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1. Introduction·
 

Debuggers have always been an important software development aid. 
They let programmers locate bugs in their programs during execution. This 
dynamic debugging has become an essential supplement to static program analy
sis by the programmer. Through an effective combination of static analysis and 
dynamic debugging, bugs can be located very quickly. Most debuggers let the 
programmer set breakpoints, view the current state of the suspended program, 
and control how fast the program should go forward (e.g. step over, trace into). 
Based on this debugger model, the most common bug-hunting technique is the 
binary search method. The programmer continuously sets break points which 
divide the execution into halves, eventually isolating the section containing the 
bug. Even though very tedious, this method has not been changed since the intro
duction of debuggers about 20 years ago. 

Given the rapid development in almost all fields of computer science, it is 
surprising this model has survived so long. One limitation of this model is that it 
restricts the program being debugged to only going forward, forcing the pro
grammer to restart the execution again and again. Another limitation is that the 
validity of this model depends heavily on the reproducibility of the program's 
original behavior. For programs that do not interact with their environment (Le. 
only manipulate their own address space), this suffices. Most programs, however, 
do not fall into this category. Even the most simple program involving a file oper
ation is interacting with its environment. Strictly speaking, some programs which 
do not interact with their environments are often not reproducible, either. These 
programs get the same sized virtual address space every time, but the number of 
pages which can get mapped in one run is still subject to the size of available sec
ondary swapping storage on most operating systems. If swapping storage is short 
in a later run, some memory allocation requests that succeeded in previous runs 
might fail this time. Today's extensive use of windows systems (e.g. X windows) 
and distributed environments further exacerbates this problem. Without the 
assumption that program behavior is reproducible, the above binary search 
method totally loses its validity. 

Even if the program behavior is fully reproducible, the binary search 
method can still be extremely tedious. The program must be started many times 
and stopped at different points to see when an assertion failed for the first time. If 
the buggy code happens to follow a large section of intense computation, this pro
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cess will be intolerably slow. For interactive applications, refeeding the whole 
input set can also be monotonous and often error-prone. Debugging without 
restarting execution would be very desirable, and has thus become a critical prob
lem to solve. 

Another desire of future debuggers is to emancipate programmers from 
tedious searches for where and when certain assertions failed during execution. 
In other words, we want to build an intelligent debugger which can, with some 
guidance from the programmer, dig into the execution history information and do 
some automatic analysis to help the programmer locate the bugs more qUickly. 

Others have proposed trace-based debugging as a solution [Reiss93, 
AgDeSp91, ChMiNe91, Balzer69]. In trace-based debugging, we try to record all 
the events that happen during execution that are of debugging interest, such as 
memory stores, basic block entries, and function entries and exits. We also define 
a query interface, letting the user review the execution history. For example: when 
was the last time a variable was changed, what the control flow history was, and 
so on [ChMiNe91, Weiser84]. This is already sufficient for debugging purposes. 
With all the history information, we can tell the debugger to do many kinds of 
intelligent analysis to automate the debugging process [Reiss93]. 

In this paper, we provide a program-level query language on the trace 
information for debugging use and show how to efficiently organize all the infor
mation to quickly answer future queries, while still occupying affordable 
amounts of disk space. 

2. Related Work 

A fair amount of research has been conducted on tracing and replaying. 
The IGOR system [FeIBro88] uses the virtual memory system to periodically 
checkpoint the modified pages in the past interval. It can later restart the execu
tion at the beginning of any interval by simply restoring the address space and 
letting it go. This replay mechanism is flawed, and can not guarantee the same 
program behavior during replay. Also, restoring the program state for replay 
might be slow, as it could involve scanning through all the checkpoint files to find 
out the contents of a page. It attempts to emulate the original execution environ
ment during replay, but only provides an ad-hoc solution for naive I/O interac
tions. 

The Spyder system [AgDeSp91] is a source-level debugger capable of back
tracking. It does a static analysis on the source code during compilation and 
makes a conservative estimation of the set of variables that might be changed by a 
statement. During program execution, the old values of the variables in the 
change set are recorded before each statement is executed. After the program 
stops, backtracking is done by undoing the changes made by each statement. 
Because no real replay is performed, all the trace information must be stored. Spy-
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der tries to reduce trace size by using composite statements as basic r-acing units. 
This makes it difficult to debug a program with a bug inside a long loop. Also, 
because of its static analysis mechanism, side effects are hard to deal with. 

The AE system takes a different approach [Larus90]. It examines code at 
the RTL level defined in GNU compilers [Stallman89], and uses the program slice 
approach [Weiser84, HoReBi90] to extract the portion of code that contributes to 
address computations in memory accesses to generate a new program. This new 
program can reconstruct the execution trace from partial trace information gener
ated from the program run. This system can only regenerate trace addresses, and 
the old memory values can not be inferred from the partial trace. Also, trace 
regeneration is slow. The system is good for program profiling and behavior anal
ysis, but still not sufficient for debugging use. 

A profiling tool and a trace system are provided in [BaILar92]. The profil
ing algorithm does a static analysis on the control flow graph, and chooses a 
placement of counters. This algorithm is optimized, and frequently optimal, with 
respect to the expected or measured execution frequency of each basic block and 
branch in the program. The trace system uses a similar algorithm to instrument a 
program to obtain a subsequence of the basic block trace. The length of the subse
quence is optimized with respect to the program's execution, and an entire trace 
can be efficiently regenerated. These two systems achieve low run-time overhead. 
However, memory tracing is not done. 

The PPD system [MiICho88] uses flowback analysis proposed by 
[Balzer69] to help debugging. The system uses incremental tracing based on the 
idea of need-to-generate. During program execution, PPD writes a prelog upon 
entry of each procedure, containing the variables that might be read in this proce
dure. Upon exit, it writes a postlog containing the variables that might have been 
modified in this procedure. It then constructs a dependence graph to help the user 
to locate the faulty procedure, and replay is needed only when the user wants to 
look into the detailed execution history in a procedure calL This actually shifts 
some tracing overhead from run-time to debug-time. Because the sets of variables 
that might be read or written in a procedure is statically computed, PPD tends to 
trace more than needed. Also, replay might be slow for long-running procedures, 
increasing query response time. 

The demonic memory approach provides a good scheme for storing check
pointing information for future replay [WilMoh89]. An execution is divided into 
chapters, and snapshots are taken at the end of chapters for the modified pages in 
these chapters. Old execution chapters might be merged to save disk space. 
Therefore, retrieving old trace information will need more time. However, this 
system does not trace memory accesses. 

The trace system in [NetWea94] divides execution into windows, and tries 
to bound the setup time and the replay time for each window. It traces the mem
ory loads and stores, and achieves low run-time overhead and small disk storage 
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for traces. It is, however, difficult to examine the past program states ~'..I.ickly, even 
the ones at window boundaries. Also, no control flow history is recorded. 

In general, previous work has been focusing on how to trace programs 
with less run-time overhead, reduce the size of trace information needed for 
replay, and start up a replay session quickly. Most of them are only interested in 
the memory history, neglecting the control flow history. They do not provide a 
notion of time during past execution, and fail to organize the trace information 
meaningfully so that the program state at any past time can be quickly examined. 
In general, tracing in these systems are mainly for program replay or performance 
study, rather than debugging. Also, the reproducibility of program behavior has 
not been well studied. 

3. Objective 

Our ultimate goal is to let the user examine the execution history easily 
and quickly. This work can be divided into collecting trace information, organiz
ing it meaningfully, compressing it to save disk space, and providing a program
level query language. 

Collecting trace information from a program execution will inevitably 
introduce run-time overhead to the original program. In trace-based debugging, 
play refers to the first and only time we let the program run on its own while col
lecting trace data. Because the program will only be run once, we are not very 
concerned about the overhead during play. Currently, our tracing system can 
monitor all the explicit memory loads <through load instructions) and stores, 
basic block entries, function entries and exits, and system calls occurring in the 
program being debugged. For system calls, we use the trap code to find out their 
influence on the running program, for instance, whether it will read from memory 
or modify a memory region. 

Since we are tracing all memory stores and basic block entries, the amount 
of raw trace information generated is huge. A small experiment shows that one 
second of real execution time can generate as much as 200M bytes of information. 
We certainly do not have this much disk storage even for program runs of modest 
lengths. Thus, trace compression is needed. There are two kinds of compression 
techniques applicable to our problem. One is to use a general-purpose compres
sion algorithm <e.g. the one used in gzip). The other is to only keep a small 
amount of information and use it to regenerate the information we want later. The 
latter requires us to replay the program. 

Guaranteeing the same program behavior during replay is crucial. The dif
ficulty of doing this is that programs interact with their environment. Since the 
environment is ever changing, the programs' behavior is not reproducible. For a 
normal program running in user mode, all it can see is its address space and regis
ter values. The only way for it to get information which is outside its address 
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space (the environment) is through system calls. This suggests that a program's 
behavior solely depends on the initial state which includes the memory address 
space and the register values, and the results of system calls. As long as we can 
reconstruct the address space and the register values, and provide the original 
results of intermediate system calls, we can replay from any point in the past exe
cution and get the same program behavior. 

This requires us to trace all the changes to the address space during play, 
either by explicit instructions or by implicit operating system operations. Memory 
accesses done by the operating system are especially hard to catch. For instance, 
the register window technique is used in SPARe architecture [Sun90]. A save 
instruction in this architecture mayor may not generate a register dump to the 
stack area, depending on the availability of register windows. An interrupt can 
happen between any two instructions, and when it occurs, a kernel interrupt han
dling routine is executed. Inside the interrupt handler, several save instructions 
might be executed, causing some of the register windows used in user code to be 
dumped onto the user stack. Since we can not trace the kernel code, such memory 
accesses are difficult to detect. However, the kernel code will not implicitly mod
ify the program-defined memory area (e.g. program variables). If we assume that 
the program will not try to access any system-defined memory, it is not necessary 
to detect the accesses made by the operating system. 

Signals also need special care during play and replay. We need to record 
the time a signal is sent to a program and emulate it during replay. We can detect 
the occurrence of all signals by installing a master signal handler for all the sys
tem-defined signals. When the master signal handler is activated, we record the 
address of the instruction after which the program is interrupted by the signal, 
and the number of basic block entries so far to identify the occurring time. Then it 
will call the user-supplied signal handler. During replay, we can temporarily alter 
this instruction to branching to another instruction sequence, which checks if a 
signal handler needs to be called. Hardware interrupts are almost impossible to 
record and replay, however, because they are transparent to the user program. 

Shared memory buffers used in UNIX and most other operating systems 
also present some problems for tracing. With shared memory, another process can 
modify the values in the buffer at any time, and the current process has no way of 
knowing memory was modified. In this case, tracing only the old values for store 
messages is not sufficient for replay, because future reads from the buffer might 
not be getting the value from the last store. Therefore, loads whose source 
addresses are in shared memory buffers are treated as a special case, and their val
ues are always logged and provided during replay. In our current implementa
tion, we do not check the memory accesses implicitly done by the operating 
system, and have not implemented emulation of signals during replay and catch
ing shared memory loads. 

Another problem we faced is although we want to reduce the size of trace 
data, we must maintain it in an easily accessible state so it is still of use. We com-
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press or discard some of the trace information to reduce disk storage requirement, 
but we still want to be able to answer queries about past execution quickly. There 
is inevitably a trade-off between reducing response time and compressing trace 
information. The more the information is compressed, the slower the response 
time is likely to be. However, since the response time is only important to the user, 
and human beings are considerably slower than computers, as long as the 
response time is below a threshold, it will be acceptable. This observation gives us 
more freedom in compressing trace information. Also, from our past debugging 
experience, the user will normally stop the program shortly after the program 
began to behave wrongly. From this we can imply that the old trace information is 
less likely to be referenced. We do, however, need full details of the recent trace 
information because most queries will be centered around them. This led us to the 
design of a collapsible file format. For aging information, we only need to store 
the information that is adequate for regenerating the trace messages for that time 
frame. For the most recent information, we will keep full details. This is similar to 
the demonic memory approach as in [WilMoh89]. For most queries about recent 
information, we consider under one second as an acceptable response time. For 
queries about old trace information, a response time of two seconds or more is 
still tolerable. The algorithm presented in this paper does not have an upper 
bound on query response time, but for most queries, it can respond within one 
second. The query response time in our algorithm primarily depends on the detail 
level of the trace files. 

While maintaining a quick response time is important, providing a query 
language to help the user to examine the memory history and the control flow his
tory conveniently is vital as well. The program-level query language we provide 
in this paper is not intended to be used by end-users within the debugger. 
Instead, it is only able to answer assembly level queries about the execution his
tory and has no knowledge about the source code and the high-level program
ming languages. The debugger front end has access to the source files as well as 
knowledge about the underlying programming language, and will try to translate 
source-code-oriented, user-level queries into the program-level ones. 

To make trace-based debugging practical, we assume state-of-the-art 
machines with a fast CPU, a lot of RAM, and large disk capacity are being used, 
because trace-based debugging involves considerable run-time computation and 
disk I/O operation. The type of machine we are running our tests on is a Sun 
SPARC 10 model 41 with 32M RAM and 1GB disk. 

As a summary, we want to be able to debug programs that do not access 
the memory areas that can be implicitly modified by operating systems. Ideally, 
we would like to see a slowdown factor of under ten during play to make trace
based debugging practical, but in our current implementation, it is much more as 
shown in section 10. We want to be able to debug programs running for about 
twenty minutes and generate less than 1GB of trace information, since 1GB disks 
are becoming popular. As for query response time, we consider being able to 
answer queries about recent trace information under one second acceptable. For 
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trace information that needs to be restored by replay, a response time of between 
ten seconds to one or two minutes is still tolerable, depending on how old it is. 

4. Architecture Overview 

-------------------------f---~~:~~~:-----l-i 
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The above figure shows the architecture of a trace-based debugger. Arrows 
denote information flows. A play/replay system is used to collect the trace infor
mation from program executions. It sends out trace messages to the trace orga
nizer during play and replay. The trace organizer is responsible for organizing 
and compressing the trace information it receives, and writing it into trace files. A 
program-level query answerer tries to answer queries from the debugger front 
end using the information in the trace files. It also occasionally requests the replay 
system to replay the program execution at different levels of detail to reconstruct 
trace information that was not induded in the trace files or deleted at some point 
due to disk space shortage. The components whose design we are going to 
address in this paper are outlined in the dashed box in the figure. 

5. Play 

In this section, we discuss how to collect trace information from program 
executions and what to collect. 

5.1 Trace information collection 

Most fine-grain tracing systems instrument the user code to obtain trace 
information. Instrumentation can be done at different phases of the compiling
linking-loading process. We could translate the source code to include statements 
that call the trace hooks, insert code into object files (either by modifying the com
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pilers or by directly looking at the binary object code) [HasJoy92], translate the 
intermediate assembly files into ones containing hook-calling instructions 
[NetWea94], or instrument code into the executable after linking [MIPS88]. 

We collect trace information by dynamic patching. Dynamic patching 
refers to inserting monitoring-purpose instructions into the process image at run
time. Our monitoring code exists in the form of a shared library, and thus has an 
initialization routine which will be called before mainO is called. During initializa
tion, we find out all the code segments existing in the process, including user code 
and shared libraries. We then patch all the code. For each code segment, we allo
cate another chunk of memory to accommodate the patch code. Patching is basi
cally translating the original instructions into another sequence of instructions, 
which, for interesting instructions, prepares the trace information, calls the hooks, 
and finally executes that instruction. For instance, a store instruction will be trans
lated into another instruction sequence which figures out the target address and 
sends it, along with the old value and the address of this instruction, to the trace 
hook. The trace hook will then send this store message to another process which is 
the message processor through a shared memory buffer. When the hook returns, 
the original store instruction is executed. Each patched instruction is repla...ed by a 
branch to the patch code sequence, while uninteresting instructions are left 
untouched. Unlike incremental patching, this approach allows us to do patching 
once and for all. Dynamic patching also lets us monitor shared library code very 
easily. However, because of the extra branches between the original code area and 
the patch area, this system is slower than Purify [HasJoy92] and PIXIE [:MIPS88]. 
We chose to use dynamic patching because it is relatively easier to build such a 
prototype system for research use. In section 10 we will see that the dynamic 
patching mechanism itself bears considerable run-time overhead. 

We implemented our run-time trace collector on Sun SPARe architecture 
machines running SunOS 4.x and Solaris 2.3. As we might use different trace 
hooks and trace different events (e.g. load, stores, block entries) for different 
debugging purposes (e.g. play, replay), a mechanism that can easily change trace 
hooks and trace items is needed. To reduce run-time overhead, changing trace 
items requires us to repatch the code to avoid unnecessary patching for the events 
we are no longer interested in. Repatching can be done by putting back the 
instructions that do not need to be monitored back into the original code area, and 
replace the instructions that become interesting by branches to their patch code. 
To conveniently change the set of trace handlers, we use a global register to point 
to a branch table which has the addresses of the handlers of trace items. In each 
patch sequence, we put a jump and link instruction which uses that register and 
the current trace type to find the handler. 

5.2 What to collect 

During play, we need to gather trace information of debugging interest as 
well as information that is necessary for correct replay. Replaying from the very 
beginning of the program execution only to generate partial trace information is 
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not necessary. We divide the whole execution into windows as in [WilMoh89, 
NetWea94]. An execution window is a consecutive segment of the original execu
tion, and is the basic replay unit in our design. To limit the response time to a tol
erable range, a window should not take long to replay. Currently, we decide to 
create a new window for every N basic block entries. To correctly replay a win
dow, we need to reconstruct the address space and the register values at the 
beginning of that window, as well as providing the original results of intermedi
ate system calls. We can also further relax our conditions. If we can restore the 
memory words the program is going to read in a window, together with the initial 
register values and intermediate system call results, we can fully reproduce the 
trace information for the window. This is sufficient because von Neumann com
puters are designed to be deterministic. As long as an uninterrupted program gets 
the same initial input, it will produce the same output. A program's only input 
methods are loading register values, reading from memory, and getting informa
tion outside its address space through system calls. Therefore, we only need to 
store these three kinds of information for each window. 

We patch memory loads, stores, basic block entries, function entries and 
exits, and system calls during play. Patching loads is needed because we want to 
know which pages will be read in an execution window so that we can correctly 
replay it later. For loads, we only need the target address. For stores, we need the 
target address, the instruction address, the timestamp, and the old value. The 
timestamp is needed for identifying the address space state at a past execution 
moment. The instruction address is recorded because later we might need to 
replay the program execution up to this store event to check the then register val
ues, which are part of the program state. For function entries, we collect the from 
and to addresses, and the incoming arguments. For function exits, we record its 
exit address and the return value. For basic blocks, we gather the addresses of 
their entry points. For a system call, if it involves writing to user address space, it 
is treated as a store message. Since system calls will be simulated during replay, 
which means we will only provide the return value and modify the memory loca
tions it modified, the memory words they will read need not be traced. 

Program address space 

Loads .1 Load I 
Tracing 

--I buffer 1 

code 
Others I Messag~ 

-:-"1 buffer 1 

System calls 

Loads 

Others 

-.. 
~ ... 

-
Trace organizer 

Blocks.1 
--_I 

Block 
buffer 

I 
1 

Blocks 
.. 

In our implementation, we have three separate buffers, a load buffer, a 
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message buffer, and a block buffer, as illustrated in the above figure. The load 
handler just puts the target address into the load buffer. The load buffer is flushed 
once it is full and a message is sent out to the message processor. The block buffer 
holds basic block entry addresses. Since the number of basic block entries for an 
execution window is fixed, we can set the block buffer size accordingly so that it 
only needs to be flushed once for each window. Another global register is used to 
hold the current timestamp and is decremented upon each basic block entry. All 
the other messages are buffered in the message buffer and are flushed when it 
gets full. System call messages are sent out to the message processor immediately. 
Since they do not happen that often, this design choice will not slow down the 
execution significantly. 

For load messages, we are actually only interested in which pages are read 
in a window. It is a little inefficient to send out all the load addresses since many 
of them might belong to the same page. We are considering having an in-core bit
map, in which each bit corresponds to whether a memory page is read in the cur
rent window or not. The load handler will then set the bit for the page the target 
address falls into. Therefore, the bitmap only needs be sent out once for a win
dow. Currently our page size is lK. If the size of the virtual address space is 4G, 
the bitmap size will be 512K bytes, which is acceptable. The message processor 
can then check the bitmap to see which pages were read. This will reduce the 
workload of both the run-time load handler and the message processor. 

We patch all the interesting instructions, instead of a subset of them from 
which the execution history can be reconstructed as in [BaILar92, Larus90]. This is 
because later, due to disk storage shortage, we might discard the trace informa
tion for some windows and only keep summaries for the execution in these win
dows. The summaries must be accurate so that we will not replay unnecessary 
windows to locate the window containing an interesting state. Thus, we need a 
complete execution trace during play to generate accurate summaries. Also, col
lecting partial trace information during play might increase query response time, 
since reconstructing is needed at debug-time. 

6. Query Interface 

With the trace information generated by the trace collector, we need a 
query language that can help the user to examine the past execution. We provide 
two classes of query commands: state-locating commands and state-examining 
commands. State-locating commands help the user to find a particular time in the 
past which is of debugging interest. Then the user can use the state-examining 
commands to check the program state at that time, including the whole address 
space, the program counter, and register values. 

To do this, we must first provide a tangible notion of time. For our pur
poses, time is discrete. Each trace event generates a new program state, and each 
program state corresponds to a new discrete time. The wall clock times at which 
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events happen are generally not interesting to the programmer, nor are program
mers usually interested in knowing that a specific instruction is the n-th instruc
tion of the execution. What programmers seem to really be interested in is the 
relative ordering of events. For instance, programmers often want to know when 
a variable was last modified relative to current time, instead of specifying the n-th 
modification of that variable. We also find that the variable history information 
and the control flow history information are of particular interest to program
mers. 

The above observations lead to our design of the state-locating commands. 
A basic block is a sequence of straight-line code. For simplicity, we consider each 
basic block entry as a new discrete time. This is sufficient for reconstructing the 
normal control flow history. Interrupts are hard to catch, and we do not consider 
them as part of the normal control flow history because they are transparent to the 
user program. We also keep a notion of current time. When the program is 
stopped and the user wants to examine the execution history, current time is the 
last program state, namely, the stopped program state. Then the user can change 
current time by the following commands: 

•	 Move current time to the first program state (when the program 
execution began), or the last program state (the stopped program 
state). 

•	 Move current time to the n-th occurrence of a variable being 
modified, either forward or backward in time from the current 
program state. 

•	 Move current time to the n-th occurrence of a specific basic 
block, function entry, or function exit, either forward or back
ward in time from the current program state. 

•	 Move current time to the n-th previous or next program state. 

These commands can easily help the user find out the variable and control 
flow histories, and are adequate for most debugging practices. Code is usually 
examined backwards to find the faulty section most recently executed, and then 
investigated further back to see what originally triggered the faulty code to be 
executed. Therefore, we make special efforts to speed up backward queries in 
organizing the trace information, as we will show later. 

Based on these program-level commands, we can construct user-level 
query commands such as: 

goto <from> <dir> <type> <count> where <context> 

where <from> is one of current, first, and last, and <dir> is either forward or back
ward. <type> specifies the type of the trace message generating a new program 
state that the user is interested in. It can be func_enter, func_exit, block_entry, or 
store. <count> denotes how many times this search should be repeated. <context> 
is a boolean expression further describing the interesting state. The boolean 
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expression can involve any variable defined in the program, as well as some spe
cial variables pertaining to the interesting message. For instance, the special vari
able stack indicates the call stack at the time the trace message was generated and 
can be matched by a regular expression in the query, src denotes the source line 
that was being executed at that time, oldval shows the old value of the memory 
word in a store message, and so on. With this command, many complicated que
ries can be easily expressed. For instance, to find the second most recent state 
where the 7th line of file foo.c was executed and the top of the call stack looked 
like (a,b), we can say 

goto current backward block_entry 2 
where stack=<*,a,b> and src=<foo.c,7> 

The state-examining commands are used to examine the program state at 
current time. The two basic operations we provide are: 

•	 Check the value of any memory word in the address space. 

•	 Check the values of hardware registers. The main reason we pro
vide this is that on modern RISe machines, function call argu
ments are often put into registers to improve performance and 
their values are important to the programmer. 

The address space and register values are all a program state entails. We 
can compute all the other information that might be interesting to the user from 
them, for instance, the current call stack. In order to reduce query response time, 
we do store some redundant information which will frequently be asked by the 
user. The user-level commands for examining current state will be very similar to 
the ones provided by traditional debuggers such as dbx. 

All these query commands are virtual address-oriented as this is a pro
gram-level query language. In the future, we will have an interactive front end to 
the debugger which has knowledge about the underlying programming language 
and the source code, and will translate user-level SYmbol-oriented queries into 
this program-level language. 

7. Trace Organization 

In this section, we discuss how to organize the trace information in a mean
ingful way to speed up future queries, and compress it at the same time to save 
disk space. 

Dividing the execution into windows has several advantages. Instead of 
having one single huge trace file, we associate with each window several files 
which describe the execution in this window. Different file formats might describe 
the execution in different levels of detail. Multiple files prove easier to maintain. 
Aging information is also easy to collapse since it is gathered in relatively small 
files. It also helps to clearly separate the information we will need to examine at 
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any given time. To save more space, we will compress many of the trace files 
using a general-purpose algorithm (e.g. gZip). As we will show later, our algo
rithm requires that only the trace file corresponding to the current window needs 
to be uncompressed to examine the address space at current time. This lets us 
compress most of the trace information without hurting query response time. 

Each basic block entry marks a new discrete time. The number of basic 
block entries occurred so far in the current window will be used as a timestamp 
which will be attached to most other messages. For each window, we have a trace 
file and a block file associated with it. A trace file contains all the events that hap
pened in this window listed in order of time. The events are stores generated by 
store instructions, stores generated by system calls, function entries, and function 
exits. Each event has a timestamp in the message. The block file is just a list of 
basic block entries that happened in this window listed in order of time. A trace 
file and a block file together give a full description of the execution history for a 
window. Note that trace files and block files might be compressed or deleted so as 
to save disk space and provide different levels of execution history details. Our 
internal representation for current time is a timestamp and a pointer which points 
to a message in the trace file to identify the address space at that time. 

To speed up backward queries, we extensively use backlinks to link inter
esting events together. Backlinks will be inserted into store messages to point to 
the last store message which modified the same memory location [ChMiNe91]. 
Function entries and exits are also backlinked according to the entry and exit 
addresses. Block entries are not. We keep an in-core backlink table which uses 
memory addresses as keys and keeps the linked list heads for each memory word. 
If we are not careful, the size of the backlink table can get very large. For instance, 
on a 32-bit machine, the size of the address space is 4G bytes and each word is 4 
bytes long. If we use a linear array and monitor each word, the size of the table 
will be 4G which is impossible to obtain on almost any machine. We observe that 
there are many unmapped holes in the address space and there is no sense in 
reserving table entries for them. In our implementation, we use three-Ievelseg
mented tables. We divide an address into three parts. The first-level table uses the 
first part as the index and its entries are pointers to second-level tables. Similarly, 
second-level tables use the second part of an address as the index and their entries 
point to third-level tables, which use the third part as the index and whose entries 
are the backlinks of addresses. If there is no information about the addresses with 
the same first part, its entry in the first-level table will be nil and no other space is 
allocated. If there is no information about the addresses with the same first and 
second parts, its entry in the second-level table will be nil. If we have some infor
mation about an address, space is allocated for all the other addresses with the 
same first and second parts. Because of program localities, this works well and 
consumes considerably less space. Two-level segmented tables have been used to 
monitor address space state in the past [NetWea94, WaLuGr93]. In our case, three
level segmented tables use even less space. 

Since trace files and block files might be compressed or even deleted, 
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restoring them to full detail is rather slow, we attach a Table Of Contents (TOC) 
file to each execution window which contains a summary of the execution win
dow of debugging interest, information critical for the replay of the window, and 
the contents of the pages at the end of this window which are modified in the 
window. TOC files are very helpful to determine whether or not a window con
tains the information we are interested in and thus wheth~r to uncompress or 
reconstruct the other files for that window. TOC files are very important in 
improving response time and are usually left uncompressed. However, to save 
disk space, TOC files might have different levels of detail as well. 

To help quickly find out a variable value at current time, we store the final 
contents of the pages modified in this window. They are never compressed. The 
algorithm to examine address space at current time is shown later in this section. 

Information critical for the replay of a window consists of the initial regis
ter values, the values of memory words to be read in this window, and the inter
mediate system call results. As we save the dirty pages in each window, we can 
reconstruct any page at the beginning of a window very easily. So we only need to 
save the list of pages to be read in this window instead of all the contents. But 
having all the contents ready does speed up the replay of this window. Therefore, 
this gives two levels of detail, the to-be-read page list and to-be-read pages. Due 
to program locality, many pages that are modified in a window are likely to be 
read again in the next window. We do not need to record those pages because they 
are likely to be recorded in TOC file for the previous window. The details of the 
replay algorithm is shown in section 8. 

The summary file is basically a snapshot of the backlink table at the end of 
the execution window. A count of message occurrences with an address as a key 
is also recorded in the snapshot. For store messages, this is the number of times a 
memory word was modified in this window. For basic block entries, this is the 
number of times a particular block was entered. Thus, for each memory word we 
have information for in this window, we have a backlink and a count for it in the 
backlink table snapshot, which occupies 8 bytes in our implementation. This sug
gests that the backlink table snapshot might get quite large. We provide an alter
native which is to collapse the backlink and the count into just one bit indicating if 
we have some message for this address in the window. This bitmap approach 
supplies less detail and reduces disk storage significantly. 

To avoid unnecessary replay, the information in back.link tables and bit
maps must be accurate about the execution history. Choosing a monitoring unit 
bigger than a word would reduce the size of backlink tables and bitmaps, but 
accuracy is compromised. For instance, if we only know a page is modified in a 
window, to decide whether a specific word is modified, we would have to replay 
the whole window. We choose to use a word as the monitoring unit because the 
target addresses of most stores and all instruction addresses are aligned at word 
boundary in 5PARC. 
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For long running programs, we can even merge the trace information of 
consecutive windows [NetWea94, WilMoh89]. By doing this, we are actually cre
ating bigger execution windows. We will not be able to save much by merging 
trace files and block files, but there is a lot of information in the TOC files that can 
be merged. To merge backlink tables, we take the last one and update the count 
fields by summing the counts in each backlink table. The ,size of the resulting 
backlink table will be the same as that of the last one. To merge summary bitmaps, 
we can just do a bitwise-or on them. Only the final contents of the pages modified 
in these windows need to be saved, and the intermediate contents of pages modi
fied in more than one of these windows can be discarded. Similarly, to merge the 
to-be-read pages, we take the initial contents. Because of program locality, we 
expect that a lot of pages dumped in intermediate windows can be discarded. Our 
experiments showed that if we merge N consecutive TOC files, the size of the 
resulting file will be cut by a factor of approximately N/2. 

In practice, we provide three levels of detail for the trace information of 
each window. Level 1 is the most compact one. It does not have a trace file or a 
block file. Its TOC file contains the initial register values, the system call results, 
the dirty pages, the to-be-read page list, and the bitmap. Level 2 is the same as 
level 1 except that we replace the bitmap with a backlink table snapshot. Backlink 
table snapshots are much more informative than bitmaps since they contain 
counts of occurrences which are especially useful for debugging long loops. Level 
3 provides full detail. It includes the trace file, the block file, the backlink table 
snapshot, to-be-read pages, the dirty pages, and the other information needed to 
perform replay. These files are degradable over time. We only keep level 3 infor
mation for most recent windows, and will always expand the trace information 
about the window containing current time to level 3 when answering queries. We 
will discuss how to restore trace information from low detail level information in 
the next section. 

Because we have trace information of detail level 3 for the current window 
and save the modified pages in each window in its TOe file, examining the 
address space at current time is very easy. To get the value of a memory word, we 
first check its entry in the backlink table in the current TOC. There are three cases: 

•	 It points to somewhere in the current window. Then the page 
containing this memory word was modified and its final state is 
dumped in the current TOC. Since our store messages have the 
old values in them, all we need to do is to follow the chain to 
find a store message which is the first one that happened after 
current time. If we can find such a one, the memory word value 
is in the message. Otherwise, it is in the dumped page in the 
TOC. 

•	 It points to somewhere in a previous window. Then the last time 
it was modified is in that window and we have dumped the 
page in the TOC for that window. Since dirty pages are not com
pressed, just pull that word out from the page. 
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•	 It points to nil. This means the memory word has not been 
changed since execution began. In our implementation, we fork 
the initial process image before the real execution begins. So the 
value can be found in that image very quickly. 

From the above discussion we can see that address sp(ice examination only 
requires the trace information of current window be expanded to level 3. As long 
as we have all the dirty pages of each window readily available, no other trace 
information needs be uncompressed or expanded. This gives us a lot of flexibility 
on efficiently using the limited disk space. 

8. Replay 

There are two kinds of replay we need. One is used to regenerate trace 
information for execution windows, referred to as full replay. The other one, par
tial repla~ is used to reconstruct the register values at current time. Register val
ues are almost always changing. It is impractical to record their values at run-time 
and in trace files, as it will slow down program execution significantly and use a 
lot of disk space. We choose to replay the current window up to current time to 
obtain the register values at current time. 

8.1 Full replay for trace data 

To prepare for a replay, we need to restore the pages to be read in this win
dow to their initial states at the beginning of the window as well as register val
ues. Resetting register values is trivial. If we have the to-be-read pages available 
in the TOC file, we can simply copy them into the user address space. If we only 
have the to-be-read page list, we again can use the TOC files to quickly find out 
the page contents at the beginning of the window. Getting the page contents at the 
beginning of a window is the same as getting the contents at the end of the previ
ous window. First, we check the TOC file of the previous window. If it has a back
link table, we can immediately find out where the page was last dumped or if it 
has not been changed since execution. If it does not, we can still search the previ
ous TOC files to locate the one that has the information about that page. 

After we have restored the register values and the pages to be read, we use 
another set of trace hooks without repatching code. Because during full repla~ we 
are no longer interested in load traces, we need to repatch the code to turn off 
monitoring on loads. Also, system calls will be simulated by our monitoring code 
using the recorded results. For each system call, we supply the original return 
value and set the memory regions affected by this system call accordingly. All the 
other handlers work in the same way as in play. A global register is set to the 
number of basic block entries in this window, and is decremented on each basic 
block entry. Replay stops when the register reaches hits zero. 

By fully replaying a window, we can restore the trace file and the block file. 
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However, we can only reconstruct part of the backlink table. If the TOe file for the 
previous window does not have a backlink table, we are not able to chain mes
sages across windows. This is not a serious problem, however. We use lazy evalu
ation to get around it. When the user tries to follow the chain to locate a message 
outside current window, the window containing that message will become the 
new current time in most cases. We then search the TOC files to locate that win
dow and replay it. Now we have the backlink table for the new window and can 
reconnect the chain. 

8.2 Partial replay for register values 

This technique is mostly used to get the register values at current time. To 
do this, we restore the pages to be read and the initial register values. Replay will 
stop when the timestamp reaches the current time. No messages need to be sent 
out except the register values when the replay stops. We only patch the basic 
block entries, and keep updating the number of basic blocks entries replayed so 
far to determine when to stop. Only a small amount of on-line computation is car
ried out and the whole process is very fast (under one second in our current 
implementation). 

Since a basic block usually contains more than one instructions, sometimes 
the user might wish to replay up to a certain instruction in current basic block. 

\	 Because basic blocks only contain straight-line code, a dynamic instance of an 
instruction in a basic block can be uniquely identified by its instruction address 
and the basic block instance it is in. The basic block instance can be identified by 
its timestamp. To replay up to an instruction in current basic block, we first use 
the same algorithm to replay up to the entry of current basic block. Then we tem
porarily change that instruction into a branch to a special hook. Inside the special 
hook, we execute the original instruction, put it back into the patch code, and stop 
replay. 

9. Current Time Movement 

We have showed how to examine the program state at current time in the 
previous sections. In this section, we discuss how to perform the state-locating 
commands based on our trace organization. Since the block file is not that big 
(about 1.6M in our current implementation which creates a new window for 
every 400K basic block entries), we keep the current block file in core so scanning 
through it is not expensive. We also expect that most of the current trace file is 
fetched in core by the operating system due to frequent references. TOe files are 
left uncompressed and are usually small, so searching through them is not expen
sive, either. 

( 

lnfonnation Query in Trace-based Debugging May 19,1994	 I7 



9.1 Fast location of the interesting window 

Each execution window can be replayed fast (in about two seconds in our 
implementation), and once its trace information is expanded to level 3, most que
ries can be answered quickly. Therefore, it becomes very important for us to locate 
the window containing the interesting state and potentially expand or uncom
press it in a short time. 

TOC files are intended to help speed up this process. If the trace informa
tion of a window has a backlink table snapshot, we can find the last occurrences 
of messages (either in the current window or a previous window), and the counts 
of occurrences in the current window. This is sufficient for the query types we 
propose, because most of them provide interesting addresses and counts from 
current time as arguments. If the TOe file only has a bitmap summary, we still can 
infer from it whether an event concerning a specific address happened during this 
window or not. Then we can decide whether to expand it or not. 

9.2 Current time movement 

9.2.1 Move to the first/last state. 

This is straightforward, simply go to the first or last window. 

9.2.2 Move to the n-th occurrence of a variable being modified, either backward or 
forward. 

At first we need to locate the window that contains the messages we are 
looking for. This can be done by looking at the counts in the backlink tables in the 
TOC files. If an intermediate window only has a bitmap summary, replay is 
needed. Since we keep the recent information in detail level 3, this situation is 
unlikely to happen frequently. Even if so, fully replaying a window is usually fast, 
taking under two seconds, as shown in section 10. 

Once we have located the window containing the interesting state, we 
expand the trace information to level 3, if necessary. Then by following the back
link chains, we can quickly find the store message we are looking for. We update 
current time by setting it to the timestamp included in that store message. The 
address of the current basic block can be directly looked up in the block file using 
the timestamp as the index. 

9.2.3 Move to the n-th occurrence of a specific basic block entry, function entry, or 
exit, either backward or forward. 

If we are looking for a function entry or exit, we can use the same proce
dure we do for finding the n-th occurrence of a variable being modified. 
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If we are looking for a basic block entry, we use a similar procedure to 
locate the window containing the interesting state. We then expand that window 
to detail level 3 if necessary. Now we have the block file which is cached in mem
ory, and can search through it to find out the interesting block entry. The current 
timestamp is just the index of that entry in the block file. 

9.2.4 Move to the n-th previous or next program state. 

This is really trivial. Since we have all the basic block entries listed in the 
block file, just find the n-th previous or next entry in the file. If the target state is 
going to be in another window, expand that window accordingly. 

As we can see, in most of the cases, if we ever need to expand the trace 
information of a window, the new current time will be in that window. The user is 
likely to examine the program states contained in that window and it does not 
need to be expanded again. 

10. Performance 

The performance data presented in this section is collected from programs 
run on a Sun SPARC 10 model 41 with 32M memory running SunOS 4.1.3. We cre
ate a new window for every 400K basic block entries. We did our tests on three 
applications. Ray is a ray tracer program generating a 200 by 200 pixel image for a 
scene containing 26 spheres. Gzip is compressing a 2.8M file. They are both CPU
bound programs. Nvi is a ten-minute text editing session using nvi, which is an 
improved version of the text editor vi. 

Table 1 shows the average sizes of different information per window. Table 
2 shows the average disk space each level of detail occupies. All the numbers are 
in Kbytes. The original execution time is the sum of user and system time used for 
the applications in seconds. The entries in Table 2 with ""s are the sizes of the 
information after being compressed by gzip. From the numbers we can see that it 
is impractical to keep all the trace information in detail level 3. However, if we 
collapse aging information into low detail levels, compress some of the trace files 
and block files, we can effectively use a 1GB disk to trace long running programs. 
Currently, each window corresponds to about 0.06 seconds of real CPU execution 
time. For really old information, we can merge consecutive old windows to signif
icantly reduce the disk space occupied by level 1 information. Our experiments 
showed that if we merge N consecutive level 1 or level 2 trace files, the size of the 
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resulting file will be cut by a factor of approximately N /2. 

TABLE 1. Average sizes of different items of data per window. 
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ray 1379 86.14 37 27 22 318 2.2 12365 1637 
gzip 432 25.97 39 5.7 187 691 6.7 2464 1634 
nvi 26 -60001 

0.602 

52 85 52 824 16.1 4764 1632 

1. Elapsed time. 

2. Real execution time obtained by refeeding the same input to nvi through a file. 

TABLE 2. Average disk space each level of detail occupies. 

Trace 

Levell (kbytes) Level 2 (kbytes) Level 3 (kbytes) 

Per win. Total Per win. Total Per win. Total 

ray 65 89085 346 477228 14371 
*3112 

19817609 
*4291448 

gzip 51 22249 238 102964 4990 

*1058 

2155643 

*457056 
nvi 153 3978 926 24076 7381 

*1757 

191906 

*45682 

From the data collected from nvi we can see interactive programs are very 
different from CPU-bound ones. Although their executions last longer, much less 
computation is done due to slow human interaction. Since the replay time only 
depends on the amount of real computation involved in the execution, replaying 
interactive programs takes much less time. 

Table 3 shows the overhead incurred during play. Times are in seconds and 
are divided into user times and system times. We set up a set of empty trace han
dlers, which simply jump back to the patched code and do not do any processing, 
to see the overhead caused by patching which is shown in the "Empty hooks" col
umn. The execution times during full play are shown in the "Play" column. The 
overhead caused by empty hooks is mainly from the dynamic patching mecha
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nism itself and has little to do with the on-line computation for trace information. 

TABLE 3. Overhead of play. 

Trace 

Original (seconds) Empty hooks (seconds) Play (seconds) 

Total 
Per 

window Total 
Per 

window ' Total 
Per 

window 

ray 86.04u+0.lOs O.06u 735.05u+O.lls 0.53u 3977.96u+4.23s 2.88u 

gzip 25.60u+O.37s O.06u 143.35u+O.49s 0.33u 601.42u+1.85s 1.39u 

nvi 10 minutes in total not noticeable negligible 

Table 4 shows the time needed to replay windows for restoring trace infor
mation (full replay), and the time needed to replay to the end of windows for 
checking register values (partial replay). The latter tells us the upper bound on the 
response time of such queries. No real on-line computation is done during this 
kind of replay except updating the current timestamp upon basic block entries. 
For full replay, the trace information for a window can be reconstructed in about 2 
seconds. Partial replays can be performed in less than one second, which is still 
within the response time tolerance. 

TABLE 4. Replay time. 

Trace 

Full replay (seconds) Partial replay (seconds) 

Total Per window Total Per window 

ray 2969.68u+3.03s 2.15u 1092.89u+O.265 0.79u 

gzip 425.46u+1.34s 0.98u 235.31u+O.51s 0.55u 

nvi 7.70u+0.85s 0.30u 3.34u+O.34s O.13u 

Table 5 shows the slowdown factor and trace generation rate for play, full 
replay, and partial replay. Trace generation rate is the ratio of the size of trace 
information we need to keep to the original execution time. Different detail levels 
of trace information have different trace generation rates. Trace generation rates 
can tell us the length of program execution we can afford to debug given limited 
disk space. The rates shown in the table are in kbytesl second. For the nvi applica
tion, the rates are calculated by dividing the trace size by the rough running time. 
Therefore, they are only approximations. Again, the rates can be reduced by 
merging windows. From the numbers we can see, we need about 1MB trace infor
mation for each second of execution in our current implementation. This allows 
us to debug CPU-bound programs running up to about ten minutes with a 1GB 
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disk and interactive programs for much longer. 

TABLE 5. Slowdown factors and trace generation rates. 

Trace 

Slowdown factors Trace generation rates (kbytes/sec.) 

Play Full replay Partial replay Levell Level 2 

ray 46.2 34.5 12.7 1034 5540 

gzip 23.5 16.6 9.2 867 3965 

nvi N/A 14.8 5.6 0.66 4.01 

11. Conclusion 

Trace-based debugging collects trace information from program execu
tions. The amount of raw trace information is generally huge even for short run
ning programs. Organizing this information compactly to reduce storage space, 
and meaningfully to speed up future queries, becomes very important. In this 
paper, we provide a set of program-level query commands and a scheme for effi
ciently storing trace messages. We divide execution into windows. Each window 
has a TOC file which is a summary of the execution history of that window, and 
might have detailed trace information stored on disk. The size of TOC files is 
small and they are mergable to save even more space. We introduce degradable 
trace file formats so that old information that is unlikely to be queried will occupy 
much less disk space. If this information is ever needed again, we can restore it by 
quickly replaying that window. 

Our file storage scheme allows us to compress or discard the trace informa
tion files for all the windows other than current window, and still be able to 
quickly answer the queries about the program state at current time. 

Our results show that we can debug CPU-bound programs running for 
about ten minutes with a 1GB disk for storing trace information. Our current 
implementation for the play/replay system is still not optimized, and incurs con
siderable run-time overhead. We believe we can improve it by a factor of two or 
three in the future. 

12. Future work 

There are still some instructions which might implicitly touch memory and 
are not caught by our run-time trace collector. For instance, the save and restore 
instructions in the SPARC architecture sometimes read from memory to restore 
the registers values or write register values to memory [Sun90]. To guarantee the 
correctness of replays, we need to catch them as well. 

Because we simulate system calls during replay instead of re-executing 
them, the original environment is not being reproduced. The user might feel a lit-

Infonnation Query in Trace-based Debugging May 19,1994 22 



tIe disoriented about this. For instance, whp!l. debugging an X application, what 
the user sees on the screen might well be inconsistent with the program state they 
are examining. Work still needs to be done in this area. 
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