the current work

station availability. 

FIGURE 4. Models 7 and 8 Runtime Walkthrough 

2) reduce or 

WorkstationsParallel Program 

1. Parallel program issues request to spawn or kill processes. 

2. CPU resource manager expands or reduces the number of allocated CPUs based on pro

grams request. 

* Busy/idle transitions are being detected and the available CPU pool being maintained. 

24 



4.0 Related Work
 

In the introduction, we stated that most previous work either did not support execution of 

parallel programs[3,4,9,13.14], or supported the execution of parallel programs only on a 

dedicated network of workstations[ 12]. In this section, we will identify some of the related 

work and explain how it differs from this project. 

The following taxonomies express the models of related work that support parallel and 

sequential executions. Each row identifies the attributes associated with the work named at 

that row. 

TABLE 2. Taxonomy of Related Work that Supports Sequential Executions 

Project Adaptive 

React to 
Decreases 
in CPU 
Availability 

React to 
Increases in 
CPU 
Availability 

Analog 
View of 
CPU 
Resources 

Digital 
View of 
CPU 
Resources 

Stealth X X X X 

Condor X 

Quahog X X X 

TABLE 3. Taxonomy of Related Work that Supports ParaDel Executions 

Project Adaptive 

Reacts to 
CPU 
Decreases 

Reacts to 
CPU 
Increases 

Analog 
View of 
CPU's 

Digital 
View of 
CPU's 

Support 
Task 
Oriented 
Design 

Support 
message 
passing 
Design 

Piranha X X X X X 

parfonn X X X X 

co-sched X X X 

Marionette X X X 

PVM X X 

25 



4.1 Adaptive Parallel 

4.1.1 Piranha 

Piranha is a current research project on "adaptive parallelism" being done at Yale Univer

sity. The project defines software that "executes over a set of dynamically changing pro

cessors" as adaptive parallelism. They state that such software is "capable of taking 

advantage of new resources as they become available and of gracefully accommodating 

diminished resources without aborting."[7] 

Piranha is designed to execute in the Linda distributed programming environment. It exe

cutes parallel programs that are defined as a set of tasks and do not depend on any particu

lar set of processes. It is a strong example of a programming environment that supports the 

( task oriented paradigm described in Section 2.2 . It relies on Linda's shared distributed 
\ 

tuple space for sharing task definitions and data. 

The Piranha execution environment consists of two types of processes: a control process 

and piranha processes. The control process, called the feeder is responsible for distributing 

tasks to Piranha processes. Piranha processes are application dependent servers that accept 

and execute tasks from the feeder. 

This model allows for new Piranha processes to be spawned when workstations become 

available. Since tasks are not tied to a particular process, they can be sent for execution at 

this new Piranha process. 

When a workstation becomes unavailable, a retreat function defined for the current appli

cation is executed. The intent of retreating is to save any completed work, abandon any 

26 



temporary state, and ensure that any uncompleted work is completed at some other point. 

Since Piranha relies on Linda's shared tuple space for identifying yet to be completed 

tasks, a simple retreat function need just return the uncompleted tasks to the tuple 

space. [6,7,11] 

4.1.2 Parform 

Parform is a software system for parallel progranuning on a network of workstations. It 

coordinates load balancing for the parallel program's processes with maintenance of 

workstation owner response time. 

Load balancing is provided at the start of a parallel program's execution and during the 

execution. Workstation load values are factored into the initial division of work among 
! 

subtasks. This differs from most parallel program environments which partition work at \ 

compile time. During execution, Parform monitors workstation loads and reacts by 

dynamically changing the division of work among subtasks. 

To avoid interfering with the workstation owner, Parform reduces the parallel program's 

priority in response to user activity. The paper states that the execution time of tightly syn

chronized parallel programs can be significantly impacted by even minor changes in the 

priority of a particular process. However, the paper does not quantify this with data, or 

explain their interpretation of significant. 

They counteract this impact, through the use of dynamic load balancing. During execu

tion, Parform may change the amount of work assigned to subtasks. They suggest that this 

is easy for programs where the data is statically partitioned. In this case, subtasks can 

27 



dynamically be directed to work on a changing amount of data. However, they recognize 

that a general solution would be difficult. They also state that in response to severe load 

changes it may be necessary to migrate an entire subtask to another workstation.[5] 

4.2 Nonadaptive Parallel 

4.2.1 PVM 

PVM (Parallel Virtual Machine) provides a message passing system for execution of par

allel programs on a network of heterogeneous computers. The main distinction of PVM 

from the work discussed here is that it is not designed to adapt to changes in workstation 

availability. [12] 

4.2.2 Marionette 

The Marionette system is another approach to distributed parallel programming. It relies 

on a master/slave execution environment, and shared data structures for communication 

between the slave processes. While it does not claim to adapt to workstation usage 

changes, it does allow for retreat and re-execution of work from a slave process in 

response to faults. [1] 

4.2.3 Co-scheduling 

Two papers produced at Ohio State University view the CPU resources from an analog 

perspective. Their approach, which they refer to as co-scheduling allows the parallel pro

gram subtasks to remain at a workstation when it becomes busy with user activity. To 

28 



avoid degrading response time, the parallel process executes at a reduced priority. They 

claim that this avoids the overhead of migration and allows for a greater utilization of 

CPU resources. [2,10] 

4.3 Sequential 

4.3.1 Stealth 

The stealth project allows for remote execution of sequential jobs. Their approach is to 

allow the remote job to remain at a workstation in conjunction with user activity, but at a 

reduced priority. They claim that generally 80-90% of CPU cycles on a workstqtion are 

unused. They also claim that techniques that migrate remote jobs to react to user activity 

still waste CPU cycles. However, the difficulty with their approach is that it requires oper

ating system changes. Their results show that simply reducing the remote process's execu

tion priority is not sufficient protection against degrading user response time. Therefore, 

they introduce operating system changes to provide priority controlled memory access and 

I/O. [13] 

4.3.2 Quahog 

Quahog is a system developed here at Brown for execution of remote sequential jobs on a 

network of user-owned workstations. It ranks workstations based on a method for inter

preting system parameters to determine relative levels of user activity. Those workstations 

with the best ranking are chosen for execution of remote jobs. If a workstation becomes 

busy while a remote job is executing, the job will either be killed, or some simple migra

tion techniques will be applied. [3] 

29 



4.4 Summary 

Out of the above projects, only Piranha and Parform are designed for executing parallel 

programs on a network of user-owned workstations. The others are either designed for 

sequential programs or assume the workstations are dedicated resources. 

Piranha provides the best example of an environment where the parallel programs easily 

adapt to workstation owner activity. However, it is limited in that it is designed specifi

cally for the Linda environment. This leaves open the issue of incorporating adaptivity in 

message passing or other parallel paradigms. 

Parform does allow for adaptivity in more of a message passing environment. However, it 

focuses on programs where it is relatively easy to load balance by changing the granularity 

of the subtasks. They recognize that this approach may not be generally applicable. They 
( 
\ 

suggest that in some situations process migration may be necessary but have not yet inves

tigated this approach. 

Parform claims that reducing the priority of a parallel process significantly impacts the 

parallel program's perfonnance. This contradicts with the results of our simulations, 

which show that reacting to busy transitions does not cause a major increase in the pro

grams' execution times. One possible reason for the discrepancy is the approaches to 

reacting to a busy transition differ. Parform reduces the priority of the process, while our 

simulations add a discrete migration cost. It would be interesting to use the simulation tool 

to emulate a model where reduced priority is used. This would allow for a more direct 

comparison to Parfonn. It would also be interesting to get more information on the results 

they relied on to make the statement. 

30 



5.0 Collection of Workstation Usage Data
 

From September 1993 to February 1994, workstation usage data has been collected for 

170 workstations in the Brown Computer Science Department. The data was collected on 

a twenty-four hour basis. The data records TTY activity and CPU load levels. CPU load 

level is the average number of jobs in the run queue. 

The data was used to identify time segments when a parallel program could execute at a 

workstation without impacting user response time. These times were identified by no TTY 

activity and a load level below .25. When these criteria are met, the workstation is consid

ered to be idle. A .25 load level was chosen based on an initial evaluation of the data. We 

found that during times periods with no active users processes, CPU load levels were 

often greater than zero. These load levels were due to system activities. An idle level of 

.25 safely filters out this type of activity. 

A .25 load level was also considered low enough to not incorrectly label workstations as 

idle. A t this level there is a job in the run queue only 25% of the time. This suggests that 

even if some of the .25 load level is due to user processes, the CPU could service addi

tional processes without delaying those that are currently active. 

The data was collected by using the UNIX rwho facility. The rwho facility provides statis

tics on number of users, cpu loads and time since last TTY activity for each user. This data 

is updated every 3 minutes for all workstations on a local network. Parsing the rwho files 

in the department's file server's directory allowed access to data on all workstations in the 

department. 

31 



The collection code generates files that log all state transitions. A log file is created for 

each workstation. At three minute intervals, the collection code parses the rwho files to 

check for state transitions. When a transition occurs a transition record is written to the log 

file for that workstation The data included in the record is defined in Table 4. 

TABLE 4. Transition Record Data 

CPU load average for the last one, five and fifteen minute periods. 

Load average is the average number of jobs in the run queue. 

Current number of users. 

Idle time: The shortest time (in minutes) since any of the users have provided tenni
nat input. 

Timestamp of the transition. 

Type of transition. 

The categories of transitions are defined in Table 5. The categories were chosen to include 

TABLE 5. Transition Categories 

LOAD ONE MINUTE CPU LOAD AVG. EXCEEDED IDLE CRITERION 

TIY TRANSITIONED FROM IDLE TO BUSY BECAUSE OF TIY ACTIV-
ITy WITHIN ONE MINUTE PRIOR TO RWHO SNAPSHOT 

BOTH TRANSITIONED FROM IDLE TO BUSY BECAUSE OF BOTH LOAD 
ANDTIY 

CHANGE LOAD AVERAGE FOR PREVIOUS MINUTE CHANGED MORE THAN 
TEN PERCENT AND LOAD IS GREATER THAN IDLE CRITERIA 

IDLE NO TIY ACTIVITY IN THE LAST MINUTE AND ONE MINUTE 
LOAD AVG. WAS LESS THAN IDLE CRITERIA 

START WORKSTATION BEGAN PROVIDING RWHO DATA 

FINISH WORKSTATION STOPPED PROVIDING RWHO DATA 

as much information as possible in the logs. This is intended to allow the data to be used 

for further analysis of the workstation activity. For example, future work may decide on a 

different definition of idle. Future work may also be interested in evaluating the data with 

respect to only TTY activity or only load levels. 

The idle criteria is, as explained above, a CPU load of less than .25. The CHANGE transi

tion records CPU load changes of greater than ten percent. Ten percent was chosen to filter 

32 



out minor changes in CPU load. Future data collection may decide to modify this interpre

tation of significant CPU load and/or significant load changes. 

5.1 Interpretation of Data 

After the data was collected, a portion of it was interpreted for use by the simula

tions.Which workstation's data was used was based on the order that their data files were 

read. Each simulation run defined a time segment for the workstation data. A workstation 

was not used if there had not been a transition prior to the start of the time segment, and a 

transition after the end of the time segment. This is required to determine the state of the 

workstation at the start of the time segment, and to ensure that data was being collected for 

the full duration of the time period. 

For the purposes of the simulations, each workstation is modeled as either busy or idle at 

any particular point in time. The following processing is done to transform the raw data in 

the log to a sequence of idle and busy time periods. 

The workstation data log categories: BOTH, TTY, LOAD, CHANGE are all interpreted as 

identifying busy time periods. The IDLE category is interpreted as identifying idle time 

periods. 

Since the rwho data only reflects the state of the workstations at three minute intervals, it 

is necessary to do some calculations to more accurately define the transition times. Deter

mination of transition times is complicated by the fact that rwho provides more informa

tion for TTY activity than for load. rwho records the time (in minutes) since the last TTY 

activity, so its possible to determine exactly when TTY activity caused a busy transition. 

In contrast, load data is only taken as snapshots at the three minute intervals. This means 

33 



some estimation has to be done as to the exact time when a load change caused a busy 

transition. 

There are four possible combinations for consecutive transitions. Although the rwho data 

is sampled every three minutes, a record is only logged to the workstation usage data file 

when a transition has occurred so its possible for the time between transition records to be 

greater than three minutes. The five transition sequences, how their timestamps are deter

mined and any margin of error are described in.Table 6. 

There is also a potential for inaccuracy if busy time periods occur entirely between the 

three minute rwho polling intervals. These would not be detected by rwho. This could lead 

to inaccurately long idle periods. However, since in order for this to occur the busy periods 

would have to be less than three minutes in length, the potential for a series of these to suf

ficiently affect the length of an idle period seems relatively small. 

The timestamps are defined in order to determine the duration of idle and busy periods at 

individual workstations. The timestamps are not being used to determine the duration of 

time between events at different workstations. This removes the importance of another 

potential area for error; lack of synchronization among the workstation clocks. 

( 

34 



TABLE 6. Determination of Transition Times* 

Transitions as 
described in Occurs when: Transition times Margin of error* 
workstation usage calculated for 
log* simulations* 

Prev Trans: IDLE There were two transi- Transition 1 Transition 1: 

Curro Trans: IDLE tions, first the node tran (idle ->busy): Since this occurred 

Idle duration is less 
than time between 
curr and prevo records 

sitioned to busy, and 
then it transitioned back 
to idle. 

Estimated as: 

(prev time + (curr time 
- idle duration - prev 

within a three minute 
time period, and the 
idle duration was at 

At time of current 
record, there has been 
no TIY activity for a 
time of idle duration and 
the current load is less 
than the idle criteria. 

time) / 2) 

Transition 2: 
(busy->idle) 

curr time -idle duration 

least 1 minute, the 
margin of error is at 
most 1 minute. 

Transition 2: 
no margin of error 

Prev. Trans: BUSY a user that caused a busy (busy->idle) 3 minutes, since the 

Curro Trans: IDLE state at the time of pre
vious rwho record is no 

Estimated as: transition could have 
occurred any time 

Idle duration is greater longer on the system current time since the prev record. 
than time between 
curr and prev records 

Prev. Trans: BUSY At time of current (busy->idle) None 

Curro Trans: IDLE record, there has been 
no TIY activity for a 

curr time -idle duration 

Idle duration is less time of idle duration and 
than time difference the current load is less 
between curr and prevo than the idle criteria. 
records. 

Prev Trans: IDLE Either: The CPU load (idle->busy) Transition occurred 

Curr Trans: BUSY has increased above the Estimated at sometime in 3 minute 
idle criteria or there has span, and is esti
been TIY activity (curr time - prev time) mated as occurring at 
within the last minute. /2 halfway point, the 

margin of error is 

1 1/2 minutes. 

*Definitions: 

• Prev time: The time of the previous transition record in the workstation usage log. 

• Current time: The time of the current transition record. 

Idle duration: The length of time that there has been no TTY activity. 

35 



6.0 Simulations
 

6.1 Goals 

To a large extent this project is about timing. How do delays introduced by reacting to 

changes in CPU availability impact the timing of a parallel program? 

There are many related questions. 

•	 How is the timing impacted by varying lengths of delays? 

by varying frequency of the delays? 

by the characteristics of the delay? for example a subprogram being slowed down by a 

priority reduction vs. a subprogram being totally suspended? 

•	 How do does the structure of the parallel program alter the impact of the delays? For 

example, the level of concurrency, or the granularity of the subtasks. ( 

A set of simulations were executed to investigate answers to some of these questions. Spe

cifically, we used the simulations to experiment with using migration in conjunction with 

message passing parallel programs in the workstation environment. 

We estimated a range of costs for process migration. We then ran a series of simulations 

that applied the different migration costs whenever a busy transition occurred. This 

exposed the relationship between the relative migration costs and percentage slowdown of 

the program's execution time. Migration was chosen because it has not been previously 

addressed with respect to parallel programs in this execution environment. 

36 



In addition, we used the simulations to gather information on how the workstation envi

ronment impacted the completion time of parallel programs. To accomplish this, the simu

lations were run against a range of the following two attributes: 

•	 Number of workstations available for execution. 

•	 Level of user workstation activity (frequency of busy transitions, duration of idle peri

ods). 

6.2 Extent of Simulations 

A total of 400,000 simulated executions representing 400,000 combinations of the follow

ing variables were performed: 

•	 Number of workstations on simulated network. 

•	 Time period of workstation usage data. This defines the start and end hour of the work

station usage data that was used to emulate level of user activity. 

•	 Range and increment of migration costs. The migrations costs were considered, in one 

second intervals, in the range from one to 100 seconds. 

How the number of simulations broke down among these variables i s defined in 

Table 7. 

TABLE 7. Breakdown of Variables for Simulated Executions of Migration Model 

Size of 
Simulated 
Network 

Range of 
Migration 
Costs 

Increment 
of 
Migration 
Costs 

Number of different time 
periods of workstation usage 
data the simulations were 
run against. 

Total 
Simulated 
Executions 

Thirty 

workstations 

1-100 (sees.) 1 seeond 1200 120,000 

37 



TABLE 7. Breakdown of Variables for Simulated Executions of Migration Model 

Size of 
Simulated 
Network 

Range of 
Migration 
Costs 

Increment 
of 
Migration 
Costs 

Number of different time 
periods of workstation usage 
data the simulations were 
run against. 

Total 
Simulated 
Executions 

Fifty 

workstation 

1-100 (sees.) 1 seeond 1600 160,000 

One hundred 
workstations 

1-100 (sees.) 1 seeond 1400 140,000 

The fourth column defines the number of different time segments selected from the work

station usage data. For example, simulations were run against the workstation usage data 

that was collected between 10:00 and 11:00 a.m. on Friday Dec. 19. The time segments 

were selected to provide a cross section of the workstation usage data. They covered two 

different days from nine weeks spanning from October to January. The days were selected 

with the intent of providing equal coverage of the different days of the week. 

( The final column gives the total number of simulations. 

6.3 Parallel Program Traces 

The simulations were run against traces of four message passing parallel programs. The 

programs were originally executed on an Intel hypercube. The Intel hypercube supports 

fast and frequent message passing. This makes them a good choice for use as sample pro

grams. Their design assumes message passing is cheaper than programs designed for a 

network environment. Therefore, if its possible to minimally impact their execution times, 

programs with more conservative message passing strategies should also be minimally 

38 



impacted. The traces include the time, source and destination of each send and receive. 

Each of the programs required sixteen processors and a host processor. 

TABLE 8. Hypercube Traces 

Program Lengtb of execution on Hypercube 

FFT 

Fast Fourier Transfonn 

304032 (msecs.) 

5.07 (min.) 

TEST 

Circuit Test generator 

148000 (msecs.) 

2.46 (min.) 

MSH 

Finite Differences 

195663 (msecs.) 

3.26 (min.) 

DET 

Matrix Detenninant 

375507 (msecs.) 

6.26 (min.) 

Average across all four programs 255600 (msecs.) 

4.26 (min.) 

Within the simulations, the parallel subprograms are modeled as a series of subtasks. The 

duration of the subtasks is calculated as the time between successive receives. No block

ing time is included in the calculation of the subtask duration. 

6.4 Simulating Execution 

The simulation tool models the parallel programs in the following manner. Each subpro

gram progresses by sequentially accruing the execution times of its subtasks. A signalling 

mechanism is used to simulate the send and receipt of messages. To simulate a send, a sig

nal is sent to the destination subprogram. To simulate a receive a subprogram blocks until 

it is signalled by the source of the message. This use of signaling allows the simulations to 

synchronize the subprograms' progress. The simulation continues until the time for sub-

tasks for all subprograms have been accrued. 

At any point during the execution, each subprogram is allocated to a particular worksta

tion. Allocations of workstations to a subprogram are done strictly in a LIFO manner. The 

39 



last workstation that was added to the idle pool, will be the one allocated. If there are no 

idle workstations, the subprogram blocks until a workstation becomes idle. 

When a subprogram's allocated workstation becomes busy, the subprogram is migrated. 

To model migration, a subprogram is allocated to a different workstation. The defined 

transition cost is added to the migrated subprogram's execution time. If after adding the 

migration cost, time has progressed to a point where the new workstation is busy with user 

activity, the subprogram is migrated again immediately. 

Migration occurs whether the subprogram is executing a subtask or blocked at a receive. If 

the subprogram is blocked, any migration cost that occurs within the blocking time is hid

den. In other words, since the subprogram can not currently proceed anyway, there is no 

additional cost for it to use the time to migrate. If the migration cost is greater than the 
I 
\, 

blocking time, the subprogram is delayed by only the difference between them. 

Throughout the simulated execution, the execution time for each parallel subprogram and 

the critical path are being calculated. These are calculated by accruing the computation 

time of each subtask and the blocking time for each receive. Blocking time is determined 

by comparing the time the message was sent to the time the receive was issued. The 

greater of the two is the new current time for the subprogram receiving the message. 

40 



6.5 Output 

The following results are logged for each execution. 

TABLE 9. Execution Data 

Data Description 

Migration Cost Perfonnance overhead for each migration 

Execution time Program completion time (msecs.) 

Percentage slowdown Percentage slowdown between this execution and 
the same execution when the migration cost is 
zero. 

Total Busy transitions encountered during execu
tion of the parallel program 

Number of times a node became busy with user 
activity while the parallel program was executing 
there. 

Number of busy transitions encountered on criti
cal path. 

Number of busy transitions on that occur on 
workstations executing code that is on the critical 
path 

Average node idle time during executions Average duration of the time periods on potential 
nodes when node was not busy with user activity. 

Number of nodes used The number of nodes that were allocated at some 
point to the parallel program. 

41 



7.0 Simulation Results 

The simulations results suggest that a network of user-owned workstations could provide 

a reasonable platform for message passing parallel program execution. The results show 

that if the cost of migrating a process is between one and 50 seconds, the program's com

pletion time is impacted by a slowdown of less than 100%. 

However, as migration costs increase linearly, the corresponding percentage slowdown 

tends to increase at a superlinear rate. This result suggests that a linear increase in the cost 

of reacting to a busy transition has a superlinear impact on the parallel program's perfor

mance. 

The simulations also show some correlation between the percentage slowdown and the 

number of workstations on the simulated network. The number of workstations impact the 
( 

percentage slowdown rate when it is less than twice the number of workstations required 

by the program. When the number of workstations is varied from three to five times the 

number required, there is little change in the rate of percentage slowdown. 

The results are based on the average percentage slowdown for all executions under the 

defined conditions. (Results for the individual parallel programs are provided in Appendix 

10.1 .) The percentage slowdown is in comparison to execution time when the migration 

cost is zero. 

To determine the accuracy of the average as a measure of the percentage slowdown, the 

standard deviations were calculated. They are shown in Table 12, grouped by varying 

42 



number of workstations. For 50 or 100 workstations, the standard deviation is very small. 

TABLE 10. Standard deviations 

Number of Workstations 
Range of Standard Deviation from 
Average Percentage Slowdown 

30 .04% to 33.00% 

50 .01 % to 4.20% 

100 .01 % to 3.84% 

This suggests uniformity in the results. For 30 workstations the standard deviation was 

closer to ten percent of the slowdown values. This suggests that the results for 30 worksta

tions should be considered as defining a range for the expected percentage slowdown. 

This following sections identify major trends in the results. Theses sections include the 

averaged results for all four sample parallel programs. The plots for the individual pro

grams are provided in Appendix 10.1. 

7.1 Statistical Results 

An overview of the results is provided by the following statistics. On average, a migration 

cost of up to 20 seconds results in only a 10% slowdown. Even at migration costs of over 

50 seconds, the percentage slowdown is only 100%. 

TABLE 11. Transition Costs producing sample percent slowdowns 

Number 
of Nodes 

Migration cost 
that results in 5% 
slowdown 

Migration Cost 
that results in 
10% Slowdown 

Migration cost 
that results in 
50 % slowdown 

Migration cost 
that results in 
100 % slowdown 

30 10 seconds 20 seconds 46 seconds 58 seconds 

50 9 seconds 17 seconds 50 seconds 78 seconds 

100 11 seconds 20 seconds 56 seconds 89 seconds 

The smallest migration cost considered is one second, and in all cases this causes less than 

a 1% slowdown. At ten seconds, the percentage slowdown is still only 5%. 

43 



Only when the migration cost increases beyond 50 seconds does the number of worksta

tions introduce a difference of more than 15% in the average percentage slowdown. 

TABLE 12. Percent Slowdowns associated with sample transition costs 

Number of 
workstations 1 second 

10 
seconds 

50 
seconds 

99 
seconds 

30 .41% 4.83% 69.36% 343.85% 

50 .4% 5.62% 50.68% 145.89% 

100 .32% 4.62% 40.86% 119.14% 

7.2 Results organized by varying number of workstations 

Grouping the results by number of workstations on the simulated network identifies the 

following trends: 

• Overall impact of migration costs on percentage slowdown. 

• Rate of change of percentage slowdown with respect to increasing migration costs. 
( 

\ 

• Relation between number of workstations and percentage slowdown. 

44 



----~- ------------

FIGURE 5. Average percentage slowdown for varying number of workstations 

700 

600 

c:
:: 5000 
"0:: 
0 
"iii 
Q) 
C) 400oSc: 
~ 
Q) 
a. 
Q) 300 
C) 

e 
Q) 

iU 
200 

100 

0 

100 nodes 
50-nodes -+--
30:=nodes -B-

0 20 40 60 80 100 
migration cost (seconds) 

7.2.1 Impact of migration costs on percentage slowdown of execution time 

For 50 or 100 workstations, migration costs in the range of one to 100 seconds cause a 

percentage slowdown of less than 200%. A 100 second migration cost is from 27% to 

67% of the original execution times (Defined in Table 8) of the parallel program emulated 

by these simulations. Thus, for these programs a migration cost of 25% of the initial exe

cution time introduces a slowdown of no more than 200%. However, these programs all 

have execution times that are less than ten minutes. Future work could investigate how the 

relation between migration cost and percentage slowdown changes for longer programs. 

For 30 workstations, the slowdown stays below 200% for up to 80 second migration costs. 

An 80 second migration time is from 21 % to 54% of the original execution time (Defined 

45 



in Table 8) of the parallel programs emulated by these simulations.This shows that for 30 

workstations, a migration cost that is 20% of the initial execution results in an increase of 

less than 200%. 

Possible reasons for this small impact are a low rate of busy transitions on the critical path 

or on the execution paths of all the parallel processes. Obviously, the addition of transition 

costs to the critical path increases the program's execution time. In addition, a process 

being delayed by a transition may alter the critical path. This can have additional, less pre

dictable impacts on execution time. 

An example is show in Figure 6. In the original execution, Process A blocks on a receive. 

In an execution with an added transition cost, Process A may be sufficiently slowed so that 

it no longer blocks. Thus the receiving process is now on the critical path, rather than the 
( 

process sending the message. 

FIGURE 6. Critical Path altered by added transition cost. 

Original Execution Execution with trans. Cost 

Critical
path 

I 

Added 
Transition 
Time 

Proc. Proc. 
A B 

Proc. 
A 

Proc. 
B 

R s 

R 

s 

46 



The following figures suggest that the size of the percentage slowdowns can be explained 

by a low rate of transitions on the critical path. It is important to note the short execution 

times of the simulated parallel programs. It is an open issue as to what the rate of transi

tions would be for programs with longer execution times. Figure 7 shows the average 

number of transitions during a parallel program's execution and Figure 3 shows the aver

age number of transitions on the critical paths. 

There are never more than 20 transitions, and there are 17 processes involved in the paral

leI programs. This suggests an average of only slightly more than one transition per pro

cess. 

Using the simulation run with 30 workstations and a 100 second migration cost as an 

example, the number of transitions on the critical path seems to be the key contributor to 

the average percentage slowdown. The average initial execution time of the parallel pro

grams is 255 seconds. For this simulation the average number of transitions is approxi

mately seven and a half. Since the migration cost is 100 seconds, this would add 750 

seconds to the total execution time, which is almost exactly a 300% increase. This pro

vides a strong correlation between the average number of transitions on the critical paths 

for this particular simulation run. 

47 



FIGURE 7. Average total transitions for varying number of workstations 

20 I iii i 

~ e 
0 15 
.0 
::J 
<Jl 

ro 

e<Jl 

l;l 

§
<Jl 

.." 10 
·iii 

~ 
"0 
Q; 
.0 

100_nodes <> 
50_nodes + 
30_nodes G 

G
l'ti 

~ 
G 

G 
[;tJ 

l!l ~ 
..l!l IF'b

l!l ~' 
-	 .. " 

l!l 

..,
E 
::J 
c:: 5~	 ~ OJ __i';';""':~"··~·"""···
~ 
~ 

0' I , , , I 

o	 20 40 60 80 100 
migration cost (seconds) 

( 

FIGURE 8. Average transitions on critical patb for varying number of workstations 

20 ii' i 

100 nodes <> 
50-nodes + 
30=nodes l!l 

.s::: 
'[ 15 
fi 
~ o 
a 
<Jl 
c:: 
o 
~ 
c:: 10 
~ 
<5 
Iii 
.0 
E 
::J 
c:: 
OJ 

~ 5 
~ 

o T ' , , , I 

o	 20 40 60 80 100 
migration cost (seconds) 

48 



FIGURE 9. Average percentage oftransitions on critical patb for varying number of workstations 

100iii iii 
100 nodes Q 

50-nodes + 
30=nodes 0 

-5 80 
~ 
til 

I
.g
·5 
<: 
o 
~ 60 
o 

:~	 ~IJ~I~~"tlU''''I''''lIltlll'''I'''~ 
"'~•.....~ 40 :.. . . 
Q) 
u 

~ 
• • 

.

:'i*Q) 

~ 
Q) 

~ 20 

o ' ,	 I ,I , 

o	 20 40 60 80 100 
migration cost (seconds) 

7.2.2 Rate of increase in percentage slowdown with respect to migration costs 

Another important trend shown by Figure 5 is that the performance degradation occurs at 

a superlinear rate. Although, as Figure 10 shows, this is not apparent until migration costs 

are greater than 40 seconds. With respect to this particular simulation, this reduces the 

importance of the trend, since it seems likely process migration could be implemented to 

execute in less than 40 seconds. 

49 



FIGURE 10. Average percentage slowdown vs. migration cost of 1·40 seconds 

700 

600 

c
:= 5000 

"t:l:= 
0 

Cii 
Ql 
Cl 400ell 
C 
~ 
Ql 
c-
Ql 300 

~
 
~
 

200 

100 

0 

100 nodes -+
50-nodes -+-_. 
30:::nodes ·B··· 

_m...m.1B---l 

0 5 10 15 20 25 30 35 40 
migration cost (seconds) 

( 
However, it is important to attempt to explain the superlinear performance degradation, 

since it may suggest general trends in the relation between parallel program performance 

and the introduction of delays caused by reacting to busy transitions. 

Potential explanations are 

•	 The total number of migrations increases superlinearly - thus impacting the critical path 

in a superlinear manner. 

•	 The total number of migrations increases linearly, but the percentage of migrations that 

occur on the critical path increases super-linearly. 

50 



• The number of migrations does not increase super-linearly, but the impact is a super

linear increase of the blocking time on the critical path. A possible, though as yet 

unsupported, reason for this is that multiple dependencies between the subprograms 

magnifies the impact of the added migration cost. 

•	 The increase in migration cost alters the critical path in some other manner that results 

in the superlinear increase. 

Figure 2, Figure 3 and Figure 4 rule out the hypotheses relating to the number of transi

tions. They show that from all perspectives the number of transitions is either constant or 

increasing at a less than linear rate. 

To evaluate the other hypotheses relating to total blocking time and changes in the critical 

path, it would be necessary to do additional simulations that breakdown the time on the 

critical path into the following categories: 

Computation time + blocking time + total migration cost. 

By understanding the rate of increase of the 3 areas, and their relative percentage of the 

entire critical path, it should be possible to describe how the critical path is being affected 

superlinearly by the migration costs. This is left to future work. 

7.2.3 Impact of number of workstations on percentage slowdown of execution time 

Figure 5 also show the impact of the number of workstations in the pool of potential 

CPU's for the parallel programs. The major trend here is in the difference between 30 

workstations and 50 or 100 workstations. With only 30 workstations, for the higher migra

tion costs, the rate of performance degradation is much greater. The logical reason for this 

51 



would seem to be that process's have to wait longer for idle workstations. To confirm this, 

additional simulations would have to be run to record the blocking time. An additional 

reason is explained by Figure 7 and Figure 3, which show the number of migrations 

increases at a greater rate for 30 workstations. This may be caused by the current design of 

the simulations, which does not enforce that the same subset of workstations are used for 

the varying number of workstations. To more accurately reflect the impact of the number 

of workstations, the simulations should allocate idle workstations on a FIFO basis. This 

would ensure that the first workstations chosen out of a sampling of 100, would be the 

same as those chosen out of a sampling of 30. 

It is also interesting to note that when the migration cost is less than 40 seconds, the rates 

are almost the same. In fact the 30 workstation executions show a slightly smaller slow

( down. Again, this should be reexamined after modifying to a FIFO allocation strategy. 

7.3 Results grouped by time period of execution 

To show the impact on the time of period execution on performance, the results were cate

gorized as occurring within one of the following four time periods: 

• night Midnight - six a.m. 

• morning 6:00 a.m. - Noon 

• afternoon Noon - 6:00 p.m. 

• evening 6:00 p.m. to Midnight 

52 



FIGURE 11. Average percentage slowdown for varying time periods on 30 workstations 

700 

600 

<: 

~ 500 

~ 
"iii 
0> 

400~ 
<: 
0> 
~ 
0> 
c
O> 300 

~
 
~
 

200 

o 
o 

"1 

Ia!l 
30 nodes nillht i+

30_nodes_mormng ;.+_. 
30_nodes_afternoonrirB--' 

30_nodes_evenin% --1(_.__. 

[;J:

lrh 
m 
~ 

!il 

/~I!i 
.~ t 

m ~ *' 
:'. !'M *t" l/.
i r!J t+.j¥ 

!'J!I , 

~ -;.J\v~ . +~ 

~ ,
: t 

d1;i
CI 

~ r",~ 

'iI..I!I *"'.. J...LJ. +f,¥.,......,~ 

di~~~
 
~ ~ W 80 100 

migration cost (seconds) 

( 

53 



FIGURE 12. Average percentage slowdown for varying time periods on 50 workstations 

700 

600 

c 
l= 5000 
"0 
l= 
0 
"'iii 
(Jl 
Cl 400S c 
(Jl 

~ 

~ 
(Jl 300 
Cl 
e! 
(Jl 
> 
CIl 

200 

100 

0 

50_nodes_niaht -+
50_nodes_mornlng -+-_. 

50 nodes afternoon ·8··· 
50_nodes_evening ..~..

80 1000 20 40 60 
migration cost (seconds) 

( 

~ 
FIGURE 13. Average percentage slowdown for varying time periods on 100 workstations 

700 

600 

~ 5000 

~ 
0 
"'iii 
lI> 
Cl 400 
~ 
~ 
lI> e-
li> 300 
Cl 
e! 
(Jl 
>
CIl 

200 

100 

0 

100_nodes_niaht -+
100_nodes_mornlng -+-_. 

100 nodes afternoon -8-" 
100_nodes_evening ..1(.

0 20 40 60 80 100 
migration cost (seconds) 

54 



Grouping the executions by time of day provides the results that one would expect. The 

performance rates align with the expected levels of user activity during the day. The plots 

confirm the expected result that the night time hours would provide the best potential for 

efficient executions. The expected reason for these results is that the number of busy tran

sitions reduces during the time periods with less user activity. This reasoning is supported 

by the Figures 14-16. 

FIGURE 14. Average transition count for 30 workstations for different time periods 

20 

<J) 

Ql 
"tJ 
0c: 
a 
'" in 

~ 15 
OJ e 
0

J:> 
::::J 
<J) 

'ffi 
<J)
 
<J)
 

g 
10III 

<J) 

c: 
.g
'w 
c: 
,g1 
'5 
l;; 

J:> 5
E 
::::J
c: 
Ql
 
OJ
 
~ 
Ql 

~ 

o 

30_nodes_night -+
30_nodes_morning -+-_. 

30_nodes afternoon -B--
30 nodes night -1(--~ - - r 

t. t iiI 
l¥ ¥~~ 

~ rJ 
fiI~ T ' 

t J\ ~+J 
f'.~.I 

' :¥4-ot' 
t

J~ ) ( 

\~ rt. 7>1' 
t t ~ I \,V " I, ,++.'f.rr· J¥.~++J 

~ 1+ 
,f 

~~ t 
- ,t<l'~~ 

++H"+" 
j; 7'<. *'\.H-f-H4 'H' 

o 20 40 60 80 100 
migration cost (seconds) 

55 



FIGURE 15. Average transition count for 50 workstations for different time periods 

20 iii I I I 

50_nodes_nillht -+
<Jl 50_nodes_mornlng -+--
Q) 

50 nodes afternoon ·B···-g 
50_nodes_evening -1(,, I: 

o 
LO 

~ 15 
C> r.rJle a. 
.0 
::J 
<Jl 

'jij 
<Jl
 
<Jl
 o 
~ 10 
<Jl 
I: o
';::
'iii 

~ 
o 

~ 5 ,. _I~ +++1 Jill IIII1 

~ klllll '::"::":::":'!'!::::::::: 
~ 

0' , , , I , 

o 20 80 100 

FIGURE 16. Average transition count for 100 workstations for different time periods 

20 I i I I i( 
<Jl 
Q) 
'0 
0 
I: 
0 

~ 
;,; 

~ 15 

e a. 
.0 
::J 
<Jl 

'jij 
<Jl 
<Jl e 10lil 
<Jl 
I: 
0 
:~ 
I: 

~ 
0 
m 
.0 5 
E 
::J 
I: 
<D 

~ 
Q) 

iU 

1oo~nodes_nillht -+
100_nodes_mornlng -+--

100 nodes afternoon -B--' 
10o_nodes_evening "*

o I I , , I I 

o 20 40 60 80 100 
migration cost (seconds) 

56 



7.4 Results by varying workstation activity levels 

To show the relation between workstation availability and performance, the results were 

grouped by average duration of workstation idle time segments. The idle times were 

divided into the following categories: 

• 0 - 20 minutes 

• 20 - 40 minutes 

• 40-60 minutes 

• Greater than 60 minutes 

FIGURE 17. Average percentage slowdown for varying workstation activity levels
 
on 30 workstations.
 

0-20 min idle time 
700 20-40 min idle-time -+ 

40-60 min idle-time· 
over-60 min idle::::time lW_ 

600 

c 
~ 5000 

"0 
~ 
0 
en 
Ol 
C> 400 
~ 
C 
Ol 
~ 
Ol 
c-
Ol 300 
C> 

~ 
Ol 

iU 
200 

~+++...l'\~ 

100 , ~~~+ 
.-++~ 

0 
0 40 60 80 100 

migration cost (seconds) 
20 

57 



FIGURE 18. Average percentage slowdown for varying workstation activity levels 
on 50 workstations 

700 

600 

c: 
~ 5000 
"C 
~ 

.Q 
VI 
Q) 

l!!'" 400 
c: 
Q) 

~ 
Q) 
c. 
Q) 300 

l? 
Q) 

i6 
200 

100 

a 

0·20 min idle time ....
20·40 min idle-time -+--. 
40-60 min idle-time 'B--' 

over-60 min idle=time ··K··_·· 

a 20 40 60 80 100 
migration cost (seconds) 

( FIGURE 19. Average percentage slowdown for varying workstation activity levels on 
100 workstations. 

700 

600 

c: 
~ 5000 

"C 
~ 
0 
"in 

'" 400~ 
c: 
'" ~ 
Q) 
c. 

'" 300 

l? 
Q) 

i6 
200 

100 

a 

0-20 min idle time ....
20-40 min idle-time -+-_. 
40·60 min idle-time ·B··· 

over·60 min idle=time -K'

~ 
~ 

a 20 40 60 80 100 
migration cost (seconds) 

58 



Grouping the results by average duration of idle times on the set of potential workstations 

show, again as would be expected, the shorter idle times produce a greater performance 

degradation. In particular with 30 and 50 workstations, idle times of less than 20 minutes 

cause the performance to degrade at a greater rate. With 100 workstations there is less of a 

correlation, in fact 20 to 40 minute idles times produce less degradation than idle the idle 

times over 60 minutes. This can be explained by Figures 16-18 which show the number of 

transitions on the critical path for 30 and 100 workstations, averaged by duration of idle 

times. With 100 workstations, the number of migrations does not increase dramatically 

with respect to the duration of the idle times. 

FIGURE 20. 30 Workstations. Trans on Critical patb, averaged by idle time 

30iii i i 

25 

c 
~ 
0 20 
'C 
~ 

.Q 
en 
al 

F 
c 15 
~ 
al c-
al 
[J) 

l!! 
al 10
iU 

5 

0-20 minidle time -+
20-40 min idle-time -+-_. 
40-60 min idle-time -B--' 

over-60 min idle=time "*"

~v 
111111111111111111 ........... 

Op.w;;;·~~~··· .o _ ~sit"U"~.~-----I.... ~B-11 
20 40 60 80 100 

migration cost (seconds) 

59 



FIGURE 21. 50 Workstations. Trans. on Critical Patb, averaged by idle time 

30 iii iii 
0-20 min idle time ..

20-40 min idle-time -+--
40-60 min idle-time -B--

over-60 min idle=time -H--
25 

<: 
~ 20 

~ 
"iii 
0> 

~ 15 
~ 
0> 
c-
O> 

~ 
0> 10 
11; 

5 

20 40 60 80 100 
migration oost (seoonds) 

( 

FIGURE 22. 100 Workstations. Trans on Critical Patb, averaged by idle time 

30iii iii 
0-20 min idle time ..

20-40 min idle-time -+--
40-60 min idle-time -B--' 

over-60 min idle=time --~-----
25 

<: 

~ 20 
"0 
~ 
0 
"iii 
0> 

~ 
<: 15 
0> 

~ 
c-
O> 

~ 
0> 10>
<1l 

5 

ok=:::~::=~~,.;:::'::::;:::::~
 
o 20 40 60 80 100 

migration cost (seconds) 

60 



8.0 Future Work 

All phases of this project suggested a wealth of interesting areas to be further researched. 

This section documents some of these areas. 

•	 Investigation into adaptivity and parallel programming paradigms 

This project has only begun to consider approaches and implications of incorporating 

adaptivity into the design of a parallel programs. Further research should be done in 

analyzing the relationship between adaptivity and parallel programming paradigms. 

Several ideas were discussed but, due to time constraints not fully developed, during 

this project. One area of investigation is the compatibility of logic programming lan

guages with this environment Another possibility is researching the relationship 

between the size of a program's subtasks, and the duration of idle periods on the work

(	 stations. The idea is that a parallel program that is designed as small subtasks could 

minimizes the number of times that the parallel program must react to a busy transition. 

This is because the smaller the subtask, the more likely they could execute completely 

within the duration of an idle period on a workstation. 

•	 Investigation into implementation techniques 

In discussing techniques for executing on a network of user-owned workstations, simi

larities with other problems were suggested. Specifically, there are similarities with 

fault-tolerance and with load balancing. This environment is similar to requirements for 

fault tolerance if each busy transition is viewed as a fault. This could be seen as an 

environment where this particular type of fault is expected and frequent. 

61 



The network of user-owned workstation environment also has many similarities with 

load-balancing. Additional work could investigate using load balancing techniques to 

this environment. 

•	 Research the behavior of combinations of: execution models, implementation tech

niques and parallel programming paradigms 

The execution models illustrated in Section 3.0 provide a base for considering what 

implementation techniques and parallel programming paradigms may fit will with the 

various execution models. 

The simulations for this project looked at one combination: a scheduling approach 

using migration for a set of message passing programs. It would be interesting to use 

the simulation tool to compare the performance impact of other combinations. 

In particular the simulations include code to react to busy transitions by reducing the 

priority of the parallel process. The simulations could also quickly be extended to 

implement retreating to the beginning of the subtask before migrating. This could 

answer additional questions such as: how great of an improvement in migration costs is 

needed to justify retreating. 

•	 Further compare the merits of the two design approaches: 

To what extent can the performance goals be satisfied with scheduling designs?
 

Do the benefits of adaptivity outweigh the disadvantage of increased constraints on the
 

programming paradigm?
 

How far can the parallel paradigm constraints be relaxed and still reap some of the ben


efits of adaptivity?
 

How far can the two design approach be converged to obtain the advantages of both?
 

62 



• Extend the simulations to collect additional statistics. 

In the Introduction, it was suggested that any solution should balance user response 

time, performance of parallel programs and to a lesser degree, CPU utilization. This 

project has only considered program performance. It should be extended to consider the 

other two critieria. CPU utilization could be incorporated into the simulations statistics. 

Evaluating response time would require a more complicated simulation environment, 

or some other form of experiment. 

• Analyze the workstation data. 

A large volume of data has been collected, and some relationship between idle times 

and performance impact has been exposed by the simulations. The next step would be 

to collect statistics on the characteristics of the collected data. These could include 

( duration of idle and busy periods, and statistics on the actual CPU load levels. 

• Further Analyze the simulation results 

As suggested in Figure 7.2.2, collecting additional data on how the critical path time 

breaks down may help explain the superlinear increase in performance degradation. 

The critical path could be broken into computation time, blocking time and transition 

costs. By understanding the rate of increase of the 3 areas, and their relative percentage 

of the critical path, it should be possible to describe how the critical path is being 

affected superlinearly by the migration costs. 

• Definition of idle system state 

For this project we chose a CPU load of.25 as the boundary identifying idle worksta

tions. In fact, a variety of definitions for idleness have been suggested by related work. 

Further work should be done in researching how to accurately define an idle system. 

63 



• Implementation 

This project was not intended to address the issue of implementing techniques for 

adapting to changes in workstation availability. The implementation details of any of 

the suggested techniques, applied in the network of user-owned workstations environ

ment would certainly entail much additional thought and investigation. 

( 

"
 

64 



9.0 Conclusions 

By analysis and simulations, this project investigated executing parallel programs on a 

network of user-owned workstations. It analyzed two design approaches and their relation 

to parallel programming paradigms and implementation options. It investigated perfor

mance by simulations based on empirical data describing a workstation environment and 

sample parallel program traces. 

This project was concerned with two major performance goals: efficient execution of par

allel programs and maintenance of workstation user response time. With this in mind, the 

analysis of the two design approaches can be summarized by the following question. Can 

the performance goals be better met by extensions to existing scheduling techniques or by 

a paradigm shift where the parallel program actively adapts to dynamic CPU resources? 

( 
The main advantages of the scheduling approach are that it relies on previously exercised 

scheduling techniques and puts few restraints on the structure of the parallel program. The 

main disadvantages are potentially high implementation overhead and difficulty in taking 

advantage of increases in CPU availability. 

The main advantage of the adaptive programming approach is that increased flexibility 

allows for more efficient response to changes in CPU availability. This should improve 

performance by minimizing overhead and allowing greater utilization of CPUs. The main 

disadvantage is that it is more likely to introduce constraints on the parallel program's 

structure. 

Based on the simulation results it is possible to conclude that it is feasible to efficiently 
( 

execute parallel programs in this environment. The results showed that over thousands of 

65 



sample executions, percentage slowdown of the parallel program's execution time was 

under 100%. This was supported by data showing that relatively low rate of encountering 

(less than 20) busy transitions. This suggests CPU availability was high enough to support 

the parallel programs along with user activity. As would be expected, the simulations also 

showed that the fastest execution times occurred with a nighttime level of user activity. 

The simulations also showed that the number of workstations impact the percentage slow

down rate when it is less than twice the number of workstations required by the program. 

When the number of workstations is varied from three to five times the number required, 

there is little change in the rate of percentage slowdown. 

These results are promising and suggest many areas of future work that should be consid

ered. This environment is potentially a significant source of needed CPU resources for 

parallel program executions. Taking full advantage of its potential will require creative, 

fully researched solutions. This project has intended to contribute to the development of 

such solutions. 

66 



10.0 Appendices 

10.1 Supporting Plots 

The following key is for supporting plots that show executions based on varying time 

period of workstation. 

• night Midnight - six a.m. 

• morning 6:00 a.m. - Noon 

• afternoon Noon - 6:00 p.m. 

• evening 6:00 p.m. to Midnight 

10.1.1 FFT program 

FIGURE 23. Average percentage slowdown for varying number of workstations 

( 
700 

30 nodes ...
50 nodes -+-_. 

100 nodes ·s··· 

600 

<: 
~ 
0 

"C 
~ 
0 en 
'" ~ 
<: 

'"~ 

'" 0

'" 

500 

400 

300 ra.. . 

rhP 
I'£IE 

J 
liIiIliJ JiI-d'l

plil3ril!li!l~~ 
~ 
'" >
!1l 

200 

Illy 
~ 
~ 
~ 

100 
--"I~ 

~ 
1Ir'r:¢ 

. . 

.~ 

oL 
0 20 

'i: 
40 60 

migration cost (seconds) 

.....~ 

80 100 

i 
\ 

67 



FIGURE 24. Average percentage slowdown with varying time periods on 30 workstations 

c 
;: 

'0 

700 

600 

500 

~ 
~ 

III i 
f: ~ 

i\j
ilii.rJl 

: 
i 

i[~~i\lht --
mormlng -+-_. 

afternoon -B--' 
evening ..K.. _.. 

tt *'t :. t 
.." .: I,
!\ tI +'" 

"C;: 
0 ! )V~ 

"iii 
0> 
Ol 
III 
c 
0> 
() 

ffi 
c-
O> 

400 

300 

itt t tH ,>f. 
1iI:\ II II : I:i 
I! \1\ !'+i. ¥ 
;J+4* I 
~. ¥ 
.',f 

1? 
0> 

iU 
200 

r:riJ! 
:t

iii : , 

~:Jf 
t~~-l;i

tf: I=' 11I ~,.. 

100 
I 

o I 7 

~ 
tP tbIdttHt'iM 

[OA~~ 
J1j 

~ ..

0 20 40 60 80 100 
migration cost (seconds) 

FIGURE 25. Average percentage slowdown with varying workstation activity levels 
on 30 workstations 

700 

600 

c 
;: 5000 
"C 
;: 
0 
"iii 
0> 

400 
E 
~ 
0> 
~ 
0> 
c-
O> 300 

1? 
0> 

iU 
200 

100 

0 

0-20 min idle times ___ 
20-40 min idle times -+-_. 
40-60 min idle times ·8··· 

over 60 min idle times -*-

t. 

0 20 40 60 80 100 
migration cost (seconds) 

68 



FIGURE 26. Average percentage slowdown with varying time periods on 50 workstations 

700 

600 

t: 
;: 5000 
"0;: 
0 

Cii 
0> 
Cl 400fl 
t: 
0> 
U 
ffi 
c. 
0> 300 
Cl 
ttl 
ffi 
>
ttl 

200 

100 

0 

ni\lht 
morning -+--

afternoon -B-·· 
evening -J(-

#
 

0 20 40 60 80 100 
migration cost (seconds) 

FIGURE 27. Average percentage slowdown with varying workstation activity levels 
on 50 workstations 

( 
0-20 min idle times 

700 20-40 min idle times -+-_. 
40-60 min idle times -B-·· 

over 60 min idle times -J(-

600 

t: 
;: 5000 
"0;: 
0 

Cii 
0> 
Cl 400fl 
t: 

~ 
ffi 
c. 
0> 300 
~ 
ffi 
~ 

200 

100 

0 
0 20 40 60 80 100 

migration cost (seconds) 

69 



FIGURE 28. Average percentage slowdown with varying time periods on 100 workstations 

night +
700 morning -1--

afternoon -a--· 
evening -K·--· 

600 

~ 500 
j 
0 

0 
"iii 
Ol 
OJ 400 
E '" 
Ol 

~ 
c-
Ol 300 

~ 
Ol 
>

'" 200 

100 

0 
0 20 40 60 100 

migration cost (seconds) 
80 

FIGURE 29. Average percentage slowdown with varying workstation activity levels 
on 100 workstations 

700 
0-20 min idle times 0+

20-40 min idle times -1--

40-60 min idle tims -a--· 
over 60 min idle times --)(-

600 

<:: 
;:: 
0 

"C 
;:: 
0 
"iii 
Ol 

~ 
<:: 
Ol e 
Ol 
c-
Ol 

500 

400 

300 

~ 
Ol 
>

'" 200 

100 ~~ 
0 

0 20 40 60 
migration cost (seconds) 

80 100 

70 



10.1.2 MSH program 

FIGURE 30. Average percentage slowdown for varying number of workstations 

700 
100 nodes .. 

50 nodes -+-_. 
30 nodes ·B··· 

600 

<= 
~ 
0 

"0 

~ 
""iii 
Ol 

~ 
<= 
Ol 
~ 
Ol 
c-
Ol 

~ 
Ol 

~ 

500 

400 

300 

200 

100 

a 
a 20 40 60 

migration cost (seconds) 
80 100 

FIGURE 31. Average percentage slowdown with varying time periods on 30 workstations 

700 

600 

<= 
~ 500 

"0 
~ 
0 

""iii 
Ol 

400~ 
<= 
Ol 
~ 
Ol 
c-
Ol 300 

~ 
Ol 
>
Ol 

200 

100 

a 

night ..-~ 
morning -+-_.:

aftern~on ·B··~ 
evemng -+(."7 

iii Iii
!r;g 

~ 
~ 

~ ~ 
IZi \,!i!!

ci U 
iii t!l 

'fl;l \, lil 
~ i!J ·l 

/
~ t..-+.l 

,..1'"
~.; ... 

!'l:i TH'-++l"of
 

~ /.
 ~ cl'I¢I ......-++l".H' 

........
 

a 20 40 60 80 100 
migration cost (seconds) 

71 



FIGURE 32. Average percentage slowdown with varying workstation activity levels 
on 30 workstations 

0-20 min idle times -+
700 20·40 min idle times -+-_. 

40-60 min idle times ·B··· 
over 60 min idle times ..)(._.

600 

c 
;: 5000 

"C 

~ 
en 
Q) 

400~ 
c 
Q) 

~ 
Q)
 
0..
 
Q) 300
 
C) 

~ 
Q) 

~ 
200 

-l'-t.l¥l 
~i-l'+,I.f 

.~"",,">l+l'"100 JO\ 

0 
0 40 60 80 10020 

migration cost (seconds) 

FIGURE 33. Average percentage slowdown with varying time periods on 50 workstations 

night -+
700 morning -+-_. 

afternoon -B--· 
evening -)(..

600 

c 
;: 5000 
"C;: 
0 

en 
Q) 

400~ 
c 
Q) 

~ 
Q)
 
0..
 
Q) 300
 

~ 
Q) 

~ 
200 

100 

0 
0 20 40 60 80 100 

migration cost (seconds) 

72 



FIGURE 34. Average percentage slowdown with varying workstation activity levels 
on 50 workstations 

700 

600 

<:: 
~ 
0 500 

"0 
~ 
0 

"in 
III 
Q) 400l!! 
<:: 
III 
~ 
III 
0
III 300 
Q) 

!!! 
III 
> 
l1l 

200 

100 

0 

0-20 min idle times -+
20-40 min idle times -+-_. 
40-60 min idle times ·B··· 

over 60 min idle times -K·

0 20 40 60 80 100 
migration cost (seconds) 

FIGURE 35. Average percentage slowdown with varying time periods on 100 workstations 
( 
\ 

700 
ni\lht -+

morning -+-_. 
aftemoon ·B··· 

evening -1(.

600 

<:: 
~ 
0 500 

"0 
~ 
0 
"in 
(]) 

~ 400 
<:: 
(]) 

~ 
(]) 
0
(]) 300 

~ 
(]) 

>
l1l 

200 

100 

0 
0 20 40 60 80 100 

migration cost (seconds) 

73 



FIGURE 36. Average percentage slowdown with varying workstation activity levels 
on 100 workstations 

0-20 min idle times ... 
700 20-40 min idle-times -+--

40-60 min idle-times -B--· 
over-60 min idletimes ""*.

600 

c:;: 5000 

~ 
.Q 

'"Q)
 

Cl 400
 
~ 
c: 
Q) 

e 
1I) 
e-
li) 300 
Cl 
~ 
1I) 

>
al 

200 

100 

0 
0 80 10020 40 60 

migration cost (seconds) 

10.1.3 DET 

FIGURE 37. Average percentage slowdown for varying number of workstations 

700 
100 nodes ... 
50 nodes -+-_. 
30 nodes -B-·· 

600 

c: 

~ 
~ 
0 

(;; 
1I) 

~ 
c: 

~ 
1I) 
e-
li) 

~ 
1I) 

iii 

500 

400 I

300 

200 

100 

0 
0 20 40 60 

migration costs (seconds) 
80 100 

74 



FIGURE 38. Average percentage slowdown with varying time periods on 30 workstations 

700 

600 

I: 
;: 5000 

~ 
0 
""iii 
(]) 

400~ 
I: 
(]) 

~ 
(]) 
c. 
(]) 300 

~ 
(]) 

>
Ol 

200 

100 

0 

ni(lht-+
morning -+--

afternoon ·B··· 
evening -l(-_. 

I...........
 

0 20 40 60 80 100 
migration costs (seconds) 

FIGURE 39. Average percentage slowdown with varying workstation activity levels 
on 30 workstations( 

700 

600 

I: 
;: 5000 
"C;: 
0 

""iii 
(]) 

400~ 
I: 
(]) 

~ 
(]) 
c. 
(]) 300 

~ 
(]) 

~ 
200 

100 

0 

0-20 min idle times -+
20-40 min idle-times -+-_. 
40-60 min idle-times ·B··· 

over-60 min idle=times 4(--

.... 

0 20 40 60 80 100 
migration costs (seconds) 

75 



FIGURE 40. Average percentage slowdown witb varying time periods on 50 workstations 

700 
nil:lht-+

morning -+-_. 
afternoon -B--· 

evening ~.. _. 

600 

c:;: 
0 
"0;: 
0 
"iii 
0> 

aJ' 
E 
~ 
0> 
C. 
0> 

500 

400 

300 

~ 
0> 
>ro 

200 

100 

0 
0 20 40 60 

migration costs (seconds) 
80 100 

FIGURE 41. Average percentage slowdown witb varying workstation activity levels 
on 50 workstations 

700 
0-20 min idle times -+

20-40 min idle-times -+-_. 
40-60 min idle-times -B-·· 

over-60 min idle=times ~._-

( 

600 

c: 
;: 
0 
"0;: 
0 

"iii 
lD 

~ 
c: 
0> 
~ 
0> 
C. 
0> 

500 

400 

300 

~ 
0> 
>ro 

200 

100 

0 
0 20 40 60 

migration costs (seconds) 
80 100 

76 



FIGURE 42. Average percentage slowdown witb varying time periods on 100 workstations 

700 
ni(lht-+

morning -i--. 
afternoon ·8-·· 

evening ··K······ 

600 

<: 
;: 
0 500 
"0;: 
0 
"iii 
Ol 
Ol 400 
~ 
<: 
Ol 

~ 
Ol 
0
Ol 300 
g> 
lil 
>ro 

200 

100 

0 
0 20 40 60 80 100 

migration costs (seconds) 

FIGURE 43. Average percentage slowdown witb varying workstation activity levels 
on 100 workstations 

700 I
0-20 min idle times -+

20-40 min idle-times -i--. 
40-60 min idle-times ·8··· 

over_60 min idle=times "*-
I 

600 

<:
;;: 
0 500 

"0
;;: 
0 
iii 
eD 
Ol 400 
~ 
<: 
eD 

~ 
0
eD 300 
Ol 
f!! 
Ol 

~ 
200 

100 

0 
0 20 40 60 80 100 

migration costs (seconds) 

77 



10.1.4 TEST program 

FIGURE 44. Average percentage slowdown for varying number of workstations 

100 nodes_
700 50-nodes -+-_. 

30::::nodes -B'-' 

600 

1iId" 
c ~~ 
~ 5000 
"0 ~ 
~ 

Q ~ <Jl 

0> !'1J400~ 
c ~ 0> 
~ iii ~ 0> 
c ~~ 
O> 300 

~ ~ 
0> 

it; ~ 
200 

~~~~ 
~~:W~ 100 
~ ../ 

~ 

a 
a 20 40 60 80 100 

migration cost (seconds) 

FIGURE 45. Average percentage slowdown with varying time periods on 30 workstations 

700 
~ night_
i morning -+-_. 
: aftemoon -B--' 
~ evening ·-K······ 

c 
~ 
0 
"0 
~ 

Q 
<Jl 

0> 

'"l!l c 
0> 
~ 
0> c-
O> 

'"!!! 
0> 

it; 

600 

500 

400 

300 

200 

~! r 
m t!J ! 

~: I 

~:I!I : 

41~%i t;i tlt-l .. " +" :\::.:. t \1 
• " L:J I I U:I!I t:1: 4
~ -1\:\; 
; : H~ 

Ii! i t P 
i~: :\ : 
f t'J n : 

l!l :' tl: t-:' ,:
~~! ,~ ¥
n! I!I + ,., ,
:I!l : . ! 

100 
~ ~ 
:\, lib 

~riJIlIJ r 
f 
~ 
._~ 

.Y 

.J 

a 
a 20 40 60 

migration cost (seconds) 
80 100 

78 



FIGURE 46. Average percentage slowdown with varying workstation activity levels 
on 30 workstations 

0-20 min idl~time -+
700 20-40 min' Ie time -+-_. 

40-60 min i Ie time -B-" 
over_60 min ~I time -)(.._.. 

600 

c:;: 
0 500 
"tJ
;: 
0 
u; 
0> 

400~ c: 
0> e 
0> c-
O> 300 
OJ
III 
~ 
>
III
 

200
 
f 

AI,.ji: 
100 

0 
0 20 40 60 100 

migration cost (seconds) 

FIGURE 47. Average percentage slowdown with varying time periods on 50 workstations 

80 

700 
ni\jht -+

morning -+-_. 
aftemoon -B-" 

evening -)(-

600 

~ 
0 

"tJ
;: 
0 
u; 
0> 
OJ 
.'!l
c: 
0> e 
0> c-
O> 

500 

400 

300 
!U 

~ 
0> 

~ 
200 ~ 
100 

~._.~ 

0 
0 20 40 60 

migration cost (seconds) 
80 100 

79 



FIGURE 48. Average percentage slowdown witb varying workstation activity levels 
on 50 workstations 

700 
0-20 min idle time _ 
20-40 mTn idletime -+-_. 

40-60 min idle time -B--· 
over_60 min idl()ime ..x-

600 

c 
~ 
0 
"0 
~ 
0 
iii 
0) 

~ 
E 
0) 
<J 

ffi 
c-
O) 

~ 
ffi 
>
CIl 

500 

400 

300 

200 

100 

0 
0 20 40 60 

migration cost (seconds) 
80 100 

FIGURE 49. Average percentage slowdown witb varying time periods on 100 workstations 

700 
night 

morning 
afternoon 

evening 

_ 
-+--
-B-·· 
~.-

600 

c 
~ 
0 
"0 
~ 
0 
iii 
0) 

Ol 
~ 
c 
0) 

~ 
0) 

c-
O) 

Ol 
!!! 
0) 

10 

500 

400 

300 

200 

100 

0 
0 20 40 60 

migration cost (seconds) 
80 100 

80 



FIGURE 50. Average percentage slowdown with varying workstation activity levels 
on 100 workstations 

700 

600 

t: 
~ 5000 

"0 
~ 
0 
u; 
Q) 

400~ 
t: 
Q) 

~ 
Q) 
<:l. 
Q) 300 

~ 
Q) 

~ 
200 

100 

0 

0-20 min idle time 
20-40 min idle-time -+-_. 
40-60 min idle-time -8--· 

over-60 min idle::::time -)(...... 

f 
) 

r 
~ 

0 20 40 60 80 100 
migration cost (seconds) 

'\ 

81 



10.2 Location of Project Files 

All source, data and executable files for this project are located off of the following direc
tory: /u/m/public/rtraces. 

A description of all subdirectories and pointers to additional README files are provided 
in: /u/m/public/rtraces/README 

82 



i 
~ 
\ 

Bibliography
 

[1] David Anderson and Mark Sullivan. Marionette: a System for Parallel Distributed Pro
gramming Using a Master/Slave Model. Proc. 9th Inti. Conf. on Distributed Computing 
Systems, pp. 181-188, June 1989. 

[2] M.J. Atallah, C. Lock, D.C. Marinescu, H.J. Siegel, and T.L. Casavant, "Co-Schedul
ing Compute-Intensive Tasks on a Network of Workstations: Models and Algorithms," 
Proc. 11th International Conference on Distributed Computing Systems, May 1991, pp. 
344-352. 

[3] John Basik. Quahog: Polite Remote Processing. Brown University, June 1992. 

[4]Allan Bricker and Michael J. Litzkow. Condor Technical Summary. University of Wis
consin, 1989. 

[5]Clemens H. Cap, Volker Strumpen. "The PARFORM - A High Performance Platform 
for Parallel Computing in a Distributed Workstation Environment", Zurich Univesity, 
June 23, 1992. 

[6] Nicholas Carriero, Eric Freeman, and David Gelernter. "Adaptive Parallelism on Mul
tiprocessors: Preliminary Experience with Piranha on the CM-5", YALEU/DCS/RR
969,May 1993. 

[7] Nicholas Carriero, David Gelernter, David Kaminsky, and Jeffrey Westbrook. "Adap
tive Parallelism with Piranha", YALEU/DCS/RR-954, February 1993. 

[8]Chase, J.S., Amador, EG., Lazowska, E.D., Levy, H.M., Littlefield, R.J. "The Amber 
System: Parallel Programming on a Network Of Multiprocessors," Proceedings of the 12 
ACM Symposium on Operating systems Principles, pp 147-158, Dec 1989. 

[9]Henry Lcark and Bruce Mcmillin, "DAWGS- A Distributed Compute Server Utilizing 
Idle Workstations", Joumal of Parallel and Distribruted Computing 14, 175-186, 1992. 

[lO]Kemal Efe and Margarete A. Schaar. Performance of Co-Scheduling on a Network of 
Workstations. Proc 13th International Conference on Distributed Computing Systems, 
1993, pp. 525-531. 

[11]Pavid Gelernter and David Kaminsky. "Supercomputing out of Recycled Garbage: 
Preliminary Experience with Piranha", Proceedings of the ACM, International Conference 
on Supercomputing, July 19-23, 1992. 

[12]G.A. Geist and V.S. Sunderam. Network Based Concurrent Computing on the PVM 
System. Concurrency: Practice and Experience, 4(4)293-311,June 1992. 

83 



[13]P. Krueger and R. Chawla. The Stealth Distributed Scheduler. In Proceedings of the 
11th International Conference on Distributed Computing Systems, pages 336-343, May 
1991. 

[14]Louis H. Turcotte. A Survey of Software Environments for Exploiting Networked 
Computing Resources. Engineering Research Center for Computational Field Simulation. 
June 1993. 

84 




