
BROWN UNIVERSITY

Department of Computer Science

Master's Project

CS-96-M7

"The Dynamic Adaptation of Parallel

Mesh-Based Computation"

by

Jose Gabriel Castanos

The Dynamic Adaptation of Parallel

Mesh-Based Computation

Jose Gabriel Castaiios

Sc.M. Thesis

Department of Computer Science

Brown University

Providence, Rhode Island 02912

May 1996

-".

The Dynamic Adaptation of Parallel

Mesh-Based Computation

by

Jose Gabriel Castanos

Licenciate in Operations Research

Dniversidad Cat6lica Argentina, 1989

Thesis

Submitted in partial fulfillment of the requirements for

the Degree of Master of Science in the Department of

Computer Science at Brown Dniversity

May 1996

This thesis by Jose G. Castanos

is accepted in its present form by the Department of

Computer Science as satisfying the thesis requirement for

the degree of Master of Science.

Dathif.6 ..~.[; .
John E. Savage

Approved by the Graduate Council

Date .

Kathryn T. Spoehr

ii

1 Introduction

Although massively parallel computers can deliver impressive peak performances, their com

putational power is not sufficient to simulate physical problems with highly localized phe

nomena by using only brute force computations. Adaptive computation offers the potential

to provide large increases in performance for problems with dissimilar physical scales by

focusing the available computing power on the regions where the solution changes rapidly.

Since adaptivity significantly increases the complexity of algorithms and software, new de

sign techniques based on object-oriented technology are needed to cope with the complexity

that arises.

In this thesis we study problems that arise when finite-element and spectral methods

are adapted to dynamically changing meshes. Adaptivity in this context means the local

refinement and derefinement of meshes to better follow the physical anomalies. Adaptation

produces load imbalances among processors thereby creating the need for repartitioning of

the work load. We present new parallel adaptation, repartioning and rebalancing algorithms

that are strongly coupled with the numerical simulation. Adaptation, repartitioning and

rebalancing each offer challenging problems on their own. Rather than studying these

problems individually we put special emphasis on investigating the way these different

components interact. By considering adaptivity as a whole we obtain new results that are

not available when these problems are studied separately.

We discuss the difficulties of designing parallel refinement algorithms and we introduce

a refinement algorithm based on the Rivara's bisection algorithm for triangular elements

[1], [2]. By representing the adapted mesh as a forest of trees of elements we avoid the

synchronization problems for which Jones et al use randomization [3].

We propose a new Parallel Nested Repartitioning algorithm that has its roots in the

multilevel bisection algorithm of Barnard et al [16]. It produces high quality partitions at a

low cost, a very important requirement for recomputing partitions at runtime. It has a very

natural parallel implementation that allows us to partition meshes of arbitrary size. The

collapsing of the vertices is performed locally using the refinement history and avoiding the

1

2

communication overhead of other partitioning methods [19]. Compared to iterative local

migration techniques [42] this method does not require several iterations to rebalance the

work.

Finally we design a mesh data structure where the elements and nodes are not assigned

to a fixed processor throughout the computation but can easily migrate from one processor

to another in order to rebalance the work. The mesh is represented as a set of C++

objects. To avoid the problem of having dangling pointers between different address spaces,

the references to remote objects are handled through local proxies. These proxies keep track

of the migration of objects a.<; a result of load balancing.

To evaluate these idea.<; we designed and implemented a system in C++. This program

runs on a network of workstations (NOW) and uses MPI [23] to communicate between

processors. The most salient characteristic of adaptive codes is the high sophistication

of their data structures. The use of object oriented techniques allowed us to reduce the

complexity of the implementation without significantly affecting the performance.

Mesh-based computation

The numerical solution of complex partial differential equations using computational re

sources requires the definition of a domain n in which the problem is to be solved and a set

of conditions to be applied at its boundaries [10]. The continuous domain and boundary

conditions are discretized so they become amenable to computer manipulation. A computa

tional mesh M is thereby produced. This mesh is constructed by splitting the domain into a

set of simple polygons such a.<; triangles and quadrilaterals (in 2 dimensions) or tetrahedrals

(in 3 dimensions) called elements that are connected by faces, edges and nodes.

Once a mesh is constructed, elements can be split into a set of nested smaller elements

or combined into a macroelement. This process is called the adaptation of the mesh. In

an adaptive method the selective and local refinement of the mesh is interleaved with the

solution of the problem by contrast with the static grid generation approach in which a

fixed discretization of the geometry is done in a preprocessing step.

2

Adaptive methods can be schematically described as a feedback process where the auto

matic construction of a quasi-optimal mesh is performed in the course of the computation

[1]. Rather than using a uniform mesh with grid points evenly spaced on a domain, adaptive

mesh refinement techniques place more grid points where the solution is changing rapidly.

The mesh is adaptively refined during the computation according to local error estimates

on the domain [3]. Meshes are usually refined for two main rea.'3ons: [10]:

•	 to obtain a better solution by increa.'3ing the resolution in a particular region (steady

case) .

•	 to better resolve transient phenomena like shocks in the simulation of stiff unsteady

two-dimensional flows [6]. During the computation the mesh is refined and coarsened

(called sometimes fission and fusion operations) as the regions of interest evolve and

move. The construction of meshes for this type of problem requires data structures

that allow:

addition of elements when an element is refined by replacing it by two or more

nested elements.

coalescence of elements into larger elements when the mesh is coarsened.

Although the computational power of parallel computers is continuously increa.'3ing it

is unlikely that they will reach the level of performance required to solve problems of very

localized physical phenomena using a uniform discretization of the domain. Rather than

using this brute force approach adaptive meshes restrict the use of small elements to the

regions of interest while maintaining a coarser mesh everywhere else.

The use of adaptive meshes has the potential of producing large computational savings

but at the price of significantly increasing the sophistication of codes and algorithms. As

the mesh is no longer regular we need to develop new data structures that are usually more

difficult to implement than the regular ones. Also the design of adaptive meshes in a parallel

environment requires a close interaction between the algorithms that refine, partition and

3

rebalance the mesh and the numerical simulation. The success of an adaptive strategy will

depend strongly on how well these different modules can communicate with each other.

There is a wide variety of strategies for mesh refinement [8]. In the remaining part

of this section we review some of the most common techniques for mesh generation and

refinement. In the following section we introduce a strategy to implement adaptive meshes

using a sequence of nested refinements. Later we show how to implement this approach on

a parallel computer. We also explain the object-oriented techniques that we use to simplify

the software design.

2.1 Selection of the mesh type

The selection of the mesh type depends on the problem to be studied since there is no

strategy that it is considered best for every problem. Among the most common approaches

we mention [8]:

•	 structured meshes: there is a mapping from the physical space to the computational

space. In the computational space the elements appear as squares (in two dimensions)

or cubes (in three dimensions) and the neighbors and vertices of an element are easily

calculated using an array based data structure. The data structures for this type of

mesh are very regular .

•	 unstructured meshes: in this case the elements store explicit connectivity information

to determine their neighbors and vertices. The data structures in this case are more

complex than in structured meshes but it is easier to represent complex geometries.

Each type of mesh has its advantages and disadvantages. Structured meshes require

simpler codes with less overhead but are more limited in the representation of complex

domains. Unstructured meshes are more complex, require more storage and overhead per

element but can easily represent complex geometries and moving bodies. Some techniques

implement the meshes as a combination of both approaches. In such cases the mesh is

4

-"

usually decomposed in a set of unstructured super-elements where each super-element is

decomposed into a structured grid.

The choice of the mesh type determines the data structures and algorithms available

for refinement, partitioning and rebalancing. For example, a partitioning method adequate

for unstructured meshes such as Recursive Spectral Bisection [15] is useless for structured

meshes. A refinement algorithm will perform well on some type of meshes but is not

recommended for anothers. And the migration algorithm described in Section 7.2 highly

depends on how the mesh is actually stored. In the rest of this paper we a.'3sume that the

domain is discretized using unstructured meshes.

2.2 Mesh generation

The generation of meshes for unsteady problems is usually done in two distinct pha.'3es [10]:

•	 initial mesh creation: involves the creation of a compatible unstructured mesh us

ing the geometry description of the problem domain. The complex topology of the

problem is discretized into a set of simpler elements. This is a global process usually

performed on a sequential computer and it might require human assistance.

•	 mesh adaptation: the selective refinement/coarsening of sections of the mesh improves

the quality of the solutions either by increasing the resolution in interesting areas or

by decrea.'3ing it on regions of little interest. The refinement of elements is largely a

local process.

The compatibility of the mesh to the problem topology and correct treatment of the

boundaries are not the only requirements for high-quality meshes. In addition it is desirable

to have meshes whose elements are [1]:

•	 conforming: the intersection of elements is either a common vertex or a common side.

•	 non-degenerate: the interior angles of the elements are bounded away from zero.

•	 smooth: the transition between small and big elements is not abrupt.

5

2.3 Mesh adaptation

The following are the two principal strategies for mesh refinement [12J :

•	 h-refinement: is performed by splitting an element into two or more smaller subele

ments (refinement) or by combining two or more subelements into one element (coars

ening). h is a parameter of the size of the elements. This method involves the modi

fication of the graph structure of the mesh.

• p-refinement: can be thought as increasing the amount of information associated with

a node without changing the geometry of the mesh [10], where p is the polynomial

order of some element.

Through the rest of this paper we concentrate mainly on h-refinement although some

of the techniques for mesh partitioning and migration are independent of the refinement

strategy. Since p-refinement also modifies the workload in each processor the repartitioning

and migration algorithms apply to it also.

2.3.1 Local h-refinement algorithms

Starting from a conforming mesh M formed by a set E of non-overlapping elements Ei E E

that discretize a domain n of interest and a set of elements R, R ~ E, that are selected

for refinement, h-refinement algorithms construct a new conforming mesh M' of embedded

elements Ei such that:

•	 if Ei E R, Ei is split into a set of nonoverlapping subelements {Ei
t

, Ei
2

,

... ,E:J that replace Ei.

The selection of elements for refinement (or coarsening) in R is made by examining the

values of an "adaptation criteria" [6J that can be related to a discretization error. Usually

these refinement methods cause the propagation of the refinement to other mesh elements so

6

3

an element Ei rt R might also be refined in order to obtain a conforming mesh. Coarsening

algorithms have similar problems.

One common refinement algorithm is the Rivara bisection refinement algorithm for tri

angular elements that it is used in two dimensional problems. In its simplest form it bisects

the longest edge of a triangle to form two new triangles with equal area. There are several

variants of the serial bisection refinement algorithm. In Figure 1 we illustrate an example

of the 2-triangles bisection algorithm [1] and [2] described in Figure 2. In Figure 1 (a)

the element selected for refinement is shaded. The refinement of this element creates a

non-conforming white node on its longest edge. The shaded element in 1 (b) must now be

refined to to maintain a conforming mesh. This process is repeated in (c) where there are

two non-conforming nodes. Finally in (f) we show the resulting mesh. Using the bisection

refinement algorithm the propagation is guaranteed to terminate. Also if we start the refine

ment with a mesh M that ha.'3 elements that are smooth, conforming and non-degenerate

then the elements of the resulting mesh M' will also have the same properties.

Multilevel mesh adaptation

To support dynamic adaptation of meshes we designed a data structure based on a multilevel

finite-element mesh with a filiation hierarchy between two consecutive levels. As we will

show in later sections, our algorithms for refinement, partition and migration take good

advantage of this mesh representation.

We a.<;sume that the user supplies an initial coarse mesh Mo(E, V) called a O-level mesh

where E is a set of elements and V is a set of nodes. This is the coarsest mesh that the

refinement algorithm is able to manipulate. Using defined adaptation criteria we select

some elements Ei E R ~ E for refinement and others Ej E C ~ E for coarsening.

For each refined element Ei we define the Children(Ei) = {Eill E i2 , .. . , Ein } to be the

elements into which Ei is refined and let Parent(Ei,J = Ei. Also for each element Ei E Ewe

define Level(Ei) = 0 if Ei is in Mo and Level(Ei) = Level(Parent(Ei)) + 1 otherwise. The

children of an element Ei of level l can be further refined and they become the parents of

7

a) b) c)

d) e) f)

Figure 1: Bisection refinement: in (u) only one element is selected for refinement. (b) shows

the mesh after the refinement of that element. A non-conforming white node is created so

we propagate the refinement to an adjacent element. (c), (d) and (e) show different stages

of the refinement and (1) shows the final mesh. Although only one element was initially in

R we refined 3 more elements to obtain a conforming mesh.

8

FOR each Ei E R DO

bisect Ei by the midpoint of its longest side generating a new node Vp and two triangles

Ei l and Ei2 '

WHILE Vp is a non-conforming node in the side of some triangle Ej DO

make Ej conforming by bisecting Ej by its longest side generating a node Vq and two

triangles Ejl and Ej2'

IF Vp # Vq THEN

Vp is a non-conforming node in the midpoint of one of the sides of either Ejl or

Ei2' Assume that Vp is in one side of Ejl' Bisect Ejl over the side that contains Vp

obtaining two triangles Ejl or E~. Now Vp is a vertex of both triangles.

set Vp = Vq .

END IF

END WHILE

END FOR

Figure 2: Rivara's two-triangle refinement algorithm.

9

o o

o o o o
1

a) b)

o o

o----- 0 o o

3 1

c) d)

Figure 3: Refinement of a mesh. (a) shows the initial mesh Mo while (b), (c) and (d) show

the meshes M] , M2 and M3 • Associated with each node and element is its level.

level 1+2 children. For each node Vp we define Level (Vp) = 0 if Vp is in Mo and Level (Vp) =

Level(Ei) + 1 if Vp was created &'3 the result of refining an element Ei. Figure 3 gives

an example of the refinement of a mesh along with the associated levels. Note that the

meshes M I , M2 and M3 in (b), (c) and (d) do not only include nodes and elements of the

corresponding level but can also include nodes and elements of previous levels. Also the

elements are replaced by their children when they are refined but the nodes are not. For

example, every node Vp such that Level(Vp) = 0 will be present in all the successive meshes.

Also note that some elements Ei of level 1 have as vertices nodes of level 1- 1 or less.

The iterative execution of this algorithm produces nested meshes. If Mo is the coarsest

10

mesh then for any level l:

where Mi -< Mi-l is a relation that indicates that Mi has all the nodes present in Mi-l and

that some elements in Mi-l have been split to form the elements in Mi.

3.1 Multilevel refinement

A sequence of nested refinements creates an element hierarchy. In this hierarchy each

element of the initial mesh belongs to the coarse mesh Mo and time t > 0 each element

that it is not refined belongs to the fine mesh.

A decision to perform an n-fold refinement of Ei E R is transmitted to the refinement

module as the pair (Eil n). For example if n = 1 then using Rivara's bisection refinement

the element Ei is divided into 2 triangles. If n > 1 then each of its children is refined n - 1

times.

The multilevel algorithm for refinement has the following properties:

•	 an element that has no parents has level 0 and belongs to the coarse (initial) mesh

Mo. No coarsening is done above this level.

•	 an element with no children belongs the fine mesh M t . The numerical simulations are

always based on the fine mesh.

•	 an element could be at the same time in both the coarse mesh Mo and the fine mesh

M t (for example before any refinement is done) or in any intermediate mesh.

•	 only elements that are in the fine mesh Mt can be selected for refinement or coarsening.

The hierarchy of elements is only modified at its leaves.

•	 a node Vp such that Level(Vp) = l is a vertex of elements Ei of level l or below. An

element Ei of level l has vertices of level m where m ~ 1.

•	 as the elements are individually selected for refinement or coarsening the hierarchy

can have different depths in different regions of the mesh.

11

0-----GJ

a) b)	 c)

Figure 4: Multilevel refinement. Initially elements Ea and Eb in (a) are selected for

refinement. Both elements are refined and replaced by their children (b). In (c) the element

Ea ! is further refined. Under the meshes we show the corresponding mesh hierarchy.

•	 when an element Ei is refined it is replaced by its children in the fine mesh M t . To

coarsen an element all its children must be selected for coarsening. In this case the

children in the fine mesh M t are replaced by their parent and destroyed .

•	 both refinement and coarsening can propagate to adjacent elements. The algorithms

are not completely local because they need to preserve conformality requirements.

This sequence of refinements is explained in Figure 4. Initially the elements Ea and Eb

are selected for refinement (a). Under the mesh we show the internal representation. Both

Ea and Eb belong to M o and Mt . After the first refinement 4 new elements are created. At

this point M t includes Ea !, Ea2 , Eb! and Eb2 (b).

12

3.2 Local coarsening

The selection of elements for coarsening is performed by evaluating an adaptation criterion

at their vertices. The nodes in a finite element mesh are associated with the degrees of

freedom and the unknowns of a system of equations. After finding its solution at time t the

system might desire the elimination of nodes considered unnecessary according to a selected

evaluation criterion to reduce the number of unknowns. This destruction of nodes requires

coarsening of elements to maintain a conforming mesh.

The successful evaluation of the adaptation criteria at a node Vp is not a sufficient

condition for the destruction of a node. Nodes created as a result of the propagation

of refinement need to be adequately coarsened to preserve the conformality of the mesh.

Elements at a lower level that reference the node need to be eliminated to prevent dangling

references and this might require the destruction of other nodes. The conditions for a correct

coarsening algorithm are:

•	 to select an element Ei of level [as a candidate for coarsening, all its vertices v;, that

are nodes of level [should be selected as candidates for coarsening by evaluating the

adaptivity criteria at the node.

•	 assume that this element Ei of level [is the child of some other element Ej of level

[-1. In order to replace all the children of Ej by Ej all its children should be selected

&'5 a candidates for coarsening or none of them are.

•	 a node Vp is selected for coarsening, not anymore as a simple candidate, only if all

its adjacent elements Ei are selected as candidates for coarsening. This condition

prevents dangling references from elements to destroyed nodes.

•	 if an element Ei that is an element of level [has more than one vertex of level [and

not all of them are selected for coarsening, then none of its vertices of level [is selected

for derefinement since an element that has vertices of its level that are not selected

for coarsening will not be coarsened and we need to prevent that its vertices allow the

coarsening of adjacent elements.

13

4

• finally, an element Ei of level 1 is selected for coarsening if:

the element Ei has no children (it belongs to the fine mesh).

the element Ei has a parent (it does not belong to the coarse mesh).

its vertices are nodes of level m where m ~ 1.

all its vertices that are nodes of level 1 are selected for coarsening (and are not

simple candidates). This last condition will ensure that the resulting mesh is

conforming because a node Vp is selected for coarsening only if there will be no

references to it.

The challenge of exploiting parallelism

The data structures and algorithms introduced in the previous section allow us to refine

and coarsen a mesh in a serial computer. Most of the work that we will present in the rest

of this paper extends these ideas to a parallel computer. Parallelism introduces a series

of problems that we need to solve in order to perform the dynamic adaptation of parallel

mesh-based computation.

Refinement algorithms typically use a local information to perform refinement. Unfortu

nately the refinement of an element Ea that creates a new node Vp in an internal boundary

between two processors requires synchronization between the processors.

The second problem concerns with the termination of the refinement phase. The serial

algorithm terminates when no more elements are marked for refinement. This is not always

easy to detect in a parallel environment. In this case, global refinement termination holds

only when all the processors have refined their elements and there is no propagation message

in the network. A processor P; might have no more local elements to refine but it needs

to wait for possible propagations from neighbor processors. Only when all the processors

agree on the termination of the refinement phase can they proceed to the next phase.

The adaptation of the mesh produces imbalances on the work assigned to each processor

as elements and nodes are dynamically created and destroyed. Also mesh partitions are

14

5

computed at runtime interleaved with the numerical simulation. In this environment we

cannot afford expensive algorithms that recompute the partitions from scratch after each

refinement. Instead we propose repartitioning algorithms that use the information available

from previous partitions and the refinement history.

Finally we must keep a consistent mesh while migrating elements and nodes between pro

cessors. In our meshes the physical location of nodes and elements is not fixed throughout

the computation. Instead our design supports dynamically changing connectivity infor

mation where the references to remote elements and nodes are updated as new nodes or

elements are created, deleted or moved to a new processor to balance the work load.

In the following sections we address these problems in detail and we present our solutions.

First however, we introduce some definitions, explain a strategy for storing meshes in a

distributed memory parallel computer (that we call a parallel me.~h) and show how to use

the mesh to solve dynamic problems.

Mesh representation in a parallel computer

In Section 3 we presented a data structure to represent a refined mesh in a serial computer

and we introduced serial refinement and coarsening algorithms. In this section we extend

this data structure to store adapted meshes in parallel computers.

Let M(E, V) be a finite element mesh where E is a set of elements and V is a set

of nodes. We define Adj (Ea) = {Vp : Vp is a vertex of Ea }. In a similar way we define

ElemAdj(Vp) = {Ea : Vp is a node of E a } and NodeAdj(Vp) = {Vq : Vp and Vq are both

nodes of a common element Ea }. Adj (Ea) of an element Ea is the set formed by the vertices

of Ea.

In the case of triangular elements IAdj (Ea) I= 3, and in the case of quadrilateral elements

IAdj (Eb) I = 4. ElemAdj (Vp) of a node Vp is the set formed by the elements adjacent

to Vp and NodeAdj (Vp) is the set formed by the nodes adjacent to Vp • Two nodes are

considered adjacent not only because there is an edge between them in the mesh M but

also if they are adjacent to a common element. In the case of quadrilateral elements two

15

nodes at opposite corners are node adjacent. In an unstructured mesh INodeAdj(Vp) I is not

a constant. Although in theory we can construct meshes where INodeAdj (Vp) I can have

arbitrary values, if the mesh is non-degenerate (the interior angles are not close to 0) we

expect that INodeAdj(Vp) I be close to a constant k.

A graph G is constructed from the finite element mesh M. Its adjacency matrix H ha.<;

one row and column for each node Vp E V. The entry hp,q = 1 if the nodes Vp and Vq are

adjacent to a common element and hp,q = 0 otherwise. The adjacency matrix H can be

directly constructed from NodeAdj (Vp). Since Vp E NodeAdj (Vq) => Vq E NodeAdj (Vp), the

matrix H is symmetric and G is an undirected graph. In general INodeAdj(Vp)I ~ IVI so

we expect that H will be very sparse.

5.1 Partitioning by elements or partitioning by nodes

In an iterative method for solving systems of equations the cost of the algorithm is domi

nated by the cost of performing repeated sparse matrix-vector products Ab = c where A is

IVI X IVI. A and H have the same sparsity structure. This implies that a good partition

for G is also a good partition for A because it minimizes the communication required to

perform the matrix-vector products. There are two ba.<;ic strategies for partitioning the

graph G:

•	 node-partitioning: there is a partition (J? = {(J?l' (J?z, ... , (J?p} of the nodes between P

processors such that U (J?i = V and (J?i n (J?j = 0, V i I- j. If Vp E (J?i it is assigned

to ~. Each node is assigned to a single processor. The partition of G is performed by

removing some edges, leaving sets of connected nodes. The edges removed express the

communication pattern between processors and the cost of the partition is measured

by the number of edges removed .

•	 element-partitioning: in this case there is a partition II = {Ill, lIz, ... , IIp} of the

elements between P processors such that U IIi = E and IIi n IIj = 0, V i I- j.

If Ea E IIi it is a.<;signed to~. Each element is assigned to a single processor. The

16

partition is performed across the edges that separate two elements. If Vp E Adj (Ea)

and also Vp E Adj(Eb) where Ea E ITi, Eb E ITj and i i= j then Vp is a shared node.

Both ~ and Pj have their own copy of Vp , that we will denote V~ and vl respectively.

Communication is required between multiple copies of the same node so the cost of

the partition is measured by the number of shared nodes.

We define Nodes(ITi) = {V; : Ea E ITi and Vp E Adj(Ea)} hence Nodes(ITi) is the set

of nodes corresponding to the elements in ITi. Note that Nodes(ITd n Nodes(ITj) i= 0

if the two partitions ITi and ITj are adjacent.

To find a partition of the mesh using element-partitioning we first compute the dual

M-l(E,W) of the mesh M where W = {(Ea,Eb): Ea,Eb E E,Ea i= Eb' Adj(Ea)n

Adj(Eb) i= 0}. W is a set of pairs of adjacent elements so they have at least one

node in common. We then use a graph partitioning algorithm to assign elements to

processors.

It is shown in [13] that partitioning by elements has several advantages over partitioning

by nodes due to the way the matrix A is computed in the finite element method. The matrix

A is the result of an assembly process. We first compute a local square matrix of L(Ea)

(of size IAdj(Ea)l) for each element Ea E E. L(Ea) represents the contribution of Ea to

its nodes Vp • The global matrix A is equal to L,EaEEL(Ea) (where L, means the direct

sum of the local matrices after converting from the local indices in L to the global indices

in A). The matrix A is also partitioned between the processors. If the node Vp is a shared

node between two or more processors Pi and Pj then the entry in Ai corresponding to V~

has the contributions of the elements Ea E ITi and the entry in Aj corresponding to V;
has the contributions of the elements Eb E ITj. The matrix Ai in processor Pi is partially

assembled since it only considers the contributions of the elements Ea E Pi. The fully

assembled matrix is A = L, Ai .

The matrix-vector product Ab = C is performed in two phases. In the first phase each

processor computes Aib = Ci. The resulting vectors Ci are also partially assembled. In the

second phase we communicate the individual vectors Ci to obtain C= L, Ci.

17

5.2 Implementing a parallel mesh using remote references

A remote reference is a pair (~, V~) where Pi is a processor and V~ E Nodes (TIi)' It

represents a reference to the V~ copy of node Vp in processor Pi. We define Ref(V~) =
{(Pj, VJ) : VJ is a copy of Vp in Pj, i t= j}. This relation is also symmetric so that if

(Pj, vj) E Ref(V~) then (Pi, V~) E Ref(Vj). The remote references are pointers to a

remote address space. Since this is not allowed in almost any programming language we

designed the remote references as C++ objects using the notion of smart pointers. We will

come back to this when we discuss the implementation details.

If Vp is a node internal to the processor, then Ref(Vp) = 0. A node in an internal

boundary can be shared by more than two processors. Hence if Vp is a shared node then

1 :::; IRef(Vp) I :::; P - 1 where P is the number of processors. In a conforming mesh we

expect that IRef (Vp) I ~ P - 1 and usually IRef (Vp) I = 1 for a shared node since most

of the shared nodes are shared by only two processors in a 2-D mesh. The example in

Figure 5 shows a mesh with 8 elements and 9 nodes. The node V4 is shared by four

processors Po, PI, P2 and P3 so Ref(V".p) = {(PI, Vl), (P2 , V1), (P3, Vln while Ref(Vl)

{(Po, 'v.p), (P2 , vi), (P3, vln. Figure 6 states for initializing the references.

There is no need to have more than one copy per node in each processor. Suppose that

a processor ~ has two copies of the same node V; and V~' so that (~, V/) E Ref(V~). We

can detect this condition because the reference points to a node in the same processor Pi.

We then remove the copy V/ after updating all the references in other processors that point

to V/ to point to V~. For a similar reason we do not need or allow duplicate references in

Ref(V;).

When a node Vp is created in an internal boundary between two processors ~ and

Pj we initialize Rej(V~) = {(Pj, vjn and Ref(Vj) = {(Pi, V~)}. Although at the end of

refinement phase IRej(V~) I = 1 for each new node created in that phase, this might not

hold after the load-balancing phase. It is possible that a new partition converts an internal

node into a shared node and vice versa or that it modifies Rej(V;) so that it is shared by

more than two processors.

18

PO

................................. .: .

P3 :

a) b)

Figure 5: A square mesh partitioned by elements between four processors (a) and its

internal representation using remote references (b).

19

INPUT: M(E, V) where M is a finite element mesh with a set E of elements and a set V

of vertices.

- compute the dual M-1(E, W) of M where W = HEa , Eb) : Ea , Eb E E, a =/:- b,

Adj(Ea) n Adj(Eb) =/:- 0}. W is a set of adjacent elements and Adj(Ea) is the nodes

of element Ea.

- partition M-1 into P regions using a graph partitioning algorithm such that Ea E lli if

Ea is assigned to F'i where U lli = E and lli n llj = 0 Vi=/:- j.

- Nodes(ll;) is the set of nodes corresponding to elements in lli. Note that is not required

that Nodes(lli) n Nodes(llj) =/:-0.

FOR each V~ E Nodes(lli) in parallel DO

Ref(V~) = 0

END FOR

FOR each V~ E Nodes(ll;) in parallel DO

IF Ea E ElemAdj(Vp) and Ea E llj and j =/:- i THEN

Ref(V~) = Ref(V~) U (Pj, vt)

END IF

END FOR

Figure 6: Computing the initial references in a parallel mesh.

20

The design of these references is highly influenced by the element partitioning method.

Their main use is to maintain the connections between the different regions of the mesh

as the mesh is partitioned between the processors. As will be shown in later sections,

they provide a very flexible mechanism for maintaining a dynamic mesh. When a node is

moved to a new processor it can use its reference list to find its copies in other processors.

It can then send a message to these copies telling them to update their references to the

new location. The references also simplify the task of assembling matrices and vectors

from partially assembled ones as new nodes are created and moved at runtime because no

assumption is initially made about origin and destination of these messages.

5.3 Using a parallel mesh for the solution of dynamic physical problems

In this paper we assume that we are given an initial coarse mesh Mo at time t = 0 from

which we find an initial partition nO. This partition is computed in a preprocessing step.

We distribute the nodes and elements between the processors according to that partition

and we compute the initial references using the algorithm in Figure 6.

Our algorithm for finding the solution of dynamic problems consists of four consecutive

phases that we execute repeatedly. Figure 7 gives a high level outline of the program.

In the first pha.se we use numerical approximation techniques to find the solution of

the partial differential equations by solving a system of linear equations. We solve this

system using iterative methods. As we have mentioned earlier we generally perform repeated

matrix-vector products Ab = c when we need to assemble matrices and vectors. All the

effort in the following phases has the goal of improving the performance and quality of this

pha.se.

At some time t = tk we decide that it is convenient to adapt the mesh so we start

a refinement/coarsening pha.se. Using error estimates we select elements for refinement

that we insert into R and if we select elements for coarsening we insert them in C. If

the refinement of the elements in R creates a new shared node Vp in an internal boundary

between two processors Pi and Pj we create the two local copies V; and V/ and we initialize

21

6

- find an initial partition Ilo.

- load the mesh using the partition Ilo.

- initialize the references Ref (V;) using the algorithm in Figure 6.

FOR t < T DO

- compute a solution.

- refine/coarsen the mesh. For each new shared node V; determine Ref(V;).

- find a new partition Ilt .

- migrate the elements and nodes according to Ilt. If a node V; is moved from ~ to P j

then if Vpk is another copy of Vp in Pk update Ref(V;) = ((Ref(V;) - (Pi, V;)) U (Pj , vj)

and set Ref(Vj) = Ref(V;).

END FOR

Figure 7: Outline of a general algorithm for computing the solution of dynamic physical

system using a paralle.! mesh.

Since adaptation produces imbalances in the distribution of the work, we compute a

new partition Il t • If Il t =1= Il t - 1 we need to migrate some elements and nodes to adequate

the mesh to the new partition. This phase does not create new nodes or elements but it

modifies the reference lists as nodes are moved to new processors.

Parallel mesh adaptation

Using the data structures presented in the previous section we now introduce an algorithm

for adapting the mesh in a parallel computer. Let R be a set of elements selected for

refinement and let Ri be the subset of the elements of R assigned to processor ~. In this

case R = URi and also Ri n Rj = 0 for i =1= j because by using the element-partitioning

method of assigning elements to processors each element is assigned to only one processor.

Each processor has all the information it needs to refine in parallel its own subset Ri using

22

a) b) c)

Figure 8: Propagation of refinement to adjacent processors. In (a) the elements E a , E e , Ej

and E g are selected for refinement. The refinement of these elements creates two nodes, Vp

and Vq , in the boundary between Po and Pl. PI creates its local copies Vi and Vq
l and

selects the nonconforming elements Eb and Eh for refinement (b). (c) shows the resulting

mesh.

a serial algorithm, but nonconforming elements might be created on the boundary between

processor as suggested in Figure 8. In that example four elements are selected for refinement

so Ro = {Ea , E e , Ej, Eg } and R 1 = 0. The refinement of Ea creates a node V~ in an internal

boundary between Po and PI and the refinement of E g creates another shared node ~o. PI

needs to create its local copies Vp
1 and Vi. It then marks the nonconforming elements Eb

and Eit for refinement by inserting them in R I and invokes the serial refinement algorithm

again.

6.1 Refinement collision

The parallel algorithm can run into two synchronization problems [3]. First, if processor Pi

refines an element Ea and processor Pj refines an adjacent element E b , it is possible that each

processor could create a different node at the same position. In this case it is important

that both processors do not consider them as two distinct nodes when assembling the

matrices and vectors to compute the solution of the system and that the node incorporates

23

the contributions of all the elements around it. Related to this problem is what processor

~ believes is a nonconforming element Eb in processor Pj might have already been refined

there. Processor Pj needs to evaluate and update the propagation requests it receives before

executing them. In this case Pj should insert a descendant of Eb in Rj.

These two problems are illustrated in Figure 9. In the top row we show a case where

the receiving processor has already refined the element but further refinement is required.

Initially E a and Eb are selected for refinement. The refinement of E a creates the shared

node Vpo. PI creates its copy of Vp but it then has to determine which of the children of

Eb (Eb1 or Eb2) should be inserted into R I for further refinement. In the bottom row the

receiving processor should only update the reference rather than creating a new copy. Both

Po and PI create shared nodes (Vp and Vq) in the same mesh location as the result of the

refinement of Ea and Eb. We need to detect that both nodes are the same and update the

references accordingly.

The solution to the synchronization problem is greatly simplified by using the nested

elements of our multilevel algorithm. When an element Eb in processor Pj is refined into

two or more elements Eb l and E~ the element Eb is not destroyed as it would be the case

in other refinement algorithms. Any message arriving to processor Pj from processor ~

with the instruction of making a copy of a shared node Vp in processor Pj (named VJ) that

causes the refinement of the element Eb can be compared against the status of the element

Eb. If the element Eb was already refined in the local phase (but processor ~ did not know

about this), then the element Eb might not need to be refined again. If the node Vp was

already created in the local phase of processor Pj then a reference is added pointing to

its copy V; in processor ~. If the refinement of the element Eb did not cause or was not

caused by the creation of the shared node Vp (for example the refinement was done dividing

another edge as in the top row of Figure 9), then its children Ebl and Eb2 are evaluated

and the one that shares the internal boundary between Pi and Pj is marked for refinement

using the shared node V,t.
The pseudocode for this algorithm is shown in Figure 10 but there are a some details

24

... :

: :..

a) h) c)

-- .

PI,

PO : PO

: :

a) h) c)

Figure 9: Refinement of adjacent elements located in different processors. In the top row

two elements are selected for refinement (a). The refinement of Ea creates the shared node

Vp (b). We then select Eb1 for further refinement (rather than Eb) (c). The bottom row

shows another example (a) where two processors create shared nodes in the same position

(b). In (c) we detect this problem and update the references.

. PO

: : : :

25

Ri is the set of elements selected for refinement in Pi.

WHILE Ri /; 0 DO

- extract an element Ea from Ri.

- refine Ea using a serial refinement algorithm.

FOR each shared node V; created in an internal boundary between F'i and Pj DO

Send a message from Pi to Pi requesting the creation of a shared node v,1 in Pi' If a

node v,1 already exists, then return a reference to it. Otherwise, create the node vj,
determine the element to refine, and insert it into Ri' Finally return its reference to Pi.

END FOR

END WHILE

Figure 10: Avoiding refinement collisions in a parallel mesh.

that they are not explained there. First, we do not send a message for each individual node

because of the high cost of sending messages. Instead we first refine all the elements in

Ri keeping track of the shared nodes that Pi creates as a result of refining elements in Ri.

Once Ri = 0, Pi sends the messages to its adjacent processors and listens for propagation

messages from them. If it receives such a message it creates the new shared nodes and

inserts the nonconforming elements into Ri.

To determine which element to refine we use ElemAdj (Vp). Suppose that the refinement

of an element Ea in Pi creates a shared node Vp in a boundary between F'i and Pi' This

new node is created at a midpoint between two other shared nodes Vq and Vr • Note that

(Pi, vj) E Re!(V:) and also (Pi, Vi) E Re!(Vj). We use these references to send a message

from F'i to Pi' When Pi receives this message, it determines the unrefined element Eb E

ElemAdj (vj) n ElemAdj (VI) and inserts it into Ri'

As it can be easily seen, the parallel algorithm is not a perfect parallelization of the

serial one and it can result in a different mesh. The serial Rivara's algorithm [1] and [2] first

selects an element Ea from R. It then continues refining all the nonconforming elements

26

that result from the refinement of E a before proceeding with another element from R. In our

parallel implementation we ignore this serialization. We approximate the serial algorithm

within each processor as much as possible but do not impose it across processor boundaries.

We claim that this modification does not affect the quality of the refinement.

6.2 Termination detection

The algorithm for detecting the termination of parallel refinement is based on a general

termination algorithm in [4]. A global termination condition is reached when no element

is marked for refinement, so if R is the set of all the elements selected for refinement, then

the algorithm finishes when R = 0. This global termination condition implies a local

termination condition for processor Pi that holds when Ri = 0. We assume that the

refinement is started in one special processor referred to as the coordinator, Pc. To simplify

the explanation we assume initially that the refinement does not propagate cyclically from

processor Pi to processor Pi and then from processor Pi back to processor Pi. We will

show later that this is not a reasonable restriction but it does not affect the algorithm

significantly.

The algorithm for detecting termination uses two basic kind of messages:

•	 a refine message Refine-Msg(i, j) sent from a source processor Pi to processor Pi is

used to request the refinement of one or more elements of processor Pi' We will specify

the contents of this message later but let's assume for now that it can either indicate

the elements selected for refinement (if the message is sent by the coordinator) or it

can include a reference to a shared node. If Pi receives a Refine-Msg(i,j) = {V;}

it creates the node vt, it initializes Rej(Vt) = {(Pi, V;)} and inserts the unrefined

element E a E Adj(Vp) into Ri' Note that at this stage V; has no reference to V{ To

update Ref(V;) we use the next type of message.

•	 an update message AddRej-Msg(j, i) is returned from Pi to Pi for each refine message

sent from Pi to Pi to indicate the completion of the requested refinement. This

27

a) b) c) d)

----:~~ Refine-Msg

- - - - - -> AddRef-Msg

Figure 11: Parallel refine algorithm. In (a) the initiator sends a Refine-Msg to each other

processors. Processors Po and P j return immediately a AddRej-Msg to the initiator but the

refinement in processor P2 propagates to P j so P2 sends a Refine-Msg to P j (b). After P j

returns a AddRej-Msg to P2 (c), Pz returns its AddRej-Msg to the initiator (d).

message also includes the necessary information to update the references to the nodes

shared between Pi and Pi' When Pi receives an AddRej-Msg(j, i) = {VJ} it inserts

(Pi, VJ) into Rej(V;). If Pi is the coordinator we return AddRej-Msg(j, C) = 0.

The coordinator sends at t = 0 a Refine-Msg(C, i) message to one or more processors

Pi indicating that the refinement phase has started. The initiator can explicitly select the

elements for refinement or it can instruct the processors to select the elements based on

an adaptation criteria. Processor Pi then executes the serial refinement algorithm on these

marked elements, possibly sending Refine-Msg(i, j) messages to neighboring processors Pi

when a node V; is created in an internal boundary between processors Pi and Pi'

The local termination condition holds for processor Pi when no more elements are

marked for refinement. When this condition holds, processor Pi does not generate new

28

lP

Refine-Msg messages and it is not waitin~ for any AddRef-Msg messages. Also proces

sor Pi does not insert new elements into Ri until a Refine-Msg(j, i) message arrives from

some other processor Pj. In this case, new nodes are created in the internal boundary as

instructed in the message and the corresponding elements are selected for refinement by

inserting them into Ri. Then processor Pi executes the serial refinement algorithm, which

might cause further propagation to other processors. An example is shown in Figure 11

where Pc sends an initial Refine-Msg to the other processors. Po and PI complete their

work without propagation so they return a AddRef-Msg message to Pc. On the other hand

the refinement of elements in P2 propagates to PI so P2 sends a Refine-Msg(2, 1) message

to Pl' PI completes this request without further propagation so it returns to P2 which in

turn returns an AddRef-Msg(2, C) message to Pc.

We say that the parallel refinement terminates (the global termination condition holds)

at some t if:

• Ri = 0 for each processor Pi at time t .

• there is no Refine-Msg or AddRef-Msg in transit at time t.

The termination detection procedure is based on message acknowledgments. In particu

lar Refine-Msg(i,j) messages received by processor Pj from processor Pi are acknowledged

by Pj by sending to Pi a AddRef-Msg(j, i) message. These messages return the references

to the newly created vertices so that if v~ is a vertex in processor P;, over a shared edge

that caused a propagation to processor Pj and vj is its copy in processor Pj, a reference to

v~ is added at v~ and vice versa.

A processor P;, can be in two possible states: the inactive state and the active state.

While in an inactive state Pi can send no Refine-Msg or AddRef-Msg but it can receive

messages. If it receives a receives a Refine-Msg(j, i) from another processor Pj while in an

inactive state it moves from the inactive to the active state. It creates the shared nodes

as stated in the message and proceeds to refine the nonconforming elements. The message

Refine-Msg (j, i) is called the critical message because it caused the refinement that Pi is

29

performing and Pj is the parent of processor Pi.

In the active state, while a processor Pi is refining some of its elements, the refinement

can propagate to a neighbor processor Pk requiring another Refine-Msg(i, k) message to it.

An active processor becomes inactive at the first time t for which the following conditions

hold:

•	 no new Refine-Msg message is received by the processor at time t.

•	 there are no elements marked for refinement in processor Pi (the local termination

condition holds).

•	 the processor has transmitted prior to t an AddRef-Msg message for each Refine-Msg

message it has received except for the critical message.

•	 the processor has received prior to t a AddRef-Msg message for each Refine-Msg

message it ha.<; transmitted.

Using this definition, the local termination condition might hold in processor P;. (Ri = 0)

but processor P;. might be in an active state waiting for a AddRef-Msg(j, i) from processor

Pj if the refinement of the elements of P;. caused the refinement to propagate to processor Pj

and P:J. ha.<; not yet responded. When a processor becomes inactive it returns a AddRef-Msg

message to the processor that originally sent its critical message.

Initially, at time t = 0, the coordinator is active and all other processors are inactive.

Furthermore, at t = 0, the local termination condition holds at all processors except the

coordinator. It can be seen that if a processor is inactive at time t, the following rules hold:

•	 its local termination condition holds at t.

•	 it ha.<; transmitted an AddRef-Msg for all the Refine-Msg messages it ha.<; received

prior to t.

•	 it ha.<; received AddRef-Msg messages for all Refine-Msg messages it has transmitted

prior to t.

30

If the processor is active at time t, at least one of the above conditions is violated. We

say that global termination is detected when the coordinator becomes inactive. In the ca.'3e

of the coordinator only the last of the previous rules is relevant as it has no local elements

to refine. The coordinator will receive an AddRef-Msg message from all the processors Pi

only when all the processors are inactive. In this case there are no elements marked for

refinement and there are no other messages in the network.

This algorithm works if the propagation does not generate cycles. As shown in Figure

12 it is possible to design a mesh where the refinement propagates back to processor Po.

In that example Po refines an element E a creating a shared node Vpo. It then sends a

Refine-Msg(O, 1) to PI' PI creates its copy of the shared node and proceeds to refine the

nonconforming elements but before PI is ready to return a AddRef-Msg(l, 0) a new shared

node ~I is created in the boundary between PI and Po. In this case PI sends a new Refine

Msg(l, 0). When Po performs all the required refinements it returns a AddRef-Msg(O, 1) to

PI which in turn returns a AddRef-Msg(l, 0) to Po corresponding to the initial message. In

this example is not easy to detect which one is the parent or the child processor. It also

shows that the refinement of some meshes can have a cycle. It is possible to extend the idea

to a long but finite sequence of Refine-Msg messages through two processors before being

ready to return a AddRef-Msg. Fortunately we can modify the previous algorithm to deal

with these problems.

In the active state a processor Pi can receive not only AddRef-Msg messages from its

neighbors but also new Refine-Msg messages from other processors Pj. These new Refine

Msg might cause further propagation. Now there is not just one critical message for proces

sor ~ but there is still only one critical message for each of the Refine-Msg messages that

processor Pi transmits to other processors. We modify the Refine-Msg message to include

a unique sequence number for each processor. We also modify the AddRef-Msg message to

return the number of the Refine-Msg that caused the refinement.

All the critical messages are added to a table of critical messages. When processor Pj

sends back a AddRef-Msg message it needs to identify which critical message in processor

31

~.' '" ': :: : .

~ ~
: : PIn POro :: · :

· . · .· . · .
··
:
..
: ·: : · ..

· .~ ~ ·· ..· .· . · .
· . \ ~: ;

· .: :

"'---------. -M- ...---~. .L-..----------c. ~
p : : p)< · .

*
~ ":::: .'

~----<.
........................ : : : ...

..._---.

Figure 12: A propagation cycle. Po has initially one element marked for refinement (a).

The refinement propagates to PI (b) and then comes back to Po (c). (d) shows the final

mesh.

a)

~ ~ :" "

~

ro .': : n

~ ~
, .

· .
: ~ --H- ...--....--<.
~
~ ~.

..... - :

c)

PI

....---I.~.---.
~. ~ ..._-....-.

~ ~.

b)

PO

.L-..

. ~ : .

d)

32

FOR each processor ~ DO

send Refine-Msg(C, i) indicating elements to refine.

END FOR

FOR each processor ~ DO

wait for an AddRef-Msg(i, C).

END FOR

FOR each processor ~ DO

send Continue-Msg (C, i) to finish the refinement phase.

END FOR

Figure 13: Detecting the termination of the refinement phase (Coordinator algorithm).

~ caused the propagation to Pj using the sequence number. When a critical message

in a processor Pi receives a AddRef-Msg message for all the propagations it caused, then

processor ~ removes the critical message from the table and it sends back a AddRef-Msg

message to the processor that initially sent that critical message to it. The processor ~ is

in the inactive state if Ri = 0 and it has no critical messages in its table. The pseudocode

for the algorithm executed by the coordinator is shown Figure 13 while Figure 14 has

an outline of the program executed by all the remaining processors. This pseudocode is

explained below.

Initially Pc sends a Refine-Msg(C, i) to all the other processors ~ to start the refinement

phase. These messages are used to select the elements in Ri to be refined in ~. Each ~

returns a AddRef-Msg(i, C) once they have refined these elements and has also received a

AddRef-Msg(k, i) for each Refine-Msg(i, k) produced by the propagation of the refinement

to ~. The algorithm uses a new type of message:

•	 a continue message Continue-Msg(i, j) sent from the initiator to every other processor

is used to inform them that the refinement phase concluded and that they can continue

to the next phase.

33

seq = 0

WHILE true DO

wait for a message msg.

IF msg = Continue-Msg(j, i) THEN

return.

ELSE IF msg = Refine-Msg(j, i) THEN

set seq++, table[seq].critical = msg and table[seq].count = 0

FOR each element E a E msg DO

create the shared nodes and insert Ea in Ri.

END FOR

refine the elements in Ri

FOR each shared node V; created in an internal boundary between P;. and Pk DO

send Refine-Msg(i, k) containing seq and the elements to refine.

table[seq].count++

END FOR

IF table[seq].count = 0 THEN

return AddRef-Msg(i, j) as msg did not cause refinement to other processors.

END IF

ELSE IF msg = AddRef-Msg(j, i) THEN

seq is the sequence number returned by msg. set table[seq].count -

IF table[seq].count = 0 THEN

send AddRef-Msg(i, j) to Pj where Pj sent the message stored in table[seq].critical.

END IF

END IF

END WHILE

Figure 14: Detecting the termination of the refinement phase.

34

Once Pc has received a AddRef-Msg from each other processor it broadcasts a Continue

Msg.

Each processor Pi starts the refinement phase waiting for a message. If it receives a

Continue-M.'1g from the initiator it knows that it can proceed to the next phase. If the

message is a Refine-Msg(k, i) it inserts the elements indicated in the message in Ri and

refines it using the serial algorithm. Rather than having one critical message now Pi can

have several critical messages sent by the same or different processors. P; gives them a

sequence number and stores them in a table. If the refinement of the elements in Ri creates

shared nodes in a boundary between Pi and Pj then Pi sends a Refine-Msg(i, j) message to

Pj' Pi keeps track of how many of these Refine-Msg(i, j) it sends for each critical Refine-Msg

it receives. Once it ha.<; received a AddRef-Msg(j, i) for each Refine-Msg(i,j) it can send

back a AddRef-Msg(i, k) response to Pk. Pi continues to listen for messages until it receives

a Continue-Msg from the coordinator. Figure 15 shows an example where the refinement

propagates cyclically between processors.

7 Load balancing

In this section we present a strategy for repartitioning and rebalancing the mesh. We first

explain serial multilevel refinement algorithms. We then introduce a new highly parallel

repartitioning method called the Parallel Nested Repartitioning (PNR) algorithm which is

fa.<;t and gives high quality partitions.

In Section 7.2 we explain a mesh migration algorithm. This algorithm receives as input

the partition obtained from the repartitioning of the mesh and migrates the elements and

nodes according to this partition.

7.1 The mesh repartitioning problem

While the PNR repartitioning algorithm is based on the serial multilevel algorithms pre

sented in [15], [20] and [18] it also makes use of the refinement history to achieve great

reductions in execution time and an improvement in the quality of the partitions produced.

35

(a) (b)

(c) (d)

Figure 15: Propagation of the refinement. In (a) we show an arbitrary mesh distributed

in 4 processors. The refinement of an element (b) causes the refinement to come back to

the processor (c). If we repeat this operation we obtain the mesh in (d).

36

General multilevel algorithms partition the mesh by constructing a tree of vertices. They

create a sequence of smaller graphs by collapsing vertices, then partition a suitable small

graph and finally reverse the collapsing process to produce a partition of the larger graphs.

The Parallel Nested Repartitioning algorithm can be divided into a serial phase and a

parallel phase. When the graph is small enough to fit into one processor we use a serial

refinement algorithm to partition the graph. When the mesh is very large as in the case of

a highly refined mesh we collapse vertices in parallel. The PNR method differs from other

methods in that it uses the refinement history of the mesh to collapse the vertices while

other methods use maximum matchings or independent sets. As a consequence we are able

to collapse vertices locally in the parallel pha.'3e without any communication overhead unlike

other methods. Our tests show that by using the refinement history we obtain partitions

that are almost always of higher quality than those obtained by the multilevel algorithms

yet PNR is very fast. For simplicity we assume that the initial mesh fits into one processor

and marks the transition between the serial and the parallel pha.'3e. In Section 7.1.5 we

discuss possible generalizations of this method.

7.1.1 The serial Multilevel Graph Partitioning algorithms

The pseudocode for a standard serial Multilevel Partitioning Algorithm is sketched in Figure

16. III general serial multilevel algorithms perform the partitioning of a mesh in three phases:

•	 in the coarsening phase these algorithms construct a sequence of graphs Go, G I , .. . Gk

such that the IGil < IGi-II by collapsing adjacent nodes or contracting edges. This

contraction is implementing by finding a maximal independent set [16] or a maximal

matching [20]. Given a graph G(V, F) where V is a set of vertices and F is a set of

edges then V' ~ V is an independent set of G if for all v E V', (v, w) E F =} w ~ V'.

An independent set Viis maximal if the the addition of any vertex in V' would make

it no longer an independent set. A matching of G is a set F ' ~ F od edges such

that no two of which are incident on the same verex. A mathing F ' is maximal if

the addition of an edge in F ' would make it no longer a matching. A contraction

37

compute the weighted graph Mol (E, W) = Go.

WHILE IGil > K DO

compute a coarser graph Gi+l by collapsing the vertices of Gi.

END WHILE

partition the coarsest graph Gk.

FOR each level i in the refine tree from k downto 0 DO

project the partition of Gi to Gi-l.

improve the partition of Gi-l using local heuristics.

END FOR

Figure 16: Serial Multilevel Partitioning algorithm.

operation is repeated until IGil is smaller than a defined constant K .

•	 in the partitioning phase standard multilevel methods find a partition II of the graph

Gk using anyone of a number of different graph partitioning algorithms such as

Recursive Spectral Bisection [15]. Note that typically IGkl ~ IGol so their use of RSB

is generally not very expensive.

•	 in the uncoarsening phase these methods project the partition found for Gi to the

graph Gi- l by reversing the collapsing process. Assume that two or more vertices

v and w in the graph Gi-l are collapsed to form a vertex u in Gi in the coarsening

phase. If u is assigned to processor Pq then both rand s are initially assigned to Pq .

After projecting the partition to Gi-l, they typically perform local heuristics such as

Kernighan and Lin [32] on each Gi-l for the purpose of improving the quality of the

partition.

To implement this algorithm on a parallel computer note that for each level of the

coarsening phase we need to compute either an independent set or a matching of the graph.

This implies that for each Gi-l we will need to send messages to insure that two adjacent

38

processors do not select adjacent vertices of the graph at the same time, an operation that

can be very time consuming. As we will show, our algorithm uses a different heuristic for

collapsing the vertices of the graph that does not require synchronization at each level.

1.1.2 General repartitioning of an adapted mesh

In Section 5.1 we explained that our meshes are partitioned by elements. That is, given

a mesh M(E, V) where E is a set of elements and V is a set of vertices we construct a

partition IT = {IT I , IT2 , ••• , ITp} such that each element E a E E is assigned to only one

partition ITi. This is done by creating a graph M- 1 (E, W) that is the dual of M where W

is a set of pairs of adjacent elements: (Ea , Eb) E W if and only if E a and Eb are adjacent.

Thus the elements in E are the vertices of the graph M-1 and the pairs in Ware its edges.

A partition of the vertices of M-l is a partition of the elements of the mesh M.

In order to contract the graph while preserving its global structure we associate weights

to each element E a and each pair of adjacent elements (Ea , Eb)' Given the graph M- 1 we

define ElemWeight (Ea) to be the number of descendants of E a in the fine mesh (or 1 if E a

has no children). We also define EdgeWeight(Ea) to be the number of edges between the

descendants of E a in the fine mesh. That is Edge Weight (Ea) = LtEb,EcEM
t
(Eb, E e) such

that Eb and Ee are the lowest level descendants of E a and they are adjacent to each other.

For each pair (Ea , Eb) E W we define Weight(Ea , Eb) to be the number of edges between

the descendants of E a and Eb in the fine mesh. Note that if both Ea and Eb are unrefined

then Weight(Ea , Eb) = 1.

Although we defined ElemWeight, Edge Weight and Weight based on our multilevel

elements of Section 3 we could also define· them recursively for any mesh. Given a graph

M-l (E, W) we can define ElemWeight(Ea) = 1, EdgeWeight(Ea) = 0 and Weight(Ea , Eb) =

1 if E a and Eb are adjacent and 0 otherwise. If we collapse two or more elements Ea and

Eb into one element Ee then:

Elem Weight(Ee) = Elem Weight(Ea) + ElemWeight(Eb)

Edge Weight(Ee) = Edge Weight(Ea) + Edge Weight(Eb) + Weight(Ea , Eb)

39

In a similar way we can define Weight(Ec • Ed) for two collapsed elements E c and Ed.

The goal of the coarsening phase in the partitioning algorithm is to approximate cliques.

A refined vertex E a of the graph M-I approximates a clique if EdgeDensity(Ea) = (2x

EdgeWeight(Ea))j(EdgeWeight(EaH EdgeWeight(Ea) - 1)) is close to 1 and it does not

approximate a clique if it is close to O. Intuitively, if a vertex Ea has a a large edge density

it will not be cut in half by the bisection in the partition of the contracted graph.

7.1.3 The Parallel Nested Repartitioning (PNR) algorithm

The partitioning algorithm that we discuss in this section incorporates the idea that the

fine mesh M t at time t was obtained as a sequence of refinements of a coarse initial mesh

Mo. The mesh M t includes all the elements Ea such that Children(Ma) = (0 at time t.

We define IMI as the number of elements in the mesh. We assume that IMol < IMt I but in

general IMol ~ IMtl. Note that it is possible to have an element E a E Mon Mt if E a is not

refined.

Figure 17 shows an example of an initial mesh Mo and the refined mesh Mt at time

t. The amount of work for processor Po is far larger than the amount of work of the

other processors. The goal of the repartitioning algorithm is to rebalance the work so each

processor has approximately the same number of elements.

The PNR algorithm uses the information that Mt was obtained as a sequence of refine

ments. Rather than computing directly a partition of Mt it computes a partition of Mo

and then projects this partition to Mt . The notion is that in the coarsening phase we do

not need to find a matching or independent set to collapse the children of refined elements.

Instead we use the refinement tree to collapse the descendants of each element of the coarse

mesh Mo. In Section 9.6 we compare the PNR with the serial multilevel algorithm. By

using the refinement history we are able to obtain better partitions at a lower cost than the

standard methods.

Our PNR algorithm allows for a very natural parallel implementation. Is is possible

to compute the ElemWeight, Edge Weight and Weight of MOl in parallel using only local

40

ro ~-TI---~ PI

~_._-~~

...... __ L_._ __ J~J i~t _ .+.

I I' , I 1

PO ...:--~ Pl~-:--r-~ ...:--~

...:_-+
... __ ..J.J.. JJ~J ~~.LL+.

I I I I' , I I I

•••.•••.• ~ .•••••.••••.••.•• .I ••.• ~", .••. I••••.••••..••.•••• J•••••••• , ~f+-~H

P2	 P3~~--_~

................................. . .

........ ! 1•••• ~ •••••••••1•••• /" , ••••1••••••••• t ! .

mJ:tm •
P2	 PI12=SL-~~

............................ .	 .

a)	 b)

Figure 17: The Parallel Nested Repartitioning algorithm. (a) shows the initial mesh Mo

and (b) shows the mesh Mt at the beginning of the partitioning phase.

information. We then send the graph MOl to a common processor Pp which partitions

1the reduced graph MO- • At this point all the other processors wait until Pp sends back a

message informing them of which elements to migrate. Finally, the migration is performed

by moving fully refined subtrees. The partitioning algorithm will inform a processor Pi of

the elements E a E Mo to move to another processor Pj. It is assumed that P; will not only

send Ea but also all its descendants to Pj. The intention is not to break partition trees to

simplify the unrefinement of the elements. In the rest of this section we will explain the

algorithm in more detail using the example shown in Figure 17. The pseudocode for the

PNR algorithm is shown in Figure 18 and explained below.

As we explained earlier, our Parallel Nested Repartitioning algorithm for mesh parti

tioning can be divided into a parallel phase and a serial phase:

•	 we construct in parallel the weighted graph Mol. Communication is not required at

this point. Each processor P; computes the weights of each element E a E Mo. This

is done using a simple recursive algorithm. In the same way it computes the weight

41

- in parallel compute ElemWeight (Ea) , EdgeWeight(Ea) and Weight(Ea , Eb) for each ele

ment Ea and each pair of adjacent elements (Eal Eb) E Mol.

- each processor ~ sends its portion of Mol and the weights to a common processor Pp.

- Pp receives sections of MO-
I from each processor and computes a partition II of Mo-

1 .

This can be done using RSB or a serial multilevel algorithm.

- Pp returns II to each processor Pi.

- Pi migrates the elements and nodes according to II.

Figure 18: The parallel Nested Repartitioning algorithm.

of each edge W = (Ea , Eb). Once Pi obtains its portion of Mol it sends it to Pp for

the serial part of the algorithm. The Mol graph for the mesh in Figure 17 is shown

in Figure 19. We consider two ways of defining set W:

- W = {(Ea , Eb) : Ea , Eb E Mo, Ea and Eb have a common vertex}.

W = {(Ea , Eb) : Ea , Eb E Mo, Ea and Eb have a common edge} .

•	 once Pp receives a message for each processor Pi it partitions the reduced graph MOl

using a serial partitioning algorithm. As IMol1 is a.'3sumed to be relatively small we

can use at this stage algorithms that would be considered too expensive to apply to

the refined mesh. The result of this partition is shown in Figure 20 (a).

• finally we resume the parallel phase. Pp sends a message to each processor Pi inform

ing it of which elements to migrate. Pi executes the migration algorithm described in

the following section to distribute the mesh as shown in Figure 20 (b).

Our method does not require that the complete fine mesh be in one processor in order

to compute the partition. It is sufficient that the coarse initial mesh is small enough to fit

into one processor. The refined mesh can be of an arbitrary size.

42

: P2
: :

a)

PO Pi PO Pi

P3 P2 P<
: :

b)

Figure 19: The Parallel Nested Repartitioning algorithm. (a) shows the graph G where

there is an edge in G between each two elements in Mo that share a node. (b) shows the

graph G where there is an edge in G between each two elements in Mo that share a common

edge.

43

. ·' , .. , , " ~ .
PI

P1

P3

a) b)

Figure 20: The Parallel Nested Repartitioning algorithm. (a) shows the partition II of M

using thE' PNR algorithm. Finally we use the migration algorithm to migrate elements and

nodes to their destination processors. (b) shows the resulting mesh.

44

7.1.4 Partitioning of an initial mesh

We have yet to explain how to compute the partition of MOl in Pp. In theory we can use

any serial graph partitioning algorithm without affecting the structure of the PNR algorithm

but in practice we use one of two approaches.

In one case Pp spawns a new process that calls Chaco [21]. This process finds a partition

of MOl using the multilevel algorithm (or any other partitioning algorithm supported by

Chaco) and returns it to Pp.

In the other case Pp computes the partition of MOl directly. We initially find a matching

of the graph, defined to be a set of edges such that no two edges in that set are incident in the

same vertex. Once we find this matching we collapse pairs of vertices to form a new vertex.

As a consequence, for 1 ::; i ::; k we create a subgraph Gi(Ei, Wi) of Gi-l (Ei-l, Wi-I) where

IE;I < lEi-II. We also compute ElemWeight(Ec), EdgeWeight(Ee) and Weight(Ee , Ed) for

each element E e and each pair (Ee , Ed) of adjacent elements in Gi.

We choose a matching that ha.<; an approximate maximal edge density. We approximate

the matching by using a randomized algorithm. We select in random order an unmatched

vertex r and we determine for each unmatched neighbour s of r the EdgeDensity of a vertex

u formed by collapsing rand s. Then r is collapsed with the neighbour with which it ha.<;

the largest edge density.

We then partition the graph Gk using a partitioning algorithm. In our tests we used

Recursive Spectral Bisection. We usually call Chaco for this purpose. This is very fast since

IEkl is small.

Finally we uncoarsen the graph for each level k > i > O. At this time we also improve

the partition using local heuristics that are a variation on Kernighan-Lin [32]. We compare

pairs of elements a.<;signed to different processors and if we find that there is an improvement

in the quality of the partition, flip them. While these algorithms have been implemented,

performance results are not reported because the method provides at least equally good

results.

45

7.1.5 Improving the PNR algorithm

In this section we discuss three possible improvements to the PNR algorithm. Two of them

are generalizations of the PNR algorithm while the third one is a discussion of parallel

heuristics to improve the quality of the partition.

We assumed that the transition between the parallel phase and the serial phase is given

by the initial mesh Mo. This does not always have to be the case. If an element E a E Mo

is highly refined, we can send the children of E a rather than Ea to Pp or some of its

descendants.

Although we send the full mesh Mo to Pp with all the weights each time we repartition

the mesh this is not necessary. If we assume that the serial partition of Mo is computed

using a serial multilevel algorithm then we can just compute the tree once and store it

in Pp. To repartition the mesh Pi needs to send to Pp only the changes of the weights

produced as the result of the refinement and coarsening of the mesh. In this way we are

extending the PNR to graphs that are not obtained a.<; the result of a refinement process.

In the migration algorithm explained in the next section we migrate fully refined trees.

This means that at every time step t if an element Ea E Mo is assigned to processor Pi

then all the descendants of E a are also assigned to Pi. For this reason we have not yet

implemented parallel heuristics such as the MOB heuristic [9] to try to improve the quality

of the partition.

7.2 Using remote references for work migration

Although we demonstrated in the previous section how to compute a partition ITt that

balances the work, at this stage of the computation the mesh is still distributed according

to an unbalanced partition ITt-I. In this section we present an algorithm that migrates

elements and nodes between processors. If ITt =I- ITt-I, then there is at least one element Ea

such that E a E IT~-I and E a E ITj where i =I- j. Remember that we assume that the mesh is

partitioned by elements so that the ITi partitions are disjoint, Ea (j. ITj-1 and Ea (j. IT~. To

adjust the mesh to the ITt partition we need to move E a from Pi to Pj. Let's a.<;sume that

46

the vertices of Ea are Adj (Ea) = {Vp1 , ••• , Vpn }.

Our algorithm considers several cases that depend on Pj having a local copy of these

nodes or if they are included in the message to Pj:

•	 for each node Vp E Adj (Ea), if (Pj, V;) f/. Ref(V;) (so Vp is not a shared node between

Pi and Pj at time t - 1) then we need to create the node vj in Pj and then use this

node to create the element E a in Pj.

•	 otherwise (Pj , vj) E Rej(V;) (so Vp is a shared node between Pi and Pj at time t - 1

and Pj has a local copy vj) then we should not create the vj node again. When Pi

sends the element E a to Pj, it also includes the reference (Pj, V;) instead of the node

Vp , Then Pj can use vj to create Ea. This condition has an important implication:

processor Pj cannot delete its copy of V; until it has received all the elements, even

if processor Pj has already sent the only element Ec that points to vj to another

processor Pk because some other processor Pi might expect Pj to have a copy of Vp ,

•	 if processor P; sends more than one element Ea and Eb to Pj and there is a node

Vp E Adj (Ea) n Adj (Eb) (so Vp is a vertex of both Ea and Eb) then only one copy

vj should be created in Pj and both elements Ea and Eb should refer to it in the

destination processor.

•	 now if two processors 1>;. and Pk send the elements Ea and Eb respectively to processor

Pj where elements Ea and Eb are adjacent elements and there is a shared node Vp E

Adj(Ea)n Adj(Ea) so (Pk, V;) E Ref(V;) and (P;, V;) E Ref(V;) then Pj should

kdetect that V; and Vp are two copies of the same node. In this case Pj should create

only one copy V; for both elements Ea and Eb.

• finally if processor P; sends an element Ea to another processor Pj and Pk sends an

element Eb to PI and Ea and Eb are adjacent elements in two different processors

that share a common node Vp then we should insure that (F't, V~) E Ref(V;) and

(Pk, V;) E Ref(V~) (so V; and V~ refer to each other).

47

-'

In	 the migration phase we use three different kinds of messages:

•	 a move message Move-Msg(i,j) = {Ea} is used to migrate an element Ea from a

source processor Pi to a destination processor Pj. We also assume that this message

ha.'3 two other fields. The first field Move-Msg(i,j).nodes(Ea) contains the vertices of

the element Ea. For each node Vp E Adj(Ea), if Pj has a local copy of vj then only

the reference (Pj, vj) is included in the message. Otherwise we send the node Vp , We

also set Rej(V;) U (Pi, V;) to initialize VJ. The other field, Move-Msg(i,j).ref(Vb),

contains the references to Vp in the other processors.

•	 an add reference message AddRef-Msg(i,j) = {(vj, V;)} is used to add a reference to

node V; in processor Pj. In this case we set Ref(Vj) = Ref(Vj) U (Pi, V;). This is

essentially the same kind of message used for refining the mesh.

•	 a delete reference message DelRef-Msg (i, j) = {(VJ, V;)} is used to remove a reference

to the node V; in Pj. So Ref(vj) = Ref(Vj) - (Pi, V;).

In	 the rest of this section we discuss a migration algorithm that uses these messages.

7.2.1 The migration algorithm

Assume that we need to move an element Ea from Pi to Pj, that is E a E II~-l and E a ElI;.

Assume also Adj (Ea) = {Vp1 , ••• , Vpn } is the set of vertices of Ea. We initially send a Move

Msg(i,j) = {Ea} message from Pi to Pj. If Vp E Adj(Ea) and also (Pj, vj) E Rej(V;) we

only include the reference in the message. Otherwise if Vp E Adj (Ea) and (Pj , vj) rt. Ref (V;)

we include the node Vp in the message. Pj creates the copy vj and it initializes Ref (vj) =

Ref(V~) U (Pi, V~). At this point Pj has a reference to all the copies of Vp , It then sends

an AddRef-Msg (j, i) = {(V;, vj)} for each reference in Ref(vj) and all the other copies

update their references to the new copy. Using vj processor Pj creates the element Ea. Pi

then deletes its element Ea. It can happen that Ea was the only element that pointed to

Vp in Pi. In this case we wish to remove also V;. Pi sends a DelRef-Msg(i,j) = {(vj, V;)}

48

iAOi---Li°
P11
; : ; :

~ A i j B 1
!1 2~---:2 3~
; , = : ..:

;P2

.......................... , .

~
PI:o ° <j-{

A : I ,. 8: ::': .
1 2.-~f.l 3,

......._...•.......... ' ~ ,'If ..
I • I'

. :' I
, :' I

A :' I~'f!• {J
: Ii(
: P2 0 ~

a) b) <)

Figure 21: A migration example. (a) shows the initial mesh. The goal is to move E a from

Po to P2 • We first copy E a to P2 (b) and then we delete the element Ea in Po (c).

to each reference in Ref(V~). Once all the other processors remove their references to V;

we can delete the node. A simple illustration of this algorithm is shown in Figure 21.

In this example we show a mesh with two elements partitioned between three processors

Po, PI and P2 . Our goal is to move the element E a form Po to P2 . We initially send a Move

Msg(O,2) = {Ea } that includes Vo, VI and V2 • We initialize Ref(Vi) = {(PI, Vd), (Po, VOO)}.

We similarly initialize Ref(Vl) and also Ref(Vi). P2 then sends a AddRef-Msg to Po and

PI to the copies of Vo, VI and V2 that includes references to Vi, V? and vl. Po then deletes

its copy of Ea. Since it can also remove Voo, VIO and V20, it sends a DelRef-Msg to the other

processors.

We will explain the algorithm in more detail using the example in Figure 22. There

we show a mesh composed of 8 elements (Ea , ••• , Eh) and 9 nodes (Vo, ., ., Vs) partitioned

between 4 processors (Po, ... , P3). In the top Figure we show the initial partition rr t - l and

in the bottom Figure we show the target partition ITt. The initial representation of the

mesh is shown in Figure 23 (a). Our goal is to move the elements from the initial partition

to the destination partition. This can be done by executing the commands:

• Po: move E a to P3 by sending the message Move-Msg(O, 3) = {Ea }.

49

•	 PI: move Ed to Pz by sending the message Move-Msg(O, 2) = {Ed}.

•	 Pz: move Ee to P3 and Ef to Po by sending the messages Move-Msg(2, 3) = {Ee }

and Move-Msg(2, 0) = {Ef }.

•	 P3 : move Eg to PI and Ell to Pz by sending the messages Move-Msg(3, 1) = {Eg }

and Move-Msg(3, 2) = {Ell}.

•	 First we send the elements to the destination processor. If there is an element Ea

located in Pi and Ea E TI; then we send a Move-Msg(i,j) = {Ea } message from Pi to

Pj . If an element Ea refers to a node V; of which Pj has no local copy then Pi must

also include the node in the message. Determining if Pj has a local copy of Vp is easy:

we only need to look at the references to remote copies of V; (is (Pj , V~) E ReJ(V;)?)

in the sending processor Pi. If we find that Pj has a local copy vI then we use that

copy to create the element Ea in Pj. When we send a node we also include all the

references to other copies. This way the receiving processor can create its local copy

and then send a message to the other processors to update their references to it. Also

when we are sending multiple elements to a processor we need to be careful to include

only one copy of the nodes. The description of this phase is shown in Figure 24. The

initial messages for the previous example are:

Po: move Ea to P3 by sending the message Move-Msg(O, 3) = {Ea }. Include in

the message the nodes Vo and V3 and a reference to Vi. In P3 use these two

nodes and the existing copy of V4 to create the element Ea.

P1 : send Ed to Pz by sending the message Move-Msg(l, 2)

nodes VI, Vz and V5•

Pz: similarly send E e to P3 (with V3 and V6 and a reference to Vi) and Ef to

Po (with V7 and reference to V30 and V40).

P3 : at the same time send E g to P1 (with V7 and VB	 and a reference to V1
4) and

4send Ell to Pz (with V5 and VB with a reference to VZ).

50

--- - --- ---

-- ---

....................................... '. ; :

PI

P3

.

2

H

D

c

G

1-------(5

..

F

}-------{ 1 --

B

A

E

6}------;

P2

PO

.

a)

....................................... .

o PO P2

:: }------12

D
A

3 -.;:__

- --be
)------{5

- - ----------------=---:.~"..:....- :

H
E G

6}-------{

P3 PI
.............................. . .

b)

Figure 22: Migration of elements from an initial partition rr t- l (a) to a target partition

rrt (b).

51

PO Pl

PO , , Pl

:~:A ~ ;,"-'--':: C

'1..... t,3 : : 4 '\ I I I'" I I,:

B :,~ - >~ 0
 'J ~' ~
 -4' I," 5

~\ I~ :••••••••• ~
I' , I

I ' " I1" I I"':":~.:::'i>:{:r~,~""""""""""""""""'" .~ : " / :I , I I

I " I3 :,/: \..... 4 f 'Vi I
I 1\ I
I I \ I

E ~.,'_ ... -""" .. : G
4 . : 5 I I \ I . . , I \ I

I , , I
. .

(I \ I
I I \ I

6 :. ' 7
F : .-- ••• -- : H

(, \ II " " I7 : : 8 I, \'. ,
Ir 1\P2 : P3

• " 1\.
: I I I ': 6
i.' I '; . --'I \ .. '

P2 P3
: ;

b)

Figure 23: A migration example: internal representation of the mesh at the beginning of

the migration (a) and after copying the elements to the destination processors (b).

52

FOR each element Ea such that Ea E n:-1
, Ea E nj, i =I- j DO

insert Ea into Move-Msg(i, j).

FOR each node Vp E Adj(Ea) DO

IF (Pj , vt) E Ref(V;) THEN

insert (Pj, vt) into Move-Msg(i,j).nodes(Ea).

ELSE

insert Vp into Move-Msg(i,j).nodes(Ea).

insert (Pi, V;) into Move-Msg(i,j).ref(Vp).

FOR each reference (Pk, V;) E Ref(V;) DO

insert (Pk, V;) into Move-Msg(i,j).ref(Vp).

EI\lD FOR

END IF

END FOR

END FOR

FOR each processor Pj DO

IF i =I- j and Move-Msg(i, j) =I- 0 THEN

send Move-Msg(i, j).

END IF

END FOR

Figure 24: Migration phase: sending the elements to the destination processors.

53

•	 Once a processor Pj receives a message Move-Msg(i,j) it first creates the new nodes

as specified in the message and then constructs the elements. If Vp is a node of a an

element E a such that Ea E Move-Msg(i,j) and Vp E Move-Msg(i,j).nodes(Ea) then

a new copy vt
.

is created in Pj and Rej(Vt)
.

is initialized to Move-Msg(i,j).rej(Vp)

(remember that this also includes a reference to the sending processor (Pi, V;)). At

this point (Pi, V;) E Rej(Vj) but (Pj, vj) rt Rej(Vj). It is responsibility of Pj to

inform the other processors of the newly created copy.

Continuing with the example, when P2 sends Ef to Po it should also include a copy

of V7. Before PI constructs the element Ef it should first create the node V70. Using

that node and the local copies V30 and V40 it can then create the element Ef. Note

that the copy of V7 in Po has a reference to the copies in P2 and P3 and not vice versa.

It is the responsibility of Po to inform the other processors of the newly created copy.

When PI receives the element Eg it also creates a copy of V7 but the copies in Po and

PI of that node know nothing about each other at this moment.

There is another problem: P2 receives Ed from PI and Eh from P3 and both messages

include the vertex V5 (a similar problem happens in P3 with V3). We will explain

later how to handle these conditions. Figure 23 (b) shows the mesh at this stage and

Figure 25 presents an outline of this phase.

•	 In the next pha.<;e we update the references to the new nodes. Assume that V; is a

node created in Pi in the previous phase as the result of a MoveMsg(j, i). Pi needs to

inform Pj and all the other processors Pk that have a copy of Vp about the location

of V; in memory so they can create a reference to it. Using ReJ(V;), Pi sends a

AddRej-Msg(i, k) for each reference (Pk, V;) E ReJ(V;). This procedure is shown in

Figure 26.

In the previous example Po sends a message to P2 and P3 to update their references

to V,p and so does Pl. P2 detects that there is more than one new copy of V7 so it

informs Po to update the reference from V70 to Vi. The same thing happens in P3 •

54

FOR each message Move-Msg(i,j) sent from other processor ~ to Pj DO

receive Move-Msg (i, j).

FOR each element Ea EMove-Msg(i,j) DO

FOR each node Vp E Move-Msg(i,j).nodes(Ea) DO

IF Vp does not exist in Pi THEN

create the node Vp and initialize Ref(V~) = Move-Msg(i,j).ref(Vp).

END IF

END FOR

construct the element Ea.

END FOR

END FOR

Figure 25: Migration pha:;;e: creating the elements in the destination processors.

At this stage we detect that there are two copies of Vs in P2 and two copies of V3

in P3 . One of the copies is destroyed and the corresponding elements are updated

accordingly. The state of the mesh at the end of this phase is shown in Figure 27 (a)

and (b) .

•	 We now remove the elements from the source processors. Moreover if there is some

node Vp such that ElemAdj (Vp) = 0 we delete the node to free memory. In the

exampIe the destruction of Ee and E f in processor P2 causes the deletion of Vi, vl
and vi. Note that the node Vl is referenced by the new element Ell so it is not

deleted.

Before deleting the nodes we send a DelRef-Msg message to the processors that have

a reference to the node indicating that they should remove the reference. Finally we

destroy the nodes. The representation of the mesh at the end of the migration is

shown in Figure 28. Figure 29 shows this procedure.

55

FOR each new node V; DO

FOR each reference (Pj, Vt) E Ref(V;) DO

insert (vj, vj) into AddRef-Msg(i, k).

END FOR

END FOR

FOR each processor Pj DO

IF if j and AddRef-Msg(i,j) f 0 THEN

send AddRef-Msg (i, j).

END IF

END FOR

FOR each message AddRef-Msg(j, i) sent from other processor Pj to Pi DO

receive AddRef-Msg(j, i).

FOR each reference (V~, vj) E AddRef-Msg(j, i) DO

insert (Pj, vt) into Ref(V;).

END FOR

END FOR

Figure 26: Migration phase: updating the references to the new nodes.

56

I

•

l...-J "V.fn :

o /J
1

PI
: ":

PI:f··po·····················,

'PO~!
I 1 am
 8 3 [
·:;• : :'~

"'."'".........."

·
1 .. :

F 7 : ... F 7 ~ ---.---------

.. " j~~ c?~: ..: :,:,r
 . . . \~. r' : , .
I' '.

'1

1 \ " I

I' '1 ,,':'. .
: \, ,/:

'\ ,,' :
I , , I

" .. " : ':(:".' : , "
 : ,/ \,

"I': '\

l

: ,v
~~L

;

i
: ~. A ,. A' L--'

~
7

,'/
"

\\
,
1

", "" : ,/ ,
'\ :

I, " I, ,I

i ,: ~,
, I "

~ ..\
-- •• ----------

iG)
P2 , P2 P3 . , fJ. ..: -_ ;, :~

0) h)

Figure 27: A migration example: internal representation of the mesh after copying the

elements to the destination processors (a) and after removing the elements from the source

processors (b).

\. :\!, 1G)

. .l.:~~ :

P2 P3
: :

Figure 28: A migration example: internal representation of the mesh at the end of the

migration phase.

57

FOR each element Ea such that Ea E II~-l, Ea E IIj, i =J. j DO

delete element Ea.

FOR each node Vp E Adj(Ea) DO

remove E a from EJemAdj(Vp).

IF ElemAdj(Vp) = 0 THEN

FOR each reference (Pj , vt) E Ref(V;) DO

insert (vt, V;) into DeJRef-Msg (i, j).

END FOR

delete V;.
END IF

END FOR

END FOR

FOR each processor Pj DO

IF i =J. j and DeJRef-Msg(i,j) =J. 0 THEN

send DeJRef-Msg(i, j).

END IF

END FOR

FOR each message DeJRef-Msg(j, i) sent from other processor Pj to Pi DO

receive DeJRef-Msg(j, i)

FOR each reference (V;, vt) E DeJRef-Msg(j, i) DO

remove (Pj, vt) from Ref(V;).

END FOR

EI\ID FOR

Figure 29: Migration phase: deleting the elements on the source processors.

58

8 Project overview

In finite element programs written in FORTRAN meshes are typically represented by a

table of elements and a table of nodes. Each row in the table of nodes corresponds to a

node and in its columns we store the coordinates of the node. The elements are stored in

the table of elements and each element keeps track of its vertices by storing their indices in

the table of nodes.

This storage scheme allows for compact representations. This is a desirable property as

real problems have thousands of elements and nodes. Also it is very easy to find the nodes of

an element and the coordinates of a node. These are the two most common operations that

are required to construct the local and global matrices explained in Section 5. Unfortunately

the storage scheme using simple arrays is inflexible for a dynamic environment where the

nodes and elements are continuously created and deleted a.<; the result of the refinement and

coarsening algorithms.

In this section we will give an overview of the object-oriented approach that we have

taken to support the dynamic mesh adaptation. We will also explain how we implemented

the remote references a.<; smart pointers to avoid memory leaks or dangling references.

Our program ha.<; been designed to run on distributed memory parallel computers. The

current version runs in parallel in a network of SUN workstations. For communication we

use the MPI [23] message pa.<;sing library. In particular our program uses the MPICH [26]

implementation of MPI from the Argonne National Lab. MPI is becoming the standard for

message passing libraries and there are efficient implementations for many parallel comput

ers. Although MPI has many different ways of sending a message between two computers we

use the standard blocking send and receive. When a processor ~ wants to send a memory

buffer to another processor Pj it calls a C function and blocks until it is safe to reuse the

buffer. This does not guarantee that the message is actually delivered. When a processor

Pj wants to receive a buffer from Pi it calls another C function and waits until a message

from ~ arrives to Pj. We have designed C++ wrappers around these C routines. In our

environment a message is just another kind of object.

59

We also designed a very simple window interface that allows us to select an element or a

group of elements for refinement. We use windows to display the mesh where the elements

are colored depending on which processor they are located. Po is usually responsible for

managing the windows. This processor collects information from all the other processors

and broadcasts the user commands to them.

Finally we use the Chaco [20] graph partitioning program to generate the initial par

titions and for some of the mesh repartitioning algorithms. Since Chaco is a sequential

program we also run it in Po.

8.1 The user interface

The user interface is designed around the Tcl/Tk scripting package [28], [29]. The user is

presented with a window that displays the mesh. Using the mouse the user can click on

individual elements to select them or it can drag the cursor to select a group of elements.

He can then choose commands from the menus to refine, partition or migrate the mesh

using different algorithms. There are several options to display information about a mesh

or about individual elements. The user can load different meshes using a file selection box

and can select different initial partition files for a particular mesh. There is also an option

for zooming regions of the mesh. A sample display with the mesh used in Section 7.1 is

shown in Figure 30. The elements are colored according to their processor assignment. In

this example the mesh is partitioned between 4 processors.

Although the window is managed by Po the actual elements and nodes are located in

different processors. When we want to display the mesh all the processors need to send

a message to Po that contains the elements and its coordinates. When the user issues a

command by selecting an option from the menus Po broadcasts the command to all the

other processors. All this distributed input and output is managed by 4 classes. When

the user selects an option from the menu the program calls a method of a Console object

located in Po. This object is responsible for putting a wrapper around the command and

broadcasting it to all the other Pi processors. When Pi receives a command message from

60

Figure 30: Sample display of the window interface of the program.

61

~ -,- - - - - ~ Draw DrawStubDrawStub

t • t

XWindowFEMesh FEMesh-.. r0

t • t
I ~~ - ConsoleConsoleStub ConsoleStub

P2 PO PI I
I..............................

I
I

\
j Figure 31: Implementation of the distributed input/output.

Po it invokes a method on its ConsoleStub object. This object unwraps the command

and calls the appropriate method on the FEMesh object that implements the mesh. This

FEMesh object executes the command, probably communicating with some other FEMesh

objects in other processors. When Pi wants to produce some output like drawing an element

in the screen it calls a method on its DrawStub object. This object collects several output

instructions and sends an individual message to Po. Po receives the output messages through

the Draw object. Finally to display the output the Draw object calls the appropriate Tcl/Tk

commands. The relations between these objects are shown in Figure 31.

8.2 Object oriented representation of the FE mesh

The distributed mesh is implemented using the FEMesh class. There is only one FEMesh

object per processor. As this class is in essence a container for elements and nodes its two

62

most important data members are a list of pointer to elements and a list of pointers to

nodes. These lists are implemented using the Tools++ [30] templates library. The list of

elements is a list of pointers to the elements in the fine mesh assigned to the processor while

the list of nodes is a list of pointers to all the nodes in the processor. The FEMesh class has

also a pointer to a root element. The children of this distinguished element are the elements

of the coarse mesh assigned to the processor. In this way it is possible to traverse down

in the element hierarchy from the elements in the coarse mesh to their descendants in the

fine mesh. The FEMesh cla.'3s ha.'3 methods for all the algorithms described in the previous

sections.

The remote references described in Section 5.2 are implemented using the NodeRef class.

This cla.'3s is just a pair consisting of a processor and a memory address. It represents a

reference to a node located in that processor at a specific memory location. To invoke a

method into a node located in a remote processor these addresses are packed into a message

a.'3 long integers (MPI does not support the notion of messages of pointers) and sent to the

remote processor. Once the message arrives at the destination processor the address is ca.<;t

into a pointer to the node and the corresponding method is invoked on the node. For this

rea.'3on it is very unsafe to delete or move a node if the other processors still have a reference

to it. This restriction had a big influence on the migration algorithm of Section 7.2.

The elements are implemented using inheritance. There is an abstract class AbsElement

from where we derive cla.'3ses for the different types of elements such a.'3 Triangle and

Quadrilateral. An element ha.'3 a pointer to its parent, that is the element whose refine

ment created it. If the element was also refined it has a list of pointers to its children.

Finally the element has a vector of pointers to its vertices. This makes it easy to access the

coordinates of the vertices of the element to generate its local matrices for the numerical

simulations.

Another important cla.'3s is the Node class. This class keeps track of the coordinates

of the node and ha.'3 a list of NodeRef to the copies of the node in other processors. For

an internal node this list is empty. For a node located in an internal boundary between

63

processors this list contains the references to the copies of the node in the remote processor.

The Node class ha.<; also a list of pointers to their adjacent elements. When a element is

created it is automatically added to the lists in its vertices. When the element is deleted it

is removed from the lists of its vertices. If the list of pointers to the adjacent elements of

a Node object becomes empty then there is no element pointing to that node. In this ca.<;e

the node can be safely deleted without leaving any dangling pointers to it.

The messages are also encapsulated in classes that inherit from a common Message cla.<;s.

To send or receive a message the user just calls the send and receive methods of the message

object. These cla.<;ses also handle all the manipulation of the buffers so the user does not

have to call MPI routines directly. The MPI functions that are not related to messages,

such a.<; obtaining the processor number or the number of processors, are encapsulated in

an HPI da.<;s.

8.3 File format

The file format for the meshes is very simple. Each mesh description consists of a header

line that includes the number of nodes and the number of elements. After this header line

there is a line for each node that includes the node number and its coordinates. After all

the nodes there is a line for each element. For each element we include its type, the element

number and the number of its vertices.

9 Experimental results

To evaluate the quality and performance of our system we performed a series of tests on a

network of SUN SparcStation10 workstations, each with 32MB of RAM and running Solaris

2.4. The processor Po that wa.<; responsible for the window interface and the serial part of the

refinement algorithm is a multiprocessor workstation with 64MB. We tested our program

using between 4 and 32 processors. These machines were scattered between the 1st and the

5th floor of the CIT building and were connected by a lOMbs ethernet network. Most of the

machines that we used were located in the SunLab in the 1st floor while Po was located in

64

the 5th floor. The network is divided in several subnetworks that were connected through

gateways in the 5th floor. In particular, to send a message from a machine in one row of

the SunLab to a machine in a different row (that is connected to a different subnetwork)

the message has to travel all the way up to the 5th floor and then all the way down to the

SunLab.

The tests cover the major components of the system. We found that the cost of the

refinement algorithm is dominated by the serial part. By performing a sequence of successive

refinements of the whole mesh we obtained some very big meshes. Our parallel Parallel

Nested Repartition algorithm computed high quality partitions in a very rea.'3onable time.

By using the refinement history we were able to obtain better partitions than in other

multilevel algorithms.

We ran these test when most of the machines were idle but there is no guarantee that

the timings are not influenced by other users.

9.1 Network performance

The first test does not evaluate our system directly. Instead our goal is to determine the

performance of the network and compare it with a real parallel computer. We tried three

sets of programs on machines located in the 5th floor and machines located in the 1st floor.

The intuition wa.'3 that a.'3 the distance between machines in the SunLab is longer than the

distance between the machines in the 5th floor their messages should take more time.

The first test is a point-to-point communication program where a processor Pi sends

a message to some other processor Pj and waits for a response. We tried this test for

several messages whose length ranged from 1 to 100000 double. Table 1 shows the results

of this test mea.'3ured in MBytes per seconds. These results are plotted in Figure 32 (a).

Sending a message of only 1 double takes 0.0015 sec. (this is the latency of the message)

while the cost of sending an additional byte for long messages is 0.0015 msec and the

maximum performance was around 1 MByte/sec., consistent with performance obtainable

a using lOMbit/sec ethernet network. We did not experience too much difference between

65

machines in the lab and machines connected to the same subnetwork. In both cases only

when the messages are around 8K we do obtain full speed.

Length 5th floor SunLab

1 0.005234 0.004999

5 0.025177 0.021793

10 0.050197 0.034597

50 0.179837 0.166160

100 0.260687 0.246555

500 0.586020 0.565639

1000 0.741308 0.725855

5000 0.786961 0.766936

10000 0.820302 0.764463

50000 0.843152 0.820467

100000 0.859652 0.838322

Table 1: Point to point data rates between machines located in the 5th floor and machines

located in the SunLab. Performance is measured in MBytes/sec and the length of the

message is in double.

The second test corresponds to the broadcast operation. In this case a distinguished

processor Po sends a different message to all the other processors and waits for a response

from all of them. This operation is usually executed when Po broadcasts the result of the

repartitioning algorithm. The results for 4, 8 and 16 processors are shown in Table 2 and

plotted in Figure 32 (b), (c) and (d). Again the full speed is obtained when the messages

are of 8K. For longer messages we start to notice a degradation of the performance, possible

due to contention. In these tests the maximum performance was also around 1 MByte/sec.

The last test is an all-to-all communication program. In this test each processor sends

a message to each other processor and waits for a response. This test is an extreme ca.se of

our migration algorithm. The effect is that it saturates the network as it is shown in Table

66

Length

4 Processors 8 Processors 16 Processors

5th floor SunLab 5th floor SunLab 5th floor SunLab

1 0.007748 0.006733 0.006648 0.004730 0.005601 0.006167

5 0.038316 0.033345 0.030359 0.025214 0.026274 0.027965

10 0.077707 0.066563 0.060923 0.049014 0.051953 0.057124

50 0.329701 0.300788 0.326305 0.158403 0.245903 0.282621

100 0.515726 0.494174 0.531610 0.491153 0.465172 0.517887

500 0.838217 0.896251 0.952069 0.972119 0.917585 1.041698

1000 0.937303 0.998263 1.026578 0.958222 1.048212 1.046217

5000 0.819534 0.861735 0.819441 0.861253 0.931990 0.908919

10000 0.757282 0.746826 0.915833 0.869889 0.936937 0.917223

50000 0.849323 0.809480 0.891440 0.842223 0.904827 0.842918

100000 0.862556 0.833068 0.881041 0.842355 0.850441 0.837908

Table 2: Broadca.~t from a single source to all the other processors. Performance is mea

sured in MBytes/sec and the length of the message is in doubles.

67

1.2

0 0.8Ql

.!!!
VJ

0.6
~ m
:::iE 0.4

0.2

0

1.2

0 0.8Ql

.!!!\	 VJ

i 0.6

:::iE 0.4

0.2

0

Point to Point

5th Floor -
SunLab --------

=------
Broadcast (4 processors)

1.2
5th Floor	 -
SunLab -------

0 0.8Ql

.!!!
VJ

0.6
~ m
:::iE 0.4

0.2

0
1 10 100 1000 10000 100000 1 10 100 1000 10000100000

Buffer size (doubles) Buffer size (doubles)

(a)	 (b)

Broadcast (8 processors)	 Broadcast (16 processors)
1.2

5th Floor 5th Floor -

SunLab ---------
 SunLab --------

0 0.8Ql

.!!!
VJ

0.6i
:::iE 0.4

0.2

0
1 10 100 1000 10000 100000 1 10

Buffer size (doubles) Buffer size (doubles)

(c)	 (d)

100 1000 10000 100000

Figure 32: Comparison of the performance of the network between machines in the 5th

floor and machines in the SunLab. (a) shows the performance of a ping application where a

source processor sends a message to a destination processor and then waits for a response.

This example is used to measure the latency of the network. Only when the messages are

around 8K (1000 doubles) we do obtain full speed. (b), (c) and (d) show the performance of

a broadcast example where a source processor sends an individual message to every other

processor and waits for a response from all of them.

68

3 and Figures 33 (a), (b) and (c). As it is shown in the figures when we increa.c;e the number

of processors we notice a lower performance due to contention. The maximum speed for

the 4 processor ca.'3e wa.c; around 0.6 MByte/sec., almost half of the performance of the

point to point program. When we increa.c;e the number of processors to 16 the maximum

performance drops to 0.2 MByte/sec. (compared with 1 MByte/sec. in the point to point

test) .

Length

4 Proc 8 Proc 16 Proc

5th floor SunLab 5th floor SunLab 5th floor SunLab

1 0.002787 0.003874 0.002790 0.002305 0.000545 0.000169

5 0.041049 0.014917 0.018661 0.015755 0.010178 0.007148

10 0.075899 0.033313 0.066663 0.028382 0.024450 0.015553

50 0.360098 0.276849 0.194468 0.073495 0.158196 0.059094

100 0.483465 0.248942 0.251540 0.091595 0.196801 0.105000

500 0.490462 0.566953 0.313826 0.265786 0.195512 0.147489

1000 0.550117 0.363984 0.315014 0.258172 0.224284 0.184256

5000 0.435300 0.558364 0.329452 0.317619 0.238315 0.187827

10000 0.489746 0.559008 0.318954 0.340022 0.222170 0.195876

50000 0.496505 0.537064 0.316744 0.346304 0.116656 0.196713

100000 0.504589 0.531281 0.201673 0.324911 0.078395 0.139036

Table 3: All to all communication. Performance is mea.'3ured in MBytes/sec and the length

of the message is in doubles.

Finally we ran the same tests in an IBM SP-2 with 24 processors. These results are

shown in Table 4 and plotted in Figure 33 (d). The SP-2 was able to run the same tests

around 35 times faster than the network of workstations. Furthermore contention has a

much smaller effect on that machine.

69

Length pt2pt beast 4 beast 8 a1l2all 4 a1l2all 8

1

5

10

50

100

500

1000

5000

10000

50000

100000
I

0.030493

0.449846

0.962093

3.441315

5.241769

14.986043

19.998413

28.619531

31.171557

33.140733

32.841156

0.049504

0.936888

1.980803

6.545091

10.247676

21.422860

24.756026

27.910036

32.700909

34.230389

32.861832

0.032990

0.728459

1.431854

5.087394

8.709354

20.492599

26.153441

22.897113

24.209284

25.071044

25.181348

0.049397

0.820869

1.617866

6.464023

10.275279

21.749445

27.523068

31.495189

31.805331

33.086489

32.626888

0.047356

0.786651

1.552719

6.080583

9.726054

22.099546

25.587889

22.869594

22.370358

24.191446

25.082283

Table 4: Point to point, broadcast and all to all communication on the SP2. Performance

is measured in MBytes/sec. and the length of the message is in doubles.

70

1.2

0 0.8Ql

~
Ql 0.6
>.
m
~ 0.4

0.2

0
1

All to All (4 Processors)

5th Floor -
SunLab --------

-....._-- >.
m
~ 0.4

10 100 1000 10000 100000

Buffer size (doubles)

(a)

All to All (16 Processors)
1.2	 ,----r----r--,----,...-----,

5th Floor
SunLab --------

\
0.8

0.6

0.4

0.2 ~~__ ~

OL...--=::::=-----'-----'---'-----l
1 10 100 1000 10000100000

Buffer size (doubles)

(c)

1.2

0 0.8Ql

0

li5
Ql 0.6

0.2

0
1

All to All (8 Processors)

5th Floor -
SunLab --------

10 100 1000 10000100000

Buffer size (doubles)

(b)

SP2: Point to Point, Broadcast and All to all
40 ,-----.------r-----,,..----.------,

35
 pt2pt

bcast4 -

30
 a2a4-

25
 bcast8

a2a 8 ---
20

15

10

5

O'-~=----'---'----""-------I

1 10 100 1000 10000100000

Buffer size (doubles)

(d)

Figure 33: Comparison of the performance of the network between machines in the 5th

floor and machines in the SunLab and the performance of the same applications run on the

SP2. (a), (b), (c) show the performance of an all to all communication example where each

processor sends an message to each other. These example are a measure of the contention

on the network. (d) is the result of running the same tests on the SP2.

71

(a) (b)

(c) (d)

Figure 34: The air .mesh is a 2D finite element grid of a complex airfoil with triangular

elements. It consists of 9000 elements and 4720 nodes. This mesh is provided with the

Chaco program.

9.2 Mesh examples

Our tests were run on two basic meshes. The first mesh is of relatively small size. It contains

9000 triangular elements and 4720 nodes and is a 2D unstructured FE grid of an airfoil.

This mesh is provided with the Chaco program and it is known as the Hammond mesh.

In our examples we will refer to it as air .mesh. Several views of this mesh are shown in

Figure 34.

The second mesh is a larger 2D finite element grid of around 30000 triangular elements

and 15000 nodes. We will refer to it as the big. mesh. Four different views of this mesh are

72

(a) (b)

(c) (d)

Figure 35: The big. mesh is a 2D finite element mesh of a complex airfoil. It con

sists of 30269 elements and 15606 nodes. It is obtained from riacs.edu in the directory

"pub/grids/big.*" .

displayed in Figure 35. As it is shown in these pictures there is a big disparity on the size

of the elements.

9.3 Initial partition of the mesh

Recall that the first task of the general algorithm for computing the solution of dynamic

systems in Figure 7 was to obtain an initial partition of the mesh. This partition is usually

computed using a serial computer during a preprocessing step and it is not part of our

system. Nevertheless it allows us to compare the quality of the partitions obtained using

serial multilevel algorithms with more standard algorithms like Recursive Spectral Bisection

73

[15]. Recursive Spectral Bisection is knowf; to produce very good partitions but it is too

expensive to use for repartitioning the mesh.

Our program assumes that there is an initial partition of the mesh and we generate this

partition using Chaco in a preprocessing step. This system provides several method for

partitioning a graph. We used both Recursive Spectral Bisection and Multilevel Bisection.

As Chaco is a serial program we run these tests on a single SparcStationlO workstation

with 64MB of RAM. The results are shown in Tables 5, 6, 7 and 8. The time required to

compute the partitions of both meshes is shown in Figure 36 and the number of shared nodes

is shown in Figure 37. Clock time is the time elapsed to compute the partition while user

and system time denote the time spent in user and system mode. The difference between

clock time and the sum of user and system time represents the time the system was idle

because of trashing. Remember that this partition is computed using the dual of the mesh.

In this case the row labeled "edges cut" is the number of edges cut in the dual of the mesh.

Average elements is the number of elements in each processor while shared nodes is the

number of nodes in the internal boundaries between processors. A lower number of shared

nodes represents a better partition as it requires less communication.

In these examples Chaco's Multilevel Bisection outperformed Chaco's Spectral Bisection

both in time and in the quality of the partitions. The low performance of RSB on computing

the partitions for the big .mesh was due to the fact that it required a considerable amount

of memory, more than the 64MB available in the computer. Although all the partitions

required more than 4:30 hours of clock time only 1 hour was spent doing useful work. In

all cases the serial Multilevel Bisection algorithm produced better partitions in less than a

minute.

9.4 Refinement of the mesh

To test the refinement algorithm we performed successive refinements of the mesh. In each

of these phases all the elements of the mesh are selected for refinement. The number of

elements grows exponentially with the level of refinement. By doing a series of successive

74

N umber of partitions

4 8 16 32

Clock Time

User Time

System Time

Edge cuts

Avg. elements

Shared nodes

4:54.8

4:49:0

3.7

928

2250

144

5:57.1

5:51.2

5.4

1702

1125

267

6:49.4

6:40.9

8.0

2747

563

428

6:48.5

6:36.8

11.1

4417

281

690

Table 5: Spectral Bisection on the air .mesh using Chaco on a 64Mb Sun SparcSta

tion. The dual of the mesh has 9000 vertices and 52507 edges. The times are in

hours:minutes:seconds. Edge cuts is the number of edges cut reported by Chaco.

Number of partitions

4 8 16 32

Clock Time

User Time

System Time

Edge cuts

Avg. elements

Shared nodes

5:24:43.7

42:45.5

18:53.6

1929

7567

298

4:16:16.6

49:29.9

19:35.0

3252

3784

494

4:43:06.6

1:00:13.0

19:27.2

5427

1892

834

4:34:39.7

1:02:58.5

19.57.6

8084

946

1243

Table 6: Spectral Bisection on the big .mesh using Chaco on a 64Mb Sun SparcSta

tion. The dual of the mesh has 30269 vertices and 178639 edges. The times are in

hours:minutes:seconds.

75

N umber of partitions

4 8 16 32

Clock Time

User Time

System Time

Edge cuts

Avg. elements

Shared nodes

8.0

6.4

0.6

878

2250

127

11.2

9.7

1.3

1510

1125

238

18.6

15.2

3.2

2440

563

371

26.2

21.1

4.9

3978

281

613

Table 7: Serial Multilevel Bisection on the air .mesh using Chaco on a 64Mb Sun Sparc

Station. The times are in hours:minutes:seconds.

N umber of partitions

4 8 16 32

Clock Time

User Time

System Time

Edge cuts

Avg. elements

Shared nodes

17.9

16.3

1.3

1575

7567

233

23.4

21.4

1.8

2509

3784

374

47.4

43.0

4.1

4047

1892

619

52.7

46.3

6.1

6701

946

1026

Table 8: Serial Multilevel Bisection on the big.mesh using Chaco on a 64Mb Sun Sparc

Station. The times are in hours:minutes:seconds.

76

450

400

350

- 300
(,)
(1)
U) 250-(1)

200E
i= 150

100

50

0

20000
18000
16000
14000

(,) -
(1) 12000
U)- 10000(1)

E 8000i=
6000
4000
2000

0

___________ 4

4

Initial Partition (air.mesh)
a

(b)
---_._.._-----~--------------------

8 16 32
Number of partitions

(a)

Initial Partition (big.mesh)

(a)

Spectral ~a)

Multilevel b)

(b)

4 8 16 32
Number of partitions

(b)

Figure 36: Partition of the initial mesh using Chaco. Time spent to compute 4, 8, 16 and

32 partitions of (a) air .mesh and (b) big.mesh.

77

Initial Partition (air.mesh)
700 ,....------.,------,.-------,

Spectral (a)
Multilevel (b) -----600

~	 500
"0
o
c:
"0 400
@
ttl

..c:
C/)	 300

200

100 L....- ----' ----' ---l

4 8 16 32
Number of partitions

(a)

Initial Partition (big.mesh)
1400 ,....------.,------,.-------,

1200

~ 1000
"0
o
c:
"0 800
@
ttl

..c:
C/)	 600

400

200
4

Figure 37: Partition of the initial mesh using Chaco. Number of shared of nodes after

computing the partitions of (a) air.mesh and (b) big.mesh.

78

Spectral (a)
Multilevel (b)

(a)

'-----------'--------'-------'
8 16 32

Number of partitions

(b)

refinements we were able to create meshes L:onsisting of more than 2,000,000 elements. We

estimate that we could store around 40,000 to 50,000 elements in each processor. After

that the data sets were too big and the performance of the algorithm drops considerably

due to trashing. These results are shown in Tables 9, 10, 11 and 12. The serial time is

the time spent creating new elements and nodes and the communication time is the time

spent propagating the refinement to adjacent processors. For each refinement we include the

total number of elements, the average number of elements per processor, and the number of

elements in the processor that stores the largest number of elements and the one that stores

the smallest number. Imbalance is the ratio between the absolute value of the difference

between the largest or smallest number of elements (whichever is larger) and the average.

Shared nodes is the number of nodes in an internal boundary between processors.

The algorithm spends most of its time in the serial part and the communication cost

IS very small. This is not surprising because of the way we are selecting the elements

for refinement. It is unlikely that by selecting all the elements the refinement is going

to propagate to too many processors. In these tests the longest propagation was to a

couple of processors. Also note that when we increase the number of processors there is a

higher imbalance of the element distribution that reaches a 33 per cent after 6 successive

refinements. As it is shown in the figures we are able to obtain superliner speedups. This is

due to the fact that when we use a small number of processors we require a lot of memory.

This is particularly true when the number of elements assigned to a processor is more than

50,000. In some of these tests we measured 90MB of virtual memory on machines that have

around 15MB of physical memory available. This speedup tends to become linear as the

number of processors increase and the memory is less of an issue. Figure 38 plots these

results and Figure 39 shows the air .mesh before and after the refinement of all its elements.

9.5 Migration of the mesh

The migration tests are performed by migrating all the elements in processor Pi to processor

Pi+l. This is probably one of the most demanding migrations that we can perform. It

79

N umber of refinements

Initial 1 2 3 4

Time (serial)

Time (comm)

Time (total)

Elements (total)

Elements (avg)

Elements (max)

Elements (min)

Imbalance (%)

Shared nodes

9000

2250

2250

2250

127

7.42

0.13

7.55

22247

5562

5549

5522

1.56

194

35.50

0.32

35.81

51703

12926

13220

12793

2.27

304

162.63

0.40

163.03

115347

28837

29617

28461

2.70

440

927.25

9.80

937.05

251458

62865

64743

61949

2.99

676

Table 9: Successive refinements of the air .mesh in 4 processors. In each phase all the

elements are selected for refinement.

N umber of refinements

Initial 1 2 3 4 5

Time (serial)

Time (comm)

Time (total)

Elements (total)

Elements (avg)

Elements (max)

Elements (min)

Imbalance (%)

Shared nodes

9000

1125

1125

1125

238

2.51

0.10

2.61

22253

2782

2814

2718

2.30

357

11.68

0.21

11.89

51711

6464

7011

6205

8.46

558

50.89

0.30

51.19

115363

14420

15900

13708

10.26

815

223.40

0.67

224.07

251490

31436

35005

29708

11.35

1241

1396.67

10.92

1407.59

535896

66987

75020

63009

11.99

1773

Table 10: Successive refinements of the air .mesh in 8 processors. In each phase all the

elements are selected for refinement.

80

N umber of refinements

Initial 1 2 3 4 5 6

Time (serial)

Time (comm)

Time (total)

Elements (total)

Elements (avg)

Elements (max)

Elements (min)

Imbalance (%)

Shared nodes

9000

563

563

562

371

1.70

0.12

1.82

22247

1390

1580

13.11

13.70

576

4.30

0.29

4.59

51703

3231

3951

2918

22.28

911

15.64

0.31

15.95

115347

7209

9173

6316

27.24

1292

81.00

0.58

81.58

251458

15716

20514

13481

30.53

2044

347.69

1.69

349.38

535840

33490

44357

28298

32.45

2795

2535.00

86.84

2620.84

1124496

70281

93940

58739

33.66

4357

Table 11: Successive refinements of the air. mesh in 16 processors. In each phase all the

elements are selected for refinement.

N umber of refinements

Initial 1 2 3 4 5 6

Time (serial)

Time (comm)

Time (total)

Elements (total)

Elements (avg)

Elements (max)

Elements (min)

Imbalance (%)

Shared nodes

9000

281

281

282

613

0.42

0.32

0.73

22251

695

788

642

13.38

945

1.38

0.34

1.72

51713

1616

1967

1389

21.72

1475

5.91

0.39

6.30

115363

3605

4567

3081

26.69

2138

22.80

0.68

23.48

251490

7859

10214

6271

29.97

3307

77.66

1.18

78.84

535902

16747

22080

13069

31.84

4633

376.17

4.00

380.17

1124612

35114

46764

26979

33.06

7093

Table 12: Successive refinements of the air .mesh in 32 processors. In each phase all the

elements are selected for refinement.

81

)

Mesh Refinement (air. mesh) (computation)
160 r;-------,....-- ------,,....--------,

140

120

100

80

60

40

20

2

1.8

1.6

1.4

0 1.2
CD .e
CD
E
i= 0.8

0.6

0.4

0.2

1st refinement (a)
2nd refinement (b) ---.
3rd refinement (c) .
th refinement (d)--

(d)

................

.......
'··'·...•.(b)

...... (c): _._ _---

o c=~=======--=--~-.~--.~-..-;;;~--~-~-.-~--=... ..--=--=---~--.-::.J-
4 8 16 32

Processors

(a)

Mesh Refinement (air.mesh) (communication)

\
\
\
\,
\
\
!

\
i

\
\
\
"\

'--._-

1st refinement (a)
2nd refinement (b) ---
3rd refinement (c) .
4th refinement (d)-

(d) _
--- -- --. -------- -- ~ --~ ---

O'-------....I....------....L..--------'
8 16 324

Processors

(b)

Figure 38: Successive refinements of the mesh. In (a) we show time spent in the serial

part of the algorithm while in (b) we show the time spent on communication.

82

(b)

Figure 39: Refinement of the mesh. The initial air.mesh (a) and after refining all its

elements (b).

83

involves the destruction of all the elementf: in P; and the creation of the same elements in

P;+1. The timings for this test are shown in Table 13 and plotted in Figure 40. We perform

this permutation migration after none, one and two refinements on the air .mesh for 4, 8,

16 and 32 processors.

Remember that the refinement of all the elements of the mesh more than doubles the

size of the mesh. Also the migration does not include only the elements in the fine mesh

but also all the elements in the intermediate meshes. When the mesh is not refined the cost

of the algorithm is dominated by the communication. This is why we do not observe any

speedup in the column corresponding to the migration of the initial mesh. After one or two

refinements we observe linear speedups. The migration of the mesh after two refinements

using four processors is a special case. We believe that the low performance of the algorithm

at that case is because we are consuming too much memory.

Processors

Migration after successive refinements

Initial mesh 1 refinement 2 refinements

4

8

16

32

1.85

1.76

2.62

4.86

37.99

13.37

6.44

5.89

283.60

79.95

27.24

12.26

Table 13: Migration of the mesh. Time in seconds to migrate each element of the air. mesh

mesh that it is assigned to P; to Pi+l after none, one or two refinements.

Figure 41 shows two stages of this test. In 41 (a) we display a snapshot of the mesh

with no refinements before the migration and in (b) we show the same mesh after this

permutation migration. Figure 42 (a) shows another migration example. In this case all

the elements in each processor are migrated to a random processor. In Figure 42 (b) we

migrate the elements according to a target partition.

84

Mesh Migration (air.mesh)
100

initial mesh (a)
after 1 refinement (b)

80 ",
after 2 refinements (c)

0
<D

60 ""{~)
.!!?.
<D

".

E
i= 40

.......... (b) .\ ...\." .•.

................
...~ ..

...................

20 I

............_-_._._._._._----_.._---------------------
a)

o
4 8 16 32

Processors

Figure 40: Migration of the mesh. We migrate each element of the air .mesh that it is

assigned to ~ to ~+l after none, one or two refinements.

9.6 Dynamic partitioning of the mesh

Finally we put all the tests together. In this section we present tests that refine the mesh,

find a new partition at run time and migrate the mesh according to the new partition. These

tests are performed using two different methods. For the first set of tests we partition the

mesh using the Parallel Nested Repartitioning algorithm (see Section 7.1.3). In parallel

we compute the weight of the mesh MOl by collapsing elements that are descendants of a

common element of the coarse initial mesh. This phase does not require communication.

We then send the dual of the coarse mesh to Po to start the serial phase of the algorithm.

In the serial phase we find a partition of the coarse mesh using a serial algorithm. In this

phase we use Chaco's serial Multilevel Bisection algorithm to partition this reduced graph.

We then broadcast the partition to the processors to start the migration phase.

For comparison we run the same tests using the serial Multilevel Bisection algorithm

to repartition the mesh. Rather than collapsing the refined elements in parallel as in the

85

(a)

(b)

Figure 41: Migration of the mesh. In (a) we show the air.mesh distributed between 32

processors. This partition was obtained using a Multilevel Bisection algorithm. In (b) we

migrate every element in each processor to the next processor.

86

(b)

Figure 42: Migration of the mesh. In (a) we migrate the elements to a random processor

and in (b) we migrate the mesh according to a Spectral Bisection partition.

87

PNR algorithm we send to Po the whole me,;h. In this test we forget that the fine mesh was

obtained as the result of the refinement of another coarser mesh. For this reason we eliminate

all the intermediate elements and we send the fine mesh to Po. We perform this operation

by flattening the hierarchy of elements: we delete all the intermediate refined elements

leaving only the elements of the fine mesh. The serial multilevel algorithm running in Po

collapses the elements by computing a matching of the graph. For a complete description of

the method see [21]. Note that if we were implementing this method in a parallel computer

we would require to communicate at each level to find a matching of the graph.

The results are shown in Tables 14, 15, 16 and 17. These results are also plotted in

Figures 43, 44 and 45. In these pictures and tables we divide the repartitioning in four

pha.c;es:

•	 in the first pha.c;e every processor calculates the weights of its portion of the coarse

mesh and sends it to Po.

•	 in the second pha.c;e Po computes the dual of the graph and spawns a process to run

Chaco. In the case of the PNR algorithm Chaco computes a partition of the reduced

mesh MOl. In the ca.c;e of the serial algorithm Chaco computes a partition using all

the elements of the fine mesh.

•	 in the third phase Po sends the new partition to all the processors.

•	 finally we migrate the elements according to the new partition.

First note that if the mesh is not refined both the serial and PNR algorithm are essen

tially the same and should produce similar results. Only when the mesh is refined we would

note a difference between both approaches.

It is not surprising that the partition is significantly faster if we send only the coarse

mesh to Po as in the PNR algorithm rather than the fine mesh as in the serial algorithm.

In the PNR algorithm the cost of computing the weights of the mesh MOl and sending it

to Po does not increa.c;e too much as we perform successive refinements of the mesh. In this

88

ca.'3e IMol1 is a constant so the same nun!ber of elements are always sent to Po. This is

obviously not true in the serial algorithm. As Po needs to partition a much smaller graph

during the serial pha.'3e of the PNR algorithm the cost of performing this partition is much

smaller than if it wa.'3 made using the serial algorithm. The time to receive the partition

from Po increa.'3es faster in the serial algorithm than in the PNR algorithm as Po needs to

return longer messages because it partitioned a bigger graph.

It is also not surprising that the migration pha.'3e using the serial algorithm performs

better than the one using the PNR algorithm because in the serial algorithm we removed all

the intermediate elements. In this ca.'3e the migration corresponding to the PNR partition

does not only need to migrate the elements in the fine mesh but also all the refined elements.

But this advantage is outweighed by the cost of sending the mesh to Po and performing the

partition on a bigger mesh.

The really important results are obtained by looking at the last row of Tables 14, 15,

16 and 17 and comparing the quality of the partitions. Our Parallel Nested Repartitioning
\.
j

algorithm produced almost always better partitions than the serial multilevel algorithm andI

we have shown in Section 9.3 that the serial Multilevel Bisection algorithm produced better

partitions than the highly acclaimed Recursive Spectral Bisection algorithm. This proves

that the information from the refinement can be effectively used in the mesh partitioning

algorithms.

10 Related projects

This project follows the spirit of the Distributed Irregular Mesh Environment (DIME) [31],

[43] by Roy Williams at the California Institute of Technology. DIME allowed the refinement

of triangles but wa.'3 not able to coarsen them. Also it is not clear how its parallel refinement

and load migration work.

The Scalable Unstructured Mesh Computation (SUMAA3d) at the Argonne National

Laboratories is another related project. The refinement algorithm [3] avoids the creation

of duplicate nodes in the boundaries of processors by refining the elements in independent

89

PNR algorithm Serial algorithm

Initial 1 Ref 2 Ref Initial 1 Ref 2 Ref

Send mesh to Po 20.59 32.85 34.85 21.52 57.24 256.91

Partition 18.05 17.81 18.38 17.70 55.47 267.27

Receive partition from Po 1.17 0.90 1.28 0.94 2.41 39.24

Migration 5.36 25.90 281.53 8.80 22.65 109.53

Total time 46.06 77.89 337.47 49.44 138.75 675.71

Number of shared nodes 119 205 298 119 233 442

Table 14: Repartition of the air .mesh in 4 processors after none, one and two refine

ments using the PNR algorithm and the serial Multilevel Bisection algorithm. Times are

in seconds.

PNR algorithm Serial algorithm

Initial 1 Ref 2 Ref Initial 1 Ref 2 Ref

Send mesh to Po 17.04 16.13 21.16 15.72 49.01 229.20

Partition 22.23 21.62 21.73 22.03 57.19 263.98

Receive partition from Po 1.83 1.77 1.67 1.67 2.15 6.56

Migration 4.52 16.55 84.08 4.81 8.80 29.66

Total time 47.71 56.23 128.97 44.41 118.00 530.76

Number of shared nodes 221 465 510 221 448 694

Table 15: Repartition of the air .mesh in 8 processors after none, one and two refine

ments using the PNR algorithm and the serial Multilevel Bisection algorithm. Times are

in seconds.

90

PNR algorithm Serial algorithm

Initial 1 Ref 2 Ref Initial 1 Ref 2 Ref

Send mesh to Po 15.76 13.99 17.39 14.16 46.39 237.69

Partition 34.51 31.26 33.61 30.96 76.81 304.19

Receive partition from Po 2.49 2.31 2.95 2.95 3.03 5.50

Migration 7.82 10.36 32.70 6.76 9.52 29.86

Total time 60.69 58.13 86.86 54.97 138.40 591.30

Number of shared nodes 397 597 919 397 797 1225

Table 16: Repartition of the air .mesh in 16 processors after none, one and two refine

ments using the PNR algorithm and the serial Multilevel Bisection algorithm. Times are

in seconds.

PNR algorithm Serial algorit hm
I

Initial 1 Ref 2 Ref Initial 1 Ref 2 Ref

Send mesh to Po 15.62 16.09 16.05 14.65 38.25 250.19

Partition 40.44 47.26 46.16 40.72 86.25 331.65

Receive partition from Po 4.99 5.19 4.42 5.24 5.30 9.61

Migration 23.59 15.74 30.90 21.19 91.90 30.83

Total time 85.26 84.48 97.71 82.01 252.94 624.18

Number of shared nodes 618 955 1525 618 1122 1701

Table 17: Repartition of the air .mesh in 32 processors after none, one and two refine

ments using the PNR algorithm and the serial Multilevel Bisection algorithm. Times are

in seconds.

91

Sending the mesh (air.mesh)
300 ,----------,,---------,--------,

250

200

150

100

:

.-.-.-.-.J~!_. _ -_.- ---- - - - ----- - .-- - - _.- --- -

no refinement (a)
1 ref PNR (b) ------
2 ref PNR (c) ..---...
1 ref serial (d) ------.
2 ref serial (e) ---

~~§[==~~~~===:===~~-------
4 8 16 32

Processors

(a)

Partitioning the mesh (air.mesh)
350 ,-------,----------,,----------,

300

250

200

150

100

50

_.- ...

... _.___ ._i~~ . ._. .-.
no refinement (a)

1 ref PNR (b) -.-
2 ref PNR (c) .
1 ref serial (d) -
2 ref serial (e) --.--...

----_.._-..(g)...._.._.._--_._._._----_.__.....__._--_.-._.-_.-.------_.----
__,,,:

U(b~»),.....,.(~lc)L----.........,==--=1

o (a)

4 8 16 32
Processors

(b)

Figure 43: Partitioning of the mesh after none, one and two refinements using the PNR

algorithm and the serial Multilevel Bisection algorithm. (a) shows the time spent on sending

the mesh to one processor. (b) shows the time spent by Po to partition the graph.

92

Receiving the partition (air. mesh)
40 ..

\\

35
 no refinement (a)

\\ (e) 1 ref PNR (b) -.--
...

\
\

2 ref PNR (c) --_.._-.30
1 ref serial (d) -.----.\\ 2 ref serial (e)25 ..

...
!E
~

\ ..20QlE ..
i= \,15 ..

\, ..10 .. _.- ... -.. \ ...-.-_.,- -- - - - - - - - - -
5 (d) ------.--~
o ~---t=---.-:fi--.-o=--,.-':m.-E:::--::--::'--::r,,'.::~.'----===-=-__~

4 8 16 32
Processors

(a)

Migration (air.mesh)
300

\

0
Ql
!E-
Ql
E
i=

250

200

150

no refinement (a)
1 ref PNR (b)
2 ref PNR (c)
1 ref serial (d)
2 ref serial (e)

-_.... _
-.--.

.

100

16 32
Processors

(d)

Figure 44: Partitioning of the mesh after none, one and two refinements using the PNR

algorithm and the serial Multilevel Bisection algorithm. (a) is the time spent on commu

nicating back the results of the partition from Po to the processors and (b) shows the time

spent on the migration of the mesh.

93

Total time (air.mesh)
700 ,---------,,---------,,.--------,

""""" (e)
........

",600 ",

",

500 no refinement (a)
1 ref PNR (b) ---
2 ref PNR (c) .

400 1 ref serial (d) ---
2 ref serial (e) -._._.-.

300

200

8 16 32
Processors

(a)

Shared nodes (air.mesh)
1800

1600
 no refinement (a) - .,/
1 ref PNR (b) ----- /,/ (C;)-.

1400 2 reff P~RI ((dC)) ,. ..,./'./ .
1

III 1200 2;~ ~:;::I (eJ =,////:'*J(J)
"0
0
c 1000
"0
(J) 800 / ,.,../..- ~::../.-- .-...
Cll ..c

C/)

~--------

OL-------'---------'-----------l

(e) .~~-,/'--600

400

200

4 8 16 32
Processors

(b)

Figure 45: Partitioning of the mesh after none, one and two refinements using the PNR

algorithm and the serial Multilevel Bisection algorithm. (a) is the total time. The number

of shared nodes is shown in (b).

94

sets so that adjacent elements in different processors are never refined at the same time.

These independent sets are computed using Monte Carlo methods. Also the partitioning

algorithm is based on the Orthogonal Recursive Bisection method. In general is possible to

obtain much better partition using multilevel methods.

In [33], [42] an adaptive environment for unstructured problems is presented. In this

project the migration is only done to adjacent processors using iterative local migration

techniques. The load balancing algorithm is done by comparing the work between adjacent

processors. This means that we might require several iterations to rebalance the work.The

refinement is performed using quadtree structures.

11 Conclusion and future work

In this thesis we present contributions in the areas of mesh refinement, mesh repartitioning

and mesh migration.

We have developed parallel refinement algorithms for unstructured meshes and used the

refinement history to develop a Parallel Nested Repartitioning algorithm superior to the

algorithms in [19] when applied to the partition of adapted meshes. Although we explained

the theoretical problems of doing the refinement in parallel our tests showed very little

overhead due to communication.

We used the Parallel Nested Repartitioning algorithm to compute partitions on the fly.

We showed that we can obtain high quality partitions at a reasonable cost. We also showed

that we can use these partitions to rebalance the work by migrating elements and nodes

between the processors.

The implementation of the project was highly simplified by using C++. The use of an

object oriented language allowed us to design irregular data structures efficiently. It also

reduced the number of bugs as we encapsulated the most dangerous components (like the

remote pointers) into objects.

There are two major possible improvements to this project. The first one is to port it to

the IBM SP-2. The second one is to find a real physical problem to drive the computation.

95

Although we have worked only with triangles we designed the data structures to allow

different types of elements both in 2D and in 3D.

12 Acknowledgements

I would like to thank the great guys of Room 402 for two wonderful years: Al Mamdani,

Andy Foersberg, Dawn Garneau, Jon Metzger, Laura Paglione, Madhu Jalan, Rob Ma.'3on

and especially Sonal Jha who were always finding new ways of keeping me away from the

CIT. Thanks also to my friends Vaso Chatzi, Laurent Michel and Michael Benjamin and

my officemates Sonia Leach and Michael Littman. Many thanks to my parents Gianna and

Buby and my stepfather Carlos for their support and motivation for coming to the States.

I have worked with many professors while at Brown but I want to mention four of them

tha.t had the biggest influence on me: Paris Kanellakis, Paul Fischer, Tom Dean and Tom

Doeppner.

Finally Prof. John Savage, more than an advisor, ha.'3 been a mentor and a friend.

96

References

[1]	 Maria Cecilia Rivara: Selective refinement/derefinement algorithms for sequences of

nested triangulations, International Journal for Numerical Methods in Engineering,

Vol. 28, 2889-2906, 1989.

[2]	 Maria Cecilia Rivara: Algorithms for refining triangular grids suitable for adaptive

and multigrid techniques, International Journal for Numerical Methods in Engineering,

Vol. 20, 745-756, 1984.

[3]	 Mark T. Jones and Paul E. Plassmann: Parallel algorithms for the adaptive refinement

and partitioning of unstructured meshes, Proceedings of the Scalable High-Performance

Computing Conference, Knoxville, Tennessee, 1994.

[4]	 Dimitri P. Bertsekas and John N. Tsisiklis: Parallel and Distributed Computation:

Numerical Methods, 570-579, Prentice Hall, New Jersey, 1989.

[5]	 Ivo Babuska, Jagdish Chandra and Joseph E. Flaherty (eds.): Adaptive computational

methods for partial differential equations, SIAM, Philadelphia, 1983.

[6]	 M. Mamman and B. Larrouturou: Dynamical mesh adaptation for two-dimensional re

active flow simulations, Numerical Grid Generation in Computational Fluid Dynamics

and Related Fields, North-Holland, Amsterdam, 1991.

[7]	 L. Ferragut, R. Montenegro and L. Plaza: Efficient refinement-derefinement algorithm

of nested meshes to solve evolution problems, Communications in Numerical Methods

in Engineering, Vol. 10, 403-412, 1994.

[8]	 Kenneth G. Powell, Philip L. Roe and James Quirk: Adaptive-mesh algorithms for

computational fluid dynamics, Algorithmic Trends in Computational Fluid Dynamics,

Springer-Verlag, 1991.

[9]	 J. E. Savage and M. Wloka: Parallelism in Graph Partitioning. Journal of Parallel and

Distributed Computing, 13, 257-272, 1991.

97

[10]	 Roy Williams: Adaptive parallel meshes with complex geometry, Numerical Grid Gen

eration in Computational Fluid Dynamics and Related Fields, North Holland, 1991.

[1l]	 A. Bowyer: Computing Dirichlet tessalations, Compo J., 24,162,1981.

[12]	 J. E. Akin: Finite Elements for Analysis and Design, Academic Press, 1994.

[13]	 E. J. Schwabe, G. E. Blelloch, A. Feldmann, O. Ghattas, J. R. Gilbert, G. L. Miller,

D. R. O'Hallaron, J. R. Shewchuck and S. Teng: A separator-based framework for

automated partitioning and mapping of parallel algorithms for numerical solution of

PDEs, Proc. 1992 DAGS Symposium, 1992.

[14]	 John J. Barton and Lee R. Nackman: Scientific and Engineering C++: An introduction

with advanced techniques and examples, Addison Wesley, 1994.

[15]	 H. D. Simon: Partitioning of unstructured meshes for parallel processing, Computing

Systems Eng., 1991.

[16]	 S. T. Barnard and H. D. Simon: A fast multilevel implementation of recursive spectral

bisection for partitioning unstructured problems, Proceedings of the 6th SIAM confer

ence on Parallel Processing for Scientific Computing, 711-718, 1993.

[17]	 S. T. Barnard and H. D. Simon: A parallel implementation of multilevel recursive

spectral bisection for application to adaptive unstructured meshes, Proceedings of the

7th SIAM conference on Parallel Processing for Scientific Computing, 627-632, 1995.

[18]	 G. Karypis and V. Kumar: A fast and high quality multilevel scheme for partitioning

irregular graphs, Tech. Rep. CORR 95-035, University of Minnesota, Dept. of Computer

Science, 1995.

[19]	 G. Karypis and V. Kumar: Parallel Multilevel Graph Partitioning, Tech. Rep. CORR

95-036, University of Minnesota, Dept. of Computer Science, 1995.

[20]	 B. Hendrickson and R. Leland: A multilevel algorithm for partitioning graphs, Technical

Report SAND93-1301, Sandia National Laboratories, 1993.

98

[21]	 B. Hendrickson and R. Leland: The Chaco user's guide, Technical Report SAND93

2339, Sandia National Laboratories, 1993.

[22]	 B. Hendrickson and R. Leland: The Chaco user's guide, Version 2.0, Technical Report

SAND94-2692, Sandia National Laboratories, 1995.

[23]	 Message Passing Interface Forum: MPI: A Message Passing Interface Standard, 1994.

[24]	 W. Gropp, E. Lusk and A. Skellum: Using MPI: Portable parallel programming with

the Message Passing Interface, MPI Press, 1994.

[25]	 M. Snir, S. Otto, S. Huss-Lederman, D. Walker and J. Dongarra: MPI: The complete

reference, MIT Press, 1996.

[26]	 W. Gropp and E. Lusk: User's Guide for MPICH: A portable Implementation of MPI,

Argonne National Lab and Missisipi State University.

[27]	 R. Butler and E. Lusk: User's guide to the p4 Parallel Programming System, Technical

Report ANL-92/17, Argonne National Laboratory, 1992.

[28]	 B. Welch: Practical Programming in Tel and Tk, Prentice Hall, 1995.

[29]	 J. Ousterhout: Tel and the Tk Toolkit, Addison-Wesley, 1994.

[30]	 Sun Microsystems: Tools.h++ Class Library: Introduction and Reference Manual, Sun

Pro, 1993.

[3:1.]	 R. D. Williams: DIME: A User's Manual, Caltech Concurrent Computation Report

C3P 861, 1990.

[32]	 B. Kernighan and S. Lin: An efficient heuristic procedure for partitioning graphs, Bell

System Technical Journal, 29, 291-307, 1970.

[33]	 K. Devine, J. Flaherty, R. Loy and S. Wheat: Parallel partitioning strategies for the

adaptive solution of conservation laws, Modeling, Mesh Generation and Adaptive Nu

99

[43] G. C. Fox, R. D. Williams and P. C. Messina: Parallel Computing Works!, Morgan

Kaufmann Publishers, Inc. 1994.

101

