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1 Introduction 

Although massively parallel computers can deliver impressive peak performances, their com

putational power is not sufficient to simulate physical problems with highly localized phe

nomena by using only brute force computations. Adaptive computation offers the potential 

to provide large increases in performance for problems with dissimilar physical scales by 

focusing the available computing power on the regions where the solution changes rapidly. 

Since adaptivity significantly increases the complexity of algorithms and software, new de

sign techniques based on object-oriented technology are needed to cope with the complexity 

that arises. 

In this thesis we study problems that arise when finite-element and spectral methods 

are adapted to dynamically changing meshes. Adaptivity in this context means the local 

refinement and derefinement of meshes to better follow the physical anomalies. Adaptation 

produces load imbalances among processors thereby creating the need for repartitioning of 

the work load. We present new parallel adaptation, repartioning and rebalancing algorithms 

that are strongly coupled with the numerical simulation. Adaptation, repartitioning and 

rebalancing each offer challenging problems on their own. Rather than studying these 

problems individually we put special emphasis on investigating the way these different 

components interact. By considering adaptivity as a whole we obtain new results that are 

not available when these problems are studied separately. 

We discuss the difficulties of designing parallel refinement algorithms and we introduce 

a refinement algorithm based on the Rivara's bisection algorithm for triangular elements 

[1], [2]. By representing the adapted mesh as a forest of trees of elements we avoid the 

synchronization problems for which Jones et al use randomization [3]. 

We propose a new Parallel Nested Repartitioning algorithm that has its roots in the 

multilevel bisection algorithm of Barnard et al [16]. It produces high quality partitions at a 

low cost, a very important requirement for recomputing partitions at runtime. It has a very 

natural parallel implementation that allows us to partition meshes of arbitrary size. The 

collapsing of the vertices is performed locally using the refinement history and avoiding the 
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communication overhead of other partitioning methods [19]. Compared to iterative local 

migration techniques [42] this method does not require several iterations to rebalance the 

work. 

Finally we design a mesh data structure where the elements and nodes are not assigned 

to a fixed processor throughout the computation but can easily migrate from one processor 

to another in order to rebalance the work. The mesh is represented as a set of C++ 

objects. To avoid the problem of having dangling pointers between different address spaces, 

the references to remote objects are handled through local proxies. These proxies keep track 

of the migration of objects a.<; a result of load balancing. 

To evaluate these idea.<; we designed and implemented a system in C++. This program 

runs on a network of workstations (NOW) and uses MPI [23] to communicate between 

processors. The most salient characteristic of adaptive codes is the high sophistication 

of their data structures. The use of object oriented techniques allowed us to reduce the 

complexity of the implementation without significantly affecting the performance. 

Mesh-based computation 

The numerical solution of complex partial differential equations using computational re

sources requires the definition of a domain n in which the problem is to be solved and a set 

of conditions to be applied at its boundaries [10]. The continuous domain and boundary 

conditions are discretized so they become amenable to computer manipulation. A computa

tional mesh M is thereby produced. This mesh is constructed by splitting the domain into a 

set of simple polygons such a.<; triangles and quadrilaterals (in 2 dimensions) or tetrahedrals 

(in 3 dimensions) called elements that are connected by faces, edges and nodes. 

Once a mesh is constructed, elements can be split into a set of nested smaller elements 

or combined into a macroelement. This process is called the adaptation of the mesh. In 

an adaptive method the selective and local refinement of the mesh is interleaved with the 

solution of the problem by contrast with the static grid generation approach in which a 

fixed discretization of the geometry is done in a preprocessing step. 
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Adaptive methods can be schematically described as a feedback process where the auto

matic construction of a quasi-optimal mesh is performed in the course of the computation 

[1]. Rather than using a uniform mesh with grid points evenly spaced on a domain, adaptive 

mesh refinement techniques place more grid points where the solution is changing rapidly. 

The mesh is adaptively refined during the computation according to local error estimates 

on the domain [3]. Meshes are usually refined for two main rea.'3ons: [10]: 

•	 to obtain a better solution by increa.'3ing the resolution in a particular region (steady 

case) . 

•	 to better resolve transient phenomena like shocks in the simulation of stiff unsteady 

two-dimensional flows [6]. During the computation the mesh is refined and coarsened 

(called sometimes fission and fusion operations) as the regions of interest evolve and 

move. The construction of meshes for this type of problem requires data structures 

that allow: 

addition of elements when an element is refined by replacing it by two or more
 

nested elements.
 

coalescence of elements into larger elements when the mesh is coarsened.
 

Although the computational power of parallel computers is continuously increa.'3ing it 

is unlikely that they will reach the level of performance required to solve problems of very 

localized physical phenomena using a uniform discretization of the domain. Rather than 

using this brute force approach adaptive meshes restrict the use of small elements to the 

regions of interest while maintaining a coarser mesh everywhere else. 

The use of adaptive meshes has the potential of producing large computational savings 

but at the price of significantly increasing the sophistication of codes and algorithms. As 

the mesh is no longer regular we need to develop new data structures that are usually more 

difficult to implement than the regular ones. Also the design of adaptive meshes in a parallel 

environment requires a close interaction between the algorithms that refine, partition and 

3
 



rebalance the mesh and the numerical simulation. The success of an adaptive strategy will 

depend strongly on how well these different modules can communicate with each other. 

There is a wide variety of strategies for mesh refinement [8]. In the remaining part 

of this section we review some of the most common techniques for mesh generation and 

refinement. In the following section we introduce a strategy to implement adaptive meshes 

using a sequence of nested refinements. Later we show how to implement this approach on 

a parallel computer. We also explain the object-oriented techniques that we use to simplify 

the software design. 

2.1 Selection of the mesh type 

The selection of the mesh type depends on the problem to be studied since there is no 

strategy that it is considered best for every problem. Among the most common approaches 

we mention [8]: 

•	 structured meshes: there is a mapping from the physical space to the computational 

space. In the computational space the elements appear as squares (in two dimensions) 

or cubes (in three dimensions) and the neighbors and vertices of an element are easily 

calculated using an array based data structure. The data structures for this type of 

mesh are very regular . 

•	 unstructured meshes: in this case the elements store explicit connectivity information 

to determine their neighbors and vertices. The data structures in this case are more 

complex than in structured meshes but it is easier to represent complex geometries. 

Each type of mesh has its advantages and disadvantages. Structured meshes require 

simpler codes with less overhead but are more limited in the representation of complex 

domains. Unstructured meshes are more complex, require more storage and overhead per 

element but can easily represent complex geometries and moving bodies. Some techniques 

implement the meshes as a combination of both approaches. In such cases the mesh is 
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usually decomposed in a set of unstructured super-elements where each super-element is 

decomposed into a structured grid. 

The choice of the mesh type determines the data structures and algorithms available 

for refinement, partitioning and rebalancing. For example, a partitioning method adequate 

for unstructured meshes such as Recursive Spectral Bisection [15] is useless for structured 

meshes. A refinement algorithm will perform well on some type of meshes but is not 

recommended for anothers. And the migration algorithm described in Section 7.2 highly 

depends on how the mesh is actually stored. In the rest of this paper we a.'3sume that the 

domain is discretized using unstructured meshes. 

2.2 Mesh generation
 

The generation of meshes for unsteady problems is usually done in two distinct pha.'3es [10]:
 

•	 initial mesh creation: involves the creation of a compatible unstructured mesh us

ing the geometry description of the problem domain. The complex topology of the 

problem is discretized into a set of simpler elements. This is a global process usually 

performed on a sequential computer and it might require human assistance. 

•	 mesh adaptation: the selective refinement/coarsening of sections of the mesh improves 

the quality of the solutions either by increasing the resolution in interesting areas or 

by decrea.'3ing it on regions of little interest. The refinement of elements is largely a 

local process. 

The compatibility of the mesh to the problem topology and correct treatment of the 

boundaries are not the only requirements for high-quality meshes. In addition it is desirable 

to have meshes whose elements are [1]: 

•	 conforming: the intersection of elements is either a common vertex or a common side. 

•	 non-degenerate: the interior angles of the elements are bounded away from zero. 

•	 smooth: the transition between small and big elements is not abrupt. 
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2.3 Mesh adaptation 

The following are the two principal strategies for mesh refinement [12J : 

•	 h-refinement: is performed by splitting an element into two or more smaller subele

ments (refinement) or by combining two or more subelements into one element (coars

ening). h is a parameter of the size of the elements. This method involves the modi

fication of the graph structure of the mesh. 

• p-refinement: can be thought as increasing the amount of information associated with 

a node without changing the geometry of the mesh [10], where p is the polynomial 

order of some element. 

Through the rest of this paper we concentrate mainly on h-refinement although some 

of the techniques for mesh partitioning and migration are independent of the refinement 

strategy. Since p-refinement also modifies the workload in each processor the repartitioning 

and migration algorithms apply to it also. 

2.3.1 Local h-refinement algorithms 

Starting from a conforming mesh M formed by a set E of non-overlapping elements Ei E E 

that discretize a domain n of interest and a set of elements R, R ~ E, that are selected 

for refinement, h-refinement algorithms construct a new conforming mesh M' of embedded 

elements Ei such that: 

•	 if Ei E R, Ei is split into a set of nonoverlapping subelements {Ei
t

, Ei
2

,
 

... ,E:J that replace Ei.
 

The selection of elements for refinement (or coarsening) in R is made by examining the 

values of an "adaptation criteria" [6J that can be related to a discretization error. Usually 

these refinement methods cause the propagation of the refinement to other mesh elements so 
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an element Ei rt R might also be refined in order to obtain a conforming mesh. Coarsening 

algorithms have similar problems. 

One common refinement algorithm is the Rivara bisection refinement algorithm for tri

angular elements that it is used in two dimensional problems. In its simplest form it bisects 

the longest edge of a triangle to form two new triangles with equal area. There are several 

variants of the serial bisection refinement algorithm. In Figure 1 we illustrate an example 

of the 2-triangles bisection algorithm [1] and [2] described in Figure 2. In Figure 1 (a) 

the element selected for refinement is shaded. The refinement of this element creates a 

non-conforming white node on its longest edge. The shaded element in 1 (b) must now be 

refined to to maintain a conforming mesh. This process is repeated in (c) where there are 

two non-conforming nodes. Finally in (f) we show the resulting mesh. Using the bisection 

refinement algorithm the propagation is guaranteed to terminate. Also if we start the refine

ment with a mesh M that ha.'3 elements that are smooth, conforming and non-degenerate 

then the elements of the resulting mesh M' will also have the same properties. 

Multilevel mesh adaptation 

To support dynamic adaptation of meshes we designed a data structure based on a multilevel 

finite-element mesh with a filiation hierarchy between two consecutive levels. As we will 

show in later sections, our algorithms for refinement, partition and migration take good 

advantage of this mesh representation. 

We a.<;sume that the user supplies an initial coarse mesh Mo(E, V) called a O-level mesh 

where E is a set of elements and V is a set of nodes. This is the coarsest mesh that the 

refinement algorithm is able to manipulate. Using defined adaptation criteria we select 

some elements Ei E R ~ E for refinement and others Ej E C ~ E for coarsening. 

For each refined element Ei we define the Children(Ei) = {Eill E i2 , .. . , Ein } to be the 

elements into which Ei is refined and let Parent(Ei,J = Ei. Also for each element Ei E Ewe 

define Level(Ei) = 0 if Ei is in Mo and Level(Ei) = Level(Parent(Ei)) + 1 otherwise. The 

children of an element Ei of level l can be further refined and they become the parents of 
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a) b) c) 

d) e) f) 

Figure 1: Bisection refinement: in (u) only one element is selected for refinement. (b) shows 

the mesh after the refinement of that element. A non-conforming white node is created so 

we propagate the refinement to an adjacent element. (c), (d) and (e) show different stages 

of the refinement and (1) shows the final mesh. Although only one element was initially in 

R we refined 3 more elements to obtain a conforming mesh. 
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FOR each Ei E R DO 

bisect Ei by the midpoint of its longest side generating a new node Vp and two triangles 

Ei l and Ei2 ' 

WHILE Vp is a non-conforming node in the side of some triangle Ej DO 

make Ej conforming by bisecting Ej by its longest side generating a node Vq and two 

triangles Ejl and Ej2' 

IF Vp # Vq THEN 

Vp is a non-conforming node in the midpoint of one of the sides of either Ejl or 

Ei2' Assume that Vp is in one side of Ejl' Bisect Ejl over the side that contains Vp 

obtaining two triangles Ejl or E~. Now Vp is a vertex of both triangles. 

set Vp = Vq . 

END IF 

END WHILE 

END FOR 

Figure 2: Rivara's two-triangle refinement algorithm. 
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Figure 3: Refinement of a mesh. (a) shows the initial mesh Mo while (b), (c) and (d) show 

the meshes M] , M2 and M3 • Associated with each node and element is its level. 

level 1+2 children. For each node Vp we define Level (Vp ) = 0 if Vp is in Mo and Level (Vp) = 

Level(Ei) + 1 if Vp was created &'3 the result of refining an element Ei. Figure 3 gives 

an example of the refinement of a mesh along with the associated levels. Note that the 

meshes M I , M2 and M3 in (b), (c) and (d) do not only include nodes and elements of the 

corresponding level but can also include nodes and elements of previous levels. Also the 

elements are replaced by their children when they are refined but the nodes are not. For 

example, every node Vp such that Level(Vp) = 0 will be present in all the successive meshes. 

Also note that some elements Ei of level 1 have as vertices nodes of level 1- 1 or less. 

The iterative execution of this algorithm produces nested meshes. If Mo is the coarsest 
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mesh then for any level l: 

where Mi -< Mi-l is a relation that indicates that Mi has all the nodes present in Mi-l and 

that some elements in Mi-l have been split to form the elements in Mi. 

3.1 Multilevel refinement 

A sequence of nested refinements creates an element hierarchy. In this hierarchy each 

element of the initial mesh belongs to the coarse mesh Mo and time t > 0 each element 

that it is not refined belongs to the fine mesh. 

A decision to perform an n-fold refinement of Ei E R is transmitted to the refinement 

module as the pair (Eil n). For example if n = 1 then using Rivara's bisection refinement 

the element Ei is divided into 2 triangles. If n > 1 then each of its children is refined n - 1 

times. 

The multilevel algorithm for refinement has the following properties: 

•	 an element that has no parents has level 0 and belongs to the coarse (initial) mesh 

Mo. No coarsening is done above this level. 

•	 an element with no children belongs the fine mesh M t . The numerical simulations are 

always based on the fine mesh. 

•	 an element could be at the same time in both the coarse mesh Mo and the fine mesh 

M t (for example before any refinement is done) or in any intermediate mesh. 

•	 only elements that are in the fine mesh Mt can be selected for refinement or coarsening. 

The hierarchy of elements is only modified at its leaves. 

•	 a node Vp such that Level(Vp) = l is a vertex of elements Ei of level l or below. An 

element Ei of level l has vertices of level m where m ~ 1. 

•	 as the elements are individually selected for refinement or coarsening the hierarchy 

can have different depths in different regions of the mesh. 
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a) b)	 c) 

Figure 4: Multilevel refinement. Initially elements Ea and Eb in (a) are selected for 

refinement. Both elements are refined and replaced by their children (b). In (c) the element 

Ea ! is further refined. Under the meshes we show the corresponding mesh hierarchy. 

•	 when an element Ei is refined it is replaced by its children in the fine mesh M t . To 

coarsen an element all its children must be selected for coarsening. In this case the 

children in the fine mesh M t are replaced by their parent and destroyed . 

•	 both refinement and coarsening can propagate to adjacent elements. The algorithms 

are not completely local because they need to preserve conformality requirements. 

This sequence of refinements is explained in Figure 4. Initially the elements Ea and Eb 

are selected for refinement (a). Under the mesh we show the internal representation. Both 

Ea and Eb belong to M o and Mt . After the first refinement 4 new elements are created. At 

this point M t includes Ea !, Ea2 , Eb! and Eb2 (b). 
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3.2 Local coarsening 

The selection of elements for coarsening is performed by evaluating an adaptation criterion 

at their vertices. The nodes in a finite element mesh are associated with the degrees of 

freedom and the unknowns of a system of equations. After finding its solution at time t the 

system might desire the elimination of nodes considered unnecessary according to a selected 

evaluation criterion to reduce the number of unknowns. This destruction of nodes requires 

coarsening of elements to maintain a conforming mesh. 

The successful evaluation of the adaptation criteria at a node Vp is not a sufficient 

condition for the destruction of a node. Nodes created as a result of the propagation 

of refinement need to be adequately coarsened to preserve the conformality of the mesh. 

Elements at a lower level that reference the node need to be eliminated to prevent dangling 

references and this might require the destruction of other nodes. The conditions for a correct 

coarsening algorithm are: 

•	 to select an element Ei of level [ as a candidate for coarsening, all its vertices v;, that 

are nodes of level [ should be selected as candidates for coarsening by evaluating the 

adaptivity criteria at the node. 

•	 assume that this element Ei of level [ is the child of some other element Ej of level 

[-1. In order to replace all the children of Ej by Ej all its children should be selected 

&'5 a candidates for coarsening or none of them are. 

•	 a node Vp is selected for coarsening, not anymore as a simple candidate, only if all 

its adjacent elements Ei are selected as candidates for coarsening. This condition 

prevents dangling references from elements to destroyed nodes. 

•	 if an element Ei that is an element of level [ has more than one vertex of level [ and 

not all of them are selected for coarsening, then none of its vertices of level [ is selected 

for derefinement since an element that has vertices of its level that are not selected 

for coarsening will not be coarsened and we need to prevent that its vertices allow the 

coarsening of adjacent elements. 
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• finally, an element Ei of level 1 is selected for coarsening if: 

the element Ei has no children (it belongs to the fine mesh).
 

the element Ei has a parent (it does not belong to the coarse mesh).
 

its vertices are nodes of level m where m ~ 1.
 

all its vertices that are nodes of level 1 are selected for coarsening (and are not
 

simple candidates). This last condition will ensure that the resulting mesh is 

conforming because a node Vp is selected for coarsening only if there will be no 

references to it. 

The challenge of exploiting parallelism 

The data structures and algorithms introduced in the previous section allow us to refine 

and coarsen a mesh in a serial computer. Most of the work that we will present in the rest 

of this paper extends these ideas to a parallel computer. Parallelism introduces a series 

of problems that we need to solve in order to perform the dynamic adaptation of parallel 

mesh-based computation. 

Refinement algorithms typically use a local information to perform refinement. Unfortu

nately the refinement of an element Ea that creates a new node Vp in an internal boundary 

between two processors requires synchronization between the processors. 

The second problem concerns with the termination of the refinement phase. The serial 

algorithm terminates when no more elements are marked for refinement. This is not always 

easy to detect in a parallel environment. In this case, global refinement termination holds 

only when all the processors have refined their elements and there is no propagation message 

in the network. A processor P; might have no more local elements to refine but it needs 

to wait for possible propagations from neighbor processors. Only when all the processors 

agree on the termination of the refinement phase can they proceed to the next phase. 

The adaptation of the mesh produces imbalances on the work assigned to each processor 

as elements and nodes are dynamically created and destroyed. Also mesh partitions are 
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computed at runtime interleaved with the numerical simulation. In this environment we 

cannot afford expensive algorithms that recompute the partitions from scratch after each 

refinement. Instead we propose repartitioning algorithms that use the information available 

from previous partitions and the refinement history. 

Finally we must keep a consistent mesh while migrating elements and nodes between pro

cessors. In our meshes the physical location of nodes and elements is not fixed throughout 

the computation. Instead our design supports dynamically changing connectivity infor

mation where the references to remote elements and nodes are updated as new nodes or 

elements are created, deleted or moved to a new processor to balance the work load. 

In the following sections we address these problems in detail and we present our solutions. 

First however, we introduce some definitions, explain a strategy for storing meshes in a 

distributed memory parallel computer (that we call a parallel me.~h) and show how to use 

the mesh to solve dynamic problems. 

Mesh representation in a parallel computer 

In Section 3 we presented a data structure to represent a refined mesh in a serial computer 

and we introduced serial refinement and coarsening algorithms. In this section we extend 

this data structure to store adapted meshes in parallel computers. 

Let M(E, V) be a finite element mesh where E is a set of elements and V is a set 

of nodes. We define Adj (Ea ) = {Vp : Vp is a vertex of Ea }. In a similar way we define 

ElemAdj(Vp ) = {Ea : Vp is a node of E a } and NodeAdj(Vp ) = {Vq : Vp and Vq are both 

nodes of a common element Ea }. Adj (Ea ) of an element Ea is the set formed by the vertices 

of Ea. 

In the case of triangular elements IAdj (Ea ) I= 3, and in the case of quadrilateral elements 

IAdj (Eb) I = 4. ElemAdj (Vp ) of a node Vp is the set formed by the elements adjacent 

to Vp and NodeAdj (Vp ) is the set formed by the nodes adjacent to Vp • Two nodes are 

considered adjacent not only because there is an edge between them in the mesh M but 

also if they are adjacent to a common element. In the case of quadrilateral elements two 
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nodes at opposite corners are node adjacent. In an unstructured mesh INodeAdj(Vp ) I is not 

a constant. Although in theory we can construct meshes where INodeAdj (Vp ) I can have 

arbitrary values, if the mesh is non-degenerate (the interior angles are not close to 0) we 

expect that INodeAdj(Vp ) I be close to a constant k. 

A graph G is constructed from the finite element mesh M. Its adjacency matrix H ha.<; 

one row and column for each node Vp E V. The entry hp,q = 1 if the nodes Vp and Vq are 

adjacent to a common element and hp,q = 0 otherwise. The adjacency matrix H can be 

directly constructed from NodeAdj (Vp). Since Vp E NodeAdj (Vq) => Vq E NodeAdj (Vp), the 

matrix H is symmetric and G is an undirected graph. In general INodeAdj(Vp)I ~ IVI so 

we expect that H will be very sparse. 

5.1 Partitioning by elements or partitioning by nodes 

In an iterative method for solving systems of equations the cost of the algorithm is domi

nated by the cost of performing repeated sparse matrix-vector products Ab = c where A is 

IVI X IVI. A and H have the same sparsity structure. This implies that a good partition 

for G is also a good partition for A because it minimizes the communication required to 

perform the matrix-vector products. There are two ba.<;ic strategies for partitioning the 

graph G: 

•	 node-partitioning: there is a partition (J? = {(J?l' (J?z, ... , (J?p} of the nodes between P 

processors such that U (J?i = V and (J?i n (J?j = 0, V i I- j. If Vp E (J?i it is assigned 

to ~. Each node is assigned to a single processor. The partition of G is performed by 

removing some edges, leaving sets of connected nodes. The edges removed express the 

communication pattern between processors and the cost of the partition is measured 

by the number of edges removed . 

•	 element-partitioning: in this case there is a partition II = {Ill, lIz, ... , IIp} of the 

elements between P processors such that U IIi = E and IIi n IIj = 0, V i I- j. 

If Ea E IIi it is a.<;signed to~. Each element is assigned to a single processor. The 
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partition is performed across the edges that separate two elements. If Vp E Adj (Ea) 

and also Vp E Adj(Eb) where Ea E ITi, Eb E ITj and i i= j then Vp is a shared node. 

Both ~ and Pj have their own copy of Vp , that we will denote V~ and vl respectively. 

Communication is required between multiple copies of the same node so the cost of 

the partition is measured by the number of shared nodes. 

We define Nodes(ITi) = {V; : Ea E ITi and Vp E Adj(Ea)} hence Nodes(ITi) is the set 

of nodes corresponding to the elements in ITi. Note that Nodes(ITd n Nodes(ITj) i= 0 

if the two partitions ITi and ITj are adjacent. 

To find a partition of the mesh using element-partitioning we first compute the dual 

M-l(E,W) of the mesh M where W = {(Ea,Eb): Ea,Eb E E,Ea i= Eb' Adj(Ea)n 

Adj(Eb) i= 0}. W is a set of pairs of adjacent elements so they have at least one 

node in common. We then use a graph partitioning algorithm to assign elements to 

processors. 

It is shown in [13] that partitioning by elements has several advantages over partitioning 

by nodes due to the way the matrix A is computed in the finite element method. The matrix 

A is the result of an assembly process. We first compute a local square matrix of L(Ea) 

(of size IAdj(Ea)l) for each element Ea E E. L(Ea) represents the contribution of Ea to 

its nodes Vp • The global matrix A is equal to L,EaEEL(Ea) (where L, means the direct 

sum of the local matrices after converting from the local indices in L to the global indices 

in A). The matrix A is also partitioned between the processors. If the node Vp is a shared 

node between two or more processors Pi and Pj then the entry in Ai corresponding to V~ 

has the contributions of the elements Ea E ITi and the entry in Aj corresponding to V; 
has the contributions of the elements Eb E ITj. The matrix Ai in processor Pi is partially 

assembled since it only considers the contributions of the elements Ea E Pi. The fully 

assembled matrix is A = L, Ai . 

The matrix-vector product Ab = C is performed in two phases. In the first phase each 

processor computes Aib = Ci. The resulting vectors Ci are also partially assembled. In the 

second phase we communicate the individual vectors Ci to obtain C= L, Ci. 
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5.2 Implementing a parallel mesh using remote references 

A remote reference is a pair (~, V~) where Pi is a processor and V~ E Nodes (TIi)' It 

represents a reference to the V~ copy of node Vp in processor Pi. We define Ref(V~) = 
{(Pj, VJ) : VJ is a copy of Vp in Pj, i t= j}. This relation is also symmetric so that if 

(Pj, vj) E Ref(V~) then (Pi, V~) E Ref(Vj). The remote references are pointers to a 

remote address space. Since this is not allowed in almost any programming language we 

designed the remote references as C++ objects using the notion of smart pointers. We will 

come back to this when we discuss the implementation details. 

If Vp is a node internal to the processor, then Ref(Vp ) = 0. A node in an internal 

boundary can be shared by more than two processors. Hence if Vp is a shared node then 

1 :::; IRef(Vp ) I :::; P - 1 where P is the number of processors. In a conforming mesh we 

expect that IRef (Vp ) I ~ P - 1 and usually IRef (Vp ) I = 1 for a shared node since most 

of the shared nodes are shared by only two processors in a 2-D mesh. The example in 

Figure 5 shows a mesh with 8 elements and 9 nodes. The node V4 is shared by four 

processors Po, PI, P2 and P3 so Ref(V".p) = {(PI, Vl), (P2 , V1), (P3, Vln while Ref(Vl) 

{(Po, 'v.p), (P2 , vi), (P3, vln. Figure 6 states for initializing the references. 

There is no need to have more than one copy per node in each processor. Suppose that 

a processor ~ has two copies of the same node V; and V~' so that (~, V/) E Ref(V~). We 

can detect this condition because the reference points to a node in the same processor Pi. 

We then remove the copy V/ after updating all the references in other processors that point 

to V/ to point to V~. For a similar reason we do not need or allow duplicate references in 

Ref(V;). 

When a node Vp is created in an internal boundary between two processors ~ and 

Pj we initialize Rej(V~) = {(Pj, vjn and Ref(Vj) = {(Pi, V~)}. Although at the end of 

refinement phase IRej(V~) I = 1 for each new node created in that phase, this might not 

hold after the load-balancing phase. It is possible that a new partition converts an internal 

node into a shared node and vice versa or that it modifies Rej(V;) so that it is shared by 

more than two processors. 
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Figure 5: A square mesh partitioned by elements between four processors (a) and its 

internal representation using remote references (b). 
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INPUT: M(E, V) where M is a finite element mesh with a set E of elements and a set V
 

of vertices.
 

- compute the dual M-1(E, W) of M where W = HEa , Eb) : Ea , Eb E E, a =/:- b,
 

Adj(Ea ) n Adj(Eb) =/:- 0}. W is a set of adjacent elements and Adj(Ea ) is the nodes
 

of element Ea.
 

- partition M-1 into P regions using a graph partitioning algorithm such that Ea E lli if
 

Ea is assigned to F'i where U lli = E and lli n llj = 0 Vi=/:- j.
 

- Nodes(ll;) is the set of nodes corresponding to elements in lli. Note that is not required
 

that Nodes(lli) n Nodes(llj) =/:-0.
 

FOR each V~ E Nodes(lli) in parallel DO
 

Ref(V~) = 0
 

END FOR
 

FOR each V~ E Nodes(ll;) in parallel DO
 

IF Ea E ElemAdj(Vp ) and Ea E llj and j =/:- i THEN
 

Ref(V~) = Ref(V~) U (Pj, vt)
 
END IF
 

END FOR
 

Figure 6: Computing the initial references in a parallel mesh. 
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The design of these references is highly influenced by the element partitioning method. 

Their main use is to maintain the connections between the different regions of the mesh 

as the mesh is partitioned between the processors. As will be shown in later sections, 

they provide a very flexible mechanism for maintaining a dynamic mesh. When a node is 

moved to a new processor it can use its reference list to find its copies in other processors. 

It can then send a message to these copies telling them to update their references to the 

new location. The references also simplify the task of assembling matrices and vectors 

from partially assembled ones as new nodes are created and moved at runtime because no 

assumption is initially made about origin and destination of these messages. 

5.3 Using a parallel mesh for the solution of dynamic physical problems 

In this paper we assume that we are given an initial coarse mesh Mo at time t = 0 from 

which we find an initial partition nO. This partition is computed in a preprocessing step. 

We distribute the nodes and elements between the processors according to that partition 

and we compute the initial references using the algorithm in Figure 6. 

Our algorithm for finding the solution of dynamic problems consists of four consecutive 

phases that we execute repeatedly. Figure 7 gives a high level outline of the program. 

In the first pha.se we use numerical approximation techniques to find the solution of 

the partial differential equations by solving a system of linear equations. We solve this 

system using iterative methods. As we have mentioned earlier we generally perform repeated 

matrix-vector products Ab = c when we need to assemble matrices and vectors. All the 

effort in the following phases has the goal of improving the performance and quality of this 

pha.se. 

At some time t = tk we decide that it is convenient to adapt the mesh so we start 

a refinement/coarsening pha.se. Using error estimates we select elements for refinement 

that we insert into R and if we select elements for coarsening we insert them in C. If 

the refinement of the elements in R creates a new shared node Vp in an internal boundary 

between two processors Pi and Pj we create the two local copies V; and V/ and we initialize 
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6 

- find an initial partition Ilo.
 

- load the mesh using the partition Ilo.
 

- initialize the references Ref (V;) using the algorithm in Figure 6.
 

FOR t < T DO 

- compute a solution. 

- refine/coarsen the mesh. For each new shared node V; determine Ref(V;). 

- find a new partition Ilt . 

- migrate the elements and nodes according to Ilt. If a node V; is moved from ~ to P j 

then if Vpk is another copy of Vp in Pk update Ref(V;) = ((Ref(V;) - (Pi, V;)) U (Pj , vj) 

and set Ref(Vj) = Ref(V;). 

END FOR 

Figure 7: Outline of a general algorithm for computing the solution of dynamic physical 

system using a paralle.! mesh. 

Since adaptation produces imbalances in the distribution of the work, we compute a 

new partition Il t • If Il t =1= Il t - 1 we need to migrate some elements and nodes to adequate 

the mesh to the new partition. This phase does not create new nodes or elements but it 

modifies the reference lists as nodes are moved to new processors. 

Parallel mesh adaptation 

Using the data structures presented in the previous section we now introduce an algorithm 

for adapting the mesh in a parallel computer. Let R be a set of elements selected for 

refinement and let Ri be the subset of the elements of R assigned to processor ~. In this 

case R = URi and also Ri n Rj = 0 for i =1= j because by using the element-partitioning 

method of assigning elements to processors each element is assigned to only one processor. 

Each processor has all the information it needs to refine in parallel its own subset Ri using 
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a) b) c) 

Figure 8: Propagation of refinement to adjacent processors. In (a) the elements E a , E e , Ej 

and E g are selected for refinement. The refinement of these elements creates two nodes, Vp 

and Vq , in the boundary between Po and Pl. PI creates its local copies Vi and Vq 
l and 

selects the nonconforming elements Eb and Eh for refinement (b). (c) shows the resulting 

mesh. 

a serial algorithm, but nonconforming elements might be created on the boundary between 

processor as suggested in Figure 8. In that example four elements are selected for refinement 

so Ro = {Ea , E e , Ej, Eg } and R 1 = 0. The refinement of Ea creates a node V~ in an internal 

boundary between Po and PI and the refinement of E g creates another shared node ~o. PI 

needs to create its local copies Vp 
1 and Vi. It then marks the nonconforming elements Eb 

and Eit for refinement by inserting them in R I and invokes the serial refinement algorithm 

again. 

6.1 Refinement collision 

The parallel algorithm can run into two synchronization problems [3]. First, if processor Pi 

refines an element Ea and processor Pj refines an adjacent element E b , it is possible that each 

processor could create a different node at the same position. In this case it is important 

that both processors do not consider them as two distinct nodes when assembling the 

matrices and vectors to compute the solution of the system and that the node incorporates 
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the contributions of all the elements around it. Related to this problem is what processor 

~ believes is a nonconforming element Eb in processor Pj might have already been refined 

there. Processor Pj needs to evaluate and update the propagation requests it receives before 

executing them. In this case Pj should insert a descendant of Eb in Rj. 

These two problems are illustrated in Figure 9. In the top row we show a case where 

the receiving processor has already refined the element but further refinement is required. 

Initially E a and Eb are selected for refinement. The refinement of E a creates the shared 

node Vpo. PI creates its copy of Vp but it then has to determine which of the children of 

Eb (Eb1 or Eb2) should be inserted into R I for further refinement. In the bottom row the 

receiving processor should only update the reference rather than creating a new copy. Both 

Po and PI create shared nodes (Vp and Vq ) in the same mesh location as the result of the 

refinement of Ea and Eb. We need to detect that both nodes are the same and update the 

references accordingly. 

The solution to the synchronization problem is greatly simplified by using the nested 

elements of our multilevel algorithm. When an element Eb in processor Pj is refined into 

two or more elements Eb l and E~ the element Eb is not destroyed as it would be the case 

in other refinement algorithms. Any message arriving to processor Pj from processor ~ 

with the instruction of making a copy of a shared node Vp in processor Pj (named VJ) that 

causes the refinement of the element Eb can be compared against the status of the element 

Eb. If the element Eb was already refined in the local phase (but processor ~ did not know 

about this), then the element Eb might not need to be refined again. If the node Vp was 

already created in the local phase of processor Pj then a reference is added pointing to 

its copy V; in processor ~. If the refinement of the element Eb did not cause or was not 

caused by the creation of the shared node Vp (for example the refinement was done dividing 

another edge as in the top row of Figure 9), then its children Ebl and Eb2 are evaluated 

and the one that shares the internal boundary between Pi and Pj is marked for refinement 

using the shared node V,t. 
The pseudocode for this algorithm is shown in Figure 10 but there are a some details 
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Figure 9: Refinement of adjacent elements located in different processors. In the top row 

two elements are selected for refinement (a). The refinement of Ea creates the shared node 

Vp (b). We then select Eb1 for further refinement (rather than Eb) (c). The bottom row 

shows another example (a) where two processors create shared nodes in the same position 

(b). In (c) we detect this problem and update the references. 

. PO 

: : : : 
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Ri is the set of elements selected for refinement in Pi. 

WHILE Ri /; 0 DO 

- extract an element Ea from Ri. 

- refine Ea using a serial refinement algorithm. 

FOR each shared node V; created in an internal boundary between F'i and Pj DO 

Send a message from Pi to Pi requesting the creation of a shared node v,1 in Pi' If a 

node v,1 already exists, then return a reference to it. Otherwise, create the node vj, 
determine the element to refine, and insert it into Ri' Finally return its reference to Pi. 

END FOR
 

END WHILE
 

Figure 10: Avoiding refinement collisions in a parallel mesh. 

that they are not explained there. First, we do not send a message for each individual node 

because of the high cost of sending messages. Instead we first refine all the elements in 

Ri keeping track of the shared nodes that Pi creates as a result of refining elements in Ri. 

Once Ri = 0, Pi sends the messages to its adjacent processors and listens for propagation 

messages from them. If it receives such a message it creates the new shared nodes and 

inserts the nonconforming elements into Ri. 

To determine which element to refine we use ElemAdj (Vp ). Suppose that the refinement 

of an element Ea in Pi creates a shared node Vp in a boundary between F'i and Pi' This 

new node is created at a midpoint between two other shared nodes Vq and Vr • Note that 

(Pi, vj) E Re!(V:) and also (Pi, Vi) E Re!(Vj). We use these references to send a message 

from F'i to Pi' When Pi receives this message, it determines the unrefined element Eb E 

ElemAdj (vj) n ElemAdj (VI) and inserts it into Ri' 

As it can be easily seen, the parallel algorithm is not a perfect parallelization of the 

serial one and it can result in a different mesh. The serial Rivara's algorithm [1] and [2] first 

selects an element Ea from R. It then continues refining all the nonconforming elements 
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that result from the refinement of E a before proceeding with another element from R. In our 

parallel implementation we ignore this serialization. We approximate the serial algorithm 

within each processor as much as possible but do not impose it across processor boundaries. 

We claim that this modification does not affect the quality of the refinement. 

6.2 Termination detection 

The algorithm for detecting the termination of parallel refinement is based on a general 

termination algorithm in [4]. A global termination condition is reached when no element 

is marked for refinement, so if R is the set of all the elements selected for refinement, then 

the algorithm finishes when R = 0. This global termination condition implies a local 

termination condition for processor Pi that holds when Ri = 0. We assume that the 

refinement is started in one special processor referred to as the coordinator, Pc. To simplify 

the explanation we assume initially that the refinement does not propagate cyclically from 

processor Pi to processor Pi and then from processor Pi back to processor Pi. We will 

show later that this is not a reasonable restriction but it does not affect the algorithm 

significantly. 

The algorithm for detecting termination uses two basic kind of messages: 

•	 a refine message Refine-Msg(i, j) sent from a source processor Pi to processor Pi is 

used to request the refinement of one or more elements of processor Pi' We will specify 

the contents of this message later but let's assume for now that it can either indicate 

the elements selected for refinement (if the message is sent by the coordinator) or it 

can include a reference to a shared node. If Pi receives a Refine-Msg(i,j) = {V;} 

it creates the node vt, it initializes Rej(Vt) = {(Pi, V;)} and inserts the unrefined 

element E a E Adj(Vp ) into Ri' Note that at this stage V; has no reference to V{ To 

update Ref(V;) we use the next type of message. 

•	 an update message AddRej-Msg(j, i) is returned from Pi to Pi for each refine message 

sent from Pi to Pi to indicate the completion of the requested refinement. This 
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a) b) c) d) 

----:~~ Refine-Msg 

- - - - - -> AddRef-Msg 

Figure 11: Parallel refine algorithm. In (a) the initiator sends a Refine-Msg to each other 

processors. Processors Po and P j return immediately a AddRej-Msg to the initiator but the 

refinement in processor P2 propagates to P j so P2 sends a Refine-Msg to P j (b). After P j 

returns a AddRej-Msg to P2 (c), Pz returns its AddRej-Msg to the initiator (d). 

message also includes the necessary information to update the references to the nodes 

shared between Pi and Pi' When Pi receives an AddRej-Msg(j, i) = {VJ} it inserts 

(Pi, VJ) into Rej(V;). If Pi is the coordinator we return AddRej-Msg(j, C) = 0. 

The coordinator sends at t = 0 a Refine-Msg(C, i) message to one or more processors 

Pi indicating that the refinement phase has started. The initiator can explicitly select the 

elements for refinement or it can instruct the processors to select the elements based on 

an adaptation criteria. Processor Pi then executes the serial refinement algorithm on these 

marked elements, possibly sending Refine-Msg(i, j) messages to neighboring processors Pi 

when a node V; is created in an internal boundary between processors Pi and Pi' 

The local termination condition holds for processor Pi when no more elements are 

marked for refinement. When this condition holds, processor Pi does not generate new 
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Refine-Msg messages and it is not waitin~ for any AddRef-Msg messages. Also proces

sor Pi does not insert new elements into Ri until a Refine-Msg(j, i) message arrives from 

some other processor Pj. In this case, new nodes are created in the internal boundary as 

instructed in the message and the corresponding elements are selected for refinement by 

inserting them into Ri. Then processor Pi executes the serial refinement algorithm, which 

might cause further propagation to other processors. An example is shown in Figure 11 

where Pc sends an initial Refine-Msg to the other processors. Po and PI complete their 

work without propagation so they return a AddRef-Msg message to Pc. On the other hand 

the refinement of elements in P2 propagates to PI so P2 sends a Refine-Msg(2, 1) message 

to Pl' PI completes this request without further propagation so it returns to P2 which in 

turn returns an AddRef-Msg(2, C) message to Pc. 

We say that the parallel refinement terminates (the global termination condition holds) 

at some t if: 

• Ri = 0 for each processor Pi at time t . 

• there is no Refine-Msg or AddRef-Msg in transit at time t. 

The termination detection procedure is based on message acknowledgments. In particu

lar Refine-Msg(i,j) messages received by processor Pj from processor Pi are acknowledged 

by Pj by sending to Pi a AddRef-Msg(j, i) message. These messages return the references 

to the newly created vertices so that if v~ is a vertex in processor P;, over a shared edge 

that caused a propagation to processor Pj and vj is its copy in processor Pj, a reference to 

v~ is added at v~ and vice versa. 

A processor P;, can be in two possible states: the inactive state and the active state. 

While in an inactive state Pi can send no Refine-Msg or AddRef-Msg but it can receive 

messages. If it receives a receives a Refine-Msg(j, i) from another processor Pj while in an 

inactive state it moves from the inactive to the active state. It creates the shared nodes 

as stated in the message and proceeds to refine the nonconforming elements. The message 

Refine-Msg (j, i) is called the critical message because it caused the refinement that Pi is 
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performing and Pj is the parent of processor Pi. 

In the active state, while a processor Pi is refining some of its elements, the refinement 

can propagate to a neighbor processor Pk requiring another Refine-Msg(i, k) message to it. 

An active processor becomes inactive at the first time t for which the following conditions 

hold: 

•	 no new Refine-Msg message is received by the processor at time t. 

•	 there are no elements marked for refinement in processor Pi (the local termination 

condition holds). 

•	 the processor has transmitted prior to t an AddRef-Msg message for each Refine-Msg 

message it has received except for the critical message. 

•	 the processor has received prior to t a AddRef-Msg message for each Refine-Msg 

message it ha.<; transmitted. 

Using this definition, the local termination condition might hold in processor P;. (Ri = 0) 

but processor P;. might be in an active state waiting for a AddRef-Msg(j, i) from processor 

Pj if the refinement of the elements of P;. caused the refinement to propagate to processor Pj 

and P:J. ha.<; not yet responded. When a processor becomes inactive it returns a AddRef-Msg 

message to the processor that originally sent its critical message. 

Initially, at time t = 0, the coordinator is active and all other processors are inactive. 

Furthermore, at t = 0, the local termination condition holds at all processors except the 

coordinator. It can be seen that if a processor is inactive at time t, the following rules hold: 

•	 its local termination condition holds at t. 

•	 it ha.<; transmitted an AddRef-Msg for all the Refine-Msg messages it ha.<; received 

prior to t. 

•	 it ha.<; received AddRef-Msg messages for all Refine-Msg messages it has transmitted 

prior to t. 
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If the processor is active at time t, at least one of the above conditions is violated. We 

say that global termination is detected when the coordinator becomes inactive. In the ca.'3e 

of the coordinator only the last of the previous rules is relevant as it has no local elements 

to refine. The coordinator will receive an AddRef-Msg message from all the processors Pi 

only when all the processors are inactive. In this case there are no elements marked for 

refinement and there are no other messages in the network. 

This algorithm works if the propagation does not generate cycles. As shown in Figure 

12 it is possible to design a mesh where the refinement propagates back to processor Po. 

In that example Po refines an element E a creating a shared node Vpo. It then sends a 

Refine-Msg(O, 1) to PI' PI creates its copy of the shared node and proceeds to refine the 

nonconforming elements but before PI is ready to return a AddRef-Msg(l, 0) a new shared 

node ~I is created in the boundary between PI and Po. In this case PI sends a new Refine

Msg(l, 0). When Po performs all the required refinements it returns a AddRef-Msg(O, 1) to 

PI which in turn returns a AddRef-Msg(l, 0) to Po corresponding to the initial message. In 

this example is not easy to detect which one is the parent or the child processor. It also 

shows that the refinement of some meshes can have a cycle. It is possible to extend the idea 

to a long but finite sequence of Refine-Msg messages through two processors before being 

ready to return a AddRef-Msg. Fortunately we can modify the previous algorithm to deal 

with these problems. 

In the active state a processor Pi can receive not only AddRef-Msg messages from its 

neighbors but also new Refine-Msg messages from other processors Pj. These new Refine

Msg might cause further propagation. Now there is not just one critical message for proces

sor ~ but there is still only one critical message for each of the Refine-Msg messages that 

processor Pi transmits to other processors. We modify the Refine-Msg message to include 

a unique sequence number for each processor. We also modify the AddRef-Msg message to 

return the number of the Refine-Msg that caused the refinement. 

All the critical messages are added to a table of critical messages. When processor Pj 

sends back a AddRef-Msg message it needs to identify which critical message in processor 
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Figure 12: A propagation cycle. Po has initially one element marked for refinement (a). 

The refinement propagates to PI (b) and then comes back to Po (c). (d) shows the final 

mesh. 
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FOR each processor ~ DO 

send Refine-Msg(C, i) indicating elements to refine. 

END FOR 

FOR each processor ~ DO 

wait for an AddRef-Msg(i, C). 

END FOR 

FOR each processor ~ DO 

send Continue-Msg (C, i) to finish the refinement phase. 

END FOR 

Figure 13: Detecting the termination of the refinement phase (Coordinator algorithm). 

~ caused the propagation to Pj using the sequence number. When a critical message 

in a processor Pi receives a AddRef-Msg message for all the propagations it caused, then 

processor ~ removes the critical message from the table and it sends back a AddRef-Msg 

message to the processor that initially sent that critical message to it. The processor ~ is 

in the inactive state if Ri = 0 and it has no critical messages in its table. The pseudocode 

for the algorithm executed by the coordinator is shown Figure 13 while Figure 14 has 

an outline of the program executed by all the remaining processors. This pseudocode is 

explained below. 

Initially Pc sends a Refine-Msg(C, i) to all the other processors ~ to start the refinement 

phase. These messages are used to select the elements in Ri to be refined in ~. Each ~ 

returns a AddRef-Msg(i, C) once they have refined these elements and has also received a 

AddRef-Msg(k, i) for each Refine-Msg(i, k) produced by the propagation of the refinement 

to ~. The algorithm uses a new type of message: 

•	 a continue message Continue-Msg( i, j) sent from the initiator to every other processor 

is used to inform them that the refinement phase concluded and that they can continue 

to the next phase. 
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seq = 0 

WHILE true DO 

wait for a message msg. 

IF msg = Continue-Msg(j, i) THEN 

return. 

ELSE IF msg = Refine-Msg(j, i) THEN 

set seq++, table[seq].critical = msg and table[seq].count = 0 

FOR each element E a E msg DO 

create the shared nodes and insert Ea in Ri. 

END FOR 

refine the elements in Ri 

FOR each shared node V; created in an internal boundary between P;. and Pk DO 

send Refine-Msg( i, k) containing seq and the elements to refine. 

table[seq].count++ 

END FOR 

IF table[seq].count = 0 THEN 

return AddRef-Msg(i, j) as msg did not cause refinement to other processors. 

END IF 

ELSE IF msg = AddRef-Msg(j, i) THEN 

seq is the sequence number returned by msg. set table[seq].count - 

IF table[seq].count = 0 THEN 

send AddRef-Msg(i, j) to Pj where Pj sent the message stored in table[seq].critical. 

END IF
 

END IF
 

END WHILE
 

Figure 14: Detecting the termination of the refinement phase. 
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Once Pc has received a AddRef-Msg from each other processor it broadcasts a Continue

Msg. 

Each processor Pi starts the refinement phase waiting for a message. If it receives a 

Continue-M.'1g from the initiator it knows that it can proceed to the next phase. If the 

message is a Refine-Msg(k, i) it inserts the elements indicated in the message in Ri and 

refines it using the serial algorithm. Rather than having one critical message now Pi can 

have several critical messages sent by the same or different processors. P; gives them a 

sequence number and stores them in a table. If the refinement of the elements in Ri creates 

shared nodes in a boundary between Pi and Pj then Pi sends a Refine-Msg(i, j) message to 

Pj' Pi keeps track of how many of these Refine-Msg(i, j) it sends for each critical Refine-Msg 

it receives. Once it ha.<; received a AddRef-Msg(j, i) for each Refine-Msg(i,j) it can send 

back a AddRef-Msg(i, k) response to Pk. Pi continues to listen for messages until it receives 

a Continue-Msg from the coordinator. Figure 15 shows an example where the refinement 

propagates cyclically between processors. 

7 Load balancing 

In this section we present a strategy for repartitioning and rebalancing the mesh. We first 

explain serial multilevel refinement algorithms. We then introduce a new highly parallel 

repartitioning method called the Parallel Nested Repartitioning (PNR) algorithm which is 

fa.<;t and gives high quality partitions. 

In Section 7.2 we explain a mesh migration algorithm. This algorithm receives as input 

the partition obtained from the repartitioning of the mesh and migrates the elements and 

nodes according to this partition. 

7.1 The mesh repartitioning problem 

While the PNR repartitioning algorithm is based on the serial multilevel algorithms pre

sented in [15], [20] and [18] it also makes use of the refinement history to achieve great 

reductions in execution time and an improvement in the quality of the partitions produced. 
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(a) (b) 

(c) (d) 

Figure 15: Propagation of the refinement. In (a) we show an arbitrary mesh distributed 

in 4 processors. The refinement of an element (b) causes the refinement to come back to 

the processor (c). If we repeat this operation we obtain the mesh in (d). 
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General multilevel algorithms partition the mesh by constructing a tree of vertices. They 

create a sequence of smaller graphs by collapsing vertices, then partition a suitable small 

graph and finally reverse the collapsing process to produce a partition of the larger graphs. 

The Parallel Nested Repartitioning algorithm can be divided into a serial phase and a 

parallel phase. When the graph is small enough to fit into one processor we use a serial 

refinement algorithm to partition the graph. When the mesh is very large as in the case of 

a highly refined mesh we collapse vertices in parallel. The PNR method differs from other 

methods in that it uses the refinement history of the mesh to collapse the vertices while 

other methods use maximum matchings or independent sets. As a consequence we are able 

to collapse vertices locally in the parallel pha.'3e without any communication overhead unlike 

other methods. Our tests show that by using the refinement history we obtain partitions 

that are almost always of higher quality than those obtained by the multilevel algorithms 

yet PNR is very fast. For simplicity we assume that the initial mesh fits into one processor 

and marks the transition between the serial and the parallel pha.'3e. In Section 7.1.5 we 

discuss possible generalizations of this method. 

7.1.1 The serial Multilevel Graph Partitioning algorithms 

The pseudocode for a standard serial Multilevel Partitioning Algorithm is sketched in Figure 

16. III general serial multilevel algorithms perform the partitioning of a mesh in three phases: 

•	 in the coarsening phase these algorithms construct a sequence of graphs Go, G I , .. . Gk 

such that the IGil < IGi-II by collapsing adjacent nodes or contracting edges. This 

contraction is implementing by finding a maximal independent set [16] or a maximal 

matching [20]. Given a graph G(V, F) where V is a set of vertices and F is a set of 

edges then V' ~ V is an independent set of G if for all v E V', (v, w) E F =} w ~ V'. 

An independent set Viis maximal if the the addition of any vertex in V' would make 

it no longer an independent set. A matching of G is a set F ' ~ F od edges such 

that no two of which are incident on the same verex. A mathing F ' is maximal if 

the addition of an edge in F ' would make it no longer a matching. A contraction 
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compute the weighted graph Mol (E, W) = Go. 

WHILE IGil > K DO 

compute a coarser graph Gi+l by collapsing the vertices of Gi. 

END WHILE 

partition the coarsest graph Gk. 

FOR each level i in the refine tree from k downto 0 DO 

project the partition of Gi to Gi-l. 

improve the partition of Gi-l using local heuristics. 

END FOR 

Figure 16: Serial Multilevel Partitioning algorithm. 

operation is repeated until IGil is smaller than a defined constant K . 

•	 in the partitioning phase standard multilevel methods find a partition II of the graph 

Gk using anyone of a number of different graph partitioning algorithms such as 

Recursive Spectral Bisection [15]. Note that typically IGkl ~ IGol so their use of RSB 

is generally not very expensive. 

•	 in the uncoarsening phase these methods project the partition found for Gi to the 

graph Gi- l by reversing the collapsing process. Assume that two or more vertices 

v and w in the graph Gi-l are collapsed to form a vertex u in Gi in the coarsening 

phase. If u is assigned to processor Pq then both rand s are initially assigned to Pq . 

After projecting the partition to Gi-l, they typically perform local heuristics such as 

Kernighan and Lin [32] on each Gi-l for the purpose of improving the quality of the 

partition. 

To implement this algorithm on a parallel computer note that for each level of the 

coarsening phase we need to compute either an independent set or a matching of the graph. 

This implies that for each Gi-l we will need to send messages to insure that two adjacent 
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processors do not select adjacent vertices of the graph at the same time, an operation that 

can be very time consuming. As we will show, our algorithm uses a different heuristic for 

collapsing the vertices of the graph that does not require synchronization at each level. 

1.1.2 General repartitioning of an adapted mesh 

In Section 5.1 we explained that our meshes are partitioned by elements. That is, given 

a mesh M(E, V) where E is a set of elements and V is a set of vertices we construct a 

partition IT = {IT I , IT2 , ••• , ITp} such that each element E a E E is assigned to only one 

partition ITi. This is done by creating a graph M- 1 (E, W) that is the dual of M where W 

is a set of pairs of adjacent elements: (Ea , Eb) E W if and only if E a and Eb are adjacent. 

Thus the elements in E are the vertices of the graph M-1 and the pairs in Ware its edges. 

A partition of the vertices of M-l is a partition of the elements of the mesh M. 

In order to contract the graph while preserving its global structure we associate weights 

to each element E a and each pair of adjacent elements (Ea , Eb)' Given the graph M- 1 we 

define ElemWeight (Ea ) to be the number of descendants of E a in the fine mesh (or 1 if E a 

has no children). We also define EdgeWeight(Ea ) to be the number of edges between the 

descendants of E a in the fine mesh. That is Edge Weight (Ea ) = LtEb,EcEM
t
(Eb, E e) such 

that Eb and Ee are the lowest level descendants of E a and they are adjacent to each other. 

For each pair (Ea , Eb) E W we define Weight(Ea , Eb) to be the number of edges between 

the descendants of E a and Eb in the fine mesh. Note that if both Ea and Eb are unrefined 

then Weight(Ea , Eb) = 1. 

Although we defined ElemWeight, Edge Weight and Weight based on our multilevel 

elements of Section 3 we could also define· them recursively for any mesh. Given a graph 

M-l (E, W) we can define ElemWeight(Ea ) = 1, EdgeWeight(Ea ) = 0 and Weight(Ea , Eb) = 

1 if E a and Eb are adjacent and 0 otherwise. If we collapse two or more elements Ea and 

Eb into one element Ee then: 

Elem Weight(Ee ) = Elem Weight(Ea ) + ElemWeight(Eb) 

Edge Weight(Ee ) = Edge Weight(Ea ) + Edge Weight(Eb) + Weight(Ea , Eb) 
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In a similar way we can define Weight(Ec • Ed) for two collapsed elements E c and Ed. 

The goal of the coarsening phase in the partitioning algorithm is to approximate cliques. 

A refined vertex E a of the graph M-I approximates a clique if EdgeDensity(Ea) = (2x 

EdgeWeight(Ea))j( EdgeWeight(EaH EdgeWeight(Ea) - 1)) is close to 1 and it does not 

approximate a clique if it is close to O. Intuitively, if a vertex Ea has a a large edge density 

it will not be cut in half by the bisection in the partition of the contracted graph. 

7.1.3 The Parallel Nested Repartitioning (PNR) algorithm 

The partitioning algorithm that we discuss in this section incorporates the idea that the 

fine mesh M t at time t was obtained as a sequence of refinements of a coarse initial mesh 

Mo. The mesh M t includes all the elements Ea such that Children(Ma) = (0 at time t. 

We define IMI as the number of elements in the mesh. We assume that IMol < IMt I but in 

general IMol ~ IMtl. Note that it is possible to have an element E a E Mon Mt if E a is not 

refined. 

Figure 17 shows an example of an initial mesh Mo and the refined mesh Mt at time 

t. The amount of work for processor Po is far larger than the amount of work of the 

other processors. The goal of the repartitioning algorithm is to rebalance the work so each 

processor has approximately the same number of elements. 

The PNR algorithm uses the information that Mt was obtained as a sequence of refine

ments. Rather than computing directly a partition of Mt it computes a partition of Mo 

and then projects this partition to Mt . The notion is that in the coarsening phase we do 

not need to find a matching or independent set to collapse the children of refined elements. 

Instead we use the refinement tree to collapse the descendants of each element of the coarse 

mesh Mo. In Section 9.6 we compare the PNR with the serial multilevel algorithm. By 

using the refinement history we are able to obtain better partitions at a lower cost than the 

standard methods. 

Our PNR algorithm allows for a very natural parallel implementation. Is is possible 

to compute the ElemWeight, Edge Weight and Weight of MOl in parallel using only local 
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Figure 17: The Parallel Nested Repartitioning algorithm. (a) shows the initial mesh Mo 

and (b) shows the mesh Mt at the beginning of the partitioning phase. 

information. We then send the graph MOl to a common processor Pp which partitions 

1the reduced graph MO- • At this point all the other processors wait until Pp sends back a 

message informing them of which elements to migrate. Finally, the migration is performed 

by moving fully refined subtrees. The partitioning algorithm will inform a processor Pi of 

the elements E a E Mo to move to another processor Pj. It is assumed that P; will not only 

send Ea but also all its descendants to Pj. The intention is not to break partition trees to 

simplify the unrefinement of the elements. In the rest of this section we will explain the 

algorithm in more detail using the example shown in Figure 17. The pseudocode for the 

PNR algorithm is shown in Figure 18 and explained below. 

As we explained earlier, our Parallel Nested Repartitioning algorithm for mesh parti

tioning can be divided into a parallel phase and a serial phase: 

•	 we construct in parallel the weighted graph Mol. Communication is not required at 

this point. Each processor P; computes the weights of each element E a E Mo. This 

is done using a simple recursive algorithm. In the same way it computes the weight 
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- in parallel compute ElemWeight (Ea ) , EdgeWeight(Ea ) and Weight(Ea , Eb) for each ele


ment Ea and each pair of adjacent elements (Eal Eb) E Mol.
 

- each processor ~ sends its portion of Mol and the weights to a common processor Pp.
 

- Pp receives sections of MO-
I from each processor and computes a partition II of Mo-

1 .
 

This can be done using RSB or a serial multilevel algorithm.
 

- Pp returns II to each processor Pi.
 

- Pi migrates the elements and nodes according to II.
 

Figure 18: The parallel Nested Repartitioning algorithm. 

of each edge W = (Ea , Eb). Once Pi obtains its portion of Mol it sends it to Pp for 

the serial part of the algorithm. The Mol graph for the mesh in Figure 17 is shown 

in Figure 19. We consider two ways of defining set W: 

- W = {(Ea , Eb) : Ea , Eb E Mo, Ea and Eb have a common vertex}. 

W = {(Ea , Eb) : Ea , Eb E Mo, Ea and Eb have a common edge} . 

•	 once Pp receives a message for each processor Pi it partitions the reduced graph MOl 

using a serial partitioning algorithm. As IMol1 is a.'3sumed to be relatively small we 

can use at this stage algorithms that would be considered too expensive to apply to 

the refined mesh. The result of this partition is shown in Figure 20 (a). 

• finally we resume the parallel phase. Pp sends a message to each processor Pi inform

ing it of which elements to migrate. Pi executes the migration algorithm described in 

the following section to distribute the mesh as shown in Figure 20 (b). 

Our method does not require that the complete fine mesh be in one processor in order 

to compute the partition. It is sufficient that the coarse initial mesh is small enough to fit 

into one processor. The refined mesh can be of an arbitrary size. 
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Figure 19: The Parallel Nested Repartitioning algorithm. (a) shows the graph G where 

there is an edge in G between each two elements in Mo that share a node. (b) shows the 

graph G where there is an edge in G between each two elements in Mo that share a common 

edge. 
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Figure 20: The Parallel Nested Repartitioning algorithm. (a) shows the partition II of M 

using thE' PNR algorithm. Finally we use the migration algorithm to migrate elements and 

nodes to their destination processors. (b) shows the resulting mesh. 
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7.1.4 Partitioning of an initial mesh 

We have yet to explain how to compute the partition of MOl in Pp. In theory we can use 

any serial graph partitioning algorithm without affecting the structure of the PNR algorithm 

but in practice we use one of two approaches. 

In one case Pp spawns a new process that calls Chaco [21]. This process finds a partition 

of MOl using the multilevel algorithm (or any other partitioning algorithm supported by 

Chaco) and returns it to Pp. 

In the other case Pp computes the partition of MOl directly. We initially find a matching 

of the graph, defined to be a set of edges such that no two edges in that set are incident in the 

same vertex. Once we find this matching we collapse pairs of vertices to form a new vertex. 

As a consequence, for 1 ::; i ::; k we create a subgraph Gi(Ei, Wi) of Gi-l (Ei-l, Wi-I) where 

IE;I < lEi-II. We also compute ElemWeight(Ec ), EdgeWeight(Ee ) and Weight(Ee , Ed) for 

each element E e and each pair (Ee , Ed) of adjacent elements in Gi. 

We choose a matching that ha.<; an approximate maximal edge density. We approximate 

the matching by using a randomized algorithm. We select in random order an unmatched 

vertex r and we determine for each unmatched neighbour s of r the EdgeDensity of a vertex 

u formed by collapsing rand s. Then r is collapsed with the neighbour with which it ha.<; 

the largest edge density. 

We then partition the graph Gk using a partitioning algorithm. In our tests we used 

Recursive Spectral Bisection. We usually call Chaco for this purpose. This is very fast since 

IEkl is small. 

Finally we uncoarsen the graph for each level k > i > O. At this time we also improve 

the partition using local heuristics that are a variation on Kernighan-Lin [32]. We compare 

pairs of elements a.<;signed to different processors and if we find that there is an improvement 

in the quality of the partition, flip them. While these algorithms have been implemented, 

performance results are not reported because the method provides at least equally good 

results. 
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7.1.5 Improving the PNR algorithm 

In this section we discuss three possible improvements to the PNR algorithm. Two of them 

are generalizations of the PNR algorithm while the third one is a discussion of parallel 

heuristics to improve the quality of the partition. 

We assumed that the transition between the parallel phase and the serial phase is given 

by the initial mesh Mo. This does not always have to be the case. If an element E a E Mo 

is highly refined, we can send the children of E a rather than Ea to Pp or some of its 

descendants. 

Although we send the full mesh Mo to Pp with all the weights each time we repartition 

the mesh this is not necessary. If we assume that the serial partition of Mo is computed 

using a serial multilevel algorithm then we can just compute the tree once and store it 

in Pp. To repartition the mesh Pi needs to send to Pp only the changes of the weights 

produced as the result of the refinement and coarsening of the mesh. In this way we are 

extending the PNR to graphs that are not obtained a.<; the result of a refinement process. 

In the migration algorithm explained in the next section we migrate fully refined trees. 

This means that at every time step t if an element Ea E Mo is assigned to processor Pi 

then all the descendants of E a are also assigned to Pi. For this reason we have not yet 

implemented parallel heuristics such as the MOB heuristic [9] to try to improve the quality 

of the partition. 

7.2 Using remote references for work migration 

Although we demonstrated in the previous section how to compute a partition ITt that 

balances the work, at this stage of the computation the mesh is still distributed according 

to an unbalanced partition ITt-I. In this section we present an algorithm that migrates 

elements and nodes between processors. If ITt =I- ITt-I, then there is at least one element Ea 

such that E a E IT~-I and E a E ITj where i =I- j. Remember that we assume that the mesh is 

partitioned by elements so that the ITi partitions are disjoint, Ea (j. ITj-1 and Ea (j. IT~. To 

adjust the mesh to the ITt partition we need to move E a from Pi to Pj. Let's a.<;sume that 
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the vertices of Ea are Adj (Ea) = {Vp1 , ••• , Vpn }. 

Our algorithm considers several cases that depend on Pj having a local copy of these 

nodes or if they are included in the message to Pj: 

•	 for each node Vp E Adj (Ea), if (Pj, V;) f/. Ref(V;) (so Vp is not a shared node between 

Pi and Pj at time t - 1) then we need to create the node vj in Pj and then use this 

node to create the element E a in Pj. 

•	 otherwise (Pj , vj) E Rej(V;) (so Vp is a shared node between Pi and Pj at time t - 1 

and Pj has a local copy vj) then we should not create the vj node again. When Pi 

sends the element E a to Pj, it also includes the reference (Pj, V;) instead of the node 

Vp , Then Pj can use vj to create Ea. This condition has an important implication: 

processor Pj cannot delete its copy of V; until it has received all the elements, even 

if processor Pj has already sent the only element Ec that points to vj to another 

processor Pk because some other processor Pi might expect Pj to have a copy of Vp , 

•	 if processor P; sends more than one element Ea and Eb to Pj and there is a node 

Vp E Adj (Ea) n Adj (Eb) (so Vp is a vertex of both Ea and Eb) then only one copy 

vj should be created in Pj and both elements Ea and Eb should refer to it in the 

destination processor. 

•	 now if two processors 1>;. and Pk send the elements Ea and Eb respectively to processor 

Pj where elements Ea and Eb are adjacent elements and there is a shared node Vp E 

Adj(Ea)n Adj(Ea) so (Pk, V;) E Ref(V;) and (P;, V;) E Ref(V;) then Pj should 

kdetect that V; and Vp are two copies of the same node. In this case Pj should create 

only one copy V; for both elements Ea and Eb. 

• finally if processor P; sends an element Ea to another processor Pj and Pk sends an 

element Eb to PI and Ea and Eb are adjacent elements in two different processors 

that share a common node Vp then we should insure that (F't, V~) E Ref(V;) and 

(Pk, V;) E Ref(V~) (so V; and V~ refer to each other). 
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In	 the migration phase we use three different kinds of messages: 

•	 a move message Move-Msg(i,j) = {Ea} is used to migrate an element Ea from a 

source processor Pi to a destination processor Pj. We also assume that this message 

ha.'3 two other fields. The first field Move-Msg(i,j).nodes(Ea) contains the vertices of 

the element Ea. For each node Vp E Adj(Ea), if Pj has a local copy of vj then only 

the reference (Pj, vj) is included in the message. Otherwise we send the node Vp , We 

also set Rej(V;) U (Pi, V;) to initialize VJ. The other field, Move-Msg(i,j).ref(Vb), 

contains the references to Vp in the other processors. 

•	 an add reference message AddRef-Msg(i,j) = {(vj, V;)} is used to add a reference to 

node V; in processor Pj. In this case we set Ref(Vj) = Ref(Vj) U (Pi, V;). This is 

essentially the same kind of message used for refining the mesh. 

•	 a delete reference message DelRef-Msg (i, j) = {(VJ, V;)} is used to remove a reference 

to the node V; in Pj. So Ref(vj) = Ref(Vj) - (Pi, V;). 

In	 the rest of this section we discuss a migration algorithm that uses these messages. 

7.2.1 The migration algorithm 

Assume that we need to move an element Ea from Pi to Pj, that is E a E II~-l and E a ElI;. 

Assume also Adj (Ea) = {Vp1 , ••• , Vpn } is the set of vertices of Ea. We initially send a Move

Msg(i,j) = {Ea} message from Pi to Pj. If Vp E Adj(Ea) and also (Pj, vj) E Rej(V;) we 

only include the reference in the message. Otherwise if Vp E Adj (Ea) and (Pj , vj) rt. Ref (V;) 

we include the node Vp in the message. Pj creates the copy vj and it initializes Ref (vj) = 

Ref(V~) U (Pi, V~). At this point Pj has a reference to all the copies of Vp , It then sends 

an AddRef-Msg (j, i) = {(V;, vj)} for each reference in Ref(vj) and all the other copies 

update their references to the new copy. Using vj processor Pj creates the element Ea. Pi 

then deletes its element Ea. It can happen that Ea was the only element that pointed to 

Vp in Pi. In this case we wish to remove also V;. Pi sends a DelRef-Msg(i,j) = {(vj, V;)} 
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Figure 21: A migration example. (a) shows the initial mesh. The goal is to move E a from 

Po to P2 • We first copy E a to P2 (b) and then we delete the element Ea in Po (c). 

to each reference in Ref(V~). Once all the other processors remove their references to V; 

we can delete the node. A simple illustration of this algorithm is shown in Figure 21. 

In this example we show a mesh with two elements partitioned between three processors 

Po, PI and P2 . Our goal is to move the element E a form Po to P2 . We initially send a Move

Msg(O,2) = {Ea } that includes Vo, VI and V2 • We initialize Ref(Vi) = {(PI, Vd), (Po, VOO)}. 

We similarly initialize Ref(Vl) and also Ref(Vi). P2 then sends a AddRef-Msg to Po and 

PI to the copies of Vo, VI and V2 that includes references to Vi, V? and vl. Po then deletes 

its copy of Ea. Since it can also remove Voo, VIO and V20, it sends a DelRef-Msg to the other 

processors. 

We will explain the algorithm in more detail using the example in Figure 22. There 

we show a mesh composed of 8 elements (Ea , ••• , Eh) and 9 nodes (Vo, ., ., Vs) partitioned 

between 4 processors (Po, ... , P3 ). In the top Figure we show the initial partition rr t - l and 

in the bottom Figure we show the target partition ITt. The initial representation of the 

mesh is shown in Figure 23 (a). Our goal is to move the elements from the initial partition 

to the destination partition. This can be done by executing the commands: 

• Po: move E a to P3 by sending the message Move-Msg(O, 3) = {Ea }. 
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•	 PI: move Ed to Pz by sending the message Move-Msg(O, 2) = {Ed}. 

•	 Pz: move Ee to P3 and Ef to Po by sending the messages Move-Msg(2, 3) = {Ee } 

and Move-Msg(2, 0) = {Ef }. 

•	 P3 : move Eg to PI and Ell to Pz by sending the messages Move-Msg(3, 1) = {Eg } 

and Move-Msg(3, 2) = {Ell}. 

•	 First we send the elements to the destination processor. If there is an element Ea 

located in Pi and Ea E TI; then we send a Move-Msg(i,j) = {Ea } message from Pi to 

Pj . If an element Ea refers to a node V; of which Pj has no local copy then Pi must 

also include the node in the message. Determining if Pj has a local copy of Vp is easy: 

we only need to look at the references to remote copies of V; (is (Pj , V~) E ReJ(V;)?) 

in the sending processor Pi. If we find that Pj has a local copy vI then we use that 

copy to create the element Ea in Pj. When we send a node we also include all the 

references to other copies. This way the receiving processor can create its local copy 

and then send a message to the other processors to update their references to it. Also 

when we are sending multiple elements to a processor we need to be careful to include 

only one copy of the nodes. The description of this phase is shown in Figure 24. The 

initial messages for the previous example are: 

Po: move Ea to P3 by sending the message Move-Msg(O, 3) = {Ea }. Include in 

the message the nodes Vo and V3 and a reference to Vi. In P3 use these two 

nodes and the existing copy of V4 to create the element Ea. 

P1 : send Ed to Pz by sending the message Move-Msg(l, 2) 

nodes VI, Vz and V5• 

Pz: similarly send E e to P3 (with V3 and V6 and a reference to Vi) and Ef to 

Po (with V7 and reference to V30 and V40). 

P3 : at the same time send E g to P1 (with V7 and VB	 and a reference to V1
4 ) and 

4send Ell to Pz (with V5 and VB with a reference to VZ ). 
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Figure 22: Migration of elements from an initial partition rr t- l (a) to a target partition 

rrt (b). 
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Figure 23: A migration example: internal representation of the mesh at the beginning of 

the migration (a) and after copying the elements to the destination processors (b). 
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FOR each element Ea such that Ea E n:-1
, Ea E nj, i =I- j DO 

insert Ea into Move-Msg(i, j). 

FOR each node Vp E Adj(Ea ) DO 

IF (Pj , vt) E Ref(V;) THEN 

insert (Pj, vt) into Move-Msg(i,j).nodes(Ea ). 

ELSE 

insert Vp into Move-Msg(i,j).nodes(Ea ). 

insert (Pi, V;) into Move-Msg(i,j).ref(Vp ). 

FOR each reference (Pk, V;) E Ref(V;) DO 

insert (Pk, V;) into Move-Msg(i,j).ref(Vp ). 

EI\lD FOR
 

END IF
 

END FOR 

END FOR 

FOR each processor Pj DO 

IF i =I- j and Move-Msg( i, j) =I- 0 THEN
 

send Move-Msg( i, j).
 

END IF
 

END FOR 

Figure 24: Migration phase: sending the elements to the destination processors. 
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•	 Once a processor Pj receives a message Move-Msg(i,j) it first creates the new nodes 

as specified in the message and then constructs the elements. If Vp is a node of a an 

element E a such that Ea E Move-Msg(i,j) and Vp E Move-Msg(i,j).nodes(Ea ) then 

a new copy vt 
. 

is created in Pj and Rej(Vt) 
. 

is initialized to Move-Msg(i,j).rej(Vp ) 

(remember that this also includes a reference to the sending processor (Pi, V;)). At 

this point (Pi, V;) E Rej(Vj) but (Pj, vj) rt Rej(Vj). It is responsibility of Pj to 

inform the other processors of the newly created copy. 

Continuing with the example, when P2 sends Ef to Po it should also include a copy 

of V7. Before PI constructs the element Ef it should first create the node V70. Using 

that node and the local copies V30 and V40 it can then create the element Ef. Note 

that the copy of V7 in Po has a reference to the copies in P2 and P3 and not vice versa. 

It is the responsibility of Po to inform the other processors of the newly created copy. 

When PI receives the element Eg it also creates a copy of V7 but the copies in Po and 

PI of that node know nothing about each other at this moment. 

There is another problem: P2 receives Ed from PI and Eh from P3 and both messages 

include the vertex V5 (a similar problem happens in P3 with V3 ). We will explain 

later how to handle these conditions. Figure 23 (b) shows the mesh at this stage and 

Figure 25 presents an outline of this phase. 

•	 In the next pha.<;e we update the references to the new nodes. Assume that V; is a 

node created in Pi in the previous phase as the result of a MoveMsg(j, i). Pi needs to 

inform Pj and all the other processors Pk that have a copy of Vp about the location 

of V; in memory so they can create a reference to it. Using ReJ(V;), Pi sends a 

AddRej-Msg(i, k) for each reference (Pk, V;) E ReJ(V;). This procedure is shown in 

Figure 26. 

In the previous example Po sends a message to P2 and P3 to update their references 

to V,p and so does Pl. P2 detects that there is more than one new copy of V7 so it 

informs Po to update the reference from V70 to Vi. The same thing happens in P3 • 

54 



FOR each message Move-Msg(i,j) sent from other processor ~ to Pj DO 

receive Move-Msg (i, j). 

FOR each element Ea EMove-Msg(i,j) DO 

FOR each node Vp E Move-Msg(i,j).nodes(Ea ) DO 

IF Vp does not exist in Pi THEN 

create the node Vp and initialize Ref(V~) = Move-Msg(i,j).ref(Vp ). 

END IF
 

END FOR
 

construct the element Ea. 

END FOR 

END FOR 

Figure 25: Migration pha:;;e: creating the elements in the destination processors. 

At this stage we detect that there are two copies of Vs in P2 and two copies of V3 

in P3 . One of the copies is destroyed and the corresponding elements are updated 

accordingly. The state of the mesh at the end of this phase is shown in Figure 27 (a) 

and (b) . 

•	 We now remove the elements from the source processors. Moreover if there is some 

node Vp such that ElemAdj (Vp) = 0 we delete the node to free memory. In the 

exampIe the destruction of Ee and E f in processor P2 causes the deletion of Vi, vl 
and vi. Note that the node Vl is referenced by the new element Ell so it is not 

deleted. 

Before deleting the nodes we send a DelRef-Msg message to the processors that have 

a reference to the node indicating that they should remove the reference. Finally we 

destroy the nodes. The representation of the mesh at the end of the migration is 

shown in Figure 28. Figure 29 shows this procedure. 
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FOR each new node V; DO 

FOR each reference (Pj, Vt) E Ref(V;) DO 

insert (vj, vj) into AddRef-Msg(i, k). 

END FOR 

END FOR 

FOR each processor Pj DO 

IF if j and AddRef-Msg(i,j) f 0 THEN
 

send AddRef-Msg (i, j).
 

END IF 

END FOR 

FOR each message AddRef-Msg(j, i) sent from other processor Pj to Pi DO 

receive AddRef-Msg(j, i).
 

FOR each reference (V~, vj) E AddRef-Msg(j, i) DO
 

insert (Pj, vt) into Ref(V;).
 

END FOR 

END FOR 

Figure 26: Migration phase: updating the references to the new nodes. 
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Figure 28: A migration example: internal representation of the mesh at the end of the 

migration phase. 

57 



FOR each element Ea such that Ea E II~-l, Ea E IIj, i =J. j DO 

delete element Ea. 

FOR each node Vp E Adj(Ea ) DO 

remove E a from EJemAdj(Vp ). 

IF ElemAdj(Vp ) = 0 THEN 

FOR each reference (Pj , vt) E Ref(V;) DO 

insert (vt, V;) into DeJRef-Msg (i, j). 

END FOR 

delete V;. 
END IF 

END FOR 

END FOR 

FOR each processor Pj DO 

IF i =J. j and DeJRef-Msg(i,j) =J. 0 THEN
 

send DeJRef-Msg( i, j).
 

END IF 

END FOR 

FOR each message DeJRef-Msg(j, i) sent from other processor Pj to Pi DO 

receive DeJRef-Msg(j, i)
 

FOR each reference (V;, vt) E DeJRef-Msg(j, i) DO
 

remove (Pj, vt) from Ref(V;).
 

END FOR 

EI\ID FOR 

Figure 29: Migration phase: deleting the elements on the source processors. 
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8 Project overview 

In finite element programs written in FORTRAN meshes are typically represented by a 

table of elements and a table of nodes. Each row in the table of nodes corresponds to a 

node and in its columns we store the coordinates of the node. The elements are stored in 

the table of elements and each element keeps track of its vertices by storing their indices in 

the table of nodes. 

This storage scheme allows for compact representations. This is a desirable property as 

real problems have thousands of elements and nodes. Also it is very easy to find the nodes of 

an element and the coordinates of a node. These are the two most common operations that 

are required to construct the local and global matrices explained in Section 5. Unfortunately 

the storage scheme using simple arrays is inflexible for a dynamic environment where the 

nodes and elements are continuously created and deleted a.<; the result of the refinement and 

coarsening algorithms. 

In this section we will give an overview of the object-oriented approach that we have 

taken to support the dynamic mesh adaptation. We will also explain how we implemented 

the remote references a.<; smart pointers to avoid memory leaks or dangling references. 

Our program ha.<; been designed to run on distributed memory parallel computers. The 

current version runs in parallel in a network of SUN workstations. For communication we 

use the MPI [23] message pa.<;sing library. In particular our program uses the MPICH [26] 

implementation of MPI from the Argonne National Lab. MPI is becoming the standard for 

message passing libraries and there are efficient implementations for many parallel comput

ers. Although MPI has many different ways of sending a message between two computers we 

use the standard blocking send and receive. When a processor ~ wants to send a memory 

buffer to another processor Pj it calls a C function and blocks until it is safe to reuse the 

buffer. This does not guarantee that the message is actually delivered. When a processor 

Pj wants to receive a buffer from Pi it calls another C function and waits until a message 

from ~ arrives to Pj. We have designed C++ wrappers around these C routines. In our 

environment a message is just another kind of object. 
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We also designed a very simple window interface that allows us to select an element or a 

group of elements for refinement. We use windows to display the mesh where the elements 

are colored depending on which processor they are located. Po is usually responsible for 

managing the windows. This processor collects information from all the other processors 

and broadcasts the user commands to them. 

Finally we use the Chaco [20] graph partitioning program to generate the initial par

titions and for some of the mesh repartitioning algorithms. Since Chaco is a sequential 

program we also run it in Po. 

8.1 The user interface 

The user interface is designed around the Tcl/Tk scripting package [28], [29]. The user is 

presented with a window that displays the mesh. Using the mouse the user can click on 

individual elements to select them or it can drag the cursor to select a group of elements. 

He can then choose commands from the menus to refine, partition or migrate the mesh 

using different algorithms. There are several options to display information about a mesh 

or about individual elements. The user can load different meshes using a file selection box 

and can select different initial partition files for a particular mesh. There is also an option 

for zooming regions of the mesh. A sample display with the mesh used in Section 7.1 is 

shown in Figure 30. The elements are colored according to their processor assignment. In 

this example the mesh is partitioned between 4 processors. 

Although the window is managed by Po the actual elements and nodes are located in 

different processors. When we want to display the mesh all the processors need to send 

a message to Po that contains the elements and its coordinates. When the user issues a 

command by selecting an option from the menus Po broadcasts the command to all the 

other processors. All this distributed input and output is managed by 4 classes. When 

the user selects an option from the menu the program calls a method of a Console object 

located in Po. This object is responsible for putting a wrapper around the command and 

broadcasting it to all the other Pi processors. When Pi receives a command message from 
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Figure 30: Sample display of the window interface of the program. 
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j Figure 31: Implementation of the distributed input/output. 

Po it invokes a method on its ConsoleStub object. This object unwraps the command 

and calls the appropriate method on the FEMesh object that implements the mesh. This 

FEMesh object executes the command, probably communicating with some other FEMesh 

objects in other processors. When Pi wants to produce some output like drawing an element 

in the screen it calls a method on its DrawStub object. This object collects several output 

instructions and sends an individual message to Po. Po receives the output messages through 

the Draw object. Finally to display the output the Draw object calls the appropriate Tcl/Tk 

commands. The relations between these objects are shown in Figure 31. 

8.2 Object oriented representation of the FE mesh 

The distributed mesh is implemented using the FEMesh class. There is only one FEMesh 

object per processor. As this class is in essence a container for elements and nodes its two 
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most important data members are a list of pointer to elements and a list of pointers to 

nodes. These lists are implemented using the Tools++ [30] templates library. The list of 

elements is a list of pointers to the elements in the fine mesh assigned to the processor while 

the list of nodes is a list of pointers to all the nodes in the processor. The FEMesh class has 

also a pointer to a root element. The children of this distinguished element are the elements 

of the coarse mesh assigned to the processor. In this way it is possible to traverse down 

in the element hierarchy from the elements in the coarse mesh to their descendants in the 

fine mesh. The FEMesh cla.'3s ha.'3 methods for all the algorithms described in the previous 

sections. 

The remote references described in Section 5.2 are implemented using the NodeRef class. 

This cla.'3s is just a pair consisting of a processor and a memory address. It represents a 

reference to a node located in that processor at a specific memory location. To invoke a 

method into a node located in a remote processor these addresses are packed into a message 

a.'3 long integers (MPI does not support the notion of messages of pointers) and sent to the 

remote processor. Once the message arrives at the destination processor the address is ca.<;t 

into a pointer to the node and the corresponding method is invoked on the node. For this 

rea.'3on it is very unsafe to delete or move a node if the other processors still have a reference 

to it. This restriction had a big influence on the migration algorithm of Section 7.2. 

The elements are implemented using inheritance. There is an abstract class AbsElement 

from where we derive cla.'3ses for the different types of elements such a.'3 Triangle and 

Quadrilateral. An element ha.'3 a pointer to its parent, that is the element whose refine

ment created it. If the element was also refined it has a list of pointers to its children. 

Finally the element has a vector of pointers to its vertices. This makes it easy to access the 

coordinates of the vertices of the element to generate its local matrices for the numerical 

simulations. 

Another important cla.'3s is the Node class. This class keeps track of the coordinates 

of the node and ha.'3 a list of NodeRef to the copies of the node in other processors. For 

an internal node this list is empty. For a node located in an internal boundary between 
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processors this list contains the references to the copies of the node in the remote processor. 

The Node class ha.<; also a list of pointers to their adjacent elements. When a element is 

created it is automatically added to the lists in its vertices. When the element is deleted it 

is removed from the lists of its vertices. If the list of pointers to the adjacent elements of 

a Node object becomes empty then there is no element pointing to that node. In this ca.<;e 

the node can be safely deleted without leaving any dangling pointers to it. 

The messages are also encapsulated in classes that inherit from a common Message cla.<;s. 

To send or receive a message the user just calls the send and receive methods of the message 

object. These cla.<;ses also handle all the manipulation of the buffers so the user does not 

have to call MPI routines directly. The MPI functions that are not related to messages, 

such a.<; obtaining the processor number or the number of processors, are encapsulated in 

an HPI da.<;s. 

8.3 File format 

The file format for the meshes is very simple. Each mesh description consists of a header 

line that includes the number of nodes and the number of elements. After this header line 

there is a line for each node that includes the node number and its coordinates. After all 

the nodes there is a line for each element. For each element we include its type, the element 

number and the number of its vertices. 

9 Experimental results 

To evaluate the quality and performance of our system we performed a series of tests on a 

network of SUN SparcStation10 workstations, each with 32MB of RAM and running Solaris 

2.4. The processor Po that wa.<; responsible for the window interface and the serial part of the 

refinement algorithm is a multiprocessor workstation with 64MB. We tested our program 

using between 4 and 32 processors. These machines were scattered between the 1st and the 

5th floor of the CIT building and were connected by a lOMbs ethernet network. Most of the 

machines that we used were located in the SunLab in the 1st floor while Po was located in 
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the 5th floor. The network is divided in several subnetworks that were connected through 

gateways in the 5th floor. In particular, to send a message from a machine in one row of 

the SunLab to a machine in a different row (that is connected to a different subnetwork) 

the message has to travel all the way up to the 5th floor and then all the way down to the 

SunLab. 

The tests cover the major components of the system. We found that the cost of the 

refinement algorithm is dominated by the serial part. By performing a sequence of successive 

refinements of the whole mesh we obtained some very big meshes. Our parallel Parallel 

Nested Repartition algorithm computed high quality partitions in a very rea.'3onable time. 

By using the refinement history we were able to obtain better partitions than in other 

multilevel algorithms. 

We ran these test when most of the machines were idle but there is no guarantee that 

the timings are not influenced by other users. 

9.1 Network performance 

The first test does not evaluate our system directly. Instead our goal is to determine the 

performance of the network and compare it with a real parallel computer. We tried three 

sets of programs on machines located in the 5th floor and machines located in the 1st floor. 

The intuition wa.'3 that a.'3 the distance between machines in the SunLab is longer than the 

distance between the machines in the 5th floor their messages should take more time. 

The first test is a point-to-point communication program where a processor Pi sends 

a message to some other processor Pj and waits for a response. We tried this test for 

several messages whose length ranged from 1 to 100000 double. Table 1 shows the results 

of this test mea.'3ured in MBytes per seconds. These results are plotted in Figure 32 (a). 

Sending a message of only 1 double takes 0.0015 sec. (this is the latency of the message) 

while the cost of sending an additional byte for long messages is 0.0015 msec and the 

maximum performance was around 1 MByte/sec., consistent with performance obtainable 

a using lOMbit/sec ethernet network. We did not experience too much difference between 
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machines in the lab and machines connected to the same subnetwork. In both cases only 

when the messages are around 8K we do obtain full speed. 

Length 5th floor SunLab 

1 0.005234 0.004999 

5 0.025177 0.021793 

10 0.050197 0.034597 

50 0.179837 0.166160 

100 0.260687 0.246555 

500 0.586020 0.565639 

1000 0.741308 0.725855 

5000 0.786961 0.766936 

10000 0.820302 0.764463 

50000 0.843152 0.820467 

100000 0.859652 0.838322 

Table 1: Point to point data rates between machines located in the 5th floor and machines 

located in the SunLab. Performance is measured in MBytes/sec and the length of the 

message is in double. 

The second test corresponds to the broadcast operation. In this case a distinguished 

processor Po sends a different message to all the other processors and waits for a response 

from all of them. This operation is usually executed when Po broadcasts the result of the 

repartitioning algorithm. The results for 4, 8 and 16 processors are shown in Table 2 and 

plotted in Figure 32 (b), (c) and (d). Again the full speed is obtained when the messages 

are of 8K. For longer messages we start to notice a degradation of the performance, possible 

due to contention. In these tests the maximum performance was also around 1 MByte/sec. 

The last test is an all-to-all communication program. In this test each processor sends 

a message to each other processor and waits for a response. This test is an extreme ca.se of 

our migration algorithm. The effect is that it saturates the network as it is shown in Table 
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Length 

4 Processors 8 Processors 16 Processors 

5th floor SunLab 5th floor SunLab 5th floor SunLab 

1 0.007748 0.006733 0.006648 0.004730 0.005601 0.006167 

5 0.038316 0.033345 0.030359 0.025214 0.026274 0.027965 

10 0.077707 0.066563 0.060923 0.049014 0.051953 0.057124 

50 0.329701 0.300788 0.326305 0.158403 0.245903 0.282621 

100 0.515726 0.494174 0.531610 0.491153 0.465172 0.517887 

500 0.838217 0.896251 0.952069 0.972119 0.917585 1.041698 

1000 0.937303 0.998263 1.026578 0.958222 1.048212 1.046217 

5000 0.819534 0.861735 0.819441 0.861253 0.931990 0.908919 

10000 0.757282 0.746826 0.915833 0.869889 0.936937 0.917223 

50000 0.849323 0.809480 0.891440 0.842223 0.904827 0.842918 

100000 0.862556 0.833068 0.881041 0.842355 0.850441 0.837908 

Table 2: Broadca.~t from a single source to all the other processors. Performance is mea

sured in MBytes/sec and the length of the message is in doubles. 
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Figure 32: Comparison of the performance of the network between machines in the 5th 

floor and machines in the SunLab. (a) shows the performance of a ping application where a 

source processor sends a message to a destination processor and then waits for a response. 

This example is used to measure the latency of the network. Only when the messages are 

around 8K (1000 doubles) we do obtain full speed. (b), (c) and (d) show the performance of 

a broadcast example where a source processor sends an individual message to every other 

processor and waits for a response from all of them. 
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3 and Figures 33 (a), (b) and (c). As it is shown in the figures when we increa.c;e the number 

of processors we notice a lower performance due to contention. The maximum speed for 

the 4 processor ca.'3e wa.c; around 0.6 MByte/sec., almost half of the performance of the 

point to point program. When we increa.c;e the number of processors to 16 the maximum 

performance drops to 0.2 MByte/sec. (compared with 1 MByte/sec. in the point to point 

test) . 

Length 

4 Proc 8 Proc 16 Proc 

5th floor SunLab 5th floor SunLab 5th floor SunLab 

1 0.002787 0.003874 0.002790 0.002305 0.000545 0.000169 

5 0.041049 0.014917 0.018661 0.015755 0.010178 0.007148 

10 0.075899 0.033313 0.066663 0.028382 0.024450 0.015553 

50 0.360098 0.276849 0.194468 0.073495 0.158196 0.059094 

100 0.483465 0.248942 0.251540 0.091595 0.196801 0.105000 

500 0.490462 0.566953 0.313826 0.265786 0.195512 0.147489 

1000 0.550117 0.363984 0.315014 0.258172 0.224284 0.184256 

5000 0.435300 0.558364 0.329452 0.317619 0.238315 0.187827 

10000 0.489746 0.559008 0.318954 0.340022 0.222170 0.195876 

50000 0.496505 0.537064 0.316744 0.346304 0.116656 0.196713 

100000 0.504589 0.531281 0.201673 0.324911 0.078395 0.139036 

Table 3: All to all communication. Performance is mea.'3ured in MBytes/sec and the length 

of the message is in doubles. 

Finally we ran the same tests in an IBM SP-2 with 24 processors. These results are 

shown in Table 4 and plotted in Figure 33 (d). The SP-2 was able to run the same tests 

around 35 times faster than the network of workstations. Furthermore contention has a 

much smaller effect on that machine. 
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Length pt2pt beast 4 beast 8 a1l2all 4 a1l2all 8 

1 

5 

10 

50 

100 

500 

1000 

5000 

10000 

50000 

100000 
I 

0.030493 

0.449846 

0.962093 

3.441315 

5.241769 

14.986043 

19.998413 

28.619531 

31.171557 

33.140733 

32.841156 

0.049504 

0.936888 

1.980803 

6.545091 

10.247676 

21.422860 

24.756026 

27.910036 

32.700909 

34.230389 

32.861832 

0.032990 

0.728459 

1.431854 

5.087394 

8.709354 

20.492599 

26.153441 

22.897113 

24.209284 

25.071044 

25.181348 

0.049397 

0.820869 

1.617866 

6.464023 

10.275279 

21.749445 

27.523068 

31.495189 

31.805331 

33.086489 

32.626888 

0.047356 

0.786651 

1.552719 

6.080583 

9.726054 

22.099546 

25.587889 

22.869594 

22.370358 

24.191446 

25.082283 

Table 4: Point to point, broadcast and all to all communication on the SP2. Performance 

is measured in MBytes/sec. and the length of the message is in doubles. 

70
 



1.2 

0 0.8Ql 

~ 
Ql 0.6 
>. 
m 
~ 0.4 

0.2 

0 
1
 

All to All (4 Processors) 

5th Floor -
SunLab --------

-....._-- >. 
m 
~ 0.4 

10 100 1000 10000 100000
 
Buffer size (doubles) 

(a) 

All to All (16 Processors) 
1.2	 ,----r----r--,----,...-----, 

5th Floor 
SunLab --------

\ 
0.8 

0.6 

0.4 

0.2 ~~__ ~ 

OL...--=::::=-----'-----'---'-----l 
1 10 100 1000 10000100000
 

Buffer size (doubles)
 

(c) 

1.2 

0 0.8Ql
 
0
 

li5 
Ql 0.6 

0.2 

0 
1
 

All to All (8 Processors) 

5th Floor -
SunLab --------

10 100 1000 10000100000
 
Buffer size (doubles) 

(b) 

SP2: Point to Point, Broadcast and All to all 
40 ,-----.------r-----,,..----.------, 

35
 pt2pt 

bcast4 - 


30
 a2a4-

25
 bcast8 


a2a 8 --- 
20
 

15
 

10
 

5
 

O'-~=----'---'----""-------I 

1 10 100 1000 10000100000
 
Buffer size (doubles)
 

(d) 

Figure 33: Comparison of the performance of the network between machines in the 5th 

floor and machines in the SunLab and the performance of the same applications run on the 

SP2. (a), (b), (c) show the performance of an all to all communication example where each 

processor sends an message to each other. These example are a measure of the contention 

on the network. (d) is the result of running the same tests on the SP2. 
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(a) (b) 

(c) (d) 

Figure 34: The air .mesh is a 2D finite element grid of a complex airfoil with triangular 

elements. It consists of 9000 elements and 4720 nodes. This mesh is provided with the 

Chaco program. 

9.2 Mesh examples 

Our tests were run on two basic meshes. The first mesh is of relatively small size. It contains 

9000 triangular elements and 4720 nodes and is a 2D unstructured FE grid of an airfoil. 

This mesh is provided with the Chaco program and it is known as the Hammond mesh. 

In our examples we will refer to it as air .mesh. Several views of this mesh are shown in 

Figure 34. 

The second mesh is a larger 2D finite element grid of around 30000 triangular elements 

and 15000 nodes. We will refer to it as the big. mesh. Four different views of this mesh are 
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(a) (b) 

(c) (d) 

Figure 35: The big. mesh is a 2D finite element mesh of a complex airfoil. It con

sists of 30269 elements and 15606 nodes. It is obtained from riacs.edu in the directory 

"pub/grids/big.*" . 

displayed in Figure 35. As it is shown in these pictures there is a big disparity on the size 

of the elements. 

9.3 Initial partition of the mesh 

Recall that the first task of the general algorithm for computing the solution of dynamic 

systems in Figure 7 was to obtain an initial partition of the mesh. This partition is usually 

computed using a serial computer during a preprocessing step and it is not part of our 

system. Nevertheless it allows us to compare the quality of the partitions obtained using 

serial multilevel algorithms with more standard algorithms like Recursive Spectral Bisection 
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[15]. Recursive Spectral Bisection is knowf; to produce very good partitions but it is too 

expensive to use for repartitioning the mesh. 

Our program assumes that there is an initial partition of the mesh and we generate this 

partition using Chaco in a preprocessing step. This system provides several method for 

partitioning a graph. We used both Recursive Spectral Bisection and Multilevel Bisection. 

As Chaco is a serial program we run these tests on a single SparcStationlO workstation 

with 64MB of RAM. The results are shown in Tables 5, 6, 7 and 8. The time required to 

compute the partitions of both meshes is shown in Figure 36 and the number of shared nodes 

is shown in Figure 37. Clock time is the time elapsed to compute the partition while user 

and system time denote the time spent in user and system mode. The difference between 

clock time and the sum of user and system time represents the time the system was idle 

because of trashing. Remember that this partition is computed using the dual of the mesh. 

In this case the row labeled "edges cut" is the number of edges cut in the dual of the mesh. 

Average elements is the number of elements in each processor while shared nodes is the 

number of nodes in the internal boundaries between processors. A lower number of shared 

nodes represents a better partition as it requires less communication. 

In these examples Chaco's Multilevel Bisection outperformed Chaco's Spectral Bisection 

both in time and in the quality of the partitions. The low performance of RSB on computing 

the partitions for the big .mesh was due to the fact that it required a considerable amount 

of memory, more than the 64MB available in the computer. Although all the partitions 

required more than 4:30 hours of clock time only 1 hour was spent doing useful work. In 

all cases the serial Multilevel Bisection algorithm produced better partitions in less than a 

minute. 

9.4 Refinement of the mesh 

To test the refinement algorithm we performed successive refinements of the mesh. In each 

of these phases all the elements of the mesh are selected for refinement. The number of 

elements grows exponentially with the level of refinement. By doing a series of successive 
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N umber of partitions 

4 8 16 32 

Clock Time 

User Time 

System Time 

Edge cuts 

Avg. elements 

Shared nodes 

4:54.8 

4:49:0 

3.7 

928 

2250 

144 

5:57.1 

5:51.2 

5.4 

1702 

1125 

267 

6:49.4 

6:40.9 

8.0 

2747 

563 

428 

6:48.5 

6:36.8 

11.1 

4417 

281 

690 

Table 5: Spectral Bisection on the air .mesh using Chaco on a 64Mb Sun SparcSta

tion. The dual of the mesh has 9000 vertices and 52507 edges. The times are in 

hours:minutes:seconds. Edge cuts is the number of edges cut reported by Chaco. 

Number of partitions 

4 8 16 32 

Clock Time 

User Time 

System Time 

Edge cuts 

Avg. elements 

Shared nodes 

5:24:43.7 

42:45.5 

18:53.6 

1929 

7567 

298 

4:16:16.6 

49:29.9 

19:35.0 

3252 

3784 

494 

4:43:06.6 

1:00:13.0 

19:27.2 

5427 

1892 

834 

4:34:39.7 

1:02:58.5 

19.57.6 

8084 

946 

1243 

Table 6: Spectral Bisection on the big .mesh using Chaco on a 64Mb Sun SparcSta

tion. The dual of the mesh has 30269 vertices and 178639 edges. The times are in 

hours:minutes:seconds. 
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N umber of partitions 

4 8 16 32 

Clock Time 

User Time 

System Time 

Edge cuts 

Avg. elements 

Shared nodes 

8.0 

6.4 

0.6 

878 

2250 

127 

11.2 

9.7 

1.3 

1510 

1125 

238 

18.6 

15.2 

3.2 

2440 

563 

371 

26.2 

21.1 

4.9 

3978 

281 

613 

Table 7: Serial Multilevel Bisection on the air .mesh using Chaco on a 64Mb Sun Sparc

Station. The times are in hours:minutes:seconds. 

N umber of partitions 

4 8 16 32 

Clock Time 

User Time 

System Time 

Edge cuts 

Avg. elements 

Shared nodes 

17.9 

16.3 

1.3 

1575 

7567 

233 

23.4 

21.4 

1.8 

2509 

3784 

374 

47.4 

43.0 

4.1 

4047 

1892 

619 

52.7 

46.3 

6.1 

6701 

946 

1026 

Table 8: Serial Multilevel Bisection on the big.mesh using Chaco on a 64Mb Sun Sparc

Station. The times are in hours:minutes:seconds. 
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Figure 36: Partition of the initial mesh using Chaco. Time spent to compute 4, 8, 16 and 

32 partitions of (a) air .mesh and (b) big.mesh. 
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Figure 37: Partition of the initial mesh using Chaco. Number of shared of nodes after 

computing the partitions of (a) air.mesh and (b) big.mesh. 
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refinements we were able to create meshes L:onsisting of more than 2,000,000 elements. We 

estimate that we could store around 40,000 to 50,000 elements in each processor. After 

that the data sets were too big and the performance of the algorithm drops considerably 

due to trashing. These results are shown in Tables 9, 10, 11 and 12. The serial time is 

the time spent creating new elements and nodes and the communication time is the time 

spent propagating the refinement to adjacent processors. For each refinement we include the 

total number of elements, the average number of elements per processor, and the number of 

elements in the processor that stores the largest number of elements and the one that stores 

the smallest number. Imbalance is the ratio between the absolute value of the difference 

between the largest or smallest number of elements (whichever is larger) and the average. 

Shared nodes is the number of nodes in an internal boundary between processors. 

The algorithm spends most of its time in the serial part and the communication cost 

IS very small. This is not surprising because of the way we are selecting the elements 

for refinement. It is unlikely that by selecting all the elements the refinement is going 

to propagate to too many processors. In these tests the longest propagation was to a 

couple of processors. Also note that when we increase the number of processors there is a 

higher imbalance of the element distribution that reaches a 33 per cent after 6 successive 

refinements. As it is shown in the figures we are able to obtain superliner speedups. This is 

due to the fact that when we use a small number of processors we require a lot of memory. 

This is particularly true when the number of elements assigned to a processor is more than 

50,000. In some of these tests we measured 90MB of virtual memory on machines that have 

around 15MB of physical memory available. This speedup tends to become linear as the 

number of processors increase and the memory is less of an issue. Figure 38 plots these 

results and Figure 39 shows the air .mesh before and after the refinement of all its elements. 

9.5 Migration of the mesh 

The migration tests are performed by migrating all the elements in processor Pi to processor 

Pi+l. This is probably one of the most demanding migrations that we can perform. It 

79
 



N umber of refinements 

Initial 1 2 3 4 

Time (serial) 

Time (comm) 

Time (total) 

Elements (total) 

Elements (avg) 

Elements (max) 

Elements (min) 

Imbalance (%) 

Shared nodes 

9000 

2250 

2250 

2250 

127 

7.42 

0.13 

7.55 

22247 

5562 

5549 

5522 

1.56 

194 

35.50 

0.32 

35.81 

51703 

12926 

13220 

12793 

2.27 

304 

162.63 

0.40 

163.03 

115347 

28837 

29617 

28461 

2.70 

440 

927.25 

9.80 

937.05 

251458 

62865 

64743 

61949 

2.99 

676 

Table 9: Successive refinements of the air .mesh in 4 processors. In each phase all the 

elements are selected for refinement. 

N umber of refinements 

Initial 1 2 3 4 5 

Time (serial) 

Time (comm) 

Time (total) 

Elements (total) 

Elements (avg) 

Elements (max) 

Elements (min) 

Imbalance (%) 

Shared nodes 

9000 

1125 

1125 

1125 

238 

2.51 

0.10 

2.61 

22253 

2782 

2814 

2718 

2.30 

357 

11.68 

0.21 

11.89 

51711 

6464 

7011 

6205 

8.46 

558 

50.89 

0.30 

51.19 

115363 

14420 

15900 

13708 

10.26 

815 

223.40 

0.67 

224.07 

251490 

31436 

35005 

29708 

11.35 

1241 

1396.67 

10.92 

1407.59 

535896 

66987 

75020 

63009 

11.99 

1773 

Table 10: Successive refinements of the air .mesh in 8 processors. In each phase all the 

elements are selected for refinement. 
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N umber of refinements 

Initial 1 2 3 4 5 6 

Time (serial) 

Time (comm) 

Time (total) 

Elements (total) 

Elements (avg) 

Elements (max) 

Elements (min) 

Imbalance (%) 

Shared nodes 

9000 

563 

563 

562 

371 

1.70 

0.12 

1.82 

22247 

1390 

1580 

13.11 

13.70 

576 

4.30 

0.29 

4.59 

51703 

3231 

3951 

2918 

22.28 

911 

15.64 

0.31 

15.95 

115347 

7209 

9173 

6316 

27.24 

1292 

81.00 

0.58 

81.58 

251458 

15716 

20514 

13481 

30.53 

2044 

347.69 

1.69 

349.38 

535840 

33490 

44357 

28298 

32.45 

2795 

2535.00 

86.84 

2620.84 

1124496 

70281 

93940 

58739 

33.66 

4357 

Table 11: Successive refinements of the air. mesh in 16 processors. In each phase all the 

elements are selected for refinement. 

N umber of refinements 

Initial 1 2 3 4 5 6 

Time (serial) 

Time (comm) 

Time (total) 

Elements (total) 

Elements (avg) 

Elements (max) 

Elements (min) 

Imbalance (%) 

Shared nodes 

9000 

281 

281 

282 

613 

0.42 

0.32 

0.73 

22251 

695 

788 

642 

13.38 

945 

1.38 

0.34 

1.72 

51713 

1616 

1967 

1389 

21.72 

1475 

5.91 

0.39 

6.30 

115363 

3605 

4567 

3081 

26.69 

2138 

22.80 

0.68 

23.48 

251490 

7859 

10214 

6271 

29.97 

3307 

77.66 

1.18 

78.84 

535902 

16747 

22080 

13069 

31.84 

4633 

376.17 

4.00 

380.17 

1124612 

35114 

46764 

26979 

33.06 

7093 

Table 12: Successive refinements of the air .mesh in 32 processors. In each phase all the 

elements are selected for refinement. 
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Figure 38: Successive refinements of the mesh. In (a) we show time spent in the serial 

part of the algorithm while in (b) we show the time spent on communication. 
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(b) 

Figure 39: Refinement of the mesh. The initial air.mesh (a) and after refining all its 

elements (b). 
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involves the destruction of all the elementf: in P; and the creation of the same elements in 

P;+1. The timings for this test are shown in Table 13 and plotted in Figure 40. We perform 

this permutation migration after none, one and two refinements on the air .mesh for 4, 8, 

16 and 32 processors. 

Remember that the refinement of all the elements of the mesh more than doubles the 

size of the mesh. Also the migration does not include only the elements in the fine mesh 

but also all the elements in the intermediate meshes. When the mesh is not refined the cost 

of the algorithm is dominated by the communication. This is why we do not observe any 

speedup in the column corresponding to the migration of the initial mesh. After one or two 

refinements we observe linear speedups. The migration of the mesh after two refinements 

using four processors is a special case. We believe that the low performance of the algorithm 

at that case is because we are consuming too much memory. 

Processors 

Migration after successive refinements 

Initial mesh 1 refinement 2 refinements 

4 

8 

16 

32 

1.85 

1.76 

2.62 

4.86 

37.99 

13.37 

6.44 

5.89 

283.60 

79.95 

27.24 

12.26 

Table 13: Migration of the mesh. Time in seconds to migrate each element of the air. mesh 

mesh that it is assigned to P; to Pi+l after none, one or two refinements. 

Figure 41 shows two stages of this test. In 41 (a) we display a snapshot of the mesh 

with no refinements before the migration and in (b) we show the same mesh after this 

permutation migration. Figure 42 (a) shows another migration example. In this case all 

the elements in each processor are migrated to a random processor. In Figure 42 (b) we 

migrate the elements according to a target partition. 
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Mesh Migration (air.mesh) 
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Figure 40: Migration of the mesh. We migrate each element of the air .mesh that it is 

assigned to ~ to ~+l after none, one or two refinements. 

9.6 Dynamic partitioning of the mesh 

Finally we put all the tests together. In this section we present tests that refine the mesh, 

find a new partition at run time and migrate the mesh according to the new partition. These 

tests are performed using two different methods. For the first set of tests we partition the 

mesh using the Parallel Nested Repartitioning algorithm (see Section 7.1.3). In parallel 

we compute the weight of the mesh MOl by collapsing elements that are descendants of a 

common element of the coarse initial mesh. This phase does not require communication. 

We then send the dual of the coarse mesh to Po to start the serial phase of the algorithm. 

In the serial phase we find a partition of the coarse mesh using a serial algorithm. In this 

phase we use Chaco's serial Multilevel Bisection algorithm to partition this reduced graph. 

We then broadcast the partition to the processors to start the migration phase. 

For comparison we run the same tests using the serial Multilevel Bisection algorithm 

to repartition the mesh. Rather than collapsing the refined elements in parallel as in the 
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(a) 

(b) 

Figure 41: Migration of the mesh. In (a) we show the air.mesh distributed between 32
 

processors. This partition was obtained using a Multilevel Bisection algorithm. In (b) we
 

migrate every element in each processor to the next processor.
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(b) 

Figure 42: Migration of the mesh. In (a) we migrate the elements to a random processor 

and in (b) we migrate the mesh according to a Spectral Bisection partition. 
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PNR algorithm we send to Po the whole me,;h. In this test we forget that the fine mesh was 

obtained as the result of the refinement of another coarser mesh. For this reason we eliminate 

all the intermediate elements and we send the fine mesh to Po. We perform this operation 

by flattening the hierarchy of elements: we delete all the intermediate refined elements 

leaving only the elements of the fine mesh. The serial multilevel algorithm running in Po 

collapses the elements by computing a matching of the graph. For a complete description of 

the method see [21]. Note that if we were implementing this method in a parallel computer 

we would require to communicate at each level to find a matching of the graph. 

The results are shown in Tables 14, 15, 16 and 17. These results are also plotted in 

Figures 43, 44 and 45. In these pictures and tables we divide the repartitioning in four 

pha.c;es: 

•	 in the first pha.c;e every processor calculates the weights of its portion of the coarse 

mesh and sends it to Po. 

•	 in the second pha.c;e Po computes the dual of the graph and spawns a process to run 

Chaco. In the case of the PNR algorithm Chaco computes a partition of the reduced 

mesh MOl. In the ca.c;e of the serial algorithm Chaco computes a partition using all 

the elements of the fine mesh. 

•	 in the third phase Po sends the new partition to all the processors. 

•	 finally we migrate the elements according to the new partition. 

First note that if the mesh is not refined both the serial and PNR algorithm are essen

tially the same and should produce similar results. Only when the mesh is refined we would 

note a difference between both approaches. 

It is not surprising that the partition is significantly faster if we send only the coarse 

mesh to Po as in the PNR algorithm rather than the fine mesh as in the serial algorithm. 

In the PNR algorithm the cost of computing the weights of the mesh MOl and sending it 

to Po does not increa.c;e too much as we perform successive refinements of the mesh. In this 

88
 



ca.'3e IMol1 is a constant so the same nun!ber of elements are always sent to Po. This is 

obviously not true in the serial algorithm. As Po needs to partition a much smaller graph 

during the serial pha.'3e of the PNR algorithm the cost of performing this partition is much 

smaller than if it wa.'3 made using the serial algorithm. The time to receive the partition 

from Po increa.'3es faster in the serial algorithm than in the PNR algorithm as Po needs to 

return longer messages because it partitioned a bigger graph. 

It is also not surprising that the migration pha.'3e using the serial algorithm performs 

better than the one using the PNR algorithm because in the serial algorithm we removed all 

the intermediate elements. In this ca.'3e the migration corresponding to the PNR partition 

does not only need to migrate the elements in the fine mesh but also all the refined elements. 

But this advantage is outweighed by the cost of sending the mesh to Po and performing the 

partition on a bigger mesh. 

The really important results are obtained by looking at the last row of Tables 14, 15, 

16 and 17 and comparing the quality of the partitions. Our Parallel Nested Repartitioning 
\. 
j 

algorithm produced almost always better partitions than the serial multilevel algorithm andI 

we have shown in Section 9.3 that the serial Multilevel Bisection algorithm produced better 

partitions than the highly acclaimed Recursive Spectral Bisection algorithm. This proves 

that the information from the refinement can be effectively used in the mesh partitioning 

algorithms. 

10 Related projects 

This project follows the spirit of the Distributed Irregular Mesh Environment (DIME) [31], 

[43] by Roy Williams at the California Institute of Technology. DIME allowed the refinement 

of triangles but wa.'3 not able to coarsen them. Also it is not clear how its parallel refinement 

and load migration work. 

The Scalable Unstructured Mesh Computation (SUMAA3d) at the Argonne National 

Laboratories is another related project. The refinement algorithm [3] avoids the creation 

of duplicate nodes in the boundaries of processors by refining the elements in independent 
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PNR algorithm Serial algorithm 

Initial 1 Ref 2 Ref Initial 1 Ref 2 Ref 

Send mesh to Po 20.59 32.85 34.85 21.52 57.24 256.91 

Partition 18.05 17.81 18.38 17.70 55.47 267.27 

Receive partition from Po 1.17 0.90 1.28 0.94 2.41 39.24 

Migration 5.36 25.90 281.53 8.80 22.65 109.53 

Total time 46.06 77.89 337.47 49.44 138.75 675.71 

Number of shared nodes 119 205 298 119 233 442 

Table 14: Repartition of the air .mesh in 4 processors after none, one and two refine

ments using the PNR algorithm and the serial Multilevel Bisection algorithm. Times are 

in seconds. 

PNR algorithm Serial algorithm 

Initial 1 Ref 2 Ref Initial 1 Ref 2 Ref 

Send mesh to Po 17.04 16.13 21.16 15.72 49.01 229.20 

Partition 22.23 21.62 21.73 22.03 57.19 263.98 

Receive partition from Po 1.83 1.77 1.67 1.67 2.15 6.56 

Migration 4.52 16.55 84.08 4.81 8.80 29.66 

Total time 47.71 56.23 128.97 44.41 118.00 530.76 

Number of shared nodes 221 465 510 221 448 694 

Table 15: Repartition of the air .mesh in 8 processors after none, one and two refine

ments using the PNR algorithm and the serial Multilevel Bisection algorithm. Times are 

in seconds. 
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PNR algorithm Serial algorithm 

Initial 1 Ref 2 Ref Initial 1 Ref 2 Ref 

Send mesh to Po 15.76 13.99 17.39 14.16 46.39 237.69 

Partition 34.51 31.26 33.61 30.96 76.81 304.19 

Receive partition from Po 2.49 2.31 2.95 2.95 3.03 5.50 

Migration 7.82 10.36 32.70 6.76 9.52 29.86 

Total time 60.69 58.13 86.86 54.97 138.40 591.30 

Number of shared nodes 397 597 919 397 797 1225 

Table 16: Repartition of the air .mesh in 16 processors after none, one and two refine

ments using the PNR algorithm and the serial Multilevel Bisection algorithm. Times are 

in seconds. 

PNR algorithm Serial algorit hm 
I 

Initial 1 Ref 2 Ref Initial 1 Ref 2 Ref 

Send mesh to Po 15.62 16.09 16.05 14.65 38.25 250.19 

Partition 40.44 47.26 46.16 40.72 86.25 331.65 

Receive partition from Po 4.99 5.19 4.42 5.24 5.30 9.61 

Migration 23.59 15.74 30.90 21.19 91.90 30.83 

Total time 85.26 84.48 97.71 82.01 252.94 624.18 

Number of shared nodes 618 955 1525 618 1122 1701 

Table 17: Repartition of the air .mesh in 32 processors after none, one and two refine

ments using the PNR algorithm and the serial Multilevel Bisection algorithm. Times are 

in seconds. 
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Figure 43: Partitioning of the mesh after none, one and two refinements using the PNR 

algorithm and the serial Multilevel Bisection algorithm. (a) shows the time spent on sending 

the mesh to one processor. (b) shows the time spent by Po to partition the graph. 
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Figure 44: Partitioning of the mesh after none, one and two refinements using the PNR 

algorithm and the serial Multilevel Bisection algorithm. (a) is the time spent on commu

nicating back the results of the partition from Po to the processors and (b) shows the time 

spent on the migration of the mesh. 
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Total time (air.mesh) 
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Figure 45: Partitioning of the mesh after none, one and two refinements using the PNR 

algorithm and the serial Multilevel Bisection algorithm. (a) is the total time. The number 

of shared nodes is shown in (b). 
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sets so that adjacent elements in different processors are never refined at the same time. 

These independent sets are computed using Monte Carlo methods. Also the partitioning 

algorithm is based on the Orthogonal Recursive Bisection method. In general is possible to 

obtain much better partition using multilevel methods. 

In [33], [42] an adaptive environment for unstructured problems is presented. In this 

project the migration is only done to adjacent processors using iterative local migration 

techniques. The load balancing algorithm is done by comparing the work between adjacent 

processors. This means that we might require several iterations to rebalance the work.The 

refinement is performed using quadtree structures. 

11 Conclusion and future work 

In this thesis we present contributions in the areas of mesh refinement, mesh repartitioning 

and mesh migration. 

We have developed parallel refinement algorithms for unstructured meshes and used the 

refinement history to develop a Parallel Nested Repartitioning algorithm superior to the 

algorithms in [19] when applied to the partition of adapted meshes. Although we explained 

the theoretical problems of doing the refinement in parallel our tests showed very little 

overhead due to communication. 

We used the Parallel Nested Repartitioning algorithm to compute partitions on the fly. 

We showed that we can obtain high quality partitions at a reasonable cost. We also showed 

that we can use these partitions to rebalance the work by migrating elements and nodes 

between the processors. 

The implementation of the project was highly simplified by using C++. The use of an 

object oriented language allowed us to design irregular data structures efficiently. It also 

reduced the number of bugs as we encapsulated the most dangerous components (like the 

remote pointers) into objects. 

There are two major possible improvements to this project. The first one is to port it to 

the IBM SP-2. The second one is to find a real physical problem to drive the computation. 
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Although we have worked only with triangles we designed the data structures to allow 

different types of elements both in 2D and in 3D. 
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