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Introduction 

Decision making is an important task in everyday life. Making the correct 
decision in some circumstances can help utilize resources better or even be 
the difference between life and death. There are many applications in which 
automated decision making is desirable (automated stock trading) and others 
in which it is necessary (e.g., real time flight controls of a supersonic jet). 
Unfortunately, at this time, the process of human decision making procedures 
for many types of problems is difficult or impossible to formalize. Given this 
limitation, we would still like to have automated decision making perform as 
well as possible. 

An often used and sometimes convenient way to make a machine aware 
of the dynamics of the domain in which it will be making decisions is to 
provide the machine with a model of the world. For some domains this is 
quite acceptable, since the dynamics of the world may be well defined. For 
other domains, it may be impossible to specify the dynamics fully. Even for 

*This work was done jointly with Leslie P. Kaelbling and Michael 1. Littman. Anthony 
Cassandra's work was supported in part by National Science Foundation Award IRI
9257592. 
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algorithms that do not rely upon being given a model [17], there is a structure 
imposed upon the environment which acts as a somewhat more abstract 
model. In this paper, we will be exploring a specific model-based scheme in 
which decisions need to be made. Even when we cannot assume we have the 
model, we can use techniques, [2], that allow us to approximate the model 
and then apply these model-based schemes. The many problems associated 
with such models will be outlined in a subsequent section. Throughout this 
discussion, the term agent will refer to the automated process that has to 
make decisions. A convenient example of an agent is that of an autonomous 
robot trying to survive in a real world environment. However, the agent can 
simply be a computer program such as one that does medical diagnosis. In 
this case, the model of the world might be based upon statistics and medical 
research. 

The model we will explore assumes that the agent exists in a unique state 
at any time point. Furthermore, there are only a finite number of different 
possible states it can ever be in. For the robot example, these states can be 
different locations in the world or even the agent's state of knowledge at a 
given time. Time is assumed to pass in discrete increments (ticks) of some 
clock and the agent must choose some action to perform at each tick of the 
clock (it could be to do nothing). Each time the agent performs an action, 
it will move to a new state, though it is possible for it to remain in the same 
state. An alternative, but equivalent, view of the agent and world is one 
where the world exists in some state and the agent interacts with it. 

If a machine (computer) is going to make decisions by itself, it needs to 
have some metric that it can use to differentiate between the good and bad 
choices. This is another potential trouble spot, because it is often difficult 
for people to articulate exactly what the differences are between good and 
bad choices. Nevertheless, we must do so if we desire to have the machine 
choose between a number of options. The choice in our model is to assume 
that each state has an associated reward for performing each possible action 
in that state. This reward reflects the immediate desirability of performing 
a particular action given that we are currently in some state. 

These rewards do not necessarily have to be something the agent actually 
gets as it operates. We define these rewards as a way of assigning relative 
values to different states of the environment. Given these abstract values, 
the agent can then attempt to get to the locations that it knows have higher 
value. Although we can view the rewards as abstract entities, they might 
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action A or B 

(0) 

Figure 1: Sample environment showing why one step greedy strategy is un
desirable 

well be grounded in some real phenomenon that the agent can perceive. 
The model described thus far has dynamics as follows: The agent starts 

in a state i at time t, performs action a, receives an immediate reward for 
that action in that state and then finds itself in state j at time t + 1. The 
dynamics of an environment specified with such a model can be described 
with just a couple of tables. One table specifies the next state based upon the 
current state and the action chosen. The other specifies immediate rewards 
for all combinations of states and actions. 

Although this model is much simpler than the one that is actually treated 
in this paper, it is useful to think about how an agent would use this informa
tion to make decisions at each time step. One fairly intuitive notion is that 
the agent wants to get as much reward as possible after all, these rewards are 
our way of informing the agent what state-action pairs we think are desirable. 
But exactly what is meant by "as much reward as possible?" Do we simply 
want to perform the action that gets us the most reward for this particular 
step? The answer is probably not. Figure 1 is an environment in which we 
can get a reward of 2 now, but no more rewards afterwards no matter what 
actions we decide to take. Also in this environment there is another action 
we can perform which will only give us a reward of 1 now, but after we take 
this action we will be able to get a reward of 5 for the next action (and even 
more with subsequent actions). 

The above situation shows an example in which we would probably want 
to take into account the rewards we might receive in the future, not just 
the immediate rewards. If we knew in advance how many time steps (call 
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this number k) we had to make decisions for, then we could simply look 
at the model and decide which sequence of k actions (from a given starting 
state) will give us the maximum reward. Of course, there could be many 
possible sequences to consider, but there would always be a finite number 
of them. However, what if you don't know how many decisions the agent 
will have to make? In this case we need to consider the future rewards in 
some other manner. Dealing with this is a somewhat controversial topic. 
For this paper we will consider an infinite horizon with a discounting factor. 
The justifications for using this are given later, as are the drawbacks of 
discounting. Here we will just present the basic concept behind this approach. 

The term infinite horizon is used to indicate that we will consider rewards 
for an infinite number of time steps. This is why we need a discount factor. 
If we merely try to sum rewards forever, we will get an ever increasing sum 
and all actions will look as if we can get an infinite amount of reward. By 
adding a discount factor we can cause these infinite sums to converge to a 
number which we can then use in a comparison to decide which actions are 
best. 

Although we wouldn't expect the agent to make decisions forever, the 
infinite horizon with discounting is a good model for the instances in which 
we do not know for how long the agent will have to make decisions. If we 
assume that the agent will stop making decisions at each step with some 
probability, then it makes sense not to count rewards that could be received 
far into the future as much as rewards that could be received closer to the 
present. The discount factor does this by discounting rewards based upon 
how far in the future they could occur. 

We now come to the point where we would like to make our model more 
robust. In the previous model description we assumed that each action will 
always have the same output given a specific starting state. Many domains 
of interest, however, do not possess this property. More specifically, an agent 
that is a mechanical device is subject to physical limitations and tolerances. 
Trying to move a robot 10 inches by applying the exact amount of voltage 
for exactly the proper time is a difficult thing to accomplish and even if this 
is overcome, there may be slippage in the wheels depending upon the floor 
surface, humidity, dirt, etc. So if you've modeled an environment in which 
one of the actions is for a robot to move 10 inches and another is to move 9 
inches, the action to move 10 inches might not succeed. Although the results 
of the robot's actions are in a sense deterministic, the amount of knowledge 
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Figure 2: Sample environment showing stochastic actions 

that we would have to have to predict it is overwhelming (e.g., where each 
dirt particle was, coefficient of friction of carpet for the current atmospheric 
conditions, etc.) Instead of getting bogged down in all these details, the 
standard approach is to model the actions probabilistically. Instead of saying 
that performing action a in state i will result in our next state being j, we 
say that 90% of the time this will happen, but that 10% of the time we could 
remain in state i. This is shown pictorially in Figure 2. 

You can add these action probabilities into the model and get a more 
robust model. The nice part about this is that you can still figure out what 
the best action to take is. It is a little more complex than models without 
probabilistic actions, but solution techniques exist. The technical name for 
this type of model is a Markov Decision Process (MDP) and it is a very 
thoroughly explored model in mathematics, operations research, computer 
science, and related fields. 

There is one extremely important element that we have assumed up to 
this point, but which is not always a good assumption. When we are choosing 
the best action to take, we first need to know what state we are in. How do 
we know what state we are in? Before we had probabilities associated with 
the actions, we always knew the next state after we took an action, so as 
long as we knew where we started we could tell exactly where we were. Now 
that we have have introduced uncertainty in the outcome of actions, how do 
we know what state we actually did end up in? The easy answer is the one 
that is assumed in the previous model: Just look. The problem is that it 
is not always possible or realistic to assume you can tell exactly what state 
you are in at a given time. For instance, the robot example demonstrated 
the physical limitations of machines. These limitations apply not only to the 
actions they can perform, but also to the things they can observe in the world. 
If a robot is 18 inches from a wall and decides to move 10 inches, how will it 
know whether it is in the state of being 8 inches or 9 inches from the wall? 
Even if the robot has some sensors that can very accurately tell the distance 
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to the wall, there is still some probability that they could malfunction. The 
typical case is that mobile robots have crude sensors which are nowhere near 
100% reliable. Even if there we perfect or near perfect sensors, the agent will 
rarely be able to see the whole world at once. 

Dealing with uncertainty in observation is the main issue which this paper 
explores. The previously described MDP model can be made more general 
by introducing uncertainty in observations. This type of model is referred 
to as a partially observable markov decision process (POMDP) and is the 
focus of this work. Many existing techniques utilize the MDP model [7, 3] 
and the assumption of complete (reliable) observability is one of the major 
drawbacks of these techniques and those that build upon these. This paper 
explores existing techniques for POMDPs, presents a new algorithm and shows 
the usefulness and limitations of the POMDP model in general. 

2 The Model 

2.1 The MDP Model 

A Markov decision process, MDP, is a fairly simple model with a fancy name. 
It consists of a finite set of states, a finite set of actions and a reward structure 
defined for each state-action pair. For a robot navigation problem, the states 
can be viewed as the location of the robot in the environment. Though 
most environments are really a continuum of states, it is often convenient to 
discretize these continuous spaces. The actions are the things the agent can 
do, such as move forward, turn left, pick up an object, etc. Associated with 
performing each action is an immediate reward. Because the effectiveness of 
performing an action can depend upon what state the agent is in, the MDP 
model actually assigns an immediate reward for each combination of states 
and actions. For example, if the robot is trying to get to a specific location, 
then performing the action move forward when it is next to and facing that 
location should result in a high reward. If the robot was directly in front of 
a descending stairway (and it did not know how to walk down stairs), then 
we would expect the action move forward to give much less reward. 

Formally, an MDP is a quadruple, < S,A, P, W >. S is a finite set of 
states with state i denoted by Si. A is a finite set of actions with action i 
denoted by ai or sometimes just a when we refer to a specific action. W is 
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the reward structure, which is slightly more general than the one described 
previously. Here, wij represents the immediate reward the agent will get 
if it performs action a while in state Si and moves to state Sj. Although 
this model is more general, we can simplify the reward structure to the one 
described previously by taking a weighted sum over all possible next states. 
The weight used in this sum is the probability that we actually move to each 
of the next states. 

a ,"",a a 
qi = LJ PijWij (1) 

j 

Alternatively, we could just describe the qi rewards directly. The wij are the 
actual rewards that would be received, but the qi are the expected rewards 
representing what we would expect to receive on average in the long term. 

2.2 Policies 

A policy is a function or mapping that tells the agent what action to execute. 
It typically depends upon the state that the agent is in. For instance, this 
current state could be its physical location. A policy completely specifies 
the appropriate action for each possible situation (state) that occurs in the 
model. A policy should not be confused with a plan. A plan is a sequence of 
actions to perform, and does not necessarily specify the appropriate action for 
each possible situation. In some sense, a policy is the most general possible 
plan, since it completely specifies the action to take for each possible state 
of the environment. 

A policy can be either deterministic or stochastic. A deterministic policy 
is one that specifies a single action to take in each state. A stochastic policy 
specifies a number of possible actions to execute in each state.. In addition 
to a set of possible actions, the agent is given a probability distribution 
over the set of actions. The agent will then stochastically choose one action 
according to those probabilities. For this paper will we only concern ourselves 
with deterministic policies. Work in stochastic policies include [14]. Note 
that deterministic policies are really a subset of stochastic policies where the 
probability distribution assigns one action probability 1. 

Policies (both deterministic and stochastic) can also be categorized as 
stationary or non-stationary. A stationary policy is independent of time; the 
same policy is applied regardless of when the policy is used. Thus, the policy 
only depends on the state of the agent and/or environment. A non-stationary 

7
 



policy is dependent on time; the time the policy is to be used will affect what 
action will be taken. In this case, the time and state and/or environment 
determine what action the agent should execute. 

Policies can also be grouped by the amount of memory required. As an 
agent moves about its environment performing actions, it is building up a 
history of its movements. In some situations it might be desirable to remem
ber this history and perform future actions based upon this. A memory-less 
policy is one that uses no history at all. The choice of action depends only 
on an immediate situation of the agent. A k-memory policy chooses actions 
based upon the last k pieces of the agent's history. 

There are also policies that require a finite amount of state, but the 
amount of state doesn't directly correspond to the last k pieces of the agent's 
history. For example, a policy that depends upon whether a button was ever 
pressed, requires only a single bit of information, but this single bit does not 
correspond to k-memory for any fixed k. 

In this paper we will focus on deterministic stationary policies with mem
ory. We will denote the entire space of these deterministic stationary policies 
as ~ where a specific deterministic stationary policy is denoted by O. We will 
denote a deterministic non-stationary policy as a set of stationary policies, 
o= {0o, 01 , • •. ,otl where Oi E ~ is the stationary policy to use when there 
are i steps remaining. 

2.3 Infinite V8. Finite horizon 

In this paper we will discuss two ways to construct optimal policies for POMDP 

models. Both of these also apply to MDP models and, again for simplicity, it 
is in the MDP framework that we first present them. 

We first consider problems in which the agent only has to make a known 
finite number of decisions. We refer to this class of problems as finite horizon 
problems; a k-horizon problem is one in which the agent will make decisions 
for k time steps. This period of k time steps is usually referred to as the 
agent's lifetime or the size of the horizon. The actual structure of a finite 
horizon policy consists of a sequence of deterministic policies, one for each 
time step (i.e., a determinisitic non-stationary policy). The policy, Oi, is a 
complete mapping from all states to actions, Oi : S --t A. The policy takes 
the current state of the agent as an argument, so the action specified by the 
policy for state Si is denoted by Oi(Si). 
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Figure 3: Example showing need for non-stationary policies 

t=2 t = 1 
state action state action 

0 A 0 B 
1 A 1 A 
2 A or B 2 A or B 
3 A or B 3 A or B 

Table 1: Policies for horizons t = 2 and t = 1 

To see why a non-stationary policy is necessary for the finite horizon case 
consider Figure 3. Assume that our horizon is k = 2 time steps where k = 2 
means that there are exactly two time steps for which the agent needs to make 
decisions. The optimal policies for t = 1 and t = 2 are shown in table 1. 
Notice that each is a policy (complete mapping from states to actions), but 
that they are different. Since the model is small it should be easy to convince 
yourself that any other policy would not do as well for each of the two time 
steps. Therefore the true optimal policy for a k = 2 horizon is to apply the 
t = 2 policy first and the t = 1 policy next. Note that optimality here is 
being measured as total accumulated reward for the two time steps. 

The other class of problems we consider are termed infinite horizon prob
lems. Although we wouldn't expect any agent to have to make decisions 
forever, we use this type of model when we do not know in advance how 
long the agent's lifetime will be, which in many circumstances is more re
alistic than the finite horizon models. At first, attempting to consider an 
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infinite number of time steps might seem impossible. Although it does add 
some complexity, it can be and is often done, especially in the MDP model. 
The trick that needs to be incorporated is the addition of a discount factor 
to the rewards, so that rewards that are received further in the future are 
discounted more than rewards received closer to the present time. To show 
why the addition of the discount factor can makes things work out nicely, 
imagine that we have some divine knowledge of exactly which state we will 
be in at each step and which action will be executed at each step. We will 
represent this knowledge as the functions S(k) and A(k) respectively. With 
this knowledge we can write the value, in terms of rewards, as 

00 

'"" k A(k)()Vn Si = LJ fJ qS(k)' 
k=O 

This formula is associating a value for starting in a given state, Si, with 
n time steps remaining assuming we will know exactly what states we are 
in, S(k), and which actions we perform, A(k), at each time step. Here k 
represents the time when there are n - k steps remaining. 

This formulation, usually referred to as the value function, is a power 
series of the immediate rewards. Since we ultimately want to discuss and 
compare the value of different policies we would like this series to converge. 
A well known property of power series of this form is that they will converge 
for variables with an absolute value of less than one. In this case the variable 
of interest is the discount factor fJ. Since it is difficult to interpret a negative 
discount factor in our problems, we will only consider discount factors in the 
range: 0 S; fJ < 1. A main motivation for using a discount factor is that it 
allows us to talk about and compare these infinite sums. The niceness of the 
mathematical formulation and convergence are hardly appropriate justifica
tions for using a discount factor; however, more motivated interpretations 
and justifications of the discount factor will be presented later (as will the 
problems with using a discount factor.) There are also techniques for solv
ing undiscounted infinite horizon problems [7, 13], but this paper does not 
attempt to treat these problems. 

You will recall that, for the finite horizon problem, a policy had the form 
o= {OO' 01, ... ,ot} since we (potentially) needed a different policy for each 
time step. We have thus far formulated our infinite horizon problem the 
same way, but trying to represent an infinite horizon policy this way leads to 
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some real problems. First, how could we ever calculate an infinite number of 
policies and, even if we figure out how to do that, how could we put it into 
a form that we could use that wouldn't take up an infinite amount of space? 
This is one place where the infiniteness can actually help us out. Imagine for 
a moment that you knew Di' that is, the optimal policy to use at time t = i 
when there is an unbounded number of decisions to be made in the future. 
Well then, at time t = i + 1 there is also an unbounded amount of time left 
as there is for any particular time. Therefore, the policy that is best must be 
Di since we defined Di to be the optimal policy to use when there is an infinite 
amount of time remaining. Since our infinite horizon solution looks like this: 
D= {Di' Di' Di' ... }, we can simply refer to the policy as Dbecause at any time 
step we will always be using the same policy. This is what we previously 
termed a stationary policy, because at every time step the policy is the same. 
Solving the infinite horizon problem now looks a lot more promising, since we 
only need to search for and represent a single policy. Also, we have developed 
a way to ensure that all potential policies have a finite value which we can 
compare to one another. 

2.4 Policies in MDPs 

The goal of the techniques discussed in this paper is to derive a computational 
procedure for finding an optimal deterministic policy for a given POMDP 

model. Working toward that end, we first discuss policies in the MDP model 
and a traditional method (policy iteration) for finding optimal policies in 
these models. We will later generalize both of these to the POMDP case. 

Since our aim is to find the optimal policy, we need a metric that gives 
us a measure of each policy's usefulness. This metric allows us to compare 
policies with one another. As a start in this direction, we define V;n (Si) to 
be the expected reward that the agent can accumulate in its lifetime if it 
executes policy D= {Do, D1, ... ,Dn } for n steps. When it is currently in state 
Si, there are n steps for which the agent needs to make decisions given that 
it executes actions according to the policy Dm at time m. 

V!n(Si) = LPf;(si)[wf;(Si) + j3V::i1 (Sj)] 
j 

Since our MDP model has uncertainty in the outcome of its actions, we 
use the probabilities of moving to all possible next states in a weighted sum 
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of the rewards we would get if we actually moved into that state. The reward 
for moving to a state is the immediate reward received for the current action, 
current state and next state, wij' plus the value of state Sj with one less step 

remaining, V:':1
1 (Sj). We discount the value of the next step by (3, which 

will become necessary when we discuss the infinite horizon problems. For 
the undiscounted finite horizon problems we can just set (3 = 1. Factoring 
and substitution of formula 1 allows us to simplify this expression to 

v:On( .) = ?n(S;) + Q "" ?~(S;)V:0n-l( .)
n S, q, tJ L.J p'J n-l sJ. 

j 

Note that for the non-stationary policies of finite horizon problems, this 
formula requires the value for the last n - 1 steps before we can compute the 
value for the nth step. Thus, the value function is computed with dynamic 
programming. The values for V~o (.) depend only on the qf values. For the 
infinite horizon problem, the policy, 8( 
cdot) , that gets executed at any time is the same. This results in a value 
function: 

VO(Si) = qf(s;) + (3 LPW;)VO(Sj). 
j 

This is a system of lSI equations with lSI unknowns. As long as 0 :S (3 < 
1, this system of equations will have a solution. Thus, whether we are solving 
the finite or infinite horizon problem, if we are given a policy (stationary 
or non-stationary), the value function formulas allow us to easily compute a 
metric for the policy. These value functions will allow us to compare different 
policies and eventually to prove that a given policy is optimal. These formulas 
show how we judge a policy's usefulness by the actions and states that the 
agent is led through. 

In an MDP, any mapping from states to actions is a policy, but what we 
are concerned with is finding the optimal policy. Optimality is considered 
with respect to the value of the state-action pairs which are derived from 
the reward structure W. We would like a policy that performs better than 
any other possible policy in terms of the value of all states the agent passes 
through. We will denote the optimal policy by 8* and its associated value 
function by Vn*(·). More formally, an optimal policy is one where, for all 
states, Si, and all other policies, 8, VO*(Si) 2: VO(Si). It is non-trivial, [7,3], 
that such a 8* exists. 
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The distinction between the policy and the value function of a policy 
is a fairly important one. Some of the algorithms discussed in this paper 
construct both the value function and the policy, whereas others construct 
only the policy. Typically, it is easier to construct the policy than it is to 
construct the policy and its value function. However, given a policy the value 
function can be derived by the formulas above. Conversely, a policy can be 
constructed from the value function. 

2.5 The POMDP Model 

A partially observable Markov decision process, POMDP, is defined by a hex
tuple, < S, A, P, e, R, W >. S is a finite set of states with state i denoted 
by Si. A is a finite set of actions with action i denoted by ai or sometimes 
just a when we refer to a specific action. P is the transition probabilities 
for each action in each state and defines the Markov process that the agent 
actually operates within, though it typically does not have access to this core 
process. pij denotes the probability that the agent moves to state Sj given 
that it was in state Si and it just performed action a. e is a finite set of 
observations where ()i denotes observation i. Although there is an underlying 
Markov process, the agent does not directly observe it. R is the observation 
model, in which rie denotes the probability that we observe () when we are 
in state Sj at time t and when our last action (at t - 1) was a. W specifies 
the immediate rewards, wije denotes the immediate reward received at time 
t + 1 for performing the action a in state Si at time t, moving to state Sj at 
time t +1, and making observation (). These immediate rewards are essential 
in our quest for optimal solutions, since it is these values that inform us how 
useful different strategies are. 

There is another notation that will prove convenient in our later formu
lations. We let qf be the immediate reward of performing action a in state 
i. It can easily be derived from the immediate rewards Wije weighted by the 
transition and observation probabilities for the different actions and obser
vations: 

(2) 

This will simplify many of the formulas that appear later in the paper. We 
have also used the qf notation in describing the MDP model. The use is the 
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same in that we would like it to stand for the immediate reward received for 
performing action a in state Si, but the calculation differs since, in the POMDP 

model, we must factor in the uncertainty (probabilities) of the observations. 
Further use of the value qf will not be confusing if you remember which 
model is being discussed. 

There are actually two ways a POMDP problem can be formulated. In 
the first, which is the one presented above and used throughout this paper, 
observations are made after an action is taken. Alternatively, we could define 
a POMDP in which we first make an observation and then perform the action. 
These two formulations are essentially equivalent, since a problem in either 
one of these forms can be converted to a problem in the other. However, 
to avoid confusion we will always discuss the former since this is the model 
most often used in the existing literature. 

2.6 Belief States 

When we moved from a deterministic action model to a stochastic action 
model, we could still use the same basic machinery to solve the two types 
of problems. This was possible because we assumed the agent always knew 
where it was (or could be) in the finite state space. Thus, to find a policy the 
agent merely needed to decide what the appropriate action was for each state 
in this finite set. However, in the POMDP model, adding partial observability 
creates a real problem. If the agent can never know for sure what state it is 
in, how can it possibly know what action to take? One observation we can 
exploit is that the agent will be more likely to be in some states than others 
based upon the actions it has taken and the observations it has made. For 
instance, in Figure 4, even if we do not know whether we started in state 
S = 0 or S = 1, if we take action A and make observation () = 1, we are more 
likely to believe that we are in state S = 3 than S = 2, since the probability 
that we observe 1 in state S = 2 is so low. 

It turns out that we can keep track of how likely we are to be in each 
of the states. We call this probability distribution over the state space the 
belief state. We denote the belief state 7l" = {7l"o, 7l"1, •.• , 7l"lsl} where ISI is the 
number of states in the model and 7l"i represents the probability that we are 
currently in state Si. An important point (and drawback) about maintaining 
a belief state is' that we must know the model of the world if we wish to 
compute it. 
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~R~20=0.9
U U ~21=0.1 

~30 = 0.1 

~31 =0.9 

Figure 4: Belief state example 

After each action and observation, we can update our belief state with a 
simple application of Bayes' rule: 

(3) 

The new belief state will be a vector of probabilities computed according to 
the above formula. We define a belief transformation function: 

7r' = T(7rla,O). 

The first formula is more enlightening since it more explicitly states that 
we just consider all possible ways the agent could have ended up in a state 
weighted by the probabilities of those ways actually occurring for that action
observation combination. The second formula merely simplifies the notation 
for subsequent formulas. An important result, as shown in [15], is that 
this belief state captures all the necessary information for any sequence of 
actions and observations. Therefore, by constantly updating this belief state, 
we are implicitly saving the relevant part of our past history of actions and 
observations. Since we cannot know our location with certainty, this belief 
state seems like the next best thing. 

A diagram of the basic dynamics of a POMDP is shown in Figure 5. The 
action is generated as a function of the belief state, and the observation is 
generated by the environment. Recall that we are using the POMDP model 
in which observations follow the actions. 
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Figure 5: Control dynamics for a POMDP 

2.7 Policies for POMDPs 

In the regular MDP model, a policy is a mapping from states to actions and 
since the state space is finite, the policy and/or the value function are both 
easy to calculate and to represent (e.g., in a table). In the POMDP model, 
since we never know the true underlying state, our policies must now map 
belief states into actions. . The number of belief states is infinite, and 
therefore, storing the policy or value function in tables is no longer feasible. 
This means we must find some other representation for both the policies and 
the value functions of policies. 

For now, we only consider the finite horizon case of a POMDP problem 
since this is the focus of much of this paper. A later section will discuss 
infinite horizon solutions. 

Imagine that we need to solve the finite horizon for a POMDP problem 
with the horizon k = 1. In this case, the agent gets to choose to execute a 
single action and no more. Here, the observation it makes after that action 
doesn't really matter, because once it chooses an action the game is over. In 
order for this problem to be well defined, we need to define a terminating 
reward for the process. This terminating reward represents the value of the 
agent ending up in each of the environment states when t = 0 (i.e., there is no 
time left to take actions). We will denote the terminating reward for state Si 

as q? Recall that there are also immediate rewards for each state-action pair. 
For k = 1, the agent will accrue one of these immediate rewards (depending 
on the state it was in and the action it chose to execute) plus the terminating 
reward for the state it ended up in. However, neither the starting nor ending 
state will be directly observable to the agent. All the agent will have access 
to is the probability distribution over the states (i.e., belief state) it starts 
out in. Our task is to derive a policy that obtains, based upon the belief 
state, the maximum expected reward for a single action. 
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Without knowledge of the actual underlying states of the agent, it might 
seem peculiar that we could ever find the best action to take. However, 
since the belief state represents the likelihood of being in each state, we can 
discuss the expected accumulated rewards by taking an expected value. For 
instance, assume that the agent's last belief state is 7r', then the expected 
terminating reward, or the value of ending up (at t = 0) in belief state 7r' is 

vo( 7r') = E 7r~q? (4) 
t 

Now that we know the value of ending up in a particular belief state, we 
move on to discuss finding the best action for each belief state, 7r, given that 
we will only be executing one action. We know that the ending belief state 
will be 7r' = T(7rIa, 0). The agent will have control over the action a, but not 
over the observation O. Because it cannot control the resulting observation, 
the agent must use the model of observation probabilities to weigh all the 
possibilities: 

1t;*(7r) = max[E7ri[qi +EPijrjoVO(T(7r 1a,O))]].
aEA 0 0" 

t J,<J 

By substituting for VO(·) and using formula 3 for T(7rJa,O), after some 
cancellation we get 

1t;*(7r) = max[E 7riqi + E 7riPijrjOq?].
aEA 0 00" 

t 't,J,Q 

With this formula we can determine the best action to take for any given 
belief state by performing the maximization shown. Thus, the optimal policy 
for t = 1 can be defined as 

8;(7r) = arg max[E 7riqi +E 7riPijrjOq?].
aEA 0 0 ." 

1 t,J,rJ 

Although the belief space is continuous, we are able to represent a policy 
over its entirety with this small finite formula, though there is some extra 
work required to perform the maximization. Notice here that the policy was 
derived from a value function. We show, shortly, that if you can represent 
the value function in this nice way then you also have a way to represent 
the policy since it is just the argument used in the maximization procedure. 
Indeed, this is exactly what we show for the general case next. 
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2.7.1 Value functions for POMDPs 

To move to the general k-horizon case of the value function, we use the 
same ideas demonstrated for the I-horizon case. First, let us assume we 
know the optimal value function when there are n - 1 time steps remaining, 
V:_1 (·). The basic form is the same as the MDP, but here we have a few 
extra complications to consider. First, we must take the weighted average 
of all the states, with the weighting of a state's value coming directly from 
the belief state. Second, we need to factor in all the possible observations 
we could possibly make and take a weighted sum of the values using the 
observation probabilities. Lastly, when we consider the value for the next 
step we must transform the belief vector based upon the current belief state, 
the action and the observation. Folded together and taking the maximum 
for all possible actions we get 

V:( 7l") = m:x[~ 7l"i ~pt L rjo (wijo + V:_1 [T( 7l"la, 0)])]. 
t J 0 

Just as we did with the MDP model we can use factoring and substitution 
of formula 2 for the qf values to simplify this to 

V:( 7l") = m:x L 7l"iqf +L 7l"iPtrjO V:_1 [T( 7l"la, 0)]. (5) 
i i,j,O 

This formula can appear rather complex at first. With its recursive defi
nition and abundant summations it would seem that trying to solve for such 
a value function would get messy. However, if Vn*(7l") is piecewise linear and 
convex (we show shortly that it is) it can be written much simpler as 

for some set of vectors a(n) = {aO
( n), a 1 (n), ...}. This is the crucial point for 

understanding the remainder of the paper and the algorithms. Unfortunately, 
this is also the easiest point to get confused. The simultaneous introduction 
of terms piecewise linear and convex and the af(n) notation can easily make 
your head spin at first. Going through each piece slowly, a piecewise linear 
function is one that is composed solely of line segments or hyperplanes. There 
may be many linear segments that together combine to make up this function, 
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but at any point there is one line segment (hyperplane) that covers that point. 
A linear function of variables Xi can always be written with coefficients ai as 

2::: aiXi = aoxo +alxl +... +aNxN· 
t 

A piecewise linear function can consist of one or more linear segments 
of this form and so we superscript the coefficients of each to indicate which 
linear segment they come from so that the kth linear segment will have the 
equation: 

We will refer to the vectors a k = [a~, a~, ... , at] as a-vectors in the 
remainder of the paper and each vector will represent the coefficients of 
one of the linear pieces of a piecewise linear function. These piecewise linear 
functions will be the value functions for each step in the finite horizon POMDP 

problem. As a result it will be convenient to index the a-vectors by the 
number of time steps remaining where ak (n) represents one of the linear 
pieces of the value function V;(·). 

We now develop the value functions for the finite horizon POMDP problem 
and show that they are indeed piecewise linear. With this result we can see 
how to represent a value function over a continuum of points (i.e., the belief 
space) with a finite number of items (i.e., a-vectors). This result is also 
shown in [16, 15]. This simpler representation is the key element to the 
POMDP solution techniques. Remember that the agent will only know the 
belief state, which is a probability distribution over the states of the model. 
With the MDP model there was a finite number of states and because the 
agent knew which state it was in, it could store the value function as a table. 
In the POMDP framework, the belief states are continuous. There are an 
uncountably infinite number of belief states which makes representing the 
value function by tables impossible. With this a(n) vector representation we 
have found a way to represent the value function for this continuous belief 
state space. 

As an example Figure 6 shows a value function over an lSI = 2 belief 
simplex. It consists of 4 vectors, which in theis case define 4 lines in a plane. 
Since our value function takes a maximum dot product of these for all belief 
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Figure 6: Sample piecewise linear and convex value function for lSI = 2 

points, the value function is the upper-most line segment at each point. This 
maximization always results in a convex function of this type for lSI = 2. 
This convexity generalizes for higher dimension state spaces as will be shown 
shortly. 

Our value function above is defined recursively, but our vector represen
tation of the value function is not, it merely shows the representation as if we 
knew the various a-vectors for that value function. To be useful, we would 
like a formulation that will define the vectors for time step n based upon 
the vectors from time step n - 1. This is achieved by simple substitutions 
and the introduction of an indexing function to keep track of how we use 
the n - 1st vectors, a(n - 1). This will also demonstrate the inductive step 
in the proof that the value function for a finite horizon POMDP problem is 
piecewise linear and convex. 

Our inductive hypothesis is that V:_1 (.) is piecewise linear and convex 
and thus can be written with some set of a-vectors, {aO(n - 1),a1(n
1), ... , am (n - I)} as 

V:_1 (1r) = mtx[~ 1ria7(n -1)]. 
t 

However, when we are interested in the value for t = n -1, we will actually 
be dealing with a transformed belief vector so that we are really interested 
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V:_ 1 (T(1I"Ia, 0)) = mtx[~ 1I":a7(n - 1)]. 
1 

Substituting for the transformed belief vector we get 

Every evaluation of this formula, for a specific 11", a, and 0, can result in a 
different ak(n - 1) being selected (from the maximization process. Since we 
will soon need to put this definition of Vn*-l (.) into the formula for Vn*(·) we 
need a way to keep track of which of the ak(n - 1) was the maximum. To 
this end we define the function t(11", a, 0) to be the index of the a-vector that 
maximizes Vn*-l (T(1I"1a, 0)). 

t( 11", a, 0) = arg m:x [~ 1I"iPijrj(laj(n - 1)] (6) 
1,3 

Notice that the 11" argument is actually being transformed by the function 
T(1I"Ia,O) and that the denominator is not relevant for the maximization 
procedure since it will be the same for all k. This is how the Vn - 1 (-) formula 
looks with our new index notation: 

The next step is to substitute this into our recursive definition of the 
value function given in formula 5: 

After some summation manipulation, cancellations and factoring we are 
left with 

(7) 
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The terms are arranged this way to show that we still have the value 
function in terms of linear segments. In this case the vector portion is defined 
by the inner bracketed quantity: 

This completes the inductive step of the proof that the finite horizon 
POMDP problem value function is piecewise linear and convex. To complete 
the proof, we use the base case referred to earlier. The terminating rewards 
we defined in formula 4 show that the value function for t = 0 is also piecewise 
linear and convex. This proof was first shown in [16] as was the observation 
that the value function could be represented by a finite set of vectors. 

If we know all the a k ( n -1) vectors for the V:_ 1 (.) value function, then by 
simple calculations using formulas 6 and 7 we can compute the above term 
to arrive at a linear segment, a(n), of the Vn*(·) value function. 

Another very important thing to notice about this new Vn *(.) formulation 
is that for a given belief state 7r, in order to find its value we must do a 
maximization over all possible actions. According to the form above each 
action will result in a new vector. Each of these a-vectors for time step 
n has an associated action that gave rise to it. When we perform these 
maximizations in forming the V: (.) value function we should also keep track 
of the specific action, a, that gave rise to it for each a(n) vector. With this 
combination of vector-action pairs we will have a compact way to represent 
the optimal policy for the finite horizon POMDP problem, namely just perform 
the maximization over all a(n) and take the associated action of that vector. 

2.7.2 Geometric Interpretation of Value Function 

The formulas and language of the previous section can serve to obscure the 
nice properties of the value function. In this section we attempt to improve 
the intuition behind the previously mention concepts of piecewise linear and 
convex and to provide a geometric interpretation of the value function. This 
representation is most valuable when trying to describe and understand the 
various algorithms discussed in this paper and in any other POMDP paper. 

Note that with all of our previous definitions of value functions we have 
assumed that higher values are better than lower values. This stems from 
the fact that we chose the Wfjo to represent rewards. However, the wfjo 
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Figure 7: Simplex of belief space for lSI = 2 

could be defined to represent costs. This formulation is found in some of the 
existing POMDP literature and results in the maximization procedures being 
replaced by minimization procedures. Other than this change the rest of 
the formulation remains unchanged except that typically the value functions 
V*(·) are referred to as cost functions, C*(·). We will continue to adopt the 
reward/value interpretation. 

For all the following examples and diagrams we start with the space of 
beliefs. Since beliefs are probability distributions over the underlying model 
states we see the belief simplex for the 2 and 3 dimensional cases in Figures 7 
and 8 respectively. 

The value function is a function of the number of components in the belief 
state and is thus a function in lSI +1 space where lSI is the number of states 
in the model. Because we would like to demonstrate these geometric ideas for 
the cases IS I = 2 and IS I = 3, we need a slightly different representation of 
the belief simplexes. This will prove to be both easier to understand as well 
as easier to produce on the printed page. The key to this other representation 
lies in the observation that one component of the belief state can always be 
omitted since the components (being a probability distribution) must sum 
to one. With this we can represent the 2 dimensional belief space as a 
single line or axis as in Figure 9. Here the distance from the left axis is the 
first component 71"0 and the distance from the right can be used to compute 
the second component 71"1' Our value function can now be represented by 
drawing it above this line. In Figure 9 we see a value function over the belief 
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Figure 8: Simplex of belief space for lSI = 3 

space which consists of two linear segments. Since we assume that we are 
concerned with getting the maximum reward the actual value function is 
always the larger of the two linear segments. 

Notice also that the value function for this case imposes a partition of 
the 11"0 axis and thus is a partition of the lSI = 2 belief space. This partition 
divides the belief space according to which of the linear segments (a-vectors) 
is maximum. The partition is shown with small vertical lines on the axis. 

We turn the lSI = 3 case into a two dimensional triangle as shown in 
Figure 10. In reality, the belief space is a two-dimensional triangle lying in 
three-dimensional space as shown in Figure 8, but in Figure lOwe view it 
simply as a two dimensional object where the value of a point in the belief 
space can be obtained by the perpendicular distance to sides of the triangle 
each distance representing a different component of the belief vector. 

The value function for and lSI = 3 problem can be thought of as a three 
dimensional surface lying above this triangle as shown in Figure 11. The 
surface is comprised of hyperplanes (i.e., it is piecewise linear and convex) 
and we can also view it as imposing a partition on the belief space. The 
borders of the partition are the projections of the intersection lines of the 
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Figure 9: Sample value function for lSI = 2 
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Figure 10: Example belief for lSI = 3, 7r = [0.1,0.3,0.6] 
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Figure 11: Sample value function for lSI = 3 

hyperplanes. 
As shown previously, the value function is piecewise linear and con

vex. Geometrically this means that the value function is composes solely of 
straight lines (for lSI = 2), planes (for lSI = 3) or hyperplanes (for lSI> 3). 
Each a-vector represents the coefficients for one of these lines or planes. The 
highest plane (or line) at a point is the a-vector that represents the value 
function for this point. A key point with these pictures is that each a-vector 
defines a region over the simplex. These regions represent a set of belief 
states. Since there only a finite number of a-vectors, there are only a finite 
number of regions defined over the simplex. 

2.8 Alternate Value Function Interpretation 

There is another way in which we could go about determining the best policy 
for a k-horizon POMDP problem. This method comes from the observation 
that at each step there are only a finite number of things we can choose to do 
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Figure 12: Example policy tree 

and a finite number of things we can possibly observe. Since we have a finite 
horizon, we could actually enumerate each possible policy we could follow as 
a decision tree. As an example consider the tree shown in Figure 12. This 
is one of the potential policy trees for the case where we have 4 possible 
actions, 3 possible observations and a finite horizon of k = 3. The nodes 
represent an action decision and the branch taken from a node depends on 
the observation made. 

Knowing the initial belief state allows us to calculate the expected value 
for each of these trees. To do this we merely take an expectation for the 
immediate rewards (weighed by the belief state) for the action in the current 
belief state and then add the expectation for the subsequent actions. This 
requires us to compute the transformed belief states and weight each possi
bility by the probability of each observation. There are a finite number of 
trees and so we could just enumerate all of them. This would actually specify 
a policy since for a given belief state, we could evaluate all the possible trees 
to decide which is the best action to take. However, there are 413 possible 
policy trees for this example since each of the nodes represents a decision 
point which could have anyone of 4 possible values. The number of nodes 
in the tree will be determined by the formula 

and the thus the number of possible trees is 
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This is too many to expect to be able to generate. However, many of 
these policy trees will be useless in the sense that there will be no belief state 
for which they will be the best one. If we could somehow only generate the 
useful trees we would have reduced the complexity greatly. An additional 
savings could be made if we could collapse similar parts of the useful policy 
trees into the same sub-tree. 

The the previous sections we have seen a way to construct a piece of the 
value function V:C1l') given that we know the value function V:_ 1 (.). However, 
this only gives us the a(n) vector in the V: (.) for a single specific belief state 
1r. In order to create the entire t = n value function we would need to apply 
formulas 6 and 7 at every single belief point in II. There are too many of 
these points (an uncountably infinite number) for this naive algorithm (of 
applying these formulas to all points) to work. However, there will only be 
a finite number of possible a(n) vectors for any given horizon k. We will see 
that these a(n) vectors have a direct correspondence with the useful policy 
trees. 

POMDP Solutions 

We will first explore the structure of the solutions to finite horizon POMDP 

problems and their relationship to the solutions to infinite horizon problems. 
In the next section we will present a number of algorithms for computing 
these solutions. The general method for the finite horizon problem iterates 
over the time steps. We first derive the optimal policy for the case when there 
is only one time step remaining. Given this solution we now find the optimal 
policy for two remaining time steps and this process is repeated until we have 
arrived at the solution to the the finite horizon size we are interested in. It is 
essentially a dynamic programming problem where the optimal solution for 
time step t is phrased in terms of the optimal solution for time step t - 1. 
For the finite horizon case we will actually be constructing the value function 
and the policy. For this, we will utilize the recursive formula for the value 
function described previously, and repeated below. Recall that the value 
function at each step can be represented by a set of vectors: 
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With this form we see that if we know how to compute the value func
tion and optimal policy for one time step (given the value function for the 
previous time step) then we know how to solve the finite horizon problem for 
any horizon since we can continually use the current output as the input to 
another iteration. Therefore when we discuss these finite horizon methods 
we will only need to discuss the task of computing the value function, V:(·), 
for one step given that we have the previous value function, V:_ 1 (-) as input. 

One of the unpleasant parts of the finite horizon solution is that our 
resulting policy is potentially very large. If we decide to solve a k-horizon 
policy and perform the above mentioned iterative procedure, then the final 
policy and value function we get out (the one for k remaining time steps) is 
only a part of our answer. Each policy and value function at each step is 
actually part of the correct k-horizon non-stationary policy. This becomes 
clearer when we consider how the agent would use this policy knowing it only 
has k time steps remaining. At first there are k time steps remaining and 
so it can look at the policy it generated for this case (the last one computed 
from above). This will tell it the optimal action to take, but immediately 
after it executes the proper action there are k - 1 time steps remaining. The 
policy it just used is not relevant for this case, however, in computing the k 
horizon policy we had to compute the k - 1 horizon policy. It is this policy 
that the agent needs to use now. This same argument repeats and so all of 
the intermediate work in solving the k horizon policy must be retained. 

As a quick aside to try and head off a possibly confusing part of the 
notation we need to emphasize exactly what the t time step represents. Here 
the t represents how many more decisions (actions) will the agent have left 
to take. It is easy to confuse this t with how many steps the agent has taken. 
This becomes especially confusing when one starts to think of the agent 
executing these computed policies. When we think of the agent carrying out 
these policies we would expect time to proceed forward (i.e., t, t +1, ...), but 
the policies it will execute will be proceeding in decreasing order of t since 
after each step the agent has one less decision (action) to make. 

There is a certain class of POMDP problems for which we can use this iter
ated finite horizon approach to solve the discounted infinite horizon problem. 
This doesn't say that all infinite horizon problem can be computed this way, 
but for a certain class (called finitely transient and discussed later) we can 
perform the finite horizon solution technique until we find two consecutive 
time steps that have exactly the same answer. When this occurs, we know 
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that further iterations will continue to give this exact same answer no matter 
how large the horizon is made. This follows from the fact that at each step 
you derive the optimal solution based solely on the previous optimal policy. 
If the previous optimal policies are the same for any two time steps, then the 
computed optimal policy for these two times steps must be the same. The 
pleasant part of the infinite horizon case is that, unlike the finite horizon, 
we can discard all the intermediate results. It is only the final repeating 
optimal policy that needs to be retained since the optimal policy is a sta
tionary one. Of course in order for the value function to converge, we must 
add a discount factor to the value, otherwise if we merely kept accumulating 
the rewards from all the previous time steps, the value function could grow 
without bound and thus never converge. The addition of a discount factor f3 
is a simple change to the value function: 

We will return to discuss the infinite horizon case in more detail later, 
but we thought it instructive to draw the connection between the finite and 
infinite horizon problems here. 

An important point which has not yet been mentioned, though might 
already be obvious, is the use of the value function. For one step of the 
iterated solution procedure we assume that we have the previous value func
tion V:_1 (-) with which to construct the new value function V;(·). Our 
value function, V:_1('), will take the form of a set of vectors (a(n - 1) = 
{aO(n -1), a1(n - 1), ... , am(n - I)}) where each one represents one of the 
linear pieces that comprise this value function. As we saw previously we can 
use the recursive value function equation to give us a new a(n) vector, but 
the key point here is that in order to construct this a-vector we must first 
know a particular belief state 7l". Using this the value function formula for 
any valid belief state will give you an actual linear piece of the V;(-) value 
function, however, it does not let you make any claims about the region (set 
of belief states) for which this is optimal (other than it includes the belief 
state we used to generate it). 

The bottom line here is that given a point in the belief space we can find 
a piece of the value function, but the problem is that there are just too many 
(uncountably infinite) belief states for us to crank through the formula this 
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way. One solution is how to just choose points at random in the state space 
to use in the formula. One would hope that with enough points we wouldn't 
miss any of the true a-vectors that comprise the value function. This turns 
out to be a poor solution for many reasons. The first problem is to decide how 
many points to choose and this is directly related to the dimensionality of the 
belief space. The larger the belief space the more points you would expect to 
have to choose. The worst problem (from the theoretical perspective) is that 
we are never guaranteed to find the true value function (and optimal policy) 
with this method since we never know if some new point would generate 
another a-vector. We have run this approach on a number of problems and 
found that empirically it performs poorly even for small problems. 

The key to finding optimal policies (i.e., true value functions) is to develop 
a systematic and terminating algorithm to explore the entire continuous space 
of beliefs. A finite method is possible since we know that there will only be 
a finite number of a-vectors to discover. The method used in exploring the 
belief space is where most of the algorithms discussed in this paper differ. 

3.1 Structure of POMDP Solutions 

The previous sections have discussed the mathematical foundations for solu
tions to POMDP problems. In this section we we look at the solutions from a 
practical view point. Although we do not discuss solution procedure until the 
next section, here we will begin to show how these solutions can be utilized. 
We discuss the finite horizon problem which will then lead us directly to the 
infinite horizon problem. 

3.1.1 Finite Horizon 

The raw output of the algorithms we later discuss is a set of vectors, a(t) = 
{ aD (t), a l (t), ... , am (t)}, one set for each decision time, t. This refers to the 
finite horizon case where there is a non-stationary policy. In addition, each 
of these vectors will have a single associated action with it. To decide what 
action to take (i.e., use the policy) we take the set of vectors for the current 
time period and find the vector in this set which gives the largest dot product 
with the current belief state. The action associated with this vector is the 
action that should be executed. In this way, the policy can be stored as the 
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Figure 13: Example POMDP environment 

vectors that comprise the value function along with an associated action for 
each vector. 

In order to better motivate the discussion that follows we introduce a 
simple POMDP example shown in Figure 13. In this example, imagine that 
we are standing in front of two closed doors. Behind one of the doors is 
a tiger and behind the other is a large reward. If the door with the tiger 
is opened, then a large penalty is received (presumably as some amount of 
bodily injury). Most likely, we would prefer to open the door with the large 
reward instead. Aside from opening one of the two doors we have another 
action we can take, namely to listen. We choose to listen hoping that we will 
be able to hear which door the tiger is behind, but listening is not free, there 
is a cost associated with it. Unfortunately, listening is not entirely accurate 
and there is a possibility that we will get the wrong information when we 
listen. 

The complete set of parameters for this problem is given in Tables 2 
through 4. State So represents the state of the world when the tiger is on the 
left and 81 represents the state when the tiger is on the right. Action a = 0 
is the action of listening and a = 1 and a = 2 are, respectively, the actions of 
opening the left door and opening the right door. The reward for opening the 
correct door is +lOwhereas there is a penalty of -100 for choosing the door 
with the tiger behind it. The cost of listening is -1. The two observations 
possible are to hear the tiger on the left or right. We have constructed this 
problem so that immediately after opening a door, the problem resets with 
the tiger randomly placed behind one of the two doors. Aside from resetting 
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~ p?j I j = 0 I j = 1 ~ 

~ ~ : 0 I 1.0 I 0.0 ~ 
t - 1 0.0 1.0 

~ ptj I j = 0 I j = 1 ~ 

~ i = 0 I 0.5 I 0.5 ~ 
i = 1 0.5 0.5 

~ prj I j = 0 I j = 1 ~ 

~ i = 0 I 0.5 I 0.5 ~ 
~ i = 1 0.5 0.5 ~ 

Table 2: Example transition probabilities 

the tiger, the parameters have been constructed so that the belief state will be 
reset to the uniform distribution, 7r = (0.5,0.5), when either door is chosen, 
regardless of the belief state at the time the door is opened. 

If we are given the policy (i.e., the vectors and their associated actions) 
for each time step, then we can determine the proper action to take, but 
only if we have the current belief state. Let us begin with the policy for the 
time step t = 1, which is the policy when the agent will only get to make 
a single decision. There are three different actions the agent might choose 
to execute, open the right or left door or listen. If our belief state was such 
that we had a high probability of being in the state "tiger-left". then we 
would imagine that the best thing to do would be to open the right door. In 
the symmetric case of having a high probability of "tiger-right", we would 
expect opening the left door to be the best action to do. But what if we are 
highly uncertain about where the tiger is at this time? The best thing to 
do would probably be to listen. To see this notice that guessing wrong will 
cost us a penalty of -100, whereas guessing correctly only rewards us with 
10. When we have no strong beliefs either way we would expect to guess 
wrong as often as we guess right. Thus, the expected reward would seem to 
be -lO~±lO = -55. Listening always costs us -1 and so, in the long run we 
would expect listening to cost us less that opening one of the doors in the 
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~ r~O 1 e= ole = 1 I] 

~ ~ = 0 I 0.85 I 0.15 ~ 
J = 1 0.15 0.85 

~ r}o 1 e= ole = 1 I] 

~ ~ = 0 I 0.5 I 0.5 ~ 
J = 1 0.5 0.5 

~ r~o 1 e= ole = 1 I] 

~ j = 0 I 0.5 I 0.5 ~ 
j = 1 0.5 0.5
 

Table 3: Example observation probabilities
 

~ w?iO le={O,l}~ 

~i=O,j={O,l}1 -1 ~ 
i=l,j={O,l} -1 

i = O,j = {O, I} -100 
i=O,j={O,l} +10 

i = O,j = {O, I} +10 
i = O,j = {0,1} -100 

Table 4: Example rewards 
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a°(l) =(10.0, -100.0) al(l) =(-100.0, 10.0) a2(1) = (-l.O, -1.0) 

8 8 8
 
lro =[0.90, 1.00] leo =[0.00,0.10] lro = [0.10,0.90] 

Figure 14: Tiger example policy for t = 1 

case where we are uncertain about the tiger's location. 
The previous paragraph gives the intuitive argument for what the policy 

for t = 1 should be and it turns out that this is exactly the optimal policy 
for this case. Figure 14 shows this policy pictorially. In this figure we show 
each of the vectors as a node in a graph (which currently has no edges). The 
actual vectors are shown above each node and below each node is the belief 
interval lover which it is the best vector. These three vectors cover the 
entire belief space (i.e., partition the belief space) and each has an associated 
action (shown inside the node circle) and so this specifies a policy for t = 1. 

We now move on to the case where the agent has two decisions to make, 
t = 2. This is shown in Figure 15 and has an interesting property; it always 
chooses to listen. There is a logical reason for this. If the agent were to 
open one of the doors at t = 2, then, due to the way the problem has been 
formulated, the tiger is randomly placed behind one of the doors and the 
agent's belief state will get reset to 1r = (0.5,0.5) (i.e., it has no information 
about where the tiger is). So after opening a door the agent is left with no 
information about the tiger and one action left to take. We just saw that for 
the case where t = 1 and 1r = (0.5,0.5) the best thing to do was to listen. 
Therefore no matter what happens, whether it opens a door or listens, one 
of the two decisions will result in a listen action. In a way, the agent knows 
this and so chooses to listen first since this will give it information about the 
tiger. This way the agent will be better informed (since it has listened once) 
when it makes its next decision. 

The other interesting aspect of Figure 15 is the number of vectors that 
exist. Although it will always choose to take the action listen, there are 
several vectors that have that action associated with it. These vectors are 
actually partitioning the belief space into pieces that have some structural 
similarity. The similarity the belief states in a partition element share is 

1The belief interval is in terms of the component 71'0 only since 71'1 can be found by 
subtracting 71'0 from 1. 
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a O(2) =(9.0, -101.0) a2(2) =(-2.0, -2.0) a4(2) =(-16.9,7.4) 

a 1(2) =(-101.0, 9.0) a3(2) =(7.4, -16.9) 

e e e e e 
lto =[0.98, 1.00] lto =[0.39, 0.61] Ito =[0.39,0.39] 

lto =[0.00,0.02] Ito =[0.61,0.98] 

Figure 15: Tiger example policy for t = 2 

t=2 

t=1 

Figure 16: Belief state mapping from t = 2 to t = 1 

that when they are transformed, via T(7rla,O) in Formula 3, the resulting 
belief states will all lie in the same partition defined by the policy for t = 1, 
In other words, every single belief state in a particular partition for t = 2 
will, for the same action, a, and observation, 0, be transformed to exactly 
the same partition imposed by the policy for t = L We have shown this 
relationship pictorially in Figure 16. Notice that the edges only need to be 
labeled with the observations since the action used in the transformation of 
the belief state is dictated by the node corresponding to that belief state. 

Interestingly, the optimal policy for t = 3 also consists solely of nodes 
with the listen action. The nature of the problem as it is set up is such 
that if we start from the uniform belief state, 7r = (0.5,0.5), listening once 
cannot gives us enough information (i.e., change our belief state enough) to 
make choosing a door more rewarding than listening. As mentioned before, 
choosing a door will always reset our belief state to this uniform distribution. 
Therefore, just like the argument for t = 2, if we chose a door with t = 3 
steps remaining, we would be guaranteed to listen for the next two steps. 
Since the agent knows that this is the case, it would prefer to do the two 
listening steps up front since that will give it the most information when it 
finally decides what to do at t = L You can see in Figure 16 that starting 
with belief state 7r = (0.5,0.5) we will choose to listen when t = 2 (a2 (2)), 
and then, no matter what we observe, move to a belief state that lies in the 
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(l2(4) (l°(4) (l4(4) (l'(4) n'(4) 

"0=10.62,0.931 "0= 10.93. IJJO) "0=10.38.0.&2) 'fo=IO.OO,Q.Od] ""0=(0,06,0,381 

t=4 

t=3 

t=2 

t=l 
(l°(I) (l2(1) (l'(I)
 

"0 = [0.90. 1.00] "0 = [0.00, 0.10] "0 = (0.10, 0.90)
 

Figure 17: Policies and relationship for t = 1 through t = 4 

listen node for t = 1 (a2(1)). 
This argument for doing the listening up front no longer applies after 

t = 3 and all the optimal policies for t > 3 will choose to open a door for 
some initial belief state. In Figure 17 we have shown the structure that 
emerges for the optimal policies from t = 1 to t = 4. Note that the belief 
state partitions imposed by these policies is only shown for the first and last 
policy. 

Figure 17 shows many of the interesting structures of a finite horizon 
POMDP solution. Notice that at the t = 3 level there are a couple of nodes 
(aO(3) and a 1 (3)) that do not have any incoming arcs from the t = 4 level. 
This is interesting because it is showing that no matter what belief state you 
start out in at time t = 4, there is no action you can take and observation 
you can make that will leave you in a belief state that lies in the partitions 
defined by those unused nodes at t = 3. (i.e., Certain belief states are not 
possible at this time step no matter what the agent's belief state was on the 
previous time step.) 

Perhaps the most interesting aspect of Figure 17 is the way in which the 
belief states behave. If we choose one of the belief partitions for t = 4, and 
then execute this policy, the actions and observations the agent makes will 
precisely define the nodes in the graph that are traversed (i.e., which actions 
to take at each time step). Regardless of the actual starting belief state, as 
long as it lies in that particular partition, the action sequence will be exactly 
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Figure 18: Two possible policy trees for tiger example 

the same for a given sequence of observations. 
The policy trees discussed in a previous section are very much related to 

this solution structure. Recall that a policy tree was a specific sequence of 
actions to take based solely on the observations made. In that section we 
discussed the possibility of generating every possible tree and then evaluating 
each to see which was the best for a particular belief state. The graph shown 
in Figure 17 actually has some of these policy trees embedded in it. One 
major difference between this solution structure and the policy trees is that 
the solution structure does not have all possible policy trees in it, only the 
useful ones. The other major difference is that, within the solution structure, 
policy trees with similar sub-components will have these sub-components 
collapsed. For instance consider the two policy trees for t = 4 shown in 
Figure 18. These are two of the 215 possible policy trees. Both of these 
policy trees are embedded in the graph of Figure 17 and are therefore two 
of the useful policy trees. Notice how nodes of the tree are collapsed in the 
resulting figure. Figure 19 shows one of the policy trees that is not useful. 
There is no starting belief state where this tree will be the best thing to do. 

3.1.2 Infinite Horizon 

With the finite horizon problems, the non-stationary policies generated can 
be quite cumbersome since there is a complete policy for each and every 
time step of interest. Without discounting future rewards, these policies will 
generate a different set of vectors (i.e., value function) for each and every 
time step. 

When we add a discount factor to decrease the value of future rewards, 
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Figure 19: A policy tree that is not useful 

the structure of the finite horizon POMDP problem changes slightly. As the 
time, t, gets larger the effect of the rewards received for early times (e.g., 
t = 1, t = 2, etc.) will begin to have negligible influence on the policy for 
these later time steps. As t ~ 00, the vectors output by the discounted finite 
horizon algorithms begin to converge on a fixed set of values. As a result, for 
large t, the policy looks much the same as the policy for t-I. Figure 20 shows 
the solution to the discounted finite horizon of the tiger POMDP example for 
large values of t. Notice that the structure of the graph is exactly the same 
from one time to the next. The actual corresponding vectors for each of the 
nodes (which together comprise the value function) in the graph differ only in 
the fifteenth decimal places. This shows how the value function is converging. 
The structure of the graph remains unchanged, even though the values of the 
underlying vectors are slightly different from one time step to the next. This 
structure first appears at time step t = 56 and remains constant all the way 
up to t = 105. When t = 105 the precision of the algorithm used to calculate 
the policy can no longer discern the difference between the vectors' values 
for succeeding intervals. 

If we solve the finite horizon problem for larger and larger t, the value 
function (and its policy) for the largest time step gets closer and closer to 
the value function for the infinite horizon problem. The two converge when 
t ~ 00. In this way we can use algorithms for the finite horizon problem 
to get arbitrarily close answers to the infinite horizon problem. Since there 
is finite precision in most of the algorithm implementations, there will be a 
point at which the solution appears to converge. Although the actual value 
function only converges in the limit, for practical purposes, the solution the 
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t=105 

t=104 

t=103 

Figure 20: Structure of solution for large t 

algorithms converge on for the discounted finite horizon are close enough 
to the actual infinite horizon solution. The advantage of infinite horizon 
solutions is that we only need the last policy generated and can throwaway 
all the other time steps' policies. (i.e., The optimal solution for the infinite 
horizon problem is a stationary policy.) 

3.2 Policy graphs 

One major drawback of the POMDP approach is that the agent must maintain 
a belief state. While in theory (since we assume we know the model), this is 
not a significant problem, in practice it can become a major problem when 
the agent might not have the resources (time or hardware) to perform the 
updating of belief states. Fortunately there is a way to encode the policy in 
a graph such that no explicit belief states need to be maintained. We refer to 
such graph as policy graphs and they appear first in [16]. The policy graphs 
we discuss apply to the infinite horizon solutions. 

Recall Figure 20 where we have converged upon an infinite horizon policy. 
If we continued to run the algorithm longer and longer, we would continue 
to get the exact same structure. Because we have the same structure at 
every level, we can re-draw the edges from one level to itself. Although this 
is erroneous in the finite horizon problem (because eventually we will get to 
lower values of t where the graph is not the same), for the infinite horizon, we 
can generate as many of these identical levels as desired. This rearrangement 
of edges is shown in Figure 21. 
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t=105 

t=104 

t=103 

Figure 21: Rearranging edges for infinite horizon 

Figure 22: Policy graph for tiger example 

In Figure 22 we have redrawn this graph into what we refer to as a policy 
graph. Here "TV' and "TR" represent the observations "tiger-left", () = 0, 
and "tiger-right", () = 1, respectively. 

The policy graph in Figure 22 has the interesting property that there are 
some nodes of the graph that will never be visited once either the open left 
or right door actions are taken. This results from the resetting of the belief 
state to 1r = (0.5, 0.5) induced by our particular problem. If we imagine that 
the agent always starts in a state of complete uncertainty, then it will never 
be in a belief state that lies in a partition of these non-reachable nodes. This 
results in a simpler representation of the policy graph, shown in Figure 23. 

Recall that the vectors that each node represents defines a partition of 
the belief space and, furthermore, that these all beliefs within a particu
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(0.37,0.63) 

Figure 23: Trimmed policy graph for tiger example 

lar partition will map to a node on the next level exactly contained in the 
partition imposed by the vectors of that next level. In the case where we 
collapse the levels into one, we are guaranteeing that the partitions have a 
one-to-one mapping for the transformed belief states (for a particular action 
and observation). This policy graph representation allows us to forget about 
maintaining belief states because as long as we are guaranteed that the belief 
states behave in this manner, the exact belief state is not important. The 
only thing that is important is which partition the belief state lies in and, by 
the properties of the policy graph, all the subsequent belief states will lie in 
partitions solely determined by the following the actions on the graph and 
transitioning to another node based upon the observation seen. 

3.3 Finitely Transient Policies 

In our discussion about using finite horizon algorithms for finding solutions 
to discounted infinite horizon problems, we ignored a few important aspects 
about infinite horizon solutions. Solving the finite horizon for larger and 
larger horizon sizes will give solutions (value functions) that get closer and 
closer to the optimal infinite horizon problem. However, only in the limit do 
the two actually converge. 

We developed the idea of policy graphs assuming that the solutions for 
each time step would converge. This will happen for only a certain class of 
problems. When this does converge, then we can construct the policy graph, 
but we cannot do this when the solutions do not converge. 

Finite Transience is formally defined in [16] and is the property of a policy 
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not of the POMDP problem. Here, we opt for a more intuitive understanding. 
Recall that a particular policy will define a partition of the belief space and 
that each node of the policy graph represents one of these regions. Moving 
around in the policy graph (based upon the resulting observations), is actu
ally the same as moving around in the belief space since the belief state will 
be transformed by T(-7rla, 0) at each step (whether or not we choose to actu
ally compute it or not). With the policy graph we are implicitly assuming 
that all the belief states within a particular partition element will be trans
formed to another element under T(-7rla,O) for a particular a and O. This 
held from the properties of the POMDP formulation and the structure of the 
resulting optimal policy. However, not all optimal policies for POMDPs will 
define partitions with this property, but the ones that do are termed finitely 
transient policies. For non-finitely transient policies we will not be able to 
construct policy graphs of the type described. 

4 Finite Horizon Algorithms 

4.1 POMDP History 

POMDP research grew directly out of the MDP research, both of which began 
to flourish in the 1960's. [3] and [7] provided much of the basic framework 
and solution procedures for MDP models. Among the earliest work dealing 
with partial observability are [5] and [1]. Although none of these presents 
algorithmic solutions to the general POMDP model, each provided some of 
the groundwork for treating the general problem. In this section we will give 
just an overview of some of the POMDP researchers and their work. Their 
algorithms are treated in more detail in the subsequent sections. 

The first researcher to give a detailed algorithm for finding optimal poli
cies for the general POMDP model is E. J. Sondik [16]. In this work he gives 
an algorithm for finding the exact solution to finite horizon problems and 
solutions to infinite horizon problems that are arbitrarily close to optimal. 
Sondik treats both the discounted and undiscounted infinite horizon, though 
this paper focuses only on discounted/undiscounted finite horizon and dis
counted infinite horizon. Unfortunately, Sondik's finite horizon algorithm is 
difficult to follow as well as to implement and is slow for all but the small
est of problems. An attempt is made in a later section to present Sondik's 
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algorithm in a language that is more comprehensible than his thesis or his 
subsequently published article [15]. 

Sondik's main contribution was to observe that since there were a fi
nite number of linear segments (regions over the belief simplex) in the value 
function we could determine all of these segments by iteratively finding a par
ticular segment and the belief space region for which it was optimal. Once 
this region was known you would know exactly where points in neighboring 
regions would lie, namely, on the borders of the current region. The algo
rithm was guaranteed to terminate since there are only a finite number of 
these regions in the finite horizon case. 

Monahan [11] presented a much simpler algorithm for computing optimal 
policies for the finite horizon. Although it is simpler to understand, it appears 
more inefficient than Sondik's method,because it is an exhaustive algorithm, 
but actually for most problems it turns out to actually be more efficient than 
Sondik's method. The reasons for this are discussed in more detail in a later 
section. Monahan's approach is to enumerate all possible linear segments 
that could exist for t = i and then go through them one by one to see which 
were relevant. Monahan's technique differs from most of the others presented 
since it does not explore the belief space in any way. His insight was that 
with a finite set of previous a(n -1) vectors and finite action and observation 
spaces, there were only a finite number of possible ways the value function 
could give different answers. Thus Monahan decides to enumerate all possible 
a(n) vectors and check each for validity afterwards. 

Eagle [6] presented the details of an optimization of this method suggested 
by Monahan, that reduces the work needed to solve the problem. Eagle's 
uses Monahan's observation that for many of the linear segments (a-vectors) 
enumerated by Monahan's method, many could immediately be dismissed 
if they were component-wise dominated by a previously enumerated one. 
However, even with this optimization optimal policies to small problems can 
still require a substantial amount of computational resources. 

Cheng introduced two algorithms [4] the first of which (Relaxed Region) is 
very similar to Sondik's except that he defines regions that are typically larger 
than Sondik's and thus, the algorithm tends to be more efficient. Cheng's 
other algorithm (Linear Support) uses successive approximations of the value 
function to converge on the actual value function by comparing the current 
approximation with the true value function at a set of points. Cheng guar
antees that if there is any difference between the two at all, then one of those 
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points will show the maximum difference. An additional advantage of the 
Linear Support algorithm.is that it can also be used to generate approxi
mate solutions. Both of Cheng's algorithms require the use of an algorithm 
for finding all the corner points of the regions (i.e., interior points of convex 
polyhedra) which can result is poor running times. 

Our Witness algorithm is similar to Cheng's Linear Support algorithm 
except that instead of having to discover all of the corner points of a region, 
we define a linear program to find points where the approximation is within 
€ of the true value function. Use of a linear programming formulation has 
resulted in better theoretical and empirical running times. The effect the 
€ term has upon the resulting answers is discussed after the algorithm is 
presented. 

At this time it appears that seeking exact solutions to POMDPs is not 
practical. There are many techniques for determining approximate methods 
and many of these are discussed in [8]. 

4.2 Overview of Algorithms 

In the following sections we will give detailed descriptions of some of the 
better known algorithms for solving finite horizon POMDPs. We have ordered 
the algorithms in a slightly out-of-chronological order. Our purpose here is 
to attempt to present the simplest two algorithms (Monahan's and Eagle's) 
first (both of which actually succeeded Sondik's method). After these we 
present, in chronological order Sondik's one-pass algorithm, both of Cheng's 
algorithms (Relaxed Region and Linear Support) and finally our Witness 
Algorithm. It is hoped that the presentations of these algorithms are clearer 
and more complete than some of the original descriptions of these algorithms. 
We conclude this section with a comparison of these existing techniques. 

All of these algorithms have a few aspects in common. They all are 
performed iteratively (i.e., as a dynamic program). Additionally, all of the 
algorithms try to find the set of vectors that define both the value func
tion and the optimal policy at each time step. The description of the al
gorithms is limited to the process of completing one iteration since each 
iteration requires the exact same technique. They all start with the fi
nite set of vectors, (a(n -1) = {aO(n -I),a1(n -I), ... ,aM-1(n -I)}), 
for the previous time step (i.e., the piecewise linear segments of the con
vex value function, V:_ 1 (. )). They all produce another finite set of vectors, 
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(a(n) = {aO(n),a1 (n), ... ,aN - 1(n)}), which represent the piecewise linear 
value function, Vn*(·), for the next successive time step. In addition, each 
of the a(n) vectors will have a single control action a associated with it. 
The a(n) comprise the value function, V;(·), whereas the combination of the 
vectors and associated actions are used in defining the policy, 8~(-). 

All of the algorithms are presented as discounted finite horizon algo
rithms. The discounting factor f3 is not necessary for finite horizon problems, 
but is included for the case where we want to use the iterated finite horizon 
to solve for the discounted infinite horizon (in hopes that it converges). The 
discount factor is a trivial addition and does not make the algorithms any 
more or less complex. If fact, when f3 = 1, this is exactly the same as an 
undiscounted finite horizon problem. 

It is easy to set up the iteration for all of these algorithms by feeding 
the resulting a(n) vectors back through the algorithm to get the a(n + 1) 
vectors. Note that the associated actions for the input a(n - 1) vectors do 
not come into play for the algorithms when they are computing the a(n) 
vectors. They are only required to define the policy 8~_1 (.). Aside from the 
POMDP model and the initial set of a(n -1) vectors, no other input is needed 
for these algorithms (except the discount factor if one is being used). 

4.3 Finding a Vector for a Single Point 

This is one step that is common to all of the algorithms and so we have 
chosen to deal with it in a separate section. Given a single point in the belief 
state space we can use 

(8) 

to immediately generate a vector for each possible action. For these vectors 
(referred to as aa(n)) we can use the formula 

V:(7I") = m:x[~7I"iaa,i(n)] 
~ 

to find out which of these will be the true vector at the belief point 71". This 
maximal aa (n) then is one of the true linear segments of the value function. 
Note that this is just the inner quantity from the recursive value equation 
from formula 7. 
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Generating the a(n) vector immediately might be a bit of an over state
ment, it really involves a few steps, but each step is straight-forward and re
quires nothing more than simple calculations. However, we will step through 
this exact procedure since it is a crucial step in all of the algorithms. 

The basic scheme is that we will need to try all possible values of action 
a in the formula and then choose the one that gives the maximum value. 
The key point here is that it is not enough to merely save the action a and 
its value (from formula 7), you must also save the inner bracketed quantity 
(which is actually a vector) since once you find the action that maximizes 
the value function it is the corresponding inner quantity that is the a-vector 
for the particular belief 1r. 

In the value function above the quantities qf, pfj, rjo and f3 are directly 
available from the POMDP model and the belief state 1r is assumed to be given, 
for the moment. The only unspecified term appears to be a£(1r,a,O)(n - 1). If 
you recall, the function L( 1r , a, 0) was merely a convenience that was used to 
more succinctly represent the previous value function, Vn*-l (.). It was defined 
as 

L(1r, a, 0) = arg mtx [~ 1riPijrjoaj(n - 1)] . 
t,J 

We see in this formula that everything we need to compute L(1r, a, 0) is 
readily available: pfj and rjo from the model and aJ (n - 1) as the input to 
the current iteration. So we see that given a particular belief 1r, we need 
only to crank it through the above two formulas and arrive at a piece (one of 
the linear segments) of the true value function, V; (.). Since we know there 
are only a finite number of these pieces (linear segments or a-vectors), if 
we could somehow know the exact set of points that would generate each 
of these pieces, we could construct the entire true value function as a set of 
a-vectors from a finite set of points. All the algorithms discussed except one, 
try to be clever about finding this set of points. Monahan's algorithm, which 
is conceptually much simpler, is the one exception. 

4.4 Monahan's Algorithm 

We start with the easiest algorithm of the bunch, though it was presented 
after the landmark work of Sondik ([16] [15]). Monahan actually credits this 
algorithm to Sondik and, though there are similarities, Monahan's description 
is different enough to warrant a separate treatment. This algorithm is both 
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easy to understand as well as easy to implement and it will provide a lot of 
the groundwork that will be essential for understanding the other algorithms. 
We begin again with our value function: 

The key insight behind Monahan's method is noticing that there are only 
a finite number of possible a-vectors (i.e., inner bracketed quantities) that 
can be constructed from the above formula, despite the fact that there is a 
continuum of belief states. The actual values (components) of the a-vectors 
generated are not at all dependent upon the value of the belief state chosen. 
The belief state only serves to decide which of the a k ( n -1) vectors to include 
in the summation over the observations. Since there is only a finite number 
of the a k ( n - 1) vectors and a finite number of both actions and observations 
we can simply list all the possible ways that the value formula could be 
evaluated. Sure, there can be a good number of themZ, but the number is a 
finite one and we could enumerate and calculate all of them, given enough 
time. Notice that since we have abandoned worrying about the belief state 1r 

we cannot really attempt a maximization over the different actions. Instead 
we just factor this into the enumeration scheme so that now we consider for 
each possible action all the ways the ak(n -1) vectors could be combined in 
a summation over the observations, (). 

Here we will try to be more explicit about Monahan's enumeration scheme 
so that no confusion can arise. For a given action, as we do a summation over 
the observations, (), we get a choice of one of the previous a(n - 1) vectors for 
each (). This amounts to filling in a table (e.g., ()o = a4 (n - 1), ()1 = aZ (n - 1), 
()z = a9 (n - 1), etc.) with one of the a(n - 1) indices (of which there are 
M possible choices). This means that there are MI8 1ways we could fill out 
this table and that there are at most MI8 1 ways to do the summation over 
observations. However, each summation can apply for each action and so 
there are at most IA\MI81possible a(n) vectors we could generate. The first 
step of Monahan's method is to create all of them. 

The biggest problem now is that our value function probably doesn't 
require all of these a(n) vectors. We have enumerated them without concern 
for whether or not they really provide a maximal value for some belief state. 

21AIM 10 1, where M is the number previous a(n - 1) vectors 
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We could just remember them all, and each time we need to find what action 
to perform, maximize over all of these and select its appropriate action. 
However, this is a lot of excess baggage to carry around since we could waste 
a significant amount of time checking vectors that will never be maximum 
regardless of the belief state chosen. For time critical applications, it would 
not be very desirable to have the policy stored this way. An even worse 
problem arises in the finite horizon problem, since we iterate many times 
sending the results from one iteration to the next. If we never trim away 
useless vectors, the number of vectors in the next iteration might be an order 
of magnitude larger than if we had kept only the relevant ones. Even when 
we do the trimming, the number of vectors at each iteration grows quickly, 
without trimming this problem is greatly magnified. A later section provides 
some analysis about how large these sets can grow, here we are content to 
say "there are lots of them,,3. 

To trim away the non-relevant vectors generated during the enumeration 
phase Monahan's method utilizes linear programming (LP). Linear program
ming is also a common theme throughout the rest of the algorithms dis
cussed. What it does is more important than how it does it, but for the 
reader interested in how LPs work see [18]. There are many levels that linear 
programming can be interpreted. We opt for the geometric view, since that 
is how we have been presenting the belief space and value functions. 

The observation that will lets us use LPs to trim the set of vectors is that 
for a vector to be a true part of the value function, there must be at least 
one belief state 7r for which it gives a larger value than all the other newly 
created a(n) vectors. Imagine that we want to check if aj (n) was a true 
vector. To do this we set up a linear program with a constraints for each 
other ak (n) we have generated: 

This says that we are only interested in the region of the belief space 
where aj(n) will provide a better value than all other ak(n). The variables 
in this LP are the components of the state vector, 7ri, and a rewriting of this 
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in a more useful way is: 

We have to add one additional constraint to these, namely 

This makes sure that the point lies on the belief space simplex (i.e., it is a 
probability distribution). Most LP packages assume that all of the variables 
are non-negative. If this is not the case then we must also add the constraints 
for the ranges of the variables 

7ri ~ 0, Vi. 

We can use virtually any objective function we want with this LP, since 
here we are only concerned with whether or not there is any feasible solution 
to the LP. If there is any solution at all, then there must be some point on 
the belief state simplex that satisfies all of these constraints and thus aJ (n) 
is indeed part of the true value function. If the LP is infeasible, then not only 
have we found that it is not part of the true value function, we no longer 
need to keep it around for subsequent LPs. 

The linear programming formulation and solving described above only 
checks a single vector. This entire process must be repeated for each of 
the a(n) vectors enumerated. The only pleasing part of this procedure is 
that the size of these LPs will diminish as we are able to trim more and 
more extraneous vectors away since once we have determined a vector to be 
extraneous, we don't have to generate a constraint for it when checking the 
other vectors. The whole algorithm is then: 

(1) Generated all possible vectors from formula 8. 
(2) Add each vector to list and mark as undiscovered. 
(3)	 Choose an undiscovered vector from list, if none
 

then we are done, list contains all useful vectors.
 
(4)	 Construct LP for that vector (see above) and mark
 

the vector as discovered.
 
(5) If the LP is not feasible, then remove the vector 
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from the list. 
(6) Go to step (3). 

4.5 Eagle's Variant of Monahan's Algorithm 

Monahan [11] mentions that dominated vectors could be removed to help 
reduce the number of linear programs that need to be solved. In [6] this 
optimization is made more explicit. The optimization occurs in the phase 
where we need to enumerate all of the possible new a(n) vectors. Eagle's 
shows that if, in our enumeration process, we ever come across a vector whose 
components are completely dominated by another vector's components (one 
already generated by the enumeration process), then we can immediately 
discard it since it is impossible for it to be a true vector in the value function. 
In other words, if we just generated aj (n) and the following condition holds: 

:Jk, Vi, 

then we can immediately discard a j (n ). This is true because all the belief 
components 1I"i are non-negative. Finding a single existing vector that is 
component-wise larger than another implies that for any belief 11" at all, the 
former will result in a larger value, thereby rendering the latter extraneous. 

Other than this check during the enumeration, Eagle's algorithm works 
exactly the same as Monahan's: enumerate all possible vectors and verify 
each one with a linear program. Eagle also mentions that we can skip the 
linear program verification step if we are willing to pay the computation price 
that will be incurred by keeping the extraneous vectors around. Since each 
extra vector in one time step can lead to many extra vectors in the next step, 
this seems to be an impractical solution for any problem. It is unlikely that 
the any LP package would be slow enough to prefer eliminating this step. 

4.6 Sondik's One-Pass Algorithm 

4.6.1 Background 

Edward J. Sondik [16] presented the first solution techniques for finding op
timal policies for general POMDP problems. This was the seminal work from 
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which all the other algorithms described in this paper were derived. His algo
rithm for the finite horizon case is also described in [15]. This latter reference 
can be both a help and a hindrance. The formulas and notation in this arti
cle are much easier to follow than that of his thesis, and this article version 
is devoid of the many theorems and proofs. However, a few typographical 
errors, a couple of vague sentences and one serious oversight [12,8] make this 
exactly the wrong primary source to use for an attempted implementation. 

4.6.2 The One-Pass Algorithm 

This algorithm begins where all the other ones begin; with the recursive value 
function: 

V:C7l") = m~x 2;: lI"i [qf + ~pijrj(Jo/}1r,a,(J)(n -1)] 
t J,(J 

Here, unlike the exhaustive enumeration of Monahan, Sondik actually 
develops a method for finding the proper set of belief states to plug into 
this formula to get all the necessary vectors. Furthermore, his algorithm 
guarantees that this set of belief states is finite and that they generate all 
the true vectors comprising the value function (i.e., none are missed). This 
algorithm amounts to a search through the belief space by moving from one 
region to another until every region is found. We will soon discuss what 
exactly these regions represent, but here the important point is that his 
algorithm is guaranteed to only visit a finite number of regions and that the 
union of all these regions is equal to the entire belief space (i.e., these regions 
are a partition of the belief space.) 

The basic idea behind the algorithm is not too complicated to state, but 
trying to implement this algorithm exposes many subtle problems. Deal
ing with these problems is what adds the real complications to the imple
mentation of this algorithm. Here is an over-simplified version of Sondik's 
algorithm. 

(1)	 Initialize a search list of belief states to contain 
any single point. 

(2)	 Remove a point from the search list, if the list is 
empty then we are finished. 

(3)	 Find the true vector (and its associated action)
 
for this point. (Use formulas 6 and 7)
 

52 



(4)	 Define a region around this point where this vector 
is guaranteed to be the true vector. 

(5)	 Select points that lie on the edges of this region
 
and add them to the search list.
 

(6) Go to step (2). 

Although this is an over-simplification, it is nonetheless an important ab
straction to understand since it is the very heart of this and the subsequently 
described algorithms. Before we discuss the complications that can arise, we 
will first expand upon the steps as they are currently shown. 

The first two steps are straightforward and require nothing more than 
maintaining a list-type data structure to store belief vectors (which are just 
tuples of size lSI. A previous section describes, in detail, how to perform 
step (3), just remember that in addition to generating the vector you need 
to store the associated action that was used to create it, since this is what is 
used to construct the policy. 

Steps number (4) and (5) are the most interesting. These are where 
Sondik provided real insight into the POMDP problem. As mentioned earlier, 
when we generate a vector from a single belief point, we are guaranteed 
nothing about what the true vectors are for all the other points in the belief 
state space. However, this isn't really quite true. Sondik, by examining the 
steps with which the vector is created, is able to define a region (volume) 
around this belief point where that vector is guaranteed to be the true linear 
portion of the value function. His method is to state a series of constraints on 
the belief states that, when satisfied, assure that the belief states satisfying 
those constraints have the generated vector as the piece of the true value 
function. This has the effect of defining a volume of belief states instead of 
the single point we started with. Describing the region (step (4)) is necessary 
for generating the new belief states to add to the search list as is done in 
step (5). We first describe the former step. 

A little extra notation is required in order to develop the constraints 
that define the region. We use 7r to be the point selected from the search 
list. Recall that to find the true maximum a(n) vector we need to do a 
maximization over all actions. What this really gives us is IAI vectors for the 
point 7r. (IAI is the cardinality of the set of actions, i.e. number of possible 
actions.) We will refer to each of the vectors generated in this step as aa (n) 
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where a is the action that generated the vector. We use aaAn) to represent 
the ith component of those vectors. Of these aa(n) vectors, one of them will 
give the maximal value for the particular belief 1f. We will refer to this vector 
as a* (n). Additionally, the action for this best vector will be referred to as 
a*. Note that a*(n) = aa.(n). 

We now must think about how the belief state 1f could vary, while still 
resulting in 1fa*(n) being larger than all 1faa(n). This exact condition is 
actually one of the constraints on the region we are looking for: 

L 1fiai(n) 2:: L 1fiaaAn), Va. 

Notice that this formula expresses exactly our desire to constrain the be
lief states to satisfy the condition stated above, one constraint for each aa (n). 
However, this is just the tip of the iceberg. All of the aa(n) were generated 
dependent upon the actual value of 1f. Although the above constraints hold 
true when all the aa(n) stay unchanged, changes in 1f can cause changes in 
the aa (n) component values. Therefore, the above set of constraints is too 
liberal since it might include belief states where the aa (n) have completely 
different values. We need to constraint the belief state further to ensure that 
the actual values of the aa(n) stay the same. To do this we must examine 
the formulas that gave rise to these aa (n) values. 

There are two fundamental ways in which our a*(n) vector could result in 
a lower value than one of the other aa(n) for a particular 1f. The first is if the 
components of the a* (n) vector change. If these components change, we can 
no longer be sure that it will dominate all of the other aa(n) vectors, it will 
depend upon exactly how the components changed and by how much. The 
other way a*(n) can lose its domination is if one or more of the other aa(n) 
vectors have their components change. In this case, although the quantity 
Ei 1fiai(n) stays the same, the quantities we compared it to have changed. 
Again, whether or not a* (n) still provides the best value all depends upon 
how the aa,i(n) components changed. There is also the case where both a*(n) 
and the aa(n) vectors change simultaneously, but handling the individual 
cases will also handle this case. 

What affects the aa(n) and a*(n) values? The L(1f, a, 0) function does. 
Recall that this function was a convenience for specifying the index of the 
previous time step's ak(n -1) vector to use in the value formula, Vn*(·). The 
L( 1f, a, 0) function represented a maximization of the transformed belief state, 
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T(1l"la, 0), over all the (n _l)st vectors. All we need to do is to constrain the 
belief states so that this maximization works out the same, and we will have 
ensured that the t(1l", a, 0) function stays the same. The t(.) function stays 
the same when the aa(n) vectors that are generated in the maximization 
remain the same, which is the condition we are interested in. We restate the 
formula for the maximization over previous vectors so that the origins of the 
constraints to follow are easier to see: 

Let t be the index k that makes this maximum for a particular point, 1l", 

action, a, and observation, O. Then the constraint 

Vk i= t. 
i,j i,j 

satisfies the condition of all belief states where t is the index that maximizes 
the formula above. Notice that for a single pair of a and 0 we require a 
constraint for each of the previous a k ( n - 1) vectors. The above constraint 
only restricts one pair and does not ensure that the entire function t(1l", a, 0) 
remains unchanged. To make sure that the whole function stays the same, we 
need a set of these constraints for each combination of a and O. By adding all 
of these constraints we have ensured that neither a* (n) or any of the aa(n) 
will change. Due to the nature of the problem, the constraints generated 
can only specify a region that ensures things do not change. It cannot have 
any information about how things change and as a result, things can change 
without really affecting the optimal vector generated. This leads to defining 
regions that can be smaller than the actual regions formed by the various 
a(n) vectors in the optimal value function, V:(·). 

Aside from the constraints thus far outlined, there are also the constraints 
that restrict the belief states to lie on the belief state space simplex, namely 

and 
1l"i 2: 0, Vi. 

No doubt, this looks like a formidable number of constraints and, it is 
for this reason that this algorithm has not found wide spread use in solving 
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POMDP problems. The complexity of this algorithm is discussed further in a 
subsequent section, but the worst case number of regions for one time step is 
IAIMIAII81where M is the number of a(n-1) vectors and each region requires 
a linear program of size IAI18IM+IAI +1 constraints and lSI variables. Here 
M is the number of previous vectors in the a(n - 1) set. 

After much work, step (4) is now complete; we have successfully defined 
a region of the belief space where a* (n) is guaranteed to be the true value 
function's vector. This is especially pleasing because we have, in effect, elim
inated every belief state within this region from consideration in plugging 
it into our value function. We now know that for every belief state in this 
region, if we crank it through the value function we will get exactly a*(n), 
and so there is no reason to consider these points further. 

Although most of the conceptual work was done in step (4), the majority 
of the computational work lies in step (5). In this step we want to find belief 
states that are guaranteed not to be in the region we defined in step (4). If 
we can find a point not in the step (4) region, then we have found a point 
that must lie in some other region. With this point, we can do exactly as we 
did in step (4) and find its region, and so on until a complete partition of the 
belief space is found. When we have been to every region in the partition, 
we are sure to have generated all of the true vectors in the value function. 

Given the region in step (4) how can we find points in other regions? 
The answer here is linear programming. We have already built up the con
straints of a linear program (notice that they were all linear constraints in 
the 7ri variables.) We rearrange the constraints above into more standard LP 

constraints and cluster them in one place here for convenience: 

L7riPijrjo(ak(n -1) - d(7I",a,O)(n -1)) :::; 0, Va,(),k =1= t(7r,a,()) 
i,j 

7ri ~ 0, Vi. 

What we are interested in are points lying on the edge of the region de
fined by these constraints. These linear constraints will define a piecewise 
linear convex region (volume) of the belief space. The neighboring regions 
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Figure 24: A region and its neighbors 

lie directly adjacent to this region and actually share a common border (hy
perplane). Points on the border of the currently defined region will also be 
points on the border of neighboring regions. Figure 24 shows this graphically. 

Since our current region will typically border many other regions, we need 
to find a point on each region border. Although we have a large number of 
constraining equations, there is a small subset of them that actually define 
the region. In Figure 24 the solid lines show those constraints that define 
(are binding on) the region and the broken lines are constraints that are su
perfluous (i.e., there are other constraints that restrict the size of the region 
more severely that it). The problem is that we have no direct way to as
certain which oconstraints are binding. The method proposed by Sondik to 
accomplish this is to solve a series of linear programs. There are actually two 
ways this can be done. We present both, first the one proposed by Sondik 
and then an alternative. 

In Sondik's approach we solve a single LP for each constraint in the LP 
(aside from the simplex constraints). The constraints for all of these LPs 
are identical (the ones shown previously), the only thing that changes is the 
objective function. For each constraint we use the actual constraint itself 
(without the right hand side, 0) as the objective function. Note that this 
constraint remains in the set of constraints for the LP. Solving this LP as 
a maximization problem will result in an answer with values for all the 1ri 

variables. However, just because this LP returned an answer does not neces
sarily mean that we have found a new belief vector to add to our list. We 
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only want to add this point if the constraint currently under consideration is 
binding in this LP. Fortunately, the solution to the LP gives us that informa
tion as well. In an LP, each constraint has an associated slack variable which 
indicates how much tolerance we have in changing this constraint without 
affecting the solution. If the constraint that was inserted into the objective 
function has no slack (i.e., its slack variable has value zero), then the con
straint is binding and thus we can insert the resulting value of ?riS into our 
search table. In summary, for each constraint: 

(1) Make constraint the objective function. 
(2)	 Solve the LP trying to maximize the objective
 

function.
 
(3)	 Check the slack variable of row that the constraint 

in the objective function appears. 
(4)	 If it is zero then the solution (values for all ?ri) 

should be added to the search list, otherwise the 
constraint is non-binding. 

A slightly simpler method, that still utilizes one LP for each constraint, 
is to slightly change the constraints as each LP is computed. In this method 
the actual objective function doesn't matter. What we do for each constraint 
(again, except for the belief simplex constraints) is to change its inequality 
into an equality. The result of solving this LP gives both pieces of information 
desired at the same time. If the LP has any solution at all, then the constraint 
must be one of the binding constraints because a non-binding constraint can 
not pass through the region defined by all the other constraints. Additionally, 
any solution it returns must lie directly on the border that this constraint 
makes for the region. With this method it doesn't even matter if we perform 
a maximization or minimization of the objective function and we do not need 
access to the dual variables (which aren't always easily available from an LP 
package anyway.) The only trick here is to remember to change the equality 
back into an inequality when you move on to try the next constraint. 

One aspect of the solutions to the LPs that needs to be pointed out, is 
the nature of the solutions it returns. With an LP formulation, the solution 
can consist of no points, one point or an infinite number of points. The 
latter is different from an unbounded LP. In an unbounded LP the objective 
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Figure 25: Points found by linear programs 

value function can be made arbitrarily large. An LP solution with an infinite 
number of solutions happens when all these points result in the same finite 
value of the objective function. The nature of the LPs we solve, except in a 
rare instance, all have an infinite number of solutions (if it has any at all), 
however the answer the LP returns (assuming that it uses some form of the 
simplex method) will be a single point and furthermore it will be one of the 
corner points or vertices of the region. 

To illustrate this, in Figure 25 we see a region that has two adjacent 
regions that it shares a border with. In this case there will be two binding 
constraints we will call AB and BC. When we check constraint AB we find 
that there are really an infinite number of points that lie on the border (the 
entire line segment AB. However, the LP will return either A or B. Exactly 
which one is returned depends upon the exact nature of the LP and the way 
the LP package was implemented. For the constraint BC we could get either 
point B or point C. At first this might seem troublesome since it will be 
possible for these two constraints to result in the same point B, but this in 
itself is not a problem since all we need to guarantee is that we get a point 
that is on the border of a neighboring region. Point B satisfies this criterion 
for both the neighboring regions. This raises some serious questions about 
handling these borderline cases. This is all discussed further in the next 
section. 
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This completes the description of Sondik's basic algorithm. It mayor 
may not have raised some questions at each step. Hopefully, many of these 
questions (which have, thus far, been deliberately ignored) are answered in 
the next section. Trying to deal with the complications while describing the 
algorithm would have been difficult to do without adding much confusion. 
However, trying to implement the algorithm based solely on the previous 
description is not recommended. There are too many unanswered questions 
that will necessarily arise when an implementation is attempted. 

4.6.3 The Complications 

For all the lengthy description, the basic ideas behind Sondik's algorithm 
are really not that complex. However, there are some fairly nasty subtleties 
lurking beneath the surface. They all emanate from overlooking the case 
where we get identical values as we perform the various maximizations in 
the value function while calculating the a(n) vectors. Recall that there are 
actually two places we need to perform a maximization: once over all the 
actions in the actual value function itself (over all the various aa(n) vectors); 
and the other as we determine the function L( 7r , a, e) (over all the previous 
a k (n -1) vectors). When there are ties, we cannot simply choose an arbitrary 
one from among the candidates, this will not work. 

We will first try to present what is happening geometrically for the two 
cases discussed above. Let us first suppose that we have generated all of 
the aa(n) for a particular belief state 7r. Our next task is to perform the 
maximization to find which a and aa(n) give the largest value for l:i 7riaa,i(n). 
Let a' and a" be the two actions that both give the same maximum value. 
This indicates that we are on the border of two separate regions as shown in 
Figure 26. We might be tempted to arbitrarily choose one (say aa,(n)) with 
the rational that the aal/ (n) region is a neighbor and thus will be found when 
we set up the region for aal(n). 

But what happens if our LP returns 7r as the point on the border between 
the two regions? Trouble. We would either see that we have used this 
point already and throw it out, or we might perform the same calculation 
and again choose the aa,(n) region. In the former case the algorithm ends 
without finding the aal/(n) region and in the latter case it could cycle forever. 
Although you might think that a little extra bookkeeping can keep you out of 
this trouble, consider the point shown in Figure 27. This is the case of a point 
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Figure 26: A point on the border of two regions 

on the boundary of four regions. This requires more than a little bookkeeping, 
and as the dimensionality of the problem increases, this problem can get 
arbitrarily complicated. Constructing a truly general solution to handle these 
cases is possible, but it is cumbersome and prone to errors. 

The above examples only dealt with the maximization over the actions 
in the value function. We still must deal with the maximization over the 
previous vectors that give rise to the t(1r, a, 0) function. The regions depicted 
above were somewhat misleading since they seemed to show the regions of 
the actual value function, V;O being constructed. In reality, the regions 
defined by Sondik's constraints are usually only a subset of the actual value 
function regions. To discuss the next complication, we need to examine these 
regions more closely. 

The constraints that define the region specify exactly the conditions nec
essary for the aa(n) and the d" (n) vectors to change. The unpleasant part 
is that these conditions are not necessarily sufficient for a change. What this 
says is that we can tell when some of the vector components might change, 
but we cannot determine whether they actually will change or if this change 
will have any noticeable affect. A further unpleasant consequence is that even 
if the components of some of the aa (n) vectors change they may change in 
such a way that a* (n) is still the proper piece of the value function at these 
points. The bottom line here is that the constraints built up by Sondik's 
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Figure 27: A point on the border of four regions 

methods are typically too conservative. The regions (or volumes) defined 
are typically small subsets of the actual regions (volumes) for a given vec
tor. Figure 28 shows the typical relationship between the true a*(n) value 
function region and the region defined by the constraints. 

So, in reality, when we draw the regions that the algorithm generates we 
cannot really label it as the a* (n) region since in all likelihood it is merely 
a subset of the true region of the value function. How then, should we label 
these regions? To answer this we consider how many possible ways could 
we construct a set of constraints since this represents the maximum number 
of regions we could define. The constraints that arise from a region are 
fully determined by the optimal action and the l.(1r, a, 0) function. Notice, 
the actual value of the belief state 1r never appears in the LP for the region 
(though it does help determine what the l.(1r, a, 0) function should be.) This 
shows that Sondik's algorithm can potentially explore a very large number4 

of regions even when there are a small number of actual regions in the value 
function. This is discussed further in a subsequent section, but here we 
needed just to demonstrate the connection between the l.(1r, a, 0) function and 
the LP regions. Now we have established that each instance of an l.(1r, a, 0) 
function can potentially specify a different LP region. It might be the case 
that many instances of this function specify the same region, but the only 

41AIMIAIIElI 
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True a*(n) -.r\ 
boundaries \ \. \ 

Figure 28: Sondik's region vs. actual region 

way to determine that is by actually constructing and comparing the regions. 
We mentioned before the difficulties associated when ties are obtained 

) while performing the maximization over the actions in the value function. 
We now turn to the similar case of ties in the maximization procedure while 
determining the t(1r, a, 0) function. If we find two different previous a(n - 1) 
vectors (call them a j (n - 1) and a k (n - 1)) that give the same value in the 
formula 

t(1r,a,O) = argmfx[~1riPijrj9aj(n -1)], 
1,3 

then we have two equally valid and distinct t(1r, a, 0) functions. As just 
previously shown, these could represent two completely different regions. So 
if we chose a belief state 1r right on the borders of these two regions (assuming 
for now that they are indeed different), we have two choices for which region 
to go with. The problem here is that you actually need to consider both and 
for exactly the same reason that we had to consider both in the previous 
case of ties. The same problems with arbitrarily picking one of these apply 
here; we might miss a region or we might loop around forever repeatedly 
generating the same 1r and choosing the same region. 

The bookkeeping required to keep all of this straight is an order of magni
tude more complex than in the previous case. In the previous case, we could 
only have as many ties as there were actions, so we could imagine keeping 
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a list of the ties and handling them one after the other. However, in this 
case there are potential for ties for each possible combination of a and (). 
Every time there is a tie, the number of possible t(1r, a, ()) functions, that 
give the same value, doubles. As if this weren't enough, for each of those 
many places where a tie can occur, there could be as many ties as there are 
previous ci (n - 1) vectors. Implementing the routines to handle this, though 
possible, is a major headache. 

Individually, the two types of ties that can occur in the maximization 
procedures are bad enough, but they actually interact in an unpleasant way 
as well. The previously discussed ties for the C¥a (n) vectors assumed that 
they were all tied while using the same t(1r, a, ()) function. Now we see that 
we may end up with bunch of these functions and each one of that bunch 
has the potential to have ties in the c¥a(n) vectors it produces. 

All of this might appear to be needless theoretical worry over cases that 
aren't likely to happen in practice, however just the opposite is true. These 
problems of ties occur precisely on the borders between regions. What is the 
likelihood that we get points on these borders? The nature of the algorithm 
actually guarantees that we get points on the borders. Recall that all but 
the first point are generated from the LPs, which can only give us points 
directly on the borders of the regions. Therefore we spend all of our time 
directly on the borders and in the corners (vertices) where the ties are liable 
to happen. Thus handling ties is a very real problem that must be dealt with 
when implementing this algorithm. 

The last complication we discuss is not nearly as intimidating as the 
previous problems, but nonetheless, it is a difficulty that must be dealt with. 
With all these regions being explored and with all the belief states being 
churned out by the LPS, we are bound to get duplicate points. If we have 
gone through all of the trouble to make sure we have covered every base 
(handling the ties) for a particular belief state 1r, then there is no reason to 
work on this point again. This requires us the keep track of all the 1r we 
have dealt with. The major trouble here is that now we are dealing with 
floating point comparisons. If we strictly compare the numbers, we might 
be duplicating a lot of effort since the same points could be slightly off from 
machine!algorithm inherent rounding errors. However, if we allow too much 
freedom in deciding which points are the same we might miss small regions 
of the value function. As the problem sizes grow larger, the likelihood that 
there will be these small regions increases. 
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Sondik's algorithm as described is quite inefficient and in the following 
sections we present three ways that it could be made less wasteful. The first 
two of these were proposed by Sondik himself. 

4.6.4 Neighbor Optimization 

The geometric interpretation of the value function and the regions they im
pose upon the belief states allow us to exploit the geometric properties of 
these regions. When we define a region and then look for the neighboring 
regions, we are finding each regions' adjacent neighbors. If we store this 
neighbor information, we can exploit it to restrict the number of constraints 
in the linear programs on the next time step. Recall the set of constraints: 

L 7rWfjrje(ci(n - 1) - a£(1T,a,e)(n - 1) ::; 0, ve, k #- t(-lr, a, e). 
i,j 

This says that we must construct a constraint for every previous vector 
ak (n - 1), but actually we only need to consider the a k (n - 1) that are 
neighbors to a£(1T ,a,e) (n -1 ). If we kept this region adj acency information from 
the previous iteration, we know exactly which ak (n-l) are truly constraining 
the current a£(1T,a,e)(n - 1). 

4.6.5 LP Optimization 

Even with the above optimization, the number of constraints in the linear 
programs will be large. The following insight is directly from [15]: 

The procedure can be made more efficient if, for each iteration 
of the linear programming problem with the kth inequality as the 
objective function, all other constraints are tested as objective 
functions to see if they are optimized at the current feasible so
lution. If a constraint is optimized at any point, then either this 
constraint forms a boundary of the region (a zero slack variable) 
or is a superfluous constraint (a nonzero slack variable). Once a 
constraint has been optimized, it need not be used as the objective 
function. We have found that this procedure typically decreases 
the number of linear programming iterations by approximately 
50 percent. 
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We have no experience with this optimization and therefore have offered 
it in their own words. The geometric intuition behind this method is that as 
an LP solution progresses, it moves from corner point to corner point of the 
constrained region. Each corner point lies on one of the boundaries of the 
region and all this technique does is to see which border point it is on at each 
iteration by substituting each possible border (i.e., constraint). However, 
this requires an intimate relationship with the LP package. Unless you have 
written the code specifically for this application, it is unlikely to be easy and 
may be impossible for you to get this functionality out of your LP package. 

4.6.6 Dominated Constraints 

This is the simplest of all the optimizations and just requires that we compare 
each constraint, as it is generated, with all the others to determine whether it 
is component-wise dominated by some other constraint. Since our variables 
of the LP (1l"iS) are constrained to be non-negative, this simple scheme works. 
Whether or not this checking is worth the trouble depends on you particular 
implementation and the speed of the LP package being used. 

4.7 Cheng's Algorithms 

In [4] two new algorithms are presented. They are both heavily based upon 
Sondik's One Pass algorithm, but typically require less computation time. 
One change present in Cheng's algorithms is the elimination of the use of 
linear programming. Instead, Cheng opts for the interior point method for 
convex polytopes (see [9] and [10]) to find the corner points of the regions 
define on the belief space. The reasons for this are discussed shortly. 

4.7.1 Relaxed Region Algorithm 

This algorithm is exactly the same as Sondik's One Pass algorithm except 
with fewer constraints. In each step of Sondik's algorithm, a region (for the 
newly discovered a(n) vectors of the value function, V;(·)) is defined that is 
sure to be no bigger than the actual region the a(n) vector occupies in the 
true value function. This is the conservative approach and thus the actual 
regions for each of the true vectors of the value function will have to be 
built up out of a bunch of these smaller regions that Sondik defines. Cheng 
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reverses this approach and defines regions that will typically be larger than 
the regions actually are (i.e., relaxed regions). 

The algorithm can proceed exactly the same as Sondik's with two minor 
changes. The first is the set of constraints and the other is the use of the 
interior point method instead of normal linear programming. Recall that we 
will keep a search list of belief points and that for each belief point we will 
find the true vector a*(n), its associated action a* and all the other aa(n) 
vectors that were the losers in the maximization process over actions. We 
also have the set of all the previous a(n - 1) vectors. The only modification 
necessary is in the construction of the regions or set of constraints for the 
LP. The following is the set of constraints for the relaxed regions of Cheng: 

Va#- a* 

L7riPij·rj;(ak(n -1) - a£(1r,a·,9)(n -1))::; 0, 
i,j 

7ri ;:::: 0, Vi. 

If you compare this set of constraints with Sondik's it might take a while 
to even notice that they were at all different. The only change is that the 
second constraint is no longer defined over all actions. This constraint now 
only applies for each (j and previous ak(n - 1) vector with the action being 
fixed as the action associated with a* (n). 

By using an interior point algorithm to ensure that every corner point of 
one of these relaxed regions is discovered, Cheng can guarantee that all of the 
true value function vectors will eventually be discovered in a finite number 
of steps. Before we discuss how this can be guaranteed, we should point out 
the crucial difference between utilizing an interior point method and a linear 
programming method. If you recall from the discussion of Sondik, the linear 
programs will typically have an infinite number of potential points they can 
return and, by the nature of the LP method (usually simplex), we will get 
only one of the corner points. This works fine for Sondik's method as was 
previously discussed, but can lead to incorrect results if combined with the 
relaxed region algorithm. 
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Figure 29: Points and relaxed regions 

For example in Figure 29 we see two regions defined by a*(n) which was 
generated for belief state 11"; Sondik's region is bounded by ABCD and the 
relaxed region by ABE. Let us assume that the true region of the value 
function for a*(n) is ABCD (which just so happens to be the one found 
by Sondik's method). Sondik's algorithm will show two neighboring regions. 
For neighboring region CDE the LP method will return either point C or 
D and for neighboring region ABGF either A or B. Even though we do 
not know exactly which point the LP might return, either one is fine since 
they will both lead to the other regions. In contrast, look at the relaxed 
region ABE, this one looks to only have one neighboring region and so the 
LP method will return either point A or B. This is not sufficient, because 
we will never choose a point in the region DCE which is a different region 
of the true value function that must be found. However, if we always make 
sure we find each corner point of the region, then we are fine, since the point 
E will lead to the region CDE. 

Cheng demonstrates that by employing the interior point method, his 
algorithm will always uncover all the regions. Furthermore, since his regions 
are larger than those that Sondik provides, it should execute faster. This 
algorithm only needs to find a single relaxed region for each actual value 
function vector which can be substantially fewer than Sondik's One Pass 
method. Cheng has experimental results that verify that this is actually the 
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case. Cheng's work is also explicit about handling the case of ties, whereas 
Sondik's work lacked discussion about these cases. 

4.7.2 Linear Support Algorithm 

Cheng proposes another algorithm which employs the same idea of defining 
larger regions. However, this Linear Support algorithm has the advantage 
that it can be used to find near optimal answers as well. With the previous 
Relaxed Region algorithm, we start at a point and move from one region to 
another, slowly exploring the space of beliefs. The Linear Support algorithm, 
on the other hand, defines an approximate value function over the entire belief 
space and slowly works to refine this approximation until it reaches the true 
value function. The name of the algorithm comes from Cheng's terminology 
for the linear segments of the value function which we have been calling a
vectors. In Cheng's thesis he refers to these as the linear supports of the 
value function. 

This algorithm starts by initializing a search list with the extreme points 
on the belief simplex (e.g., [1, 0, 0, ... j, [0,1,0,0, ... j, [0,0,1,0, ... j, 
etc.)and an empty set of vectors, V. For each of these points the true a(n) 
vector is calculated and added to V (calculated from the usual recursive value 
function formula.) These vectors now form an approximation to the value 
function which we will call Vn (·) and define some partition on the belief space 
(since for each point of the belief space one of these vectors must give the 
maximum value when compared to the rest.) For example Figure 30 shows 
the true value function as a dotted line and the approximation generated from 
the corner points as solid lines. Notice that close to the extreme points of the 
belief simplex the approximation is exact. This is for a case where lSI = 2 
and shows the belief space partition generated along the horizontal axis. This 
figure is an example where there are four linear regions that comprise the 
actual optimal value function. These four linear segments impose a partition 
on the underlying belief states as shown with the dotted lines across the 71"0 

axis. When we only calculate the linear segments for the extreme points of 
the simplex, we get parts of the true value function (near the extreme points), 
but we also under estimate the value function at many of the interior points 
since we have not yet found the true vectors for these points. 

The key insight behind this algorithm, is that no matter what the true 
value function is, the largest difference between the approximation, VnO, 
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0.0 1.0 

Figure 30: First step of Linear Support algorithm 

and the true value function, V;(·) will always occur at one of the corner 
points of the approximation. This follows from the properties of piecewise 
linear functions. Notice that the true value function must always lie equal 
to or above the approximation. Because both the true function and the 
approximation are piecewise linear and convex the largest difference must 
occur at a corner point. This is proved in [4]. 

With this handy piece of information, Cheng then finds all the corner 
points of the regions in the partition induced by the approximation. Here 
again, Cheng utilizes an interior point algorithm instead of linear program
ming since he must ensure all corner points are generated. For Figure 30 
this will consist of three points, the two edges of the simplex and one interior 
point. Since we have already handled the simplex corner points we only need 
to consider the single interior point. This generalizes so that of all the corner 
points found from all the regions, we disregard those we have seen before and 
add those we haven't to the search list. Note that this requires you to keep 
track of all points you have used previously. 

The next step is to pick a point out of this search list and find the true 
a(n) vector (support) for that point. If this vector is different from all the 
other ones in our current approximation, then we add it to V to arrive at 
a new approximation, VnO. Figure 31 shows the succeeding approximation 
for the example shown previously. 
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0.0 1.0 

Figure 31: Second step of Linear Support algorithm 

We can now repeat this whole procedure with the new approximation: 
find corners of region; add new point to search list; generate a(n) vectors; 
add new vectors to V to get a new approximation, Vn (-). You can see in 
Figure 31 that calculating the new vector at the new corner point will lead 
to the only remaining undiscovered linear segment (a-vector). 

Although this algorithm will work, as described, it is a bit wasteful. Each 
successive approximation imposes a new partition on the belief space. At 
each iteration we do not have to find all the corners of all the regions of 
the current partition. Cheng shows that if we just find the corner points for 
the region of the newly added vector we can get the same result as before 
with much less computation. This also guarantees that the algorithm only 
examines one region for each true vector (support) in the value function. 
This is its the big advantage over Sondik's method which typically uncovers 
more regions than are actually in the value function. 

This is similar to the Relaxed Region algorithm because, as Figures 30 
and 31 show, the region over the belief space in an approximation tends to be 
larger than it ultimately will be in the true value function. There is another 
point Cheng makes about uncovering the interior points of the regions which 
say that you only need to find corner points for all but one of the regions. 
This follows because the corner points of any single region imposed by a 
piecewise linear convex function also must be corner points of some other 
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Figure 32: Example of why one regIOn doesn't need to have its corners 
checked 

region. Figure 32 shows that if we generate all the corner points for the 
non-shaded regions, we will also have generated all the corner points of the 
shaded region. 

Cheng employs the Linear Support algorithm as an approximation scheme 
as well. To do this he merely calculates the actual difference between the 
true value function and his approximation at the points generated at the 
vertices of the approximation, Vn (-). By taking the largest difference in 
the two values he gets a bound on the current approximation. (Remember 
the largest difference must occur at one of these vertices.) He can stop his 
algorithm any time this maximum error difference is within some tolerable 
range. 

4.8 The Witness Algorithm 

There is a shortcoming of Cheng's Linear Support algorithm which this next 
algorithm addresses. Cheng's algorithm is guaranteed to only find the corner 
points (i.e., vertices) of one region for each true vector there is in the value 
function, V;(·). Each of these regions is a convex polytope and as such can 
have an exponential number of vertices. The number of vertices is exponential 
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in the number of faces in the polytope and the number of faces is dictated by 
either the number of vectors in the current approximation, up to N, or the 
number of variables in the state space, lSI. Since the approximation tends 
toward the optimal, Cheng's algorithm might require time exponential in the 
number of actual vectors in the value function, up to N or states, lSi, in the 
worst case. This is a result of his use of an interior point algorithm that 
insists on finding all of the vertices. 

The Witness algorithm was derived directly from Cheng's Linear Support 
algorithm and employs much of the same machinery. The main difference is 
in how it goes about finding more points to add to the search list. Like Cheng, 
we start with the extreme points of the belief simplex and find their actual 
a(n) vectors. Since we know that this approximation,Vn (·), will differ from 
the true value function at one of the corner points of the current partition's 
regions (induced by V), we construct a linear program that explicitly states 
this criterion. 

This algorithm starts with an empty set Vand begins building up the set 
with a(n) vectors in V;U until we have the entire set of vectors comprising 
V;(·). As mentioned, the first step is to determine the a(n) vectors for the 
extreme points of the simplex and add them to V. 

Like Cheng's Linear Support algorithm, the Witness algorithm uses the 
property that the maximum difference between our current approximation 
and the true value function will occur at a corner point of our approximation. 

We then iterate over the a(n) in V. As we add vectors to V, we must 
ensure that we choose each vector to work on exactly once. Each time we 
add a vector to V we will also set a flag that indicates whether we have 
defined its region (initially set to false). At each iteration of the algorithm, 
we choose one of the vectors, a(n), from V that has its flag set to false. We 
then set this flag to true and construct a linear program over the current 
region that a defines. (This LP is discussed below.) The result of solving 
this LP will either give us zero or one new point in belief space. If it results 
in no points, then we just repeat this for another vector in V. If we get a 
new point, then this means that our approximation, Vn (·) is not the same as 
V;U at that point. We calculate the true a(n) at that point, add it to V 
and then repeat the process on a(n) again, but with this new V. As long as 
a(n) generates a new point we continue to use it. When a(n) generates no 
new points, we know that the region it currently defines is exactly correct 
for the optimal value function and so we then move on to another vector in 
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V that we haven't worked on. 
The heart of the algorithm is to construct a linear program that will have 

a solution at a point where our approximation, Vn (·), is different from the 
true value function, Vn*(·). In doing this we require three types of constraints. 
Note that the algorithm as described here, is the way it is currently imple
mented; however we have since found an easier way to set up these linear 
programs which combines the LPs for all regions into a single LP. This com
bining step will not improve the complexity, but makes the implementation 
conceptually easier. We will first define the three types of constraints needed 
and then tie them together to produce our algorithm. 

4.8.1 Improvement Constraint 

We will iterate over all the a(n) in V. Pick a previously unselected a(n) from 
V. We now want to know if there exists an a(n) such that 

L 7I"iai(n) 2:: L 7I"iai(n). 
,. ,. 

Even though we do not know a(n), we do know that 

- () a + f3 "'" a a £(1l',e,a) ( 1)ai n = qi LJPijrjeaj n - . 
j,e 

This will be true for some (currently) unknown a and 71". The value at this 
point is simply 

V:(7I") = L 7I"i ai(n). 
, 

A simple substitution gives us the standard value function equation 

T7*() "'" a + f3 "'" a a £(1l',e,a) ( 1)
V n 71" = LJ 7I"iqi LJ 7I"iPij rje a j n - . 

i i,j,e 

So we choose to define a new variable Me for each () such that there are 
as many variables as observations. These we define to be 

"'" a a £(1l',e,a) ( 1)Me = LJ 7I"iPijrjeaj n - . 
i,j 

Substituting this into our value function equation gives us 

V:(7I") = L7I"iqi + f3LMe. 
i e 
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Remember, we do not know the 1r (or a) where this proposed a(n) pro
duces the true value (if there are any at all). If there is a 1r, then the following 
equation will hold true: 

V:(1r) ~ L 1riai(n). 
i 

Substituting our variant of the value formula we get 

L 1riqi + ,BLMII ~ L 1riai(n). 
i II i 

Rewriting gives us 

L 1ri(qi +ai(n)) + ,BLMII ~ O. 
i II 

This constraint is the first step in creating an LP formulation (in lSI +101 
variables) to determine a point where the vectors in our current approxima
tion differ from a vector in the true value function. 

4.8.2 Mil Constraints 

The previous formula gives us one constraint that the 1r vectors must satisfy 
if such a a(n) exists. By itself it doesn't help much, but it is a first step 
to our full formulation. One problem with this formula is that there are 
no constraints on the Mil variables. We need to relate these variables to 
the quantities they represent and for values which can actually occur. Since 
we know all of the previous control intervals' vectors, a(n - 1), we add the 
constraint 

Mil ~ L 1ripfjrjllaj(n - 1).
i,j 

For each Mil we need a constraint for each a and k pair. For the answers 
we are interested in, this constraint must hold because if it does not, then 
we would be able to find a larger Mil (namely, the a and k where it did not 
hold). Mil must be equal to this sum for at least one particular a and k, 
since we are assuming that the Mil can actually be generated. Note that this 
inequality only restricts the Mil variables from being too small. They can be 
too large, but we will try to minimize these variable values to try to force 
the equalities to hold. This is discussed shortly. 
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4.8.3 Region Constraints 

Another constraint that must be imposed is to ensure we do not generate 
points that will lead to one of the a(n) vectors already in V. To accomplish 
this we just need to restrict the values of the 'Tr we are interested in to those 
in the region defined by the current vector, a(n), under consideration. These 
constraints are 

E 'Triai(n) ~ E'Triai(n) 
. . 
t t 

for all a(n) =1= a(n) in V. 

4.8.4 Objective Function 

As formulated, there will always be sufficiently large values of the Mo vari
ables that will satisfy the constraints. To alleviate this problem, we put all 
of these variable into the objective function and try to minimize their val
ues. Since all of these variables are independent of each other, the LP will, 
in effect, minimize all of the variables individually. This has the effect of 
attempting to force one of the M o inequality constraints to be an equality. 
However, it does not ensure that an equality will hold for each Mo. This 
means that we will have to examine the answers we get out of the LP, as 
discussed later. 

4.8.5 Constraint Adjustment 

Currently, our LP formulation, for a given a(n) with variables 'Tri, can be 
summarized as follows: 

L'Tri(qf + ai(n)) + f3LMo ~ 0 
i 0 

M o >- '" 'Tr·p~.r~oa~(nt tJ J - 1) , ve E 8, a E A, k E VLlL...J J 
i,j 

L 'Triai(n) ~ L'Triai(n), Va(n) E V. 
i i 

An adjustment is necessary because the improvement constraint requires 
that the actual value function be greater-than or equal to our approximation. 
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Since we only add a vector to our Vset when there is at least one point where 
it is equal to the true value function, we are guaranteed to be able to find a 1r 

that satisfies this inequality. More precisely, the corners of the current &(n) 
region satisfy this criterion. We need to ensure that we only consider points 
where the true value function is strictly larger than 1r&(n) since we want to 
know where our approximation is wrong, not where it agrees with the value 
function, V;(·). 

V:(1r) > I: 1ri&i(n) 
i 

This transforms the improvement constraint into 

I:1ri(qi +&i(n)) +(3 I: Me > o. 
i e 

Because we have chosen an LP formulation, we cannot specify such a con
straint and instead introduce a small value E and so the actual constraint 
becomes 

I: 1ri(qf +&i(n)) +(3 I:Me ~ E. 
e 

The effect of this E is discussed later. In summary, we are still able to find 
exact solutions to finite horizon problems. 

4.8.6 Solution Checking 

Unfortunately, the LP defined will frequently return a solution which does 
not define a point of interest. This happens when the objective function did 
not minimize all of the Me variables enough to ensure at least one of the 
inequalities was actually an equality. If no equalities hold for a particular 
Me, then this indicates that there is no point within the currently defined 
region where our approximation is different from the optimal. 

This requires a check after the LP has been solved to verify that it is a 
point we are interested in. This results when the LP does not drive down the 
values of the variables Me in the objective function a sufficient amount to 
make them actual values that could occur. Recall that theses variables were 
defined as 
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Since we have only constrained these variables with an inequality, it may 
be the case that none of the inequalities tightly constrain the solution. When 
none of the inequalities are tightly constraining, then the values for M o are 
not possible (i.e., Mo are strictly greater than Lij 7r'ipfjrjocxj(n - 1) for all a 
and k) and so an LP solution with these values must be discarded. 

There are a number of ways we can detect this condition, but here we 
describe the two ways that have actually been implemented. The first and 
simplest way is to make use of the LP's slack variables. We have a series 
of inequalities for each of the Mo. As long as one of these, for each Mo, is 
binding, then we know we have a solution that we are interested in. If a 
constraint is binding in an LP, then its corresponding slack variable will be 
zero. Therefore we simply ensure that at least one slack variable is zero for 
the set of constraints defined on each Mo. 

An alternative to the above approach needs to be used when slack vari
ables are not available. Some of our LP packages did not make these slack 
values readily available and so we had to adopt an alternative strategy. In 
effect, it does the same thing as the slack variable technique, but requires 

j 
\	 some extra computation. With the slack variable technique when a slack 

variable is zero it means that the equality holds. Therefore, without slack 
variables we can simply check to see if the equality 

-	 '"""" . a a t(7r,O,a) ( 1)M o - L..J 7r'tPij rjO cxj n 
i,j 

holds by computing the right hand side quantity for each eand a. Again, we 
only require one of the equalities to hold for each e. 

4.8.7 Witness Discussion 

The Witness algorithm can be summarized as follows: 

(1)	 Using formulas 6 and 7 add the true vectors for 
the corner points of the belief simplex into V. 

(2) Mark all	 vectors in V as undiscovered. 
(3)	 Choose an undiscovered vector, &(n) from V. If 

there are none then return V. 
(4) Mark &(n) as discovered. 
(5) For &(n)	 construct the LP (see below). 
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(6)	 Verify that solution to LP is valid. If not,
 
then got to step (3).
 

(7)	 Using the values from LP for all ~i, construct
 
the true value function vector for this point
 
(with formulas 6 and 7).
 

(8) Add this vector to V as undiscovered. 
(9) Go to step (5) 

The full LP formulation for a vector &(n) E V is 

min: EMe 
e 

E ~i(qi + &i(n)) +,BE Me ~ E 

i e 

Me > "~·p~.r~eci(n - 1)- L..J ~ ~J J J VB E 8,a E A,k E V:-10' 
i,j 

Va(n) E V. 

We solve one of these linear programs for each combination of vector, in 
V, and action. This is similar to how Cheng finds the corner points for all 
the regions in the current approximation. As a result we only need to solve 
a number of linear programs equal to twice the actual number of vectors in 
the value function, N. The size of these LPs are polynomial in the number 
of observations and current vectors in the approximation; there are lSI + 181 
variables and N + 1811AIM +2 constraints. Here M is the number of vectors 
in the previous time step's value function and N the number of vectors in 
the current step's value function. 

As formulated above, most LP packages will not be able to handle this 
formulation because they require all the LP variables to be non-negative. 
Although the ~i variables are guaranteed to be non-negative, the Me variables 
are not. However, we can employ the standard substitution trick used in 
LPs and substitute M~ - M~', for each variable Me. We then just need to 
recombine the two substituted variables to get the real value of Me. We 
chose not to make this substitution explicit since it adds nothing but more 
variables and confusion to the discussion. 
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Although the simplex method and its variants are not a polynomial time 
algorithm, the class of LP problems can be solved in polynomial time. Though 
we use simplex methods in our implementations, the use of one of the guar
anteed polynomial time algorithms (i.e., Karmarkar's method) would ensure 
that the Witness algorithm is polynomial in the number of states, actions, 
observations and actual a(n) vectors. 

4.8.8 Epsilon 

In the Witness algorithm formulation, we are required to find differences 
between the current approximation and the true value function of at least E. 

This has some effects on the solutions that the Witness algorithm produces. 
As discussed, we would actually prefer a strict inequality, but in order to fit 
it into the linear programming framework we have to settle for a somewhat 
less pleasing formulation. 

This means that for each of the k time steps in a k-horizon POMDP so
lution we actually construct an approximation to the value function. This 
complicates matters, because this approximation is then used to find an ap
proximation for the subsequent time steps. Therefore, the error can get 
compounded. Although at each step we are guaranteed to obtain a value 
function that is no worse than E from the true value function, this assumes 
that we are working with the a(n - 1) vectors of the true value function, 
V;_l (0). But if our value function for time step n - 1 is just an approxima
tion, our approximation for the V;(o) value function could be worse than E 

at some point. 
However, the error at each point is bounded and so we can actually bound 

the error for each approximation in the k steps. The fact that we use dis
counting helps because our errors at each point will also be discounted. 

If we are interested in obtaining a policy that is within a specific error 
bound, we can work backwards to decide what value of E to use. This is only 
a theorectical argument because, in practice, the actually values of E that 
can be used will be a function of the software and hardware used in such a 
system. 

We have previously compared the Witness algorithm to other algorithms 
which provide exact answers to POMDP problem. This might seem a bit 
unfair since we have thus far been dealing with the Witness algorithm as 
an approximation algorithm. However, there is a theoretical argument that 
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actually shows that the Witness algorithm can be used to find exact solutions. 
Because we will need to state the POMDP formulation with a finite number 

of bits (i.e., rationals), we can actually determine the the largest amount of 
bits required to represent the solution to a specific problem. Given this 
information we can then determine the value of f to use so that our value 
function is guaranteed to be less than the actual precision of the true value 
function which implies that the approximation will indeed be the true value 
function. Again, this is a theoretical argument that has little to do with 
actually providing exact solutions. 

4.9 Algorithm Analysis 

Littered throughout the discussion of the algorithms is discussion of the worst 
case running times for the algorithms. In this section we will focus our atten
tion on this topic as well as explain how these arise. We will progress through 
the algorithms in the same order in which we discussed them previously. All 
of the analysis deals with producing one set of vectors from the previous set. 
The actual complexity of each algorithm on a complete k-horizon problem 
is actually much more complicated to analyze since the complexity of each 
iteration depends upon the complexity of the previous one. We can say that 
the worst case scenario for the general k-horizon POMDP problem can be as 
large as: 

lelk +1 _1

IAI [e11 

This is the total number of possible policy trees as discussed earlier. If we 
could construct a diabolical problem where all of these trees were useful for 
some belief state, then any algorithm we could possibly derive would have 
to, at a minimum, generate this many vectors (since each vector represents 
a useful policy tree beginning at the kth time step). 

Before we begin the analysis we will just review some notation; M is 
the minimum number of vectors that are required exactly specify the value 
function, V;_l (.) for the previous time step and N is the same except for the 
current time step's value function, V;(·). 
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4.9.1 Monahan's Algorithm 

The first step of Monahan's algorithm is to generate all the possible vectors 
that could be formed from the value function (formula 7). As mentioned there 
are IAIMlel vectors that will be generated. The Mlel term is the number of 
ways we could fill in the M previous a(n - 1) vectors in a summation over 
all (). For each of these summations there are IAI possible actions that can 
be used to generate a vector. The algorithm will always require generating 
this many, this is not a worst case analysis. 

The next step in Monahan's algorithm is to produce and solve a linear 
program for each of these to determine whether or not it is actually useful 
(i.e., part of the optimal value function). The size of these LPs will vary 
over time since it will eliminate useless vectors as it proceeds. Nevertheless, 
the first LP will have lSI variables and IAIMlel + 1 constraints. For ease of 
discussion we will let X = IAIMlel + 1 and note that N :::; X. There will 
be a constraint for each of the generated vectors plus one for the simplex 
constraint, Li 7ri = 1. Since each vector must be evaluated in an LP, this 
algorithm must solve X linear programs. For each LP if we discover that the 
vector is part of the true value function then we will need to include this as 
a constraint in all the subsequent LPs. However, if there is no belief state 
for which this vector can be optimal we can discard it and it will no longer 
generate a constraint in subsequent LPs. Although we know we will have to 
specify X LPs, we cannot say exactly how big (i.e., number of constraints) 
each one will be because it will depend on the order in which we choose the 
vectors. 

The best case is when we try all the useless vectors first. This trims down 
the number of constraints as fast as possible (one fewer constraint per LP). 
The trimming will eventually stop when we are left will all of the real vectors, 
but we still need to try them all since we have no a priori knowledge of how 
many there are. These last N LPs will then all have N +1 constraints. One 
way we could look at the best and worst case complexity of the LP solving 
process is to count the total number of constraints generated. Then, in the 
best case, the total number of constraints is 

X+l N 

L i+ L(N+l), 
i=N+2 i=l 
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which simplifies to 
X2 +3X - 3N2 - 5N 

2 
In the worst case we will check all the N true vectors first and the number 

of constraints will not change until we start trying the useless vectors. The 
total number of constraints in the X LPs in the worst case is: 

N X+l 

~)X+l)+ E i 
i==l i==N+l 

which is: 

X2 +3X +2NX - N 2 +N +2 

2 
In both the best and worst case, the overwhelming factor is the X2 term 

which shows that for large problems the dominating factor will be M16 1. 
Eagle's variant of Monahan's algorithm tries to reduce both the number 

of LPs that have to be solved and the number of constraints in each. Un
fortunately, it becomes very hard to analyze the savings since it depends on 
the specific problem. This algorithm relies on being able to eliminate vectors 
that are component-wise dominated by previously or subsequently generated 
vectors. The number of such vectors that will exist cannot be determined 
in advance since it will depend on the specific parameters of the POMDP 
problem. Notice that even with this version all the X vectors must still be 
generated. 

Let us assume that when we generate all of the vectors there will be Y 
of them that are component-wise dominated by others. Right away we get 
savings in the linear programming step because we now only have X - Y 
vectors. We can substitute X - Y for X in the previously shown formulas 
to get new measures for the complexity in this case. However, we also pay a 
computation price in the comparisons that needed to be done to check for the 
domination. The actual complexity that is added will depend on the specific 
way the domination is checked. There are many clever standard search and 
data structure tricks from computer science that could be used to make this 
fairly efficient, but the cost must still be factored in. 

The last thing to mention about Eagle's optimization is that there do not 
have to exist any dominated vectors at all. Dominated vectors are useless 
vectors, but the converse is not true. 
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4.9.2 Sondik's One Pass Algorithm 

By far, the portion of this algorithm that consumes the most time is the 
linear programming step. Maintaining the search list of belief states and 
generating vectors from a specific belief state are trivial computations com
pared to the vast about of time that must be spent on the large number of 
LPs this algorithm generates. Therefore we restrict the complexity analysis 
to the number and size of the LPs that need to be solved. 

As discussed, the belief space regions Sondik's algorithm generates are 
smaller than the true regions in the resulting value function. Therefore, 
since this algorithm sets up an LP for each of these regions, the number of 
regions will be the deciding factor. Recall that a region is defined so that 
all of the aa(n) and a*(n) remain unchanged. For this to occur, the index 
function l.(') must remain unchanged. The worst case for this algorithm is 
when it generates a region for every possible instantiation of an l.(') function 
for each action. This function can be specified as an IAI by 181 table where 
each entry in the table can be one of M possible choices (the previous vector 
indices). Thus, there are 

possible l.(') functions. However, for each of these functions there may be 
areas in the belief space where different actions are optimal (i.e., the index 
function is unchanged, but a different aa(n) is larger than the rest). 

So the number of possible regions is 

For each of these regions, a single LP is set up, but many LPs are actually 
solved for each one that is set up. Remember that for each set of constraints 
generated for an area, we need to check each constraint to see whether or 
not it is binding on the region. In this way the number of constraints and 
the number of LPs solved will be exactly the same. This ignores any of the 
optimizations discussed previously. The number of constraints (and number 
of LPs solved) is: 

IAI + IAI181M - IAllel· 
The first term is for the aa(n) constraints, though there is one less (for the 

aa(n) that is equal to a*(n)), we need to add one for the simplex constraint 
anyway so we can leave it as IAI. The last two terms are for the a(n - 1) 
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constraints. The second term is the total number of ways these constraints 
can be formed and the last term corrects for the the cases when ci(n -1) = 
a'(1r,a,8)(n - 1). 

So for a single region, the total number of constraints is the the number 
of constraints (above) squared. This number is large and can be significantly 
trimmed by implementing some of the clever optimizations discussed earlier, 
but the shear number of regions that could be generated will still dominate 
this and so for large problems we should expect worst case times that are 
predominantly dictated by MIAI16 1which is actually worse than Monahan's 
"exhaustive" algorithm which is dominated by only MI6 1, 

4.9.3 Cheng's Relaxed Region Algorithm 

This algorithm is the one that is very close to Sondik's and so we choose 
to only discuss the differences in complexity from that algorithm. Since 
Cheng defines regions which are typically larger than they need be, he is able 
to stay away from the explosive growth of regions that Sondik's algorithm 
suffers from. The Relaxed Region algorithm will only require N regions to 
be defined which is a significant savings. The number of constraints on these 
regions is also less, but not significantly. For each region the number of 
constraints is 

IAI + 101M - 101· 
The next step in Sondik's algorithm would be to find the binding con

straints, but Cheng opts to find all of the corner points of the region. The 
region defined by these constraints form a convex polytope in lSI dimen
sions. Cheng uses an interior point method to find these vertices, and this 
is where Cheng's solution suffers a little. The worst case time for finding all 
corner points in a convex polytope is exponential in the number of faces. The 
number of faces in the polytope will be dictated by the smaller of either the 
number of constraints or the number of variables. Although this could be 
bad, the huge savings in the number of regions makes this algorithm much 
more practical to use than either Sondik's or Monahan's. 

4.9.4 Cheng's Linear Support Algorithm 

Like the Relaxed Region algorithm, this one will only need to specify N 
different regions. The constraints on the regions will always he the number 
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of vectors in the current approximation plus the simplex constraint. It is 
difficult to specify how many constraints there will be at each point since it 
will depend on the nature of the problem and the order in which the regions 
are processed in. Even the number of constraints on the first region will not 
be known before hand since the lSI belief simplex corner points can generate 
anywhere from 1 to lSI vectors in the initial approximation. However, at 
all times we do know an upper bound since we will never have more than 
N vectors in our approximation. By definition, if we have N vectors in our 
approximation, V, then we have all of the vectors necessary to exactly specify 
V;(·). 

Also, like the Relaxed region algorithm, Linear Support uses an interior 
point method for finding all of the vertices of the region (i.e., convex polytope) 
and as a result, inherits the same drawbacks. As stated before, the number 
of vertices can be exponential in either the number of constraints, at most 
N, or the number of variables, lSI. 

4.9.5 Witness Algorithm 

This algorithm's main advantage over Cheng's Linear Support algorithm is 
that is is not exponential in any of the variables of interest. The difference 
between this algorithm and Linear Support is that for each of the N regions 
two LPs are solved. Although for anyone &(n) we may set up many LPs, 
we can guarantee that we will only do at most 2N LPs. This is guaranteed 
because when we solve an LP we either generate a new vector in V;(·) or else 
we discover that &(n) currently defines its actual region. We can view this 
as solving two LPs for each vector: one to discover it an one to verify that 
it when it defines the true region. It may not be the case that &(n) leads to 
exactly two LPS, but if it leads to more than two, then there must be other 
vectors that do not lead to any. 

The number of constraints in each LP is, in the worst case, 

IAI101M + N + 2. 

The first term is derived from the Me constraints; the second from the region 
constraints (the number of vectors in the current approximation); and the 
last term is the improvement constraint and the simplex constraint. 

Since this is formulated as an LP, it can be solved in a time that is poly
nomial in the input constraint size. Recall that the interior point methods 
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could take time that is exponential in the input size. The one problem with 
the Witness algorithm is that there is the extra solution verification step. 
In the worst case it will involve calculating IAI161M formulas for each LP 

(when slack variables aren't available). Also worth noting is that the num
ber of variables for the Witness algorithm is lSI + 161 whereas for all the 
other algorithms there were only lSI. 

For small problems, the comparative execution speed between Linear Sup
port and Witness will only depend on which is implemented better, but as 
the problem sizes increase, the Witness algorithm's savings will make it the 
faster of the two. 

4.10 Complications 

This section presents some of the implementation complications that we have 
encountered in our implementations which are not specific to anyone algo
rithm. 

As the problem size increases, the value function will typically be com
prised of a larger number of vectors. As this number increases the difference 
between vectors becomes harder to distinguish. The vectors begin to get 
closer and closer to each other as the solution requires minute differences 
to differentiate between different regions of the policy. The floating point 
precision of the existing computers will impose an upper limit on the size 
of problems that can be solved. After so many decimal places, two slightly 
different vectors will appear equal to the precision of the machine. Even 
for modest sized problems this becomes an issue, because there are many 
instances in the algorithms where these vectors must be compared to each 
other. Unless extreme care is taken during implementation, this could result 
in poor algorithms. Round off errors can lead to duplicate slightly different 
vectors when there should only be one. But if you try to make your imple
mentation distinguish these errors and ignore them, you might be classifying 
two different vectors as being the same since there difference is not that great. 

The heavy dependence on linear programming techniques presents many 
difficulties. None of these algorithms should be attempted without a stable, 
robust LP package. Among the more serious problems encountered are those 
of precision and scaling. 

The precision that the LP software uses internally needs to be consistent 
with those used and assumed by the rest of the implementation. This is 
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closely related to the machine precision problems. 
The LPs generated by the algorithms have constraint coefficients that 

are based upon the differences between two vectors. As the problem size 
increases, these vectors will get closer and closer in value making the dif
ferences extremely small. This results in LPs with a wide dynamic range of 
coefficients which causes the LPs to be extremely unstable. Good LP packages 
will scale the constraints to avoid this instability. If the package used does 
not provide this functionality, erratic and even incorrect answers can result. 

5 Conclusions 

5.1 Advantages of POMDPs 

In this section we try to show why the POMDP model is worth exploring 
and why deriving optimal solutions is desirable. Obviously, for the latter, 
optimality is always more desirable (all else being equal) than sub-optimal 
policies. Even when the computational costs of finding optimal policies is 
prohibitive, knowing the form and methods for finding the optimal policy 
can help guide the process of exploring the space of approximate solution 
techniques. 

Another way in which exact solution techniques might be useful is in 
sub-components of a larger system. For large world models or environments, 
finding optimal solutions for every decision process will not be feasible. How
ever, there might be small sub-problems that can be cast in a compact POMDP 
model, for which we will be able to obtain the optimal policy. 

5.2 Drawbacks/Assumptions of POMDPs 

In this section we attempt to list the major problems with POMDP models 
and exact solutions procedures for these models. One of the most glaring 
deficiencies is expecting an agent to know the model. The POMDP model 
requires knowing a vast amount of information (e.g., transition probabilities, 
observation probabilities, rewards, etc.) and all of this supposes that the 
agent knows the number of states, actions and observations. This is not 
realistic for many problems and it is highly desirable to have algorithms that 
perform well without having access to such complete information about the 
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environment. 
Another limitation is that of finiteness of the model. The POMDP model 

assumes finiteness of the states, actions and observations, but many problems 
are better modelled with continuous quantities for these. A robot that has a 
turn-left action, can usually be given any angle not a finite set of angles. 
The same would be true for a robot's location and its sensory readings. 

The solution procedures for POMDPs assume that the model is static. It 
does not permit the model to change over time. Actually, we can model 
change over time, but it requires exploding the state space to deal with all 
the possible changes that could occur. While theoretically feasible, this state 
space expansion is impractical and leads to a model of the world which is 
very unintuitive. 

While the notion of a belief state proves to be convenient for some aspects 
of the model, it requires time to compute this at run time. For certain 
applications, the resources to maintain and update belief states might not be 
available. 

The most depressing news of solving the POMDP model is that it is im
possible to compute the optimal policy for anything but small problems. 

5.3 Contributions 

The existing literature on POMDPs suffers from a few problems which this 
work has addressed. The papers that present specific algorithms [16, 15, 6, 4] 
are difficult to follow unless the reader has an intimate knowledge of the area 
to begin with. The survey articles [11, 8] are at too high level to give much 
insight into the details of POMDPs and the solution procedures. To compound 
this problem, each author has adopted different notation and terminology 
than the others. This makes exploring this field very difficult for persons not 
already familiar with this area. 

This paper has tried to present some of the major work in the POMDP 
area in consistent notation and terminology. The paper's length is a direct 
result of our attempt to explain the algorithms and intuitions behind them 
in language that can be understood by persons not already familiar with the 
area. We have presented the structure of POMDP solutions in many forms 
and have tried to relate each of these to the others. We believe our approach 
is helpful for understanding POMDPs and have not seen it done this way in 
any other work to date. This paper has also attempted to sort out and clarify 
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many of the existing bugs in the literature. 
We have also presented a new algorithm, Witness, for computing optimal 

solutions to finite horizon POMDPs which does not suffer from the problems 
of previous solutions. Empirically we have been able to solve problems much 
larger than any other previously presented work. 

The Operations Research community, where most of the POMDP work 
has come from, does not address the complexity issues when comparing al
gorithms. In this work we have attempted to classify a number of finite 
horizon algorithms by their complexity. This analysis identifies the limiting 
elements of the running times of each and allows comparison between them. 
This theoretical analysis coincides with the existing empirical performance 
results, based upon our results and those of [4]. 
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