
BROWN UNIVERSITY

Department of Computer Science

Master's Project

CS-94-M12

"Optirnal Policies for Partially Observable Markov Decision Processes"

by

Anthony Rocco Cassandra

Optimal Policies

for

Partially Observable Markov Decision

Processes

by

Anthony Rocco Cassandra

Department of Computer Science

Brown University

Submitted in partial fulfillment of the requirements for the

Degree of Master of Science in the Department of

Computer Science at Brown University

May 1994

~li~~~~

Advisor

1

Optimal Policies for Partially Observable
Markov Decision Processes

Anthony R. Cassandra*

Department of Computer Science

Brown University

Providence, RI 02912

May 17, 1994

Introduction

Decision making is an important task in everyday life. Making the correct
decision in some circumstances can help utilize resources better or even be
the difference between life and death. There are many applications in which
automated decision making is desirable (automated stock trading) and others
in which it is necessary (e.g., real time flight controls of a supersonic jet).
Unfortunately, at this time, the process of human decision making procedures
for many types of problems is difficult or impossible to formalize. Given this
limitation, we would still like to have automated decision making perform as
well as possible.

An often used and sometimes convenient way to make a machine aware
of the dynamics of the domain in which it will be making decisions is to
provide the machine with a model of the world. For some domains this is
quite acceptable, since the dynamics of the world may be well defined. For
other domains, it may be impossible to specify the dynamics fully. Even for

*This work was done jointly with Leslie P. Kaelbling and Michael 1. Littman. Anthony
Cassandra's work was supported in part by National Science Foundation Award IRI
9257592.

1

algorithms that do not rely upon being given a model [17], there is a structure
imposed upon the environment which acts as a somewhat more abstract
model. In this paper, we will be exploring a specific model-based scheme in
which decisions need to be made. Even when we cannot assume we have the
model, we can use techniques, [2], that allow us to approximate the model
and then apply these model-based schemes. The many problems associated
with such models will be outlined in a subsequent section. Throughout this
discussion, the term agent will refer to the automated process that has to
make decisions. A convenient example of an agent is that of an autonomous
robot trying to survive in a real world environment. However, the agent can
simply be a computer program such as one that does medical diagnosis. In
this case, the model of the world might be based upon statistics and medical
research.

The model we will explore assumes that the agent exists in a unique state
at any time point. Furthermore, there are only a finite number of different
possible states it can ever be in. For the robot example, these states can be
different locations in the world or even the agent's state of knowledge at a
given time. Time is assumed to pass in discrete increments (ticks) of some
clock and the agent must choose some action to perform at each tick of the
clock (it could be to do nothing). Each time the agent performs an action,
it will move to a new state, though it is possible for it to remain in the same
state. An alternative, but equivalent, view of the agent and world is one
where the world exists in some state and the agent interacts with it.

If a machine (computer) is going to make decisions by itself, it needs to
have some metric that it can use to differentiate between the good and bad
choices. This is another potential trouble spot, because it is often difficult
for people to articulate exactly what the differences are between good and
bad choices. Nevertheless, we must do so if we desire to have the machine
choose between a number of options. The choice in our model is to assume
that each state has an associated reward for performing each possible action
in that state. This reward reflects the immediate desirability of performing
a particular action given that we are currently in some state.

These rewards do not necessarily have to be something the agent actually
gets as it operates. We define these rewards as a way of assigning relative
values to different states of the environment. Given these abstract values,
the agent can then attempt to get to the locations that it knows have higher
value. Although we can view the rewards as abstract entities, they might

2

action A or B

(0)

Figure 1: Sample environment showing why one step greedy strategy is un
desirable

well be grounded in some real phenomenon that the agent can perceive.
The model described thus far has dynamics as follows: The agent starts

in a state i at time t, performs action a, receives an immediate reward for
that action in that state and then finds itself in state j at time t + 1. The
dynamics of an environment specified with such a model can be described
with just a couple of tables. One table specifies the next state based upon the
current state and the action chosen. The other specifies immediate rewards
for all combinations of states and actions.

Although this model is much simpler than the one that is actually treated
in this paper, it is useful to think about how an agent would use this informa
tion to make decisions at each time step. One fairly intuitive notion is that
the agent wants to get as much reward as possible after all, these rewards are
our way of informing the agent what state-action pairs we think are desirable.
But exactly what is meant by "as much reward as possible?" Do we simply
want to perform the action that gets us the most reward for this particular
step? The answer is probably not. Figure 1 is an environment in which we
can get a reward of 2 now, but no more rewards afterwards no matter what
actions we decide to take. Also in this environment there is another action
we can perform which will only give us a reward of 1 now, but after we take
this action we will be able to get a reward of 5 for the next action (and even
more with subsequent actions).

The above situation shows an example in which we would probably want
to take into account the rewards we might receive in the future, not just
the immediate rewards. If we knew in advance how many time steps (call

3

this number k) we had to make decisions for, then we could simply look
at the model and decide which sequence of k actions (from a given starting
state) will give us the maximum reward. Of course, there could be many
possible sequences to consider, but there would always be a finite number
of them. However, what if you don't know how many decisions the agent
will have to make? In this case we need to consider the future rewards in
some other manner. Dealing with this is a somewhat controversial topic.
For this paper we will consider an infinite horizon with a discounting factor.
The justifications for using this are given later, as are the drawbacks of
discounting. Here we will just present the basic concept behind this approach.

The term infinite horizon is used to indicate that we will consider rewards
for an infinite number of time steps. This is why we need a discount factor.
If we merely try to sum rewards forever, we will get an ever increasing sum
and all actions will look as if we can get an infinite amount of reward. By
adding a discount factor we can cause these infinite sums to converge to a
number which we can then use in a comparison to decide which actions are
best.

Although we wouldn't expect the agent to make decisions forever, the
infinite horizon with discounting is a good model for the instances in which
we do not know for how long the agent will have to make decisions. If we
assume that the agent will stop making decisions at each step with some
probability, then it makes sense not to count rewards that could be received
far into the future as much as rewards that could be received closer to the
present. The discount factor does this by discounting rewards based upon
how far in the future they could occur.

We now come to the point where we would like to make our model more
robust. In the previous model description we assumed that each action will
always have the same output given a specific starting state. Many domains
of interest, however, do not possess this property. More specifically, an agent
that is a mechanical device is subject to physical limitations and tolerances.
Trying to move a robot 10 inches by applying the exact amount of voltage
for exactly the proper time is a difficult thing to accomplish and even if this
is overcome, there may be slippage in the wheels depending upon the floor
surface, humidity, dirt, etc. So if you've modeled an environment in which
one of the actions is for a robot to move 10 inches and another is to move 9
inches, the action to move 10 inches might not succeed. Although the results
of the robot's actions are in a sense deterministic, the amount of knowledge

4

.10

Figure 2: Sample environment showing stochastic actions

that we would have to have to predict it is overwhelming (e.g., where each
dirt particle was, coefficient of friction of carpet for the current atmospheric
conditions, etc.) Instead of getting bogged down in all these details, the
standard approach is to model the actions probabilistically. Instead of saying
that performing action a in state i will result in our next state being j, we
say that 90% of the time this will happen, but that 10% of the time we could
remain in state i. This is shown pictorially in Figure 2.

You can add these action probabilities into the model and get a more
robust model. The nice part about this is that you can still figure out what
the best action to take is. It is a little more complex than models without
probabilistic actions, but solution techniques exist. The technical name for
this type of model is a Markov Decision Process (MDP) and it is a very
thoroughly explored model in mathematics, operations research, computer
science, and related fields.

There is one extremely important element that we have assumed up to
this point, but which is not always a good assumption. When we are choosing
the best action to take, we first need to know what state we are in. How do
we know what state we are in? Before we had probabilities associated with
the actions, we always knew the next state after we took an action, so as
long as we knew where we started we could tell exactly where we were. Now
that we have have introduced uncertainty in the outcome of actions, how do
we know what state we actually did end up in? The easy answer is the one
that is assumed in the previous model: Just look. The problem is that it
is not always possible or realistic to assume you can tell exactly what state
you are in at a given time. For instance, the robot example demonstrated
the physical limitations of machines. These limitations apply not only to the
actions they can perform, but also to the things they can observe in the world.
If a robot is 18 inches from a wall and decides to move 10 inches, how will it
know whether it is in the state of being 8 inches or 9 inches from the wall?
Even if the robot has some sensors that can very accurately tell the distance

5

to the wall, there is still some probability that they could malfunction. The
typical case is that mobile robots have crude sensors which are nowhere near
100% reliable. Even if there we perfect or near perfect sensors, the agent will
rarely be able to see the whole world at once.

Dealing with uncertainty in observation is the main issue which this paper
explores. The previously described MDP model can be made more general
by introducing uncertainty in observations. This type of model is referred
to as a partially observable markov decision process (POMDP) and is the
focus of this work. Many existing techniques utilize the MDP model [7, 3]
and the assumption of complete (reliable) observability is one of the major
drawbacks of these techniques and those that build upon these. This paper
explores existing techniques for POMDPs, presents a new algorithm and shows
the usefulness and limitations of the POMDP model in general.

2 The Model

2.1 The MDP Model

A Markov decision process, MDP, is a fairly simple model with a fancy name.
It consists of a finite set of states, a finite set of actions and a reward structure
defined for each state-action pair. For a robot navigation problem, the states
can be viewed as the location of the robot in the environment. Though
most environments are really a continuum of states, it is often convenient to
discretize these continuous spaces. The actions are the things the agent can
do, such as move forward, turn left, pick up an object, etc. Associated with
performing each action is an immediate reward. Because the effectiveness of
performing an action can depend upon what state the agent is in, the MDP
model actually assigns an immediate reward for each combination of states
and actions. For example, if the robot is trying to get to a specific location,
then performing the action move forward when it is next to and facing that
location should result in a high reward. If the robot was directly in front of
a descending stairway (and it did not know how to walk down stairs), then
we would expect the action move forward to give much less reward.

Formally, an MDP is a quadruple, < S,A, P, W >. S is a finite set of
states with state i denoted by Si. A is a finite set of actions with action i
denoted by ai or sometimes just a when we refer to a specific action. W is

6

the reward structure, which is slightly more general than the one described
previously. Here, wij represents the immediate reward the agent will get
if it performs action a while in state Si and moves to state Sj. Although
this model is more general, we can simplify the reward structure to the one
described previously by taking a weighted sum over all possible next states.
The weight used in this sum is the probability that we actually move to each
of the next states.

a ,"",a a
qi = LJ PijWij (1)

j

Alternatively, we could just describe the qi rewards directly. The wij are the
actual rewards that would be received, but the qi are the expected rewards
representing what we would expect to receive on average in the long term.

2.2 Policies

A policy is a function or mapping that tells the agent what action to execute.
It typically depends upon the state that the agent is in. For instance, this
current state could be its physical location. A policy completely specifies
the appropriate action for each possible situation (state) that occurs in the
model. A policy should not be confused with a plan. A plan is a sequence of
actions to perform, and does not necessarily specify the appropriate action for
each possible situation. In some sense, a policy is the most general possible
plan, since it completely specifies the action to take for each possible state
of the environment.

A policy can be either deterministic or stochastic. A deterministic policy
is one that specifies a single action to take in each state. A stochastic policy
specifies a number of possible actions to execute in each state.. In addition
to a set of possible actions, the agent is given a probability distribution
over the set of actions. The agent will then stochastically choose one action
according to those probabilities. For this paper will we only concern ourselves
with deterministic policies. Work in stochastic policies include [14]. Note
that deterministic policies are really a subset of stochastic policies where the
probability distribution assigns one action probability 1.

Policies (both deterministic and stochastic) can also be categorized as
stationary or non-stationary. A stationary policy is independent of time; the
same policy is applied regardless of when the policy is used. Thus, the policy
only depends on the state of the agent and/or environment. A non-stationary

7

policy is dependent on time; the time the policy is to be used will affect what
action will be taken. In this case, the time and state and/or environment
determine what action the agent should execute.

Policies can also be grouped by the amount of memory required. As an
agent moves about its environment performing actions, it is building up a
history of its movements. In some situations it might be desirable to remem
ber this history and perform future actions based upon this. A memory-less
policy is one that uses no history at all. The choice of action depends only
on an immediate situation of the agent. A k-memory policy chooses actions
based upon the last k pieces of the agent's history.

There are also policies that require a finite amount of state, but the
amount of state doesn't directly correspond to the last k pieces of the agent's
history. For example, a policy that depends upon whether a button was ever
pressed, requires only a single bit of information, but this single bit does not
correspond to k-memory for any fixed k.

In this paper we will focus on deterministic stationary policies with mem
ory. We will denote the entire space of these deterministic stationary policies
as ~ where a specific deterministic stationary policy is denoted by O. We will
denote a deterministic non-stationary policy as a set of stationary policies,
o= {0o, 01 , • •. ,otl where Oi E ~ is the stationary policy to use when there
are i steps remaining.

2.3 Infinite V8. Finite horizon

In this paper we will discuss two ways to construct optimal policies for POMDP

models. Both of these also apply to MDP models and, again for simplicity, it
is in the MDP framework that we first present them.

We first consider problems in which the agent only has to make a known
finite number of decisions. We refer to this class of problems as finite horizon
problems; a k-horizon problem is one in which the agent will make decisions
for k time steps. This period of k time steps is usually referred to as the
agent's lifetime or the size of the horizon. The actual structure of a finite
horizon policy consists of a sequence of deterministic policies, one for each
time step (i.e., a determinisitic non-stationary policy). The policy, Oi, is a
complete mapping from all states to actions, Oi : S --t A. The policy takes
the current state of the agent as an argument, so the action specified by the
policy for state Si is denoted by Oi(Si).

8

Figure 3: Example showing need for non-stationary policies

t=2 t = 1
state action state action

0 A 0 B
1 A 1 A
2 A or B 2 A or B
3 A or B 3 A or B

Table 1: Policies for horizons t = 2 and t = 1

To see why a non-stationary policy is necessary for the finite horizon case
consider Figure 3. Assume that our horizon is k = 2 time steps where k = 2
means that there are exactly two time steps for which the agent needs to make
decisions. The optimal policies for t = 1 and t = 2 are shown in table 1.
Notice that each is a policy (complete mapping from states to actions), but
that they are different. Since the model is small it should be easy to convince
yourself that any other policy would not do as well for each of the two time
steps. Therefore the true optimal policy for a k = 2 horizon is to apply the
t = 2 policy first and the t = 1 policy next. Note that optimality here is
being measured as total accumulated reward for the two time steps.

The other class of problems we consider are termed infinite horizon prob
lems. Although we wouldn't expect any agent to have to make decisions
forever, we use this type of model when we do not know in advance how
long the agent's lifetime will be, which in many circumstances is more re
alistic than the finite horizon models. At first, attempting to consider an

9

infinite number of time steps might seem impossible. Although it does add
some complexity, it can be and is often done, especially in the MDP model.
The trick that needs to be incorporated is the addition of a discount factor
to the rewards, so that rewards that are received further in the future are
discounted more than rewards received closer to the present time. To show
why the addition of the discount factor can makes things work out nicely,
imagine that we have some divine knowledge of exactly which state we will
be in at each step and which action will be executed at each step. We will
represent this knowledge as the functions S(k) and A(k) respectively. With
this knowledge we can write the value, in terms of rewards, as

00

'"" k A(k)()Vn Si = LJ fJ qS(k)'
k=O

This formula is associating a value for starting in a given state, Si, with
n time steps remaining assuming we will know exactly what states we are
in, S(k), and which actions we perform, A(k), at each time step. Here k
represents the time when there are n - k steps remaining.

This formulation, usually referred to as the value function, is a power
series of the immediate rewards. Since we ultimately want to discuss and
compare the value of different policies we would like this series to converge.
A well known property of power series of this form is that they will converge
for variables with an absolute value of less than one. In this case the variable
of interest is the discount factor fJ. Since it is difficult to interpret a negative
discount factor in our problems, we will only consider discount factors in the
range: 0 S; fJ < 1. A main motivation for using a discount factor is that it
allows us to talk about and compare these infinite sums. The niceness of the
mathematical formulation and convergence are hardly appropriate justifica
tions for using a discount factor; however, more motivated interpretations
and justifications of the discount factor will be presented later (as will the
problems with using a discount factor.) There are also techniques for solv
ing undiscounted infinite horizon problems [7, 13], but this paper does not
attempt to treat these problems.

You will recall that, for the finite horizon problem, a policy had the form
o= {OO' 01, ... ,ot} since we (potentially) needed a different policy for each
time step. We have thus far formulated our infinite horizon problem the
same way, but trying to represent an infinite horizon policy this way leads to

10

some real problems. First, how could we ever calculate an infinite number of
policies and, even if we figure out how to do that, how could we put it into
a form that we could use that wouldn't take up an infinite amount of space?
This is one place where the infiniteness can actually help us out. Imagine for
a moment that you knew Di' that is, the optimal policy to use at time t = i
when there is an unbounded number of decisions to be made in the future.
Well then, at time t = i + 1 there is also an unbounded amount of time left
as there is for any particular time. Therefore, the policy that is best must be
Di since we defined Di to be the optimal policy to use when there is an infinite
amount of time remaining. Since our infinite horizon solution looks like this:
D= {Di' Di' Di' ... }, we can simply refer to the policy as Dbecause at any time
step we will always be using the same policy. This is what we previously
termed a stationary policy, because at every time step the policy is the same.
Solving the infinite horizon problem now looks a lot more promising, since we
only need to search for and represent a single policy. Also, we have developed
a way to ensure that all potential policies have a finite value which we can
compare to one another.

2.4 Policies in MDPs

The goal of the techniques discussed in this paper is to derive a computational
procedure for finding an optimal deterministic policy for a given POMDP

model. Working toward that end, we first discuss policies in the MDP model
and a traditional method (policy iteration) for finding optimal policies in
these models. We will later generalize both of these to the POMDP case.

Since our aim is to find the optimal policy, we need a metric that gives
us a measure of each policy's usefulness. This metric allows us to compare
policies with one another. As a start in this direction, we define V;n (Si) to
be the expected reward that the agent can accumulate in its lifetime if it
executes policy D= {Do, D1, ... ,Dn } for n steps. When it is currently in state
Si, there are n steps for which the agent needs to make decisions given that
it executes actions according to the policy Dm at time m.

V!n(Si) = LPf;(si)[wf;(Si) + j3V::i1 (Sj)]
j

Since our MDP model has uncertainty in the outcome of its actions, we
use the probabilities of moving to all possible next states in a weighted sum

11

of the rewards we would get if we actually moved into that state. The reward
for moving to a state is the immediate reward received for the current action,
current state and next state, wij' plus the value of state Sj with one less step

remaining, V:':1
1 (Sj). We discount the value of the next step by (3, which

will become necessary when we discuss the infinite horizon problems. For
the undiscounted finite horizon problems we can just set (3 = 1. Factoring
and substitution of formula 1 allows us to simplify this expression to

v:On(.) = ?n(S;) + Q "" ?~(S;)V:0n-l(.)
n S, q, tJ L.J p'J n-l sJ.

j

Note that for the non-stationary policies of finite horizon problems, this
formula requires the value for the last n - 1 steps before we can compute the
value for the nth step. Thus, the value function is computed with dynamic
programming. The values for V~o (.) depend only on the qf values. For the
infinite horizon problem, the policy, 8(
cdot) , that gets executed at any time is the same. This results in a value
function:

VO(Si) = qf(s;) + (3 LPW;)VO(Sj).
j

This is a system of lSI equations with lSI unknowns. As long as 0 :S (3 <
1, this system of equations will have a solution. Thus, whether we are solving
the finite or infinite horizon problem, if we are given a policy (stationary
or non-stationary), the value function formulas allow us to easily compute a
metric for the policy. These value functions will allow us to compare different
policies and eventually to prove that a given policy is optimal. These formulas
show how we judge a policy's usefulness by the actions and states that the
agent is led through.

In an MDP, any mapping from states to actions is a policy, but what we
are concerned with is finding the optimal policy. Optimality is considered
with respect to the value of the state-action pairs which are derived from
the reward structure W. We would like a policy that performs better than
any other possible policy in terms of the value of all states the agent passes
through. We will denote the optimal policy by 8* and its associated value
function by Vn*(·). More formally, an optimal policy is one where, for all
states, Si, and all other policies, 8, VO*(Si) 2: VO(Si). It is non-trivial, [7,3],
that such a 8* exists.

12

The distinction between the policy and the value function of a policy
is a fairly important one. Some of the algorithms discussed in this paper
construct both the value function and the policy, whereas others construct
only the policy. Typically, it is easier to construct the policy than it is to
construct the policy and its value function. However, given a policy the value
function can be derived by the formulas above. Conversely, a policy can be
constructed from the value function.

2.5 The POMDP Model

A partially observable Markov decision process, POMDP, is defined by a hex
tuple, < S, A, P, e, R, W >. S is a finite set of states with state i denoted
by Si. A is a finite set of actions with action i denoted by ai or sometimes
just a when we refer to a specific action. P is the transition probabilities
for each action in each state and defines the Markov process that the agent
actually operates within, though it typically does not have access to this core
process. pij denotes the probability that the agent moves to state Sj given
that it was in state Si and it just performed action a. e is a finite set of
observations where ()i denotes observation i. Although there is an underlying
Markov process, the agent does not directly observe it. R is the observation
model, in which rie denotes the probability that we observe () when we are
in state Sj at time t and when our last action (at t - 1) was a. W specifies
the immediate rewards, wije denotes the immediate reward received at time
t + 1 for performing the action a in state Si at time t, moving to state Sj at
time t +1, and making observation (). These immediate rewards are essential
in our quest for optimal solutions, since it is these values that inform us how
useful different strategies are.

There is another notation that will prove convenient in our later formu
lations. We let qf be the immediate reward of performing action a in state
i. It can easily be derived from the immediate rewards Wije weighted by the
transition and observation probabilities for the different actions and obser
vations:

(2)

This will simplify many of the formulas that appear later in the paper. We
have also used the qf notation in describing the MDP model. The use is the

13

same in that we would like it to stand for the immediate reward received for
performing action a in state Si, but the calculation differs since, in the POMDP

model, we must factor in the uncertainty (probabilities) of the observations.
Further use of the value qf will not be confusing if you remember which
model is being discussed.

There are actually two ways a POMDP problem can be formulated. In
the first, which is the one presented above and used throughout this paper,
observations are made after an action is taken. Alternatively, we could define
a POMDP in which we first make an observation and then perform the action.
These two formulations are essentially equivalent, since a problem in either
one of these forms can be converted to a problem in the other. However,
to avoid confusion we will always discuss the former since this is the model
most often used in the existing literature.

2.6 Belief States

When we moved from a deterministic action model to a stochastic action
model, we could still use the same basic machinery to solve the two types
of problems. This was possible because we assumed the agent always knew
where it was (or could be) in the finite state space. Thus, to find a policy the
agent merely needed to decide what the appropriate action was for each state
in this finite set. However, in the POMDP model, adding partial observability
creates a real problem. If the agent can never know for sure what state it is
in, how can it possibly know what action to take? One observation we can
exploit is that the agent will be more likely to be in some states than others
based upon the actions it has taken and the observations it has made. For
instance, in Figure 4, even if we do not know whether we started in state
S = 0 or S = 1, if we take action A and make observation () = 1, we are more
likely to believe that we are in state S = 3 than S = 2, since the probability
that we observe 1 in state S = 2 is so low.

It turns out that we can keep track of how likely we are to be in each
of the states. We call this probability distribution over the state space the
belief state. We denote the belief state 7l" = {7l"o, 7l"1, •.• , 7l"lsl} where ISI is the
number of states in the model and 7l"i represents the probability that we are
currently in state Si. An important point (and drawback) about maintaining
a belief state is' that we must know the model of the world if we wish to
compute it.

14

~R~20=0.9
U U ~21=0.1

~30 = 0.1

~31 =0.9

Figure 4: Belief state example

After each action and observation, we can update our belief state with a
simple application of Bayes' rule:

(3)

The new belief state will be a vector of probabilities computed according to
the above formula. We define a belief transformation function:

7r' = T(7rla,O).

The first formula is more enlightening since it more explicitly states that
we just consider all possible ways the agent could have ended up in a state
weighted by the probabilities of those ways actually occurring for that action
observation combination. The second formula merely simplifies the notation
for subsequent formulas. An important result, as shown in [15], is that
this belief state captures all the necessary information for any sequence of
actions and observations. Therefore, by constantly updating this belief state,
we are implicitly saving the relevant part of our past history of actions and
observations. Since we cannot know our location with certainty, this belief
state seems like the next best thing.

A diagram of the basic dynamics of a POMDP is shown in Figure 5. The
action is generated as a function of the belief state, and the observation is
generated by the environment. Recall that we are using the POMDP model
in which observations follow the actions.

15

11

e"- 11'
T(lt,a,8)Obs

1
-+

Current
Belief
State

(Register)

a
Policy

li

Action

Figure 5: Control dynamics for a POMDP

2.7 Policies for POMDPs

In the regular MDP model, a policy is a mapping from states to actions and
since the state space is finite, the policy and/or the value function are both
easy to calculate and to represent (e.g., in a table). In the POMDP model,
since we never know the true underlying state, our policies must now map
belief states into actions. . The number of belief states is infinite, and
therefore, storing the policy or value function in tables is no longer feasible.
This means we must find some other representation for both the policies and
the value functions of policies.

For now, we only consider the finite horizon case of a POMDP problem
since this is the focus of much of this paper. A later section will discuss
infinite horizon solutions.

Imagine that we need to solve the finite horizon for a POMDP problem
with the horizon k = 1. In this case, the agent gets to choose to execute a
single action and no more. Here, the observation it makes after that action
doesn't really matter, because once it chooses an action the game is over. In
order for this problem to be well defined, we need to define a terminating
reward for the process. This terminating reward represents the value of the
agent ending up in each of the environment states when t = 0 (i.e., there is no
time left to take actions). We will denote the terminating reward for state Si

as q? Recall that there are also immediate rewards for each state-action pair.
For k = 1, the agent will accrue one of these immediate rewards (depending
on the state it was in and the action it chose to execute) plus the terminating
reward for the state it ended up in. However, neither the starting nor ending
state will be directly observable to the agent. All the agent will have access
to is the probability distribution over the states (i.e., belief state) it starts
out in. Our task is to derive a policy that obtains, based upon the belief
state, the maximum expected reward for a single action.

16

Without knowledge of the actual underlying states of the agent, it might
seem peculiar that we could ever find the best action to take. However,
since the belief state represents the likelihood of being in each state, we can
discuss the expected accumulated rewards by taking an expected value. For
instance, assume that the agent's last belief state is 7r', then the expected
terminating reward, or the value of ending up (at t = 0) in belief state 7r' is

vo(7r') = E 7r~q? (4)
t

Now that we know the value of ending up in a particular belief state, we
move on to discuss finding the best action for each belief state, 7r, given that
we will only be executing one action. We know that the ending belief state
will be 7r' = T(7rIa, 0). The agent will have control over the action a, but not
over the observation O. Because it cannot control the resulting observation,
the agent must use the model of observation probabilities to weigh all the
possibilities:

1t;*(7r) = max[E7ri[qi +EPijrjoVO(T(7r 1a,O))]].
aEA 0 0"

t J,<J

By substituting for VO(·) and using formula 3 for T(7rJa,O), after some
cancellation we get

1t;*(7r) = max[E 7riqi + E 7riPijrjOq?].
aEA 0 00"

t 't,J,Q

With this formula we can determine the best action to take for any given
belief state by performing the maximization shown. Thus, the optimal policy
for t = 1 can be defined as

8;(7r) = arg max[E 7riqi +E 7riPijrjOq?].
aEA 0 0 ."

1 t,J,rJ

Although the belief space is continuous, we are able to represent a policy
over its entirety with this small finite formula, though there is some extra
work required to perform the maximization. Notice here that the policy was
derived from a value function. We show, shortly, that if you can represent
the value function in this nice way then you also have a way to represent
the policy since it is just the argument used in the maximization procedure.
Indeed, this is exactly what we show for the general case next.

17

2.7.1 Value functions for POMDPs

To move to the general k-horizon case of the value function, we use the
same ideas demonstrated for the I-horizon case. First, let us assume we
know the optimal value function when there are n - 1 time steps remaining,
V:_1 (·). The basic form is the same as the MDP, but here we have a few
extra complications to consider. First, we must take the weighted average
of all the states, with the weighting of a state's value coming directly from
the belief state. Second, we need to factor in all the possible observations
we could possibly make and take a weighted sum of the values using the
observation probabilities. Lastly, when we consider the value for the next
step we must transform the belief vector based upon the current belief state,
the action and the observation. Folded together and taking the maximum
for all possible actions we get

V:(7l") = m:x[~ 7l"i ~pt L rjo (wijo + V:_1 [T(7l"la, 0)])].
t J 0

Just as we did with the MDP model we can use factoring and substitution
of formula 2 for the qf values to simplify this to

V:(7l") = m:x L 7l"iqf +L 7l"iPtrjO V:_1 [T(7l"la, 0)]. (5)
i i,j,O

This formula can appear rather complex at first. With its recursive defi
nition and abundant summations it would seem that trying to solve for such
a value function would get messy. However, if Vn*(7l") is piecewise linear and
convex (we show shortly that it is) it can be written much simpler as

for some set of vectors a(n) = {aO
(n), a 1 (n), ...}. This is the crucial point for

understanding the remainder of the paper and the algorithms. Unfortunately,
this is also the easiest point to get confused. The simultaneous introduction
of terms piecewise linear and convex and the af(n) notation can easily make
your head spin at first. Going through each piece slowly, a piecewise linear
function is one that is composed solely of line segments or hyperplanes. There
may be many linear segments that together combine to make up this function,

18

but at any point there is one line segment (hyperplane) that covers that point.
A linear function of variables Xi can always be written with coefficients ai as

2::: aiXi = aoxo +alxl +... +aNxN·
t

A piecewise linear function can consist of one or more linear segments
of this form and so we superscript the coefficients of each to indicate which
linear segment they come from so that the kth linear segment will have the
equation:

We will refer to the vectors a k = [a~, a~, ... , at] as a-vectors in the
remainder of the paper and each vector will represent the coefficients of
one of the linear pieces of a piecewise linear function. These piecewise linear
functions will be the value functions for each step in the finite horizon POMDP

problem. As a result it will be convenient to index the a-vectors by the
number of time steps remaining where ak (n) represents one of the linear
pieces of the value function V;(·).

We now develop the value functions for the finite horizon POMDP problem
and show that they are indeed piecewise linear. With this result we can see
how to represent a value function over a continuum of points (i.e., the belief
space) with a finite number of items (i.e., a-vectors). This result is also
shown in [16, 15]. This simpler representation is the key element to the
POMDP solution techniques. Remember that the agent will only know the
belief state, which is a probability distribution over the states of the model.
With the MDP model there was a finite number of states and because the
agent knew which state it was in, it could store the value function as a table.
In the POMDP framework, the belief states are continuous. There are an
uncountably infinite number of belief states which makes representing the
value function by tables impossible. With this a(n) vector representation we
have found a way to represent the value function for this continuous belief
state space.

As an example Figure 6 shows a value function over an lSI = 2 belief
simplex. It consists of 4 vectors, which in theis case define 4 lines in a plane.
Since our value function takes a maximum dot product of these for all belief

19

,,

Uz ,,, ,,00,, ,

1to=O 1to=1

Figure 6: Sample piecewise linear and convex value function for lSI = 2

points, the value function is the upper-most line segment at each point. This
maximization always results in a convex function of this type for lSI = 2.
This convexity generalizes for higher dimension state spaces as will be shown
shortly.

Our value function above is defined recursively, but our vector represen
tation of the value function is not, it merely shows the representation as if we
knew the various a-vectors for that value function. To be useful, we would
like a formulation that will define the vectors for time step n based upon
the vectors from time step n - 1. This is achieved by simple substitutions
and the introduction of an indexing function to keep track of how we use
the n - 1st vectors, a(n - 1). This will also demonstrate the inductive step
in the proof that the value function for a finite horizon POMDP problem is
piecewise linear and convex.

Our inductive hypothesis is that V:_1 (.) is piecewise linear and convex
and thus can be written with some set of a-vectors, {aO(n - 1),a1(n
1), ... , am (n - I)} as

V:_1 (1r) = mtx[~ 1ria7(n -1)].
t

However, when we are interested in the value for t = n -1, we will actually
be dealing with a transformed belief vector so that we are really interested

20

III

V:_ 1 (T(1I"Ia, 0)) = mtx[~ 1I":a7(n - 1)].
1

Substituting for the transformed belief vector we get

Every evaluation of this formula, for a specific 11", a, and 0, can result in a
different ak(n - 1) being selected (from the maximization process. Since we
will soon need to put this definition of Vn*-l (.) into the formula for Vn*(·) we
need a way to keep track of which of the ak(n - 1) was the maximum. To
this end we define the function t(11", a, 0) to be the index of the a-vector that
maximizes Vn*-l (T(1I"1a, 0)).

t(11", a, 0) = arg m:x [~ 1I"iPijrj(laj(n - 1)] (6)
1,3

Notice that the 11" argument is actually being transformed by the function
T(1I"Ia,O) and that the denominator is not relevant for the maximization
procedure since it will be the same for all k. This is how the Vn - 1 (-) formula
looks with our new index notation:

The next step is to substitute this into our recursive definition of the
value function given in formula 5:

After some summation manipulation, cancellations and factoring we are
left with

(7)

21

The terms are arranged this way to show that we still have the value
function in terms of linear segments. In this case the vector portion is defined
by the inner bracketed quantity:

This completes the inductive step of the proof that the finite horizon
POMDP problem value function is piecewise linear and convex. To complete
the proof, we use the base case referred to earlier. The terminating rewards
we defined in formula 4 show that the value function for t = 0 is also piecewise
linear and convex. This proof was first shown in [16] as was the observation
that the value function could be represented by a finite set of vectors.

If we know all the a k (n -1) vectors for the V:_ 1 (.) value function, then by
simple calculations using formulas 6 and 7 we can compute the above term
to arrive at a linear segment, a(n), of the Vn*(·) value function.

Another very important thing to notice about this new Vn *(.) formulation
is that for a given belief state 7r, in order to find its value we must do a
maximization over all possible actions. According to the form above each
action will result in a new vector. Each of these a-vectors for time step
n has an associated action that gave rise to it. When we perform these
maximizations in forming the V: (.) value function we should also keep track
of the specific action, a, that gave rise to it for each a(n) vector. With this
combination of vector-action pairs we will have a compact way to represent
the optimal policy for the finite horizon POMDP problem, namely just perform
the maximization over all a(n) and take the associated action of that vector.

2.7.2 Geometric Interpretation of Value Function

The formulas and language of the previous section can serve to obscure the
nice properties of the value function. In this section we attempt to improve
the intuition behind the previously mention concepts of piecewise linear and
convex and to provide a geometric interpretation of the value function. This
representation is most valuable when trying to describe and understand the
various algorithms discussed in this paper and in any other POMDP paper.

Note that with all of our previous definitions of value functions we have
assumed that higher values are better than lower values. This stems from
the fact that we chose the Wfjo to represent rewards. However, the wfjo

22

1.0

0.0 1to 1.0

Figure 7: Simplex of belief space for lSI = 2

could be defined to represent costs. This formulation is found in some of the
existing POMDP literature and results in the maximization procedures being
replaced by minimization procedures. Other than this change the rest of
the formulation remains unchanged except that typically the value functions
V*(·) are referred to as cost functions, C*(·). We will continue to adopt the
reward/value interpretation.

For all the following examples and diagrams we start with the space of
beliefs. Since beliefs are probability distributions over the underlying model
states we see the belief simplex for the 2 and 3 dimensional cases in Figures 7
and 8 respectively.

The value function is a function of the number of components in the belief
state and is thus a function in lSI +1 space where lSI is the number of states
in the model. Because we would like to demonstrate these geometric ideas for
the cases IS I = 2 and IS I = 3, we need a slightly different representation of
the belief simplexes. This will prove to be both easier to understand as well
as easier to produce on the printed page. The key to this other representation
lies in the observation that one component of the belief state can always be
omitted since the components (being a probability distribution) must sum
to one. With this we can represent the 2 dimensional belief space as a
single line or axis as in Figure 9. Here the distance from the left axis is the
first component 71"0 and the distance from the right can be used to compute
the second component 71"1' Our value function can now be represented by
drawing it above this line. In Figure 9 we see a value function over the belief

23

1tz

Figure 8: Simplex of belief space for lSI = 3

space which consists of two linear segments. Since we assume that we are
concerned with getting the maximum reward the actual value function is
always the larger of the two linear segments.

Notice also that the value function for this case imposes a partition of
the 11"0 axis and thus is a partition of the lSI = 2 belief space. This partition
divides the belief space according to which of the linear segments (a-vectors)
is maximum. The partition is shown with small vertical lines on the axis.

We turn the lSI = 3 case into a two dimensional triangle as shown in
Figure 10. In reality, the belief space is a two-dimensional triangle lying in
three-dimensional space as shown in Figure 8, but in Figure lOwe view it
simply as a two dimensional object where the value of a point in the belief
space can be obtained by the perpendicular distance to sides of the triangle
each distance representing a different component of the belief vector.

The value function for and lSI = 3 problem can be thought of as a three
dimensional surface lying above this triangle as shown in Figure 11. The
surface is comprised of hyperplanes (i.e., it is piecewise linear and convex)
and we can also view it as imposing a partition on the belief space. The
borders of the partition are the projections of the intersection lines of the

24

V(1t)

0.0

.....
.....

1.0

Figure 9: Sample value function for lSI = 2

0.6

···Y'··0.3

0.1 :

1.0

Figure 10: Example belief for lSI = 3, 7r = [0.1,0.3,0.6]

25

Figure 11: Sample value function for lSI = 3

hyperplanes.
As shown previously, the value function is piecewise linear and con

vex. Geometrically this means that the value function is composes solely of
straight lines (for lSI = 2), planes (for lSI = 3) or hyperplanes (for lSI> 3).
Each a-vector represents the coefficients for one of these lines or planes. The
highest plane (or line) at a point is the a-vector that represents the value
function for this point. A key point with these pictures is that each a-vector
defines a region over the simplex. These regions represent a set of belief
states. Since there only a finite number of a-vectors, there are only a finite
number of regions defined over the simplex.

2.8 Alternate Value Function Interpretation

There is another way in which we could go about determining the best policy
for a k-horizon POMDP problem. This method comes from the observation
that at each step there are only a finite number of things we can choose to do

26

Figure 12: Example policy tree

and a finite number of things we can possibly observe. Since we have a finite
horizon, we could actually enumerate each possible policy we could follow as
a decision tree. As an example consider the tree shown in Figure 12. This
is one of the potential policy trees for the case where we have 4 possible
actions, 3 possible observations and a finite horizon of k = 3. The nodes
represent an action decision and the branch taken from a node depends on
the observation made.

Knowing the initial belief state allows us to calculate the expected value
for each of these trees. To do this we merely take an expectation for the
immediate rewards (weighed by the belief state) for the action in the current
belief state and then add the expectation for the subsequent actions. This
requires us to compute the transformed belief states and weight each possi
bility by the probability of each observation. There are a finite number of
trees and so we could just enumerate all of them. This would actually specify
a policy since for a given belief state, we could evaluate all the possible trees
to decide which is the best action to take. However, there are 413 possible
policy trees for this example since each of the nodes represents a decision
point which could have anyone of 4 possible values. The number of nodes
in the tree will be determined by the formula

and the thus the number of possible trees is

27

3

This is too many to expect to be able to generate. However, many of
these policy trees will be useless in the sense that there will be no belief state
for which they will be the best one. If we could somehow only generate the
useful trees we would have reduced the complexity greatly. An additional
savings could be made if we could collapse similar parts of the useful policy
trees into the same sub-tree.

The the previous sections we have seen a way to construct a piece of the
value function V:C1l') given that we know the value function V:_ 1 (.). However,
this only gives us the a(n) vector in the V: (.) for a single specific belief state
1r. In order to create the entire t = n value function we would need to apply
formulas 6 and 7 at every single belief point in II. There are too many of
these points (an uncountably infinite number) for this naive algorithm (of
applying these formulas to all points) to work. However, there will only be
a finite number of possible a(n) vectors for any given horizon k. We will see
that these a(n) vectors have a direct correspondence with the useful policy
trees.

POMDP Solutions

We will first explore the structure of the solutions to finite horizon POMDP

problems and their relationship to the solutions to infinite horizon problems.
In the next section we will present a number of algorithms for computing
these solutions. The general method for the finite horizon problem iterates
over the time steps. We first derive the optimal policy for the case when there
is only one time step remaining. Given this solution we now find the optimal
policy for two remaining time steps and this process is repeated until we have
arrived at the solution to the the finite horizon size we are interested in. It is
essentially a dynamic programming problem where the optimal solution for
time step t is phrased in terms of the optimal solution for time step t - 1.
For the finite horizon case we will actually be constructing the value function
and the policy. For this, we will utilize the recursive formula for the value
function described previously, and repeated below. Recall that the value
function at each step can be represented by a set of vectors:

28

With this form we see that if we know how to compute the value func
tion and optimal policy for one time step (given the value function for the
previous time step) then we know how to solve the finite horizon problem for
any horizon since we can continually use the current output as the input to
another iteration. Therefore when we discuss these finite horizon methods
we will only need to discuss the task of computing the value function, V:(·),
for one step given that we have the previous value function, V:_ 1 (-) as input.

One of the unpleasant parts of the finite horizon solution is that our
resulting policy is potentially very large. If we decide to solve a k-horizon
policy and perform the above mentioned iterative procedure, then the final
policy and value function we get out (the one for k remaining time steps) is
only a part of our answer. Each policy and value function at each step is
actually part of the correct k-horizon non-stationary policy. This becomes
clearer when we consider how the agent would use this policy knowing it only
has k time steps remaining. At first there are k time steps remaining and
so it can look at the policy it generated for this case (the last one computed
from above). This will tell it the optimal action to take, but immediately
after it executes the proper action there are k - 1 time steps remaining. The
policy it just used is not relevant for this case, however, in computing the k
horizon policy we had to compute the k - 1 horizon policy. It is this policy
that the agent needs to use now. This same argument repeats and so all of
the intermediate work in solving the k horizon policy must be retained.

As a quick aside to try and head off a possibly confusing part of the
notation we need to emphasize exactly what the t time step represents. Here
the t represents how many more decisions (actions) will the agent have left
to take. It is easy to confuse this t with how many steps the agent has taken.
This becomes especially confusing when one starts to think of the agent
executing these computed policies. When we think of the agent carrying out
these policies we would expect time to proceed forward (i.e., t, t +1, ...), but
the policies it will execute will be proceeding in decreasing order of t since
after each step the agent has one less decision (action) to make.

There is a certain class of POMDP problems for which we can use this iter
ated finite horizon approach to solve the discounted infinite horizon problem.
This doesn't say that all infinite horizon problem can be computed this way,
but for a certain class (called finitely transient and discussed later) we can
perform the finite horizon solution technique until we find two consecutive
time steps that have exactly the same answer. When this occurs, we know

29

that further iterations will continue to give this exact same answer no matter
how large the horizon is made. This follows from the fact that at each step
you derive the optimal solution based solely on the previous optimal policy.
If the previous optimal policies are the same for any two time steps, then the
computed optimal policy for these two times steps must be the same. The
pleasant part of the infinite horizon case is that, unlike the finite horizon,
we can discard all the intermediate results. It is only the final repeating
optimal policy that needs to be retained since the optimal policy is a sta
tionary one. Of course in order for the value function to converge, we must
add a discount factor to the value, otherwise if we merely kept accumulating
the rewards from all the previous time steps, the value function could grow
without bound and thus never converge. The addition of a discount factor f3
is a simple change to the value function:

We will return to discuss the infinite horizon case in more detail later,
but we thought it instructive to draw the connection between the finite and
infinite horizon problems here.

An important point which has not yet been mentioned, though might
already be obvious, is the use of the value function. For one step of the
iterated solution procedure we assume that we have the previous value func
tion V:_1 (-) with which to construct the new value function V;(·). Our
value function, V:_1('), will take the form of a set of vectors (a(n - 1) =
{aO(n -1), a1(n - 1), ... , am(n - I)}) where each one represents one of the
linear pieces that comprise this value function. As we saw previously we can
use the recursive value function equation to give us a new a(n) vector, but
the key point here is that in order to construct this a-vector we must first
know a particular belief state 7l". Using this the value function formula for
any valid belief state will give you an actual linear piece of the V;(-) value
function, however, it does not let you make any claims about the region (set
of belief states) for which this is optimal (other than it includes the belief
state we used to generate it).

The bottom line here is that given a point in the belief space we can find
a piece of the value function, but the problem is that there are just too many
(uncountably infinite) belief states for us to crank through the formula this

30

way. One solution is how to just choose points at random in the state space
to use in the formula. One would hope that with enough points we wouldn't
miss any of the true a-vectors that comprise the value function. This turns
out to be a poor solution for many reasons. The first problem is to decide how
many points to choose and this is directly related to the dimensionality of the
belief space. The larger the belief space the more points you would expect to
have to choose. The worst problem (from the theoretical perspective) is that
we are never guaranteed to find the true value function (and optimal policy)
with this method since we never know if some new point would generate
another a-vector. We have run this approach on a number of problems and
found that empirically it performs poorly even for small problems.

The key to finding optimal policies (i.e., true value functions) is to develop
a systematic and terminating algorithm to explore the entire continuous space
of beliefs. A finite method is possible since we know that there will only be
a finite number of a-vectors to discover. The method used in exploring the
belief space is where most of the algorithms discussed in this paper differ.

3.1 Structure of POMDP Solutions

The previous sections have discussed the mathematical foundations for solu
tions to POMDP problems. In this section we we look at the solutions from a
practical view point. Although we do not discuss solution procedure until the
next section, here we will begin to show how these solutions can be utilized.
We discuss the finite horizon problem which will then lead us directly to the
infinite horizon problem.

3.1.1 Finite Horizon

The raw output of the algorithms we later discuss is a set of vectors, a(t) =
{ aD (t), a l (t), ... , am (t)}, one set for each decision time, t. This refers to the
finite horizon case where there is a non-stationary policy. In addition, each
of these vectors will have a single associated action with it. To decide what
action to take (i.e., use the policy) we take the set of vectors for the current
time period and find the vector in this set which gives the largest dot product
with the current belief state. The action associated with this vector is the
action that should be executed. In this way, the policy can be stored as the

31

Figure 13: Example POMDP environment

vectors that comprise the value function along with an associated action for
each vector.

In order to better motivate the discussion that follows we introduce a
simple POMDP example shown in Figure 13. In this example, imagine that
we are standing in front of two closed doors. Behind one of the doors is
a tiger and behind the other is a large reward. If the door with the tiger
is opened, then a large penalty is received (presumably as some amount of
bodily injury). Most likely, we would prefer to open the door with the large
reward instead. Aside from opening one of the two doors we have another
action we can take, namely to listen. We choose to listen hoping that we will
be able to hear which door the tiger is behind, but listening is not free, there
is a cost associated with it. Unfortunately, listening is not entirely accurate
and there is a possibility that we will get the wrong information when we
listen.

The complete set of parameters for this problem is given in Tables 2
through 4. State So represents the state of the world when the tiger is on the
left and 81 represents the state when the tiger is on the right. Action a = 0
is the action of listening and a = 1 and a = 2 are, respectively, the actions of
opening the left door and opening the right door. The reward for opening the
correct door is +lOwhereas there is a penalty of -100 for choosing the door
with the tiger behind it. The cost of listening is -1. The two observations
possible are to hear the tiger on the left or right. We have constructed this
problem so that immediately after opening a door, the problem resets with
the tiger randomly placed behind one of the two doors. Aside from resetting

32

~ p?j I j = 0 I j = 1 ~

~ ~ : 0 I 1.0 I 0.0 ~
t - 1 0.0 1.0

~ ptj I j = 0 I j = 1 ~

~ i = 0 I 0.5 I 0.5 ~
i = 1 0.5 0.5

~ prj I j = 0 I j = 1 ~

~ i = 0 I 0.5 I 0.5 ~
~ i = 1 0.5 0.5 ~

Table 2: Example transition probabilities

the tiger, the parameters have been constructed so that the belief state will be
reset to the uniform distribution, 7r = (0.5,0.5), when either door is chosen,
regardless of the belief state at the time the door is opened.

If we are given the policy (i.e., the vectors and their associated actions)
for each time step, then we can determine the proper action to take, but
only if we have the current belief state. Let us begin with the policy for the
time step t = 1, which is the policy when the agent will only get to make
a single decision. There are three different actions the agent might choose
to execute, open the right or left door or listen. If our belief state was such
that we had a high probability of being in the state "tiger-left". then we
would imagine that the best thing to do would be to open the right door. In
the symmetric case of having a high probability of "tiger-right", we would
expect opening the left door to be the best action to do. But what if we are
highly uncertain about where the tiger is at this time? The best thing to
do would probably be to listen. To see this notice that guessing wrong will
cost us a penalty of -100, whereas guessing correctly only rewards us with
10. When we have no strong beliefs either way we would expect to guess
wrong as often as we guess right. Thus, the expected reward would seem to
be -lO~±lO = -55. Listening always costs us -1 and so, in the long run we
would expect listening to cost us less that opening one of the doors in the

33

~ r~O 1 e= ole = 1 I]

~ ~ = 0 I 0.85 I 0.15 ~
J = 1 0.15 0.85

~ r}o 1 e= ole = 1 I]

~ ~ = 0 I 0.5 I 0.5 ~
J = 1 0.5 0.5

~ r~o 1 e= ole = 1 I]

~ j = 0 I 0.5 I 0.5 ~
j = 1 0.5 0.5

Table 3: Example observation probabilities

~ w?iO le={O,l}~

~i=O,j={O,l}1 -1 ~
i=l,j={O,l} -1

i = O,j = {O, I} -100
i=O,j={O,l} +10

i = O,j = {O, I} +10
i = O,j = {0,1} -100

Table 4: Example rewards

34

a°(l) =(10.0, -100.0) al(l) =(-100.0, 10.0) a2(1) = (-l.O, -1.0)

8 8 8

lro =[0.90, 1.00] leo =[0.00,0.10] lro = [0.10,0.90]

Figure 14: Tiger example policy for t = 1

case where we are uncertain about the tiger's location.
The previous paragraph gives the intuitive argument for what the policy

for t = 1 should be and it turns out that this is exactly the optimal policy
for this case. Figure 14 shows this policy pictorially. In this figure we show
each of the vectors as a node in a graph (which currently has no edges). The
actual vectors are shown above each node and below each node is the belief
interval lover which it is the best vector. These three vectors cover the
entire belief space (i.e., partition the belief space) and each has an associated
action (shown inside the node circle) and so this specifies a policy for t = 1.

We now move on to the case where the agent has two decisions to make,
t = 2. This is shown in Figure 15 and has an interesting property; it always
chooses to listen. There is a logical reason for this. If the agent were to
open one of the doors at t = 2, then, due to the way the problem has been
formulated, the tiger is randomly placed behind one of the doors and the
agent's belief state will get reset to 1r = (0.5,0.5) (i.e., it has no information
about where the tiger is). So after opening a door the agent is left with no
information about the tiger and one action left to take. We just saw that for
the case where t = 1 and 1r = (0.5,0.5) the best thing to do was to listen.
Therefore no matter what happens, whether it opens a door or listens, one
of the two decisions will result in a listen action. In a way, the agent knows
this and so chooses to listen first since this will give it information about the
tiger. This way the agent will be better informed (since it has listened once)
when it makes its next decision.

The other interesting aspect of Figure 15 is the number of vectors that
exist. Although it will always choose to take the action listen, there are
several vectors that have that action associated with it. These vectors are
actually partitioning the belief space into pieces that have some structural
similarity. The similarity the belief states in a partition element share is

1The belief interval is in terms of the component 71'0 only since 71'1 can be found by
subtracting 71'0 from 1.

35

a O(2) =(9.0, -101.0) a2(2) =(-2.0, -2.0) a4(2) =(-16.9,7.4)

a 1(2) =(-101.0, 9.0) a3(2) =(7.4, -16.9)

e e e e e
lto =[0.98, 1.00] lto =[0.39, 0.61] Ito =[0.39,0.39]

lto =[0.00,0.02] Ito =[0.61,0.98]

Figure 15: Tiger example policy for t = 2

t=2

t=1

Figure 16: Belief state mapping from t = 2 to t = 1

that when they are transformed, via T(7rla,O) in Formula 3, the resulting
belief states will all lie in the same partition defined by the policy for t = 1,
In other words, every single belief state in a particular partition for t = 2
will, for the same action, a, and observation, 0, be transformed to exactly
the same partition imposed by the policy for t = L We have shown this
relationship pictorially in Figure 16. Notice that the edges only need to be
labeled with the observations since the action used in the transformation of
the belief state is dictated by the node corresponding to that belief state.

Interestingly, the optimal policy for t = 3 also consists solely of nodes
with the listen action. The nature of the problem as it is set up is such
that if we start from the uniform belief state, 7r = (0.5,0.5), listening once
cannot gives us enough information (i.e., change our belief state enough) to
make choosing a door more rewarding than listening. As mentioned before,
choosing a door will always reset our belief state to this uniform distribution.
Therefore, just like the argument for t = 2, if we chose a door with t = 3
steps remaining, we would be guaranteed to listen for the next two steps.
Since the agent knows that this is the case, it would prefer to do the two
listening steps up front since that will give it the most information when it
finally decides what to do at t = L You can see in Figure 16 that starting
with belief state 7r = (0.5,0.5) we will choose to listen when t = 2 (a2 (2)),
and then, no matter what we observe, move to a belief state that lies in the

36

(l2(4) (l°(4) (l4(4) (l'(4) n'(4)

"0=10.62,0.931 "0= 10.93. IJJO) "0=10.38.0.&2) 'fo=IO.OO,Q.Od] ""0=(0,06,0,381

t=4

t=3

t=2

t=l
(l°(I) (l2(1) (l'(I)

"0 = [0.90. 1.00] "0 = [0.00, 0.10] "0 = (0.10, 0.90)

Figure 17: Policies and relationship for t = 1 through t = 4

listen node for t = 1 (a2(1)).
This argument for doing the listening up front no longer applies after

t = 3 and all the optimal policies for t > 3 will choose to open a door for
some initial belief state. In Figure 17 we have shown the structure that
emerges for the optimal policies from t = 1 to t = 4. Note that the belief
state partitions imposed by these policies is only shown for the first and last
policy.

Figure 17 shows many of the interesting structures of a finite horizon
POMDP solution. Notice that at the t = 3 level there are a couple of nodes
(aO(3) and a 1 (3)) that do not have any incoming arcs from the t = 4 level.
This is interesting because it is showing that no matter what belief state you
start out in at time t = 4, there is no action you can take and observation
you can make that will leave you in a belief state that lies in the partitions
defined by those unused nodes at t = 3. (i.e., Certain belief states are not
possible at this time step no matter what the agent's belief state was on the
previous time step.)

Perhaps the most interesting aspect of Figure 17 is the way in which the
belief states behave. If we choose one of the belief partitions for t = 4, and
then execute this policy, the actions and observations the agent makes will
precisely define the nodes in the graph that are traversed (i.e., which actions
to take at each time step). Regardless of the actual starting belief state, as
long as it lies in that particular partition, the action sequence will be exactly

37

Figure 18: Two possible policy trees for tiger example

the same for a given sequence of observations.
The policy trees discussed in a previous section are very much related to

this solution structure. Recall that a policy tree was a specific sequence of
actions to take based solely on the observations made. In that section we
discussed the possibility of generating every possible tree and then evaluating
each to see which was the best for a particular belief state. The graph shown
in Figure 17 actually has some of these policy trees embedded in it. One
major difference between this solution structure and the policy trees is that
the solution structure does not have all possible policy trees in it, only the
useful ones. The other major difference is that, within the solution structure,
policy trees with similar sub-components will have these sub-components
collapsed. For instance consider the two policy trees for t = 4 shown in
Figure 18. These are two of the 215 possible policy trees. Both of these
policy trees are embedded in the graph of Figure 17 and are therefore two
of the useful policy trees. Notice how nodes of the tree are collapsed in the
resulting figure. Figure 19 shows one of the policy trees that is not useful.
There is no starting belief state where this tree will be the best thing to do.

3.1.2 Infinite Horizon

With the finite horizon problems, the non-stationary policies generated can
be quite cumbersome since there is a complete policy for each and every
time step of interest. Without discounting future rewards, these policies will
generate a different set of vectors (i.e., value function) for each and every
time step.

When we add a discount factor to decrease the value of future rewards,

38

Figure 19: A policy tree that is not useful

the structure of the finite horizon POMDP problem changes slightly. As the
time, t, gets larger the effect of the rewards received for early times (e.g.,
t = 1, t = 2, etc.) will begin to have negligible influence on the policy for
these later time steps. As t ~ 00, the vectors output by the discounted finite
horizon algorithms begin to converge on a fixed set of values. As a result, for
large t, the policy looks much the same as the policy for t-I. Figure 20 shows
the solution to the discounted finite horizon of the tiger POMDP example for
large values of t. Notice that the structure of the graph is exactly the same
from one time to the next. The actual corresponding vectors for each of the
nodes (which together comprise the value function) in the graph differ only in
the fifteenth decimal places. This shows how the value function is converging.
The structure of the graph remains unchanged, even though the values of the
underlying vectors are slightly different from one time step to the next. This
structure first appears at time step t = 56 and remains constant all the way
up to t = 105. When t = 105 the precision of the algorithm used to calculate
the policy can no longer discern the difference between the vectors' values
for succeeding intervals.

If we solve the finite horizon problem for larger and larger t, the value
function (and its policy) for the largest time step gets closer and closer to
the value function for the infinite horizon problem. The two converge when
t ~ 00. In this way we can use algorithms for the finite horizon problem
to get arbitrarily close answers to the infinite horizon problem. Since there
is finite precision in most of the algorithm implementations, there will be a
point at which the solution appears to converge. Although the actual value
function only converges in the limit, for practical purposes, the solution the

39

t=105

t=104

t=103

Figure 20: Structure of solution for large t

algorithms converge on for the discounted finite horizon are close enough
to the actual infinite horizon solution. The advantage of infinite horizon
solutions is that we only need the last policy generated and can throwaway
all the other time steps' policies. (i.e., The optimal solution for the infinite
horizon problem is a stationary policy.)

3.2 Policy graphs

One major drawback of the POMDP approach is that the agent must maintain
a belief state. While in theory (since we assume we know the model), this is
not a significant problem, in practice it can become a major problem when
the agent might not have the resources (time or hardware) to perform the
updating of belief states. Fortunately there is a way to encode the policy in
a graph such that no explicit belief states need to be maintained. We refer to
such graph as policy graphs and they appear first in [16]. The policy graphs
we discuss apply to the infinite horizon solutions.

Recall Figure 20 where we have converged upon an infinite horizon policy.
If we continued to run the algorithm longer and longer, we would continue
to get the exact same structure. Because we have the same structure at
every level, we can re-draw the edges from one level to itself. Although this
is erroneous in the finite horizon problem (because eventually we will get to
lower values of t where the graph is not the same), for the infinite horizon, we
can generate as many of these identical levels as desired. This rearrangement
of edges is shown in Figure 21.

40

t=105

t=104

t=103

Figure 21: Rearranging edges for infinite horizon

Figure 22: Policy graph for tiger example

In Figure 22 we have redrawn this graph into what we refer to as a policy
graph. Here "TV' and "TR" represent the observations "tiger-left", () = 0,
and "tiger-right", () = 1, respectively.

The policy graph in Figure 22 has the interesting property that there are
some nodes of the graph that will never be visited once either the open left
or right door actions are taken. This results from the resetting of the belief
state to 1r = (0.5, 0.5) induced by our particular problem. If we imagine that
the agent always starts in a state of complete uncertainty, then it will never
be in a belief state that lies in a partition of these non-reachable nodes. This
results in a simpler representation of the policy graph, shown in Figure 23.

Recall that the vectors that each node represents defines a partition of
the belief space and, furthermore, that these all beliefs within a particu

41

TL (X2

(0.37,0.63)

Figure 23: Trimmed policy graph for tiger example

lar partition will map to a node on the next level exactly contained in the
partition imposed by the vectors of that next level. In the case where we
collapse the levels into one, we are guaranteeing that the partitions have a
one-to-one mapping for the transformed belief states (for a particular action
and observation). This policy graph representation allows us to forget about
maintaining belief states because as long as we are guaranteed that the belief
states behave in this manner, the exact belief state is not important. The
only thing that is important is which partition the belief state lies in and, by
the properties of the policy graph, all the subsequent belief states will lie in
partitions solely determined by the following the actions on the graph and
transitioning to another node based upon the observation seen.

3.3 Finitely Transient Policies

In our discussion about using finite horizon algorithms for finding solutions
to discounted infinite horizon problems, we ignored a few important aspects
about infinite horizon solutions. Solving the finite horizon for larger and
larger horizon sizes will give solutions (value functions) that get closer and
closer to the optimal infinite horizon problem. However, only in the limit do
the two actually converge.

We developed the idea of policy graphs assuming that the solutions for
each time step would converge. This will happen for only a certain class of
problems. When this does converge, then we can construct the policy graph,
but we cannot do this when the solutions do not converge.

Finite Transience is formally defined in [16] and is the property of a policy

42

not of the POMDP problem. Here, we opt for a more intuitive understanding.
Recall that a particular policy will define a partition of the belief space and
that each node of the policy graph represents one of these regions. Moving
around in the policy graph (based upon the resulting observations), is actu
ally the same as moving around in the belief space since the belief state will
be transformed by T(-7rla, 0) at each step (whether or not we choose to actu
ally compute it or not). With the policy graph we are implicitly assuming
that all the belief states within a particular partition element will be trans
formed to another element under T(-7rla,O) for a particular a and O. This
held from the properties of the POMDP formulation and the structure of the
resulting optimal policy. However, not all optimal policies for POMDPs will
define partitions with this property, but the ones that do are termed finitely
transient policies. For non-finitely transient policies we will not be able to
construct policy graphs of the type described.

4 Finite Horizon Algorithms

4.1 POMDP History

POMDP research grew directly out of the MDP research, both of which began
to flourish in the 1960's. [3] and [7] provided much of the basic framework
and solution procedures for MDP models. Among the earliest work dealing
with partial observability are [5] and [1]. Although none of these presents
algorithmic solutions to the general POMDP model, each provided some of
the groundwork for treating the general problem. In this section we will give
just an overview of some of the POMDP researchers and their work. Their
algorithms are treated in more detail in the subsequent sections.

The first researcher to give a detailed algorithm for finding optimal poli
cies for the general POMDP model is E. J. Sondik [16]. In this work he gives
an algorithm for finding the exact solution to finite horizon problems and
solutions to infinite horizon problems that are arbitrarily close to optimal.
Sondik treats both the discounted and undiscounted infinite horizon, though
this paper focuses only on discounted/undiscounted finite horizon and dis
counted infinite horizon. Unfortunately, Sondik's finite horizon algorithm is
difficult to follow as well as to implement and is slow for all but the small
est of problems. An attempt is made in a later section to present Sondik's

43

algorithm in a language that is more comprehensible than his thesis or his
subsequently published article [15].

Sondik's main contribution was to observe that since there were a fi
nite number of linear segments (regions over the belief simplex) in the value
function we could determine all of these segments by iteratively finding a par
ticular segment and the belief space region for which it was optimal. Once
this region was known you would know exactly where points in neighboring
regions would lie, namely, on the borders of the current region. The algo
rithm was guaranteed to terminate since there are only a finite number of
these regions in the finite horizon case.

Monahan [11] presented a much simpler algorithm for computing optimal
policies for the finite horizon. Although it is simpler to understand, it appears
more inefficient than Sondik's method,because it is an exhaustive algorithm,
but actually for most problems it turns out to actually be more efficient than
Sondik's method. The reasons for this are discussed in more detail in a later
section. Monahan's approach is to enumerate all possible linear segments
that could exist for t = i and then go through them one by one to see which
were relevant. Monahan's technique differs from most of the others presented
since it does not explore the belief space in any way. His insight was that
with a finite set of previous a(n -1) vectors and finite action and observation
spaces, there were only a finite number of possible ways the value function
could give different answers. Thus Monahan decides to enumerate all possible
a(n) vectors and check each for validity afterwards.

Eagle [6] presented the details of an optimization of this method suggested
by Monahan, that reduces the work needed to solve the problem. Eagle's
uses Monahan's observation that for many of the linear segments (a-vectors)
enumerated by Monahan's method, many could immediately be dismissed
if they were component-wise dominated by a previously enumerated one.
However, even with this optimization optimal policies to small problems can
still require a substantial amount of computational resources.

Cheng introduced two algorithms [4] the first of which (Relaxed Region) is
very similar to Sondik's except that he defines regions that are typically larger
than Sondik's and thus, the algorithm tends to be more efficient. Cheng's
other algorithm (Linear Support) uses successive approximations of the value
function to converge on the actual value function by comparing the current
approximation with the true value function at a set of points. Cheng guar
antees that if there is any difference between the two at all, then one of those

44

points will show the maximum difference. An additional advantage of the
Linear Support algorithm.is that it can also be used to generate approxi
mate solutions. Both of Cheng's algorithms require the use of an algorithm
for finding all the corner points of the regions (i.e., interior points of convex
polyhedra) which can result is poor running times.

Our Witness algorithm is similar to Cheng's Linear Support algorithm
except that instead of having to discover all of the corner points of a region,
we define a linear program to find points where the approximation is within
€ of the true value function. Use of a linear programming formulation has
resulted in better theoretical and empirical running times. The effect the
€ term has upon the resulting answers is discussed after the algorithm is
presented.

At this time it appears that seeking exact solutions to POMDPs is not
practical. There are many techniques for determining approximate methods
and many of these are discussed in [8].

4.2 Overview of Algorithms

In the following sections we will give detailed descriptions of some of the
better known algorithms for solving finite horizon POMDPs. We have ordered
the algorithms in a slightly out-of-chronological order. Our purpose here is
to attempt to present the simplest two algorithms (Monahan's and Eagle's)
first (both of which actually succeeded Sondik's method). After these we
present, in chronological order Sondik's one-pass algorithm, both of Cheng's
algorithms (Relaxed Region and Linear Support) and finally our Witness
Algorithm. It is hoped that the presentations of these algorithms are clearer
and more complete than some of the original descriptions of these algorithms.
We conclude this section with a comparison of these existing techniques.

All of these algorithms have a few aspects in common. They all are
performed iteratively (i.e., as a dynamic program). Additionally, all of the
algorithms try to find the set of vectors that define both the value func
tion and the optimal policy at each time step. The description of the al
gorithms is limited to the process of completing one iteration since each
iteration requires the exact same technique. They all start with the fi
nite set of vectors, (a(n -1) = {aO(n -I),a1(n -I), ... ,aM-1(n -I)}),
for the previous time step (i.e., the piecewise linear segments of the con
vex value function, V:_ 1 (.)). They all produce another finite set of vectors,

45

(a(n) = {aO(n),a1 (n), ... ,aN - 1(n)}), which represent the piecewise linear
value function, Vn*(·), for the next successive time step. In addition, each
of the a(n) vectors will have a single control action a associated with it.
The a(n) comprise the value function, V;(·), whereas the combination of the
vectors and associated actions are used in defining the policy, 8~(-).

All of the algorithms are presented as discounted finite horizon algo
rithms. The discounting factor f3 is not necessary for finite horizon problems,
but is included for the case where we want to use the iterated finite horizon
to solve for the discounted infinite horizon (in hopes that it converges). The
discount factor is a trivial addition and does not make the algorithms any
more or less complex. If fact, when f3 = 1, this is exactly the same as an
undiscounted finite horizon problem.

It is easy to set up the iteration for all of these algorithms by feeding
the resulting a(n) vectors back through the algorithm to get the a(n + 1)
vectors. Note that the associated actions for the input a(n - 1) vectors do
not come into play for the algorithms when they are computing the a(n)
vectors. They are only required to define the policy 8~_1 (.). Aside from the
POMDP model and the initial set of a(n -1) vectors, no other input is needed
for these algorithms (except the discount factor if one is being used).

4.3 Finding a Vector for a Single Point

This is one step that is common to all of the algorithms and so we have
chosen to deal with it in a separate section. Given a single point in the belief
state space we can use

(8)

to immediately generate a vector for each possible action. For these vectors
(referred to as aa(n)) we can use the formula

V:(7I") = m:x[~7I"iaa,i(n)]
~

to find out which of these will be the true vector at the belief point 71". This
maximal aa (n) then is one of the true linear segments of the value function.
Note that this is just the inner quantity from the recursive value equation
from formula 7.

46

Generating the a(n) vector immediately might be a bit of an over state
ment, it really involves a few steps, but each step is straight-forward and re
quires nothing more than simple calculations. However, we will step through
this exact procedure since it is a crucial step in all of the algorithms.

The basic scheme is that we will need to try all possible values of action
a in the formula and then choose the one that gives the maximum value.
The key point here is that it is not enough to merely save the action a and
its value (from formula 7), you must also save the inner bracketed quantity
(which is actually a vector) since once you find the action that maximizes
the value function it is the corresponding inner quantity that is the a-vector
for the particular belief 1r.

In the value function above the quantities qf, pfj, rjo and f3 are directly
available from the POMDP model and the belief state 1r is assumed to be given,
for the moment. The only unspecified term appears to be a£(1r,a,O)(n - 1). If
you recall, the function L(1r , a, 0) was merely a convenience that was used to
more succinctly represent the previous value function, Vn*-l (.). It was defined
as

L(1r, a, 0) = arg mtx [~ 1riPijrjoaj(n - 1)] .
t,J

We see in this formula that everything we need to compute L(1r, a, 0) is
readily available: pfj and rjo from the model and aJ (n - 1) as the input to
the current iteration. So we see that given a particular belief 1r, we need
only to crank it through the above two formulas and arrive at a piece (one of
the linear segments) of the true value function, V; (.). Since we know there
are only a finite number of these pieces (linear segments or a-vectors), if
we could somehow know the exact set of points that would generate each
of these pieces, we could construct the entire true value function as a set of
a-vectors from a finite set of points. All the algorithms discussed except one,
try to be clever about finding this set of points. Monahan's algorithm, which
is conceptually much simpler, is the one exception.

4.4 Monahan's Algorithm

We start with the easiest algorithm of the bunch, though it was presented
after the landmark work of Sondik ([16] [15]). Monahan actually credits this
algorithm to Sondik and, though there are similarities, Monahan's description
is different enough to warrant a separate treatment. This algorithm is both

47

easy to understand as well as easy to implement and it will provide a lot of
the groundwork that will be essential for understanding the other algorithms.
We begin again with our value function:

The key insight behind Monahan's method is noticing that there are only
a finite number of possible a-vectors (i.e., inner bracketed quantities) that
can be constructed from the above formula, despite the fact that there is a
continuum of belief states. The actual values (components) of the a-vectors
generated are not at all dependent upon the value of the belief state chosen.
The belief state only serves to decide which of the a k (n -1) vectors to include
in the summation over the observations. Since there is only a finite number
of the a k (n - 1) vectors and a finite number of both actions and observations
we can simply list all the possible ways that the value formula could be
evaluated. Sure, there can be a good number of themZ, but the number is a
finite one and we could enumerate and calculate all of them, given enough
time. Notice that since we have abandoned worrying about the belief state 1r

we cannot really attempt a maximization over the different actions. Instead
we just factor this into the enumeration scheme so that now we consider for
each possible action all the ways the ak(n -1) vectors could be combined in
a summation over the observations, ().

Here we will try to be more explicit about Monahan's enumeration scheme
so that no confusion can arise. For a given action, as we do a summation over
the observations, (), we get a choice of one of the previous a(n - 1) vectors for
each (). This amounts to filling in a table (e.g., ()o = a4 (n - 1), ()1 = aZ (n - 1),
()z = a9 (n - 1), etc.) with one of the a(n - 1) indices (of which there are
M possible choices). This means that there are MI8 1ways we could fill out
this table and that there are at most MI8 1 ways to do the summation over
observations. However, each summation can apply for each action and so
there are at most IA\MI81possible a(n) vectors we could generate. The first
step of Monahan's method is to create all of them.

The biggest problem now is that our value function probably doesn't
require all of these a(n) vectors. We have enumerated them without concern
for whether or not they really provide a maximal value for some belief state.

21AIM 10 1, where M is the number previous a(n - 1) vectors

48

We could just remember them all, and each time we need to find what action
to perform, maximize over all of these and select its appropriate action.
However, this is a lot of excess baggage to carry around since we could waste
a significant amount of time checking vectors that will never be maximum
regardless of the belief state chosen. For time critical applications, it would
not be very desirable to have the policy stored this way. An even worse
problem arises in the finite horizon problem, since we iterate many times
sending the results from one iteration to the next. If we never trim away
useless vectors, the number of vectors in the next iteration might be an order
of magnitude larger than if we had kept only the relevant ones. Even when
we do the trimming, the number of vectors at each iteration grows quickly,
without trimming this problem is greatly magnified. A later section provides
some analysis about how large these sets can grow, here we are content to
say "there are lots of them,,3.

To trim away the non-relevant vectors generated during the enumeration
phase Monahan's method utilizes linear programming (LP). Linear program
ming is also a common theme throughout the rest of the algorithms dis
cussed. What it does is more important than how it does it, but for the
reader interested in how LPs work see [18]. There are many levels that linear
programming can be interpreted. We opt for the geometric view, since that
is how we have been presenting the belief space and value functions.

The observation that will lets us use LPs to trim the set of vectors is that
for a vector to be a true part of the value function, there must be at least
one belief state 7r for which it gives a larger value than all the other newly
created a(n) vectors. Imagine that we want to check if aj (n) was a true
vector. To do this we set up a linear program with a constraints for each
other ak (n) we have generated:

This says that we are only interested in the region of the belief space
where aj(n) will provide a better value than all other ak(n). The variables
in this LP are the components of the state vector, 7ri, and a rewriting of this

49

in a more useful way is:

We have to add one additional constraint to these, namely

This makes sure that the point lies on the belief space simplex (i.e., it is a
probability distribution). Most LP packages assume that all of the variables
are non-negative. If this is not the case then we must also add the constraints
for the ranges of the variables

7ri ~ 0, Vi.

We can use virtually any objective function we want with this LP, since
here we are only concerned with whether or not there is any feasible solution
to the LP. If there is any solution at all, then there must be some point on
the belief state simplex that satisfies all of these constraints and thus aJ (n)
is indeed part of the true value function. If the LP is infeasible, then not only
have we found that it is not part of the true value function, we no longer
need to keep it around for subsequent LPs.

The linear programming formulation and solving described above only
checks a single vector. This entire process must be repeated for each of
the a(n) vectors enumerated. The only pleasing part of this procedure is
that the size of these LPs will diminish as we are able to trim more and
more extraneous vectors away since once we have determined a vector to be
extraneous, we don't have to generate a constraint for it when checking the
other vectors. The whole algorithm is then:

(1) Generated all possible vectors from formula 8.
(2) Add each vector to list and mark as undiscovered.
(3)	 Choose an undiscovered vector from list, if none

then we are done, list contains all useful vectors.

(4)	 Construct LP for that vector (see above) and mark

the vector as discovered.

(5) If the LP is not feasible, then remove the vector

50

from the list.
(6) Go to step (3).

4.5 Eagle's Variant of Monahan's Algorithm

Monahan [11] mentions that dominated vectors could be removed to help
reduce the number of linear programs that need to be solved. In [6] this
optimization is made more explicit. The optimization occurs in the phase
where we need to enumerate all of the possible new a(n) vectors. Eagle's
shows that if, in our enumeration process, we ever come across a vector whose
components are completely dominated by another vector's components (one
already generated by the enumeration process), then we can immediately
discard it since it is impossible for it to be a true vector in the value function.
In other words, if we just generated aj (n) and the following condition holds:

:Jk, Vi,

then we can immediately discard a j (n). This is true because all the belief
components 1I"i are non-negative. Finding a single existing vector that is
component-wise larger than another implies that for any belief 11" at all, the
former will result in a larger value, thereby rendering the latter extraneous.

Other than this check during the enumeration, Eagle's algorithm works
exactly the same as Monahan's: enumerate all possible vectors and verify
each one with a linear program. Eagle also mentions that we can skip the
linear program verification step if we are willing to pay the computation price
that will be incurred by keeping the extraneous vectors around. Since each
extra vector in one time step can lead to many extra vectors in the next step,
this seems to be an impractical solution for any problem. It is unlikely that
the any LP package would be slow enough to prefer eliminating this step.

4.6 Sondik's One-Pass Algorithm

4.6.1 Background

Edward J. Sondik [16] presented the first solution techniques for finding op
timal policies for general POMDP problems. This was the seminal work from

51

which all the other algorithms described in this paper were derived. His algo
rithm for the finite horizon case is also described in [15]. This latter reference
can be both a help and a hindrance. The formulas and notation in this arti
cle are much easier to follow than that of his thesis, and this article version
is devoid of the many theorems and proofs. However, a few typographical
errors, a couple of vague sentences and one serious oversight [12,8] make this
exactly the wrong primary source to use for an attempted implementation.

4.6.2 The One-Pass Algorithm

This algorithm begins where all the other ones begin; with the recursive value
function:

V:C7l") = m~x 2;: lI"i [qf + ~pijrj(Jo/}1r,a,(J)(n -1)]
t J,(J

Here, unlike the exhaustive enumeration of Monahan, Sondik actually
develops a method for finding the proper set of belief states to plug into
this formula to get all the necessary vectors. Furthermore, his algorithm
guarantees that this set of belief states is finite and that they generate all
the true vectors comprising the value function (i.e., none are missed). This
algorithm amounts to a search through the belief space by moving from one
region to another until every region is found. We will soon discuss what
exactly these regions represent, but here the important point is that his
algorithm is guaranteed to only visit a finite number of regions and that the
union of all these regions is equal to the entire belief space (i.e., these regions
are a partition of the belief space.)

The basic idea behind the algorithm is not too complicated to state, but
trying to implement this algorithm exposes many subtle problems. Deal
ing with these problems is what adds the real complications to the imple
mentation of this algorithm. Here is an over-simplified version of Sondik's
algorithm.

(1)	 Initialize a search list of belief states to contain
any single point.

(2)	 Remove a point from the search list, if the list is
empty then we are finished.

(3)	 Find the true vector (and its associated action)

for this point. (Use formulas 6 and 7)

52

(4)	 Define a region around this point where this vector
is guaranteed to be the true vector.

(5)	 Select points that lie on the edges of this region

and add them to the search list.

(6) Go to step (2).

Although this is an over-simplification, it is nonetheless an important ab
straction to understand since it is the very heart of this and the subsequently
described algorithms. Before we discuss the complications that can arise, we
will first expand upon the steps as they are currently shown.

The first two steps are straightforward and require nothing more than
maintaining a list-type data structure to store belief vectors (which are just
tuples of size lSI. A previous section describes, in detail, how to perform
step (3), just remember that in addition to generating the vector you need
to store the associated action that was used to create it, since this is what is
used to construct the policy.

Steps number (4) and (5) are the most interesting. These are where
Sondik provided real insight into the POMDP problem. As mentioned earlier,
when we generate a vector from a single belief point, we are guaranteed
nothing about what the true vectors are for all the other points in the belief
state space. However, this isn't really quite true. Sondik, by examining the
steps with which the vector is created, is able to define a region (volume)
around this belief point where that vector is guaranteed to be the true linear
portion of the value function. His method is to state a series of constraints on
the belief states that, when satisfied, assure that the belief states satisfying
those constraints have the generated vector as the piece of the true value
function. This has the effect of defining a volume of belief states instead of
the single point we started with. Describing the region (step (4)) is necessary
for generating the new belief states to add to the search list as is done in
step (5). We first describe the former step.

A little extra notation is required in order to develop the constraints
that define the region. We use 7r to be the point selected from the search
list. Recall that to find the true maximum a(n) vector we need to do a
maximization over all actions. What this really gives us is IAI vectors for the
point 7r. (IAI is the cardinality of the set of actions, i.e. number of possible
actions.) We will refer to each of the vectors generated in this step as aa (n)

53

where a is the action that generated the vector. We use aaAn) to represent
the ith component of those vectors. Of these aa(n) vectors, one of them will
give the maximal value for the particular belief 1f. We will refer to this vector
as a* (n). Additionally, the action for this best vector will be referred to as
a*. Note that a*(n) = aa.(n).

We now must think about how the belief state 1f could vary, while still
resulting in 1fa*(n) being larger than all 1faa(n). This exact condition is
actually one of the constraints on the region we are looking for:

L 1fiai(n) 2:: L 1fiaaAn), Va.

Notice that this formula expresses exactly our desire to constrain the be
lief states to satisfy the condition stated above, one constraint for each aa (n).
However, this is just the tip of the iceberg. All of the aa(n) were generated
dependent upon the actual value of 1f. Although the above constraints hold
true when all the aa(n) stay unchanged, changes in 1f can cause changes in
the aa (n) component values. Therefore, the above set of constraints is too
liberal since it might include belief states where the aa (n) have completely
different values. We need to constraint the belief state further to ensure that
the actual values of the aa(n) stay the same. To do this we must examine
the formulas that gave rise to these aa (n) values.

There are two fundamental ways in which our a*(n) vector could result in
a lower value than one of the other aa(n) for a particular 1f. The first is if the
components of the a* (n) vector change. If these components change, we can
no longer be sure that it will dominate all of the other aa(n) vectors, it will
depend upon exactly how the components changed and by how much. The
other way a*(n) can lose its domination is if one or more of the other aa(n)
vectors have their components change. In this case, although the quantity
Ei 1fiai(n) stays the same, the quantities we compared it to have changed.
Again, whether or not a* (n) still provides the best value all depends upon
how the aa,i(n) components changed. There is also the case where both a*(n)
and the aa(n) vectors change simultaneously, but handling the individual
cases will also handle this case.

What affects the aa(n) and a*(n) values? The L(1f, a, 0) function does.
Recall that this function was a convenience for specifying the index of the
previous time step's ak(n -1) vector to use in the value formula, Vn*(·). The
L(1f, a, 0) function represented a maximization of the transformed belief state,

54

T(1l"la, 0), over all the (n _l)st vectors. All we need to do is to constrain the
belief states so that this maximization works out the same, and we will have
ensured that the t(1l", a, 0) function stays the same. The t(.) function stays
the same when the aa(n) vectors that are generated in the maximization
remain the same, which is the condition we are interested in. We restate the
formula for the maximization over previous vectors so that the origins of the
constraints to follow are easier to see:

Let t be the index k that makes this maximum for a particular point, 1l",

action, a, and observation, O. Then the constraint

Vk i= t.
i,j i,j

satisfies the condition of all belief states where t is the index that maximizes
the formula above. Notice that for a single pair of a and 0 we require a
constraint for each of the previous a k (n - 1) vectors. The above constraint
only restricts one pair and does not ensure that the entire function t(1l", a, 0)
remains unchanged. To make sure that the whole function stays the same, we
need a set of these constraints for each combination of a and O. By adding all
of these constraints we have ensured that neither a* (n) or any of the aa(n)
will change. Due to the nature of the problem, the constraints generated
can only specify a region that ensures things do not change. It cannot have
any information about how things change and as a result, things can change
without really affecting the optimal vector generated. This leads to defining
regions that can be smaller than the actual regions formed by the various
a(n) vectors in the optimal value function, V:(·).

Aside from the constraints thus far outlined, there are also the constraints
that restrict the belief states to lie on the belief state space simplex, namely

and
1l"i 2: 0, Vi.

No doubt, this looks like a formidable number of constraints and, it is
for this reason that this algorithm has not found wide spread use in solving

55

POMDP problems. The complexity of this algorithm is discussed further in a
subsequent section, but the worst case number of regions for one time step is
IAIMIAII81where M is the number of a(n-1) vectors and each region requires
a linear program of size IAI18IM+IAI +1 constraints and lSI variables. Here
M is the number of previous vectors in the a(n - 1) set.

After much work, step (4) is now complete; we have successfully defined
a region of the belief space where a* (n) is guaranteed to be the true value
function's vector. This is especially pleasing because we have, in effect, elim
inated every belief state within this region from consideration in plugging
it into our value function. We now know that for every belief state in this
region, if we crank it through the value function we will get exactly a*(n),
and so there is no reason to consider these points further.

Although most of the conceptual work was done in step (4), the majority
of the computational work lies in step (5). In this step we want to find belief
states that are guaranteed not to be in the region we defined in step (4). If
we can find a point not in the step (4) region, then we have found a point
that must lie in some other region. With this point, we can do exactly as we
did in step (4) and find its region, and so on until a complete partition of the
belief space is found. When we have been to every region in the partition,
we are sure to have generated all of the true vectors in the value function.

Given the region in step (4) how can we find points in other regions?
The answer here is linear programming. We have already built up the con
straints of a linear program (notice that they were all linear constraints in
the 7ri variables.) We rearrange the constraints above into more standard LP

constraints and cluster them in one place here for convenience:

L7riPijrjo(ak(n -1) - d(7I",a,O)(n -1)) :::; 0, Va,(),k =1= t(7r,a,())
i,j

7ri ~ 0, Vi.

What we are interested in are points lying on the edge of the region de
fined by these constraints. These linear constraints will define a piecewise
linear convex region (volume) of the belief space. The neighboring regions

56

Figure 24: A region and its neighbors

lie directly adjacent to this region and actually share a common border (hy
perplane). Points on the border of the currently defined region will also be
points on the border of neighboring regions. Figure 24 shows this graphically.

Since our current region will typically border many other regions, we need
to find a point on each region border. Although we have a large number of
constraining equations, there is a small subset of them that actually define
the region. In Figure 24 the solid lines show those constraints that define
(are binding on) the region and the broken lines are constraints that are su
perfluous (i.e., there are other constraints that restrict the size of the region
more severely that it). The problem is that we have no direct way to as
certain which oconstraints are binding. The method proposed by Sondik to
accomplish this is to solve a series of linear programs. There are actually two
ways this can be done. We present both, first the one proposed by Sondik
and then an alternative.

In Sondik's approach we solve a single LP for each constraint in the LP
(aside from the simplex constraints). The constraints for all of these LPs
are identical (the ones shown previously), the only thing that changes is the
objective function. For each constraint we use the actual constraint itself
(without the right hand side, 0) as the objective function. Note that this
constraint remains in the set of constraints for the LP. Solving this LP as
a maximization problem will result in an answer with values for all the 1ri

variables. However, just because this LP returned an answer does not neces
sarily mean that we have found a new belief vector to add to our list. We

57

only want to add this point if the constraint currently under consideration is
binding in this LP. Fortunately, the solution to the LP gives us that informa
tion as well. In an LP, each constraint has an associated slack variable which
indicates how much tolerance we have in changing this constraint without
affecting the solution. If the constraint that was inserted into the objective
function has no slack (i.e., its slack variable has value zero), then the con
straint is binding and thus we can insert the resulting value of ?riS into our
search table. In summary, for each constraint:

(1) Make constraint the objective function.
(2)	 Solve the LP trying to maximize the objective

function.

(3)	 Check the slack variable of row that the constraint

in the objective function appears.
(4)	 If it is zero then the solution (values for all ?ri)

should be added to the search list, otherwise the
constraint is non-binding.

A slightly simpler method, that still utilizes one LP for each constraint,
is to slightly change the constraints as each LP is computed. In this method
the actual objective function doesn't matter. What we do for each constraint
(again, except for the belief simplex constraints) is to change its inequality
into an equality. The result of solving this LP gives both pieces of information
desired at the same time. If the LP has any solution at all, then the constraint
must be one of the binding constraints because a non-binding constraint can
not pass through the region defined by all the other constraints. Additionally,
any solution it returns must lie directly on the border that this constraint
makes for the region. With this method it doesn't even matter if we perform
a maximization or minimization of the objective function and we do not need
access to the dual variables (which aren't always easily available from an LP
package anyway.) The only trick here is to remember to change the equality
back into an inequality when you move on to try the next constraint.

One aspect of the solutions to the LPs that needs to be pointed out, is
the nature of the solutions it returns. With an LP formulation, the solution
can consist of no points, one point or an infinite number of points. The
latter is different from an unbounded LP. In an unbounded LP the objective

58

Figure 25: Points found by linear programs

value function can be made arbitrarily large. An LP solution with an infinite
number of solutions happens when all these points result in the same finite
value of the objective function. The nature of the LPs we solve, except in a
rare instance, all have an infinite number of solutions (if it has any at all),
however the answer the LP returns (assuming that it uses some form of the
simplex method) will be a single point and furthermore it will be one of the
corner points or vertices of the region.

To illustrate this, in Figure 25 we see a region that has two adjacent
regions that it shares a border with. In this case there will be two binding
constraints we will call AB and BC. When we check constraint AB we find
that there are really an infinite number of points that lie on the border (the
entire line segment AB. However, the LP will return either A or B. Exactly
which one is returned depends upon the exact nature of the LP and the way
the LP package was implemented. For the constraint BC we could get either
point B or point C. At first this might seem troublesome since it will be
possible for these two constraints to result in the same point B, but this in
itself is not a problem since all we need to guarantee is that we get a point
that is on the border of a neighboring region. Point B satisfies this criterion
for both the neighboring regions. This raises some serious questions about
handling these borderline cases. This is all discussed further in the next
section.

59

This completes the description of Sondik's basic algorithm. It mayor
may not have raised some questions at each step. Hopefully, many of these
questions (which have, thus far, been deliberately ignored) are answered in
the next section. Trying to deal with the complications while describing the
algorithm would have been difficult to do without adding much confusion.
However, trying to implement the algorithm based solely on the previous
description is not recommended. There are too many unanswered questions
that will necessarily arise when an implementation is attempted.

4.6.3 The Complications

For all the lengthy description, the basic ideas behind Sondik's algorithm
are really not that complex. However, there are some fairly nasty subtleties
lurking beneath the surface. They all emanate from overlooking the case
where we get identical values as we perform the various maximizations in
the value function while calculating the a(n) vectors. Recall that there are
actually two places we need to perform a maximization: once over all the
actions in the actual value function itself (over all the various aa(n) vectors);
and the other as we determine the function L(7r , a, e) (over all the previous
a k (n -1) vectors). When there are ties, we cannot simply choose an arbitrary
one from among the candidates, this will not work.

We will first try to present what is happening geometrically for the two
cases discussed above. Let us first suppose that we have generated all of
the aa(n) for a particular belief state 7r. Our next task is to perform the
maximization to find which a and aa(n) give the largest value for l:i 7riaa,i(n).
Let a' and a" be the two actions that both give the same maximum value.
This indicates that we are on the border of two separate regions as shown in
Figure 26. We might be tempted to arbitrarily choose one (say aa,(n)) with
the rational that the aal/ (n) region is a neighbor and thus will be found when
we set up the region for aal(n).

But what happens if our LP returns 7r as the point on the border between
the two regions? Trouble. We would either see that we have used this
point already and throw it out, or we might perform the same calculation
and again choose the aa,(n) region. In the former case the algorithm ends
without finding the aal/(n) region and in the latter case it could cycle forever.
Although you might think that a little extra bookkeeping can keep you out of
this trouble, consider the point shown in Figure 27. This is the case of a point

60

Figure 26: A point on the border of two regions

on the boundary of four regions. This requires more than a little bookkeeping,
and as the dimensionality of the problem increases, this problem can get
arbitrarily complicated. Constructing a truly general solution to handle these
cases is possible, but it is cumbersome and prone to errors.

The above examples only dealt with the maximization over the actions
in the value function. We still must deal with the maximization over the
previous vectors that give rise to the t(1r, a, 0) function. The regions depicted
above were somewhat misleading since they seemed to show the regions of
the actual value function, V;O being constructed. In reality, the regions
defined by Sondik's constraints are usually only a subset of the actual value
function regions. To discuss the next complication, we need to examine these
regions more closely.

The constraints that define the region specify exactly the conditions nec
essary for the aa(n) and the d" (n) vectors to change. The unpleasant part
is that these conditions are not necessarily sufficient for a change. What this
says is that we can tell when some of the vector components might change,
but we cannot determine whether they actually will change or if this change
will have any noticeable affect. A further unpleasant consequence is that even
if the components of some of the aa (n) vectors change they may change in
such a way that a* (n) is still the proper piece of the value function at these
points. The bottom line here is that the constraints built up by Sondik's

61

Figure 27: A point on the border of four regions

methods are typically too conservative. The regions (or volumes) defined
are typically small subsets of the actual regions (volumes) for a given vec
tor. Figure 28 shows the typical relationship between the true a*(n) value
function region and the region defined by the constraints.

So, in reality, when we draw the regions that the algorithm generates we
cannot really label it as the a* (n) region since in all likelihood it is merely
a subset of the true region of the value function. How then, should we label
these regions? To answer this we consider how many possible ways could
we construct a set of constraints since this represents the maximum number
of regions we could define. The constraints that arise from a region are
fully determined by the optimal action and the l.(1r, a, 0) function. Notice,
the actual value of the belief state 1r never appears in the LP for the region
(though it does help determine what the l.(1r, a, 0) function should be.) This
shows that Sondik's algorithm can potentially explore a very large number4

of regions even when there are a small number of actual regions in the value
function. This is discussed further in a subsequent section, but here we
needed just to demonstrate the connection between the l.(1r, a, 0) function and
the LP regions. Now we have established that each instance of an l.(1r, a, 0)
function can potentially specify a different LP region. It might be the case
that many instances of this function specify the same region, but the only

41AIMIAIIElI

62

--
True a*(n) -.r\
boundaries \ \. \

Figure 28: Sondik's region vs. actual region

way to determine that is by actually constructing and comparing the regions.
We mentioned before the difficulties associated when ties are obtained

) while performing the maximization over the actions in the value function.
We now turn to the similar case of ties in the maximization procedure while
determining the t(1r, a, 0) function. If we find two different previous a(n - 1)
vectors (call them a j (n - 1) and a k (n - 1)) that give the same value in the
formula

t(1r,a,O) = argmfx[~1riPijrj9aj(n -1)],
1,3

then we have two equally valid and distinct t(1r, a, 0) functions. As just
previously shown, these could represent two completely different regions. So
if we chose a belief state 1r right on the borders of these two regions (assuming
for now that they are indeed different), we have two choices for which region
to go with. The problem here is that you actually need to consider both and
for exactly the same reason that we had to consider both in the previous
case of ties. The same problems with arbitrarily picking one of these apply
here; we might miss a region or we might loop around forever repeatedly
generating the same 1r and choosing the same region.

The bookkeeping required to keep all of this straight is an order of magni
tude more complex than in the previous case. In the previous case, we could
only have as many ties as there were actions, so we could imagine keeping

63

a list of the ties and handling them one after the other. However, in this
case there are potential for ties for each possible combination of a and ().
Every time there is a tie, the number of possible t(1r, a, ()) functions, that
give the same value, doubles. As if this weren't enough, for each of those
many places where a tie can occur, there could be as many ties as there are
previous ci (n - 1) vectors. Implementing the routines to handle this, though
possible, is a major headache.

Individually, the two types of ties that can occur in the maximization
procedures are bad enough, but they actually interact in an unpleasant way
as well. The previously discussed ties for the C¥a (n) vectors assumed that
they were all tied while using the same t(1r, a, ()) function. Now we see that
we may end up with bunch of these functions and each one of that bunch
has the potential to have ties in the c¥a(n) vectors it produces.

All of this might appear to be needless theoretical worry over cases that
aren't likely to happen in practice, however just the opposite is true. These
problems of ties occur precisely on the borders between regions. What is the
likelihood that we get points on these borders? The nature of the algorithm
actually guarantees that we get points on the borders. Recall that all but
the first point are generated from the LPs, which can only give us points
directly on the borders of the regions. Therefore we spend all of our time
directly on the borders and in the corners (vertices) where the ties are liable
to happen. Thus handling ties is a very real problem that must be dealt with
when implementing this algorithm.

The last complication we discuss is not nearly as intimidating as the
previous problems, but nonetheless, it is a difficulty that must be dealt with.
With all these regions being explored and with all the belief states being
churned out by the LPS, we are bound to get duplicate points. If we have
gone through all of the trouble to make sure we have covered every base
(handling the ties) for a particular belief state 1r, then there is no reason to
work on this point again. This requires us the keep track of all the 1r we
have dealt with. The major trouble here is that now we are dealing with
floating point comparisons. If we strictly compare the numbers, we might
be duplicating a lot of effort since the same points could be slightly off from
machine!algorithm inherent rounding errors. However, if we allow too much
freedom in deciding which points are the same we might miss small regions
of the value function. As the problem sizes grow larger, the likelihood that
there will be these small regions increases.

64

Sondik's algorithm as described is quite inefficient and in the following
sections we present three ways that it could be made less wasteful. The first
two of these were proposed by Sondik himself.

4.6.4 Neighbor Optimization

The geometric interpretation of the value function and the regions they im
pose upon the belief states allow us to exploit the geometric properties of
these regions. When we define a region and then look for the neighboring
regions, we are finding each regions' adjacent neighbors. If we store this
neighbor information, we can exploit it to restrict the number of constraints
in the linear programs on the next time step. Recall the set of constraints:

L 7rWfjrje(ci(n - 1) - a£(1T,a,e)(n - 1) ::; 0, ve, k #- t(-lr, a, e).
i,j

This says that we must construct a constraint for every previous vector
ak (n - 1), but actually we only need to consider the a k (n - 1) that are
neighbors to a£(1T ,a,e) (n -1). If we kept this region adj acency information from
the previous iteration, we know exactly which ak (n-l) are truly constraining
the current a£(1T,a,e)(n - 1).

4.6.5 LP Optimization

Even with the above optimization, the number of constraints in the linear
programs will be large. The following insight is directly from [15]:

The procedure can be made more efficient if, for each iteration
of the linear programming problem with the kth inequality as the
objective function, all other constraints are tested as objective
functions to see if they are optimized at the current feasible so
lution. If a constraint is optimized at any point, then either this
constraint forms a boundary of the region (a zero slack variable)
or is a superfluous constraint (a nonzero slack variable). Once a
constraint has been optimized, it need not be used as the objective
function. We have found that this procedure typically decreases
the number of linear programming iterations by approximately
50 percent.

65

We have no experience with this optimization and therefore have offered
it in their own words. The geometric intuition behind this method is that as
an LP solution progresses, it moves from corner point to corner point of the
constrained region. Each corner point lies on one of the boundaries of the
region and all this technique does is to see which border point it is on at each
iteration by substituting each possible border (i.e., constraint). However,
this requires an intimate relationship with the LP package. Unless you have
written the code specifically for this application, it is unlikely to be easy and
may be impossible for you to get this functionality out of your LP package.

4.6.6 Dominated Constraints

This is the simplest of all the optimizations and just requires that we compare
each constraint, as it is generated, with all the others to determine whether it
is component-wise dominated by some other constraint. Since our variables
of the LP (1l"iS) are constrained to be non-negative, this simple scheme works.
Whether or not this checking is worth the trouble depends on you particular
implementation and the speed of the LP package being used.

4.7 Cheng's Algorithms

In [4] two new algorithms are presented. They are both heavily based upon
Sondik's One Pass algorithm, but typically require less computation time.
One change present in Cheng's algorithms is the elimination of the use of
linear programming. Instead, Cheng opts for the interior point method for
convex polytopes (see [9] and [10]) to find the corner points of the regions
define on the belief space. The reasons for this are discussed shortly.

4.7.1 Relaxed Region Algorithm

This algorithm is exactly the same as Sondik's One Pass algorithm except
with fewer constraints. In each step of Sondik's algorithm, a region (for the
newly discovered a(n) vectors of the value function, V;(·)) is defined that is
sure to be no bigger than the actual region the a(n) vector occupies in the
true value function. This is the conservative approach and thus the actual
regions for each of the true vectors of the value function will have to be
built up out of a bunch of these smaller regions that Sondik defines. Cheng

66

reverses this approach and defines regions that will typically be larger than
the regions actually are (i.e., relaxed regions).

The algorithm can proceed exactly the same as Sondik's with two minor
changes. The first is the set of constraints and the other is the use of the
interior point method instead of normal linear programming. Recall that we
will keep a search list of belief points and that for each belief point we will
find the true vector a*(n), its associated action a* and all the other aa(n)
vectors that were the losers in the maximization process over actions. We
also have the set of all the previous a(n - 1) vectors. The only modification
necessary is in the construction of the regions or set of constraints for the
LP. The following is the set of constraints for the relaxed regions of Cheng:

Va#- a*

L7riPij·rj;(ak(n -1) - a£(1r,a·,9)(n -1))::; 0,
i,j

7ri ;:::: 0, Vi.

If you compare this set of constraints with Sondik's it might take a while
to even notice that they were at all different. The only change is that the
second constraint is no longer defined over all actions. This constraint now
only applies for each (j and previous ak(n - 1) vector with the action being
fixed as the action associated with a* (n).

By using an interior point algorithm to ensure that every corner point of
one of these relaxed regions is discovered, Cheng can guarantee that all of the
true value function vectors will eventually be discovered in a finite number
of steps. Before we discuss how this can be guaranteed, we should point out
the crucial difference between utilizing an interior point method and a linear
programming method. If you recall from the discussion of Sondik, the linear
programs will typically have an infinite number of potential points they can
return and, by the nature of the LP method (usually simplex), we will get
only one of the corner points. This works fine for Sondik's method as was
previously discussed, but can lead to incorrect results if combined with the
relaxed region algorithm.

67

E

Figure 29: Points and relaxed regions

For example in Figure 29 we see two regions defined by a*(n) which was
generated for belief state 11"; Sondik's region is bounded by ABCD and the
relaxed region by ABE. Let us assume that the true region of the value
function for a*(n) is ABCD (which just so happens to be the one found
by Sondik's method). Sondik's algorithm will show two neighboring regions.
For neighboring region CDE the LP method will return either point C or
D and for neighboring region ABGF either A or B. Even though we do
not know exactly which point the LP might return, either one is fine since
they will both lead to the other regions. In contrast, look at the relaxed
region ABE, this one looks to only have one neighboring region and so the
LP method will return either point A or B. This is not sufficient, because
we will never choose a point in the region DCE which is a different region
of the true value function that must be found. However, if we always make
sure we find each corner point of the region, then we are fine, since the point
E will lead to the region CDE.

Cheng demonstrates that by employing the interior point method, his
algorithm will always uncover all the regions. Furthermore, since his regions
are larger than those that Sondik provides, it should execute faster. This
algorithm only needs to find a single relaxed region for each actual value
function vector which can be substantially fewer than Sondik's One Pass
method. Cheng has experimental results that verify that this is actually the

68

case. Cheng's work is also explicit about handling the case of ties, whereas
Sondik's work lacked discussion about these cases.

4.7.2 Linear Support Algorithm

Cheng proposes another algorithm which employs the same idea of defining
larger regions. However, this Linear Support algorithm has the advantage
that it can be used to find near optimal answers as well. With the previous
Relaxed Region algorithm, we start at a point and move from one region to
another, slowly exploring the space of beliefs. The Linear Support algorithm,
on the other hand, defines an approximate value function over the entire belief
space and slowly works to refine this approximation until it reaches the true
value function. The name of the algorithm comes from Cheng's terminology
for the linear segments of the value function which we have been calling a
vectors. In Cheng's thesis he refers to these as the linear supports of the
value function.

This algorithm starts by initializing a search list with the extreme points
on the belief simplex (e.g., [1, 0, 0, ... j, [0,1,0,0, ... j, [0,0,1,0, ... j,
etc.)and an empty set of vectors, V. For each of these points the true a(n)
vector is calculated and added to V (calculated from the usual recursive value
function formula.) These vectors now form an approximation to the value
function which we will call Vn (·) and define some partition on the belief space
(since for each point of the belief space one of these vectors must give the
maximum value when compared to the rest.) For example Figure 30 shows
the true value function as a dotted line and the approximation generated from
the corner points as solid lines. Notice that close to the extreme points of the
belief simplex the approximation is exact. This is for a case where lSI = 2
and shows the belief space partition generated along the horizontal axis. This
figure is an example where there are four linear regions that comprise the
actual optimal value function. These four linear segments impose a partition
on the underlying belief states as shown with the dotted lines across the 71"0

axis. When we only calculate the linear segments for the extreme points of
the simplex, we get parts of the true value function (near the extreme points),
but we also under estimate the value function at many of the interior points
since we have not yet found the true vectors for these points.

The key insight behind this algorithm, is that no matter what the true
value function is, the largest difference between the approximation, VnO,

69

0.0 1.0

Figure 30: First step of Linear Support algorithm

and the true value function, V;(·) will always occur at one of the corner
points of the approximation. This follows from the properties of piecewise
linear functions. Notice that the true value function must always lie equal
to or above the approximation. Because both the true function and the
approximation are piecewise linear and convex the largest difference must
occur at a corner point. This is proved in [4].

With this handy piece of information, Cheng then finds all the corner
points of the regions in the partition induced by the approximation. Here
again, Cheng utilizes an interior point algorithm instead of linear program
ming since he must ensure all corner points are generated. For Figure 30
this will consist of three points, the two edges of the simplex and one interior
point. Since we have already handled the simplex corner points we only need
to consider the single interior point. This generalizes so that of all the corner
points found from all the regions, we disregard those we have seen before and
add those we haven't to the search list. Note that this requires you to keep
track of all points you have used previously.

The next step is to pick a point out of this search list and find the true
a(n) vector (support) for that point. If this vector is different from all the
other ones in our current approximation, then we add it to V to arrive at
a new approximation, VnO. Figure 31 shows the succeeding approximation
for the example shown previously.

70

0.0 1.0

Figure 31: Second step of Linear Support algorithm

We can now repeat this whole procedure with the new approximation:
find corners of region; add new point to search list; generate a(n) vectors;
add new vectors to V to get a new approximation, Vn (-). You can see in
Figure 31 that calculating the new vector at the new corner point will lead
to the only remaining undiscovered linear segment (a-vector).

Although this algorithm will work, as described, it is a bit wasteful. Each
successive approximation imposes a new partition on the belief space. At
each iteration we do not have to find all the corners of all the regions of
the current partition. Cheng shows that if we just find the corner points for
the region of the newly added vector we can get the same result as before
with much less computation. This also guarantees that the algorithm only
examines one region for each true vector (support) in the value function.
This is its the big advantage over Sondik's method which typically uncovers
more regions than are actually in the value function.

This is similar to the Relaxed Region algorithm because, as Figures 30
and 31 show, the region over the belief space in an approximation tends to be
larger than it ultimately will be in the true value function. There is another
point Cheng makes about uncovering the interior points of the regions which
say that you only need to find corner points for all but one of the regions.
This follows because the corner points of any single region imposed by a
piecewise linear convex function also must be corner points of some other

71

Figure 32: Example of why one regIOn doesn't need to have its corners
checked

region. Figure 32 shows that if we generate all the corner points for the
non-shaded regions, we will also have generated all the corner points of the
shaded region.

Cheng employs the Linear Support algorithm as an approximation scheme
as well. To do this he merely calculates the actual difference between the
true value function and his approximation at the points generated at the
vertices of the approximation, Vn (-). By taking the largest difference in
the two values he gets a bound on the current approximation. (Remember
the largest difference must occur at one of these vertices.) He can stop his
algorithm any time this maximum error difference is within some tolerable
range.

4.8 The Witness Algorithm

There is a shortcoming of Cheng's Linear Support algorithm which this next
algorithm addresses. Cheng's algorithm is guaranteed to only find the corner
points (i.e., vertices) of one region for each true vector there is in the value
function, V;(·). Each of these regions is a convex polytope and as such can
have an exponential number of vertices. The number of vertices is exponential

72

in the number of faces in the polytope and the number of faces is dictated by
either the number of vectors in the current approximation, up to N, or the
number of variables in the state space, lSI. Since the approximation tends
toward the optimal, Cheng's algorithm might require time exponential in the
number of actual vectors in the value function, up to N or states, lSi, in the
worst case. This is a result of his use of an interior point algorithm that
insists on finding all of the vertices.

The Witness algorithm was derived directly from Cheng's Linear Support
algorithm and employs much of the same machinery. The main difference is
in how it goes about finding more points to add to the search list. Like Cheng,
we start with the extreme points of the belief simplex and find their actual
a(n) vectors. Since we know that this approximation,Vn (·), will differ from
the true value function at one of the corner points of the current partition's
regions (induced by V), we construct a linear program that explicitly states
this criterion.

This algorithm starts with an empty set Vand begins building up the set
with a(n) vectors in V;U until we have the entire set of vectors comprising
V;(·). As mentioned, the first step is to determine the a(n) vectors for the
extreme points of the simplex and add them to V.

Like Cheng's Linear Support algorithm, the Witness algorithm uses the
property that the maximum difference between our current approximation
and the true value function will occur at a corner point of our approximation.

We then iterate over the a(n) in V. As we add vectors to V, we must
ensure that we choose each vector to work on exactly once. Each time we
add a vector to V we will also set a flag that indicates whether we have
defined its region (initially set to false). At each iteration of the algorithm,
we choose one of the vectors, a(n), from V that has its flag set to false. We
then set this flag to true and construct a linear program over the current
region that a defines. (This LP is discussed below.) The result of solving
this LP will either give us zero or one new point in belief space. If it results
in no points, then we just repeat this for another vector in V. If we get a
new point, then this means that our approximation, Vn (·) is not the same as
V;U at that point. We calculate the true a(n) at that point, add it to V
and then repeat the process on a(n) again, but with this new V. As long as
a(n) generates a new point we continue to use it. When a(n) generates no
new points, we know that the region it currently defines is exactly correct
for the optimal value function and so we then move on to another vector in

73

V that we haven't worked on.
The heart of the algorithm is to construct a linear program that will have

a solution at a point where our approximation, Vn (·), is different from the
true value function, Vn*(·). In doing this we require three types of constraints.
Note that the algorithm as described here, is the way it is currently imple
mented; however we have since found an easier way to set up these linear
programs which combines the LPs for all regions into a single LP. This com
bining step will not improve the complexity, but makes the implementation
conceptually easier. We will first define the three types of constraints needed
and then tie them together to produce our algorithm.

4.8.1 Improvement Constraint

We will iterate over all the a(n) in V. Pick a previously unselected a(n) from
V. We now want to know if there exists an a(n) such that

L 7I"iai(n) 2:: L 7I"iai(n).
,. ,.

Even though we do not know a(n), we do know that

- () a + f3 "'" a a £(1l',e,a) (1)ai n = qi LJPijrjeaj n - .
j,e

This will be true for some (currently) unknown a and 71". The value at this
point is simply

V:(7I") = L 7I"i ai(n).
,

A simple substitution gives us the standard value function equation

T7*() "'" a + f3 "'" a a £(1l',e,a) (1)
V n 71" = LJ 7I"iqi LJ 7I"iPij rje a j n - .

i i,j,e

So we choose to define a new variable Me for each () such that there are
as many variables as observations. These we define to be

"'" a a £(1l',e,a) (1)Me = LJ 7I"iPijrjeaj n - .
i,j

Substituting this into our value function equation gives us

V:(7I") = L7I"iqi + f3LMe.
i e

74

Remember, we do not know the 1r (or a) where this proposed a(n) pro
duces the true value (if there are any at all). If there is a 1r, then the following
equation will hold true:

V:(1r) ~ L 1riai(n).
i

Substituting our variant of the value formula we get

L 1riqi + ,BLMII ~ L 1riai(n).
i II i

Rewriting gives us

L 1ri(qi +ai(n)) + ,BLMII ~ O.
i II

This constraint is the first step in creating an LP formulation (in lSI +101
variables) to determine a point where the vectors in our current approxima
tion differ from a vector in the true value function.

4.8.2 Mil Constraints

The previous formula gives us one constraint that the 1r vectors must satisfy
if such a a(n) exists. By itself it doesn't help much, but it is a first step
to our full formulation. One problem with this formula is that there are
no constraints on the Mil variables. We need to relate these variables to
the quantities they represent and for values which can actually occur. Since
we know all of the previous control intervals' vectors, a(n - 1), we add the
constraint

Mil ~ L 1ripfjrjllaj(n - 1).
i,j

For each Mil we need a constraint for each a and k pair. For the answers
we are interested in, this constraint must hold because if it does not, then
we would be able to find a larger Mil (namely, the a and k where it did not
hold). Mil must be equal to this sum for at least one particular a and k,
since we are assuming that the Mil can actually be generated. Note that this
inequality only restricts the Mil variables from being too small. They can be
too large, but we will try to minimize these variable values to try to force
the equalities to hold. This is discussed shortly.

75

4.8.3 Region Constraints

Another constraint that must be imposed is to ensure we do not generate
points that will lead to one of the a(n) vectors already in V. To accomplish
this we just need to restrict the values of the 'Tr we are interested in to those
in the region defined by the current vector, a(n), under consideration. These
constraints are

E 'Triai(n) ~ E'Triai(n)
. .
t t

for all a(n) =1= a(n) in V.

4.8.4 Objective Function

As formulated, there will always be sufficiently large values of the Mo vari
ables that will satisfy the constraints. To alleviate this problem, we put all
of these variable into the objective function and try to minimize their val
ues. Since all of these variables are independent of each other, the LP will,
in effect, minimize all of the variables individually. This has the effect of
attempting to force one of the M o inequality constraints to be an equality.
However, it does not ensure that an equality will hold for each Mo. This
means that we will have to examine the answers we get out of the LP, as
discussed later.

4.8.5 Constraint Adjustment

Currently, our LP formulation, for a given a(n) with variables 'Tri, can be
summarized as follows:

L'Tri(qf + ai(n)) + f3LMo ~ 0
i 0

M o >- '" 'Tr·p~.r~oa~(nt tJ J - 1) , ve E 8, a E A, k E VLlL...J J
i,j

L 'Triai(n) ~ L'Triai(n), Va(n) E V.
i i

An adjustment is necessary because the improvement constraint requires
that the actual value function be greater-than or equal to our approximation.

76

Since we only add a vector to our Vset when there is at least one point where
it is equal to the true value function, we are guaranteed to be able to find a 1r

that satisfies this inequality. More precisely, the corners of the current &(n)
region satisfy this criterion. We need to ensure that we only consider points
where the true value function is strictly larger than 1r&(n) since we want to
know where our approximation is wrong, not where it agrees with the value
function, V;(·).

V:(1r) > I: 1ri&i(n)
i

This transforms the improvement constraint into

I:1ri(qi +&i(n)) +(3 I: Me > o.
i e

Because we have chosen an LP formulation, we cannot specify such a con
straint and instead introduce a small value E and so the actual constraint
becomes

I: 1ri(qf +&i(n)) +(3 I:Me ~ E.
e

The effect of this E is discussed later. In summary, we are still able to find
exact solutions to finite horizon problems.

4.8.6 Solution Checking

Unfortunately, the LP defined will frequently return a solution which does
not define a point of interest. This happens when the objective function did
not minimize all of the Me variables enough to ensure at least one of the
inequalities was actually an equality. If no equalities hold for a particular
Me, then this indicates that there is no point within the currently defined
region where our approximation is different from the optimal.

This requires a check after the LP has been solved to verify that it is a
point we are interested in. This results when the LP does not drive down the
values of the variables Me in the objective function a sufficient amount to
make them actual values that could occur. Recall that theses variables were
defined as

77

Since we have only constrained these variables with an inequality, it may
be the case that none of the inequalities tightly constrain the solution. When
none of the inequalities are tightly constraining, then the values for M o are
not possible (i.e., Mo are strictly greater than Lij 7r'ipfjrjocxj(n - 1) for all a
and k) and so an LP solution with these values must be discarded.

There are a number of ways we can detect this condition, but here we
describe the two ways that have actually been implemented. The first and
simplest way is to make use of the LP's slack variables. We have a series
of inequalities for each of the Mo. As long as one of these, for each Mo, is
binding, then we know we have a solution that we are interested in. If a
constraint is binding in an LP, then its corresponding slack variable will be
zero. Therefore we simply ensure that at least one slack variable is zero for
the set of constraints defined on each Mo.

An alternative to the above approach needs to be used when slack vari
ables are not available. Some of our LP packages did not make these slack
values readily available and so we had to adopt an alternative strategy. In
effect, it does the same thing as the slack variable technique, but requires

j
\	 some extra computation. With the slack variable technique when a slack

variable is zero it means that the equality holds. Therefore, without slack
variables we can simply check to see if the equality

-	 '"""" . a a t(7r,O,a) (1)M o - L..J 7r'tPij rjO cxj n
i,j

holds by computing the right hand side quantity for each eand a. Again, we
only require one of the equalities to hold for each e.

4.8.7 Witness Discussion

The Witness algorithm can be summarized as follows:

(1)	 Using formulas 6 and 7 add the true vectors for
the corner points of the belief simplex into V.

(2) Mark all	 vectors in V as undiscovered.
(3)	 Choose an undiscovered vector, &(n) from V. If

there are none then return V.
(4) Mark &(n) as discovered.
(5) For &(n)	 construct the LP (see below).

78

(6)	 Verify that solution to LP is valid. If not,

then got to step (3).

(7)	 Using the values from LP for all ~i, construct

the true value function vector for this point

(with formulas 6 and 7).

(8) Add this vector to V as undiscovered.
(9) Go to step (5)

The full LP formulation for a vector &(n) E V is

min: EMe
e

E ~i(qi + &i(n)) +,BE Me ~ E

i e

Me > "~·p~.r~eci(n - 1)- L..J ~ ~J J J VB E 8,a E A,k E V:-10'
i,j

Va(n) E V.

We solve one of these linear programs for each combination of vector, in
V, and action. This is similar to how Cheng finds the corner points for all
the regions in the current approximation. As a result we only need to solve
a number of linear programs equal to twice the actual number of vectors in
the value function, N. The size of these LPs are polynomial in the number
of observations and current vectors in the approximation; there are lSI + 181
variables and N + 1811AIM +2 constraints. Here M is the number of vectors
in the previous time step's value function and N the number of vectors in
the current step's value function.

As formulated above, most LP packages will not be able to handle this
formulation because they require all the LP variables to be non-negative.
Although the ~i variables are guaranteed to be non-negative, the Me variables
are not. However, we can employ the standard substitution trick used in
LPs and substitute M~ - M~', for each variable Me. We then just need to
recombine the two substituted variables to get the real value of Me. We
chose not to make this substitution explicit since it adds nothing but more
variables and confusion to the discussion.

79

Although the simplex method and its variants are not a polynomial time
algorithm, the class of LP problems can be solved in polynomial time. Though
we use simplex methods in our implementations, the use of one of the guar
anteed polynomial time algorithms (i.e., Karmarkar's method) would ensure
that the Witness algorithm is polynomial in the number of states, actions,
observations and actual a(n) vectors.

4.8.8 Epsilon

In the Witness algorithm formulation, we are required to find differences
between the current approximation and the true value function of at least E.

This has some effects on the solutions that the Witness algorithm produces.
As discussed, we would actually prefer a strict inequality, but in order to fit
it into the linear programming framework we have to settle for a somewhat
less pleasing formulation.

This means that for each of the k time steps in a k-horizon POMDP so
lution we actually construct an approximation to the value function. This
complicates matters, because this approximation is then used to find an ap
proximation for the subsequent time steps. Therefore, the error can get
compounded. Although at each step we are guaranteed to obtain a value
function that is no worse than E from the true value function, this assumes
that we are working with the a(n - 1) vectors of the true value function,
V;_l (0). But if our value function for time step n - 1 is just an approxima
tion, our approximation for the V;(o) value function could be worse than E

at some point.
However, the error at each point is bounded and so we can actually bound

the error for each approximation in the k steps. The fact that we use dis
counting helps because our errors at each point will also be discounted.

If we are interested in obtaining a policy that is within a specific error
bound, we can work backwards to decide what value of E to use. This is only
a theorectical argument because, in practice, the actually values of E that
can be used will be a function of the software and hardware used in such a
system.

We have previously compared the Witness algorithm to other algorithms
which provide exact answers to POMDP problem. This might seem a bit
unfair since we have thus far been dealing with the Witness algorithm as
an approximation algorithm. However, there is a theoretical argument that

80

actually shows that the Witness algorithm can be used to find exact solutions.
Because we will need to state the POMDP formulation with a finite number

of bits (i.e., rationals), we can actually determine the the largest amount of
bits required to represent the solution to a specific problem. Given this
information we can then determine the value of f to use so that our value
function is guaranteed to be less than the actual precision of the true value
function which implies that the approximation will indeed be the true value
function. Again, this is a theoretical argument that has little to do with
actually providing exact solutions.

4.9 Algorithm Analysis

Littered throughout the discussion of the algorithms is discussion of the worst
case running times for the algorithms. In this section we will focus our atten
tion on this topic as well as explain how these arise. We will progress through
the algorithms in the same order in which we discussed them previously. All
of the analysis deals with producing one set of vectors from the previous set.
The actual complexity of each algorithm on a complete k-horizon problem
is actually much more complicated to analyze since the complexity of each
iteration depends upon the complexity of the previous one. We can say that
the worst case scenario for the general k-horizon POMDP problem can be as
large as:

lelk +1 _1

IAI [e11

This is the total number of possible policy trees as discussed earlier. If we
could construct a diabolical problem where all of these trees were useful for
some belief state, then any algorithm we could possibly derive would have
to, at a minimum, generate this many vectors (since each vector represents
a useful policy tree beginning at the kth time step).

Before we begin the analysis we will just review some notation; M is
the minimum number of vectors that are required exactly specify the value
function, V;_l (.) for the previous time step and N is the same except for the
current time step's value function, V;(·).

81

4.9.1 Monahan's Algorithm

The first step of Monahan's algorithm is to generate all the possible vectors
that could be formed from the value function (formula 7). As mentioned there
are IAIMlel vectors that will be generated. The Mlel term is the number of
ways we could fill in the M previous a(n - 1) vectors in a summation over
all (). For each of these summations there are IAI possible actions that can
be used to generate a vector. The algorithm will always require generating
this many, this is not a worst case analysis.

The next step in Monahan's algorithm is to produce and solve a linear
program for each of these to determine whether or not it is actually useful
(i.e., part of the optimal value function). The size of these LPs will vary
over time since it will eliminate useless vectors as it proceeds. Nevertheless,
the first LP will have lSI variables and IAIMlel + 1 constraints. For ease of
discussion we will let X = IAIMlel + 1 and note that N :::; X. There will
be a constraint for each of the generated vectors plus one for the simplex
constraint, Li 7ri = 1. Since each vector must be evaluated in an LP, this
algorithm must solve X linear programs. For each LP if we discover that the
vector is part of the true value function then we will need to include this as
a constraint in all the subsequent LPs. However, if there is no belief state
for which this vector can be optimal we can discard it and it will no longer
generate a constraint in subsequent LPs. Although we know we will have to
specify X LPs, we cannot say exactly how big (i.e., number of constraints)
each one will be because it will depend on the order in which we choose the
vectors.

The best case is when we try all the useless vectors first. This trims down
the number of constraints as fast as possible (one fewer constraint per LP).
The trimming will eventually stop when we are left will all of the real vectors,
but we still need to try them all since we have no a priori knowledge of how
many there are. These last N LPs will then all have N +1 constraints. One
way we could look at the best and worst case complexity of the LP solving
process is to count the total number of constraints generated. Then, in the
best case, the total number of constraints is

X+l N

L i+ L(N+l),
i=N+2 i=l

82

which simplifies to
X2 +3X - 3N2 - 5N

2
In the worst case we will check all the N true vectors first and the number

of constraints will not change until we start trying the useless vectors. The
total number of constraints in the X LPs in the worst case is:

N X+l

~)X+l)+ E i
i==l i==N+l

which is:

X2 +3X +2NX - N 2 +N +2

2
In both the best and worst case, the overwhelming factor is the X2 term

which shows that for large problems the dominating factor will be M16 1.
Eagle's variant of Monahan's algorithm tries to reduce both the number

of LPs that have to be solved and the number of constraints in each. Un
fortunately, it becomes very hard to analyze the savings since it depends on
the specific problem. This algorithm relies on being able to eliminate vectors
that are component-wise dominated by previously or subsequently generated
vectors. The number of such vectors that will exist cannot be determined
in advance since it will depend on the specific parameters of the POMDP
problem. Notice that even with this version all the X vectors must still be
generated.

Let us assume that when we generate all of the vectors there will be Y
of them that are component-wise dominated by others. Right away we get
savings in the linear programming step because we now only have X - Y
vectors. We can substitute X - Y for X in the previously shown formulas
to get new measures for the complexity in this case. However, we also pay a
computation price in the comparisons that needed to be done to check for the
domination. The actual complexity that is added will depend on the specific
way the domination is checked. There are many clever standard search and
data structure tricks from computer science that could be used to make this
fairly efficient, but the cost must still be factored in.

The last thing to mention about Eagle's optimization is that there do not
have to exist any dominated vectors at all. Dominated vectors are useless
vectors, but the converse is not true.

83

4.9.2 Sondik's One Pass Algorithm

By far, the portion of this algorithm that consumes the most time is the
linear programming step. Maintaining the search list of belief states and
generating vectors from a specific belief state are trivial computations com
pared to the vast about of time that must be spent on the large number of
LPs this algorithm generates. Therefore we restrict the complexity analysis
to the number and size of the LPs that need to be solved.

As discussed, the belief space regions Sondik's algorithm generates are
smaller than the true regions in the resulting value function. Therefore,
since this algorithm sets up an LP for each of these regions, the number of
regions will be the deciding factor. Recall that a region is defined so that
all of the aa(n) and a*(n) remain unchanged. For this to occur, the index
function l.(') must remain unchanged. The worst case for this algorithm is
when it generates a region for every possible instantiation of an l.(') function
for each action. This function can be specified as an IAI by 181 table where
each entry in the table can be one of M possible choices (the previous vector
indices). Thus, there are

possible l.(') functions. However, for each of these functions there may be
areas in the belief space where different actions are optimal (i.e., the index
function is unchanged, but a different aa(n) is larger than the rest).

So the number of possible regions is

For each of these regions, a single LP is set up, but many LPs are actually
solved for each one that is set up. Remember that for each set of constraints
generated for an area, we need to check each constraint to see whether or
not it is binding on the region. In this way the number of constraints and
the number of LPs solved will be exactly the same. This ignores any of the
optimizations discussed previously. The number of constraints (and number
of LPs solved) is:

IAI + IAI181M - IAllel·
The first term is for the aa(n) constraints, though there is one less (for the

aa(n) that is equal to a*(n)), we need to add one for the simplex constraint
anyway so we can leave it as IAI. The last two terms are for the a(n - 1)

84

constraints. The second term is the total number of ways these constraints
can be formed and the last term corrects for the the cases when ci(n -1) =
a'(1r,a,8)(n - 1).

So for a single region, the total number of constraints is the the number
of constraints (above) squared. This number is large and can be significantly
trimmed by implementing some of the clever optimizations discussed earlier,
but the shear number of regions that could be generated will still dominate
this and so for large problems we should expect worst case times that are
predominantly dictated by MIAI16 1which is actually worse than Monahan's
"exhaustive" algorithm which is dominated by only MI6 1,

4.9.3 Cheng's Relaxed Region Algorithm

This algorithm is the one that is very close to Sondik's and so we choose
to only discuss the differences in complexity from that algorithm. Since
Cheng defines regions which are typically larger than they need be, he is able
to stay away from the explosive growth of regions that Sondik's algorithm
suffers from. The Relaxed Region algorithm will only require N regions to
be defined which is a significant savings. The number of constraints on these
regions is also less, but not significantly. For each region the number of
constraints is

IAI + 101M - 101·
The next step in Sondik's algorithm would be to find the binding con

straints, but Cheng opts to find all of the corner points of the region. The
region defined by these constraints form a convex polytope in lSI dimen
sions. Cheng uses an interior point method to find these vertices, and this
is where Cheng's solution suffers a little. The worst case time for finding all
corner points in a convex polytope is exponential in the number of faces. The
number of faces in the polytope will be dictated by the smaller of either the
number of constraints or the number of variables. Although this could be
bad, the huge savings in the number of regions makes this algorithm much
more practical to use than either Sondik's or Monahan's.

4.9.4 Cheng's Linear Support Algorithm

Like the Relaxed Region algorithm, this one will only need to specify N
different regions. The constraints on the regions will always he the number

85

of vectors in the current approximation plus the simplex constraint. It is
difficult to specify how many constraints there will be at each point since it
will depend on the nature of the problem and the order in which the regions
are processed in. Even the number of constraints on the first region will not
be known before hand since the lSI belief simplex corner points can generate
anywhere from 1 to lSI vectors in the initial approximation. However, at
all times we do know an upper bound since we will never have more than
N vectors in our approximation. By definition, if we have N vectors in our
approximation, V, then we have all of the vectors necessary to exactly specify
V;(·).

Also, like the Relaxed region algorithm, Linear Support uses an interior
point method for finding all of the vertices of the region (i.e., convex polytope)
and as a result, inherits the same drawbacks. As stated before, the number
of vertices can be exponential in either the number of constraints, at most
N, or the number of variables, lSI.

4.9.5 Witness Algorithm

This algorithm's main advantage over Cheng's Linear Support algorithm is
that is is not exponential in any of the variables of interest. The difference
between this algorithm and Linear Support is that for each of the N regions
two LPs are solved. Although for anyone &(n) we may set up many LPs,
we can guarantee that we will only do at most 2N LPs. This is guaranteed
because when we solve an LP we either generate a new vector in V;(·) or else
we discover that &(n) currently defines its actual region. We can view this
as solving two LPs for each vector: one to discover it an one to verify that
it when it defines the true region. It may not be the case that &(n) leads to
exactly two LPS, but if it leads to more than two, then there must be other
vectors that do not lead to any.

The number of constraints in each LP is, in the worst case,

IAI101M + N + 2.

The first term is derived from the Me constraints; the second from the region
constraints (the number of vectors in the current approximation); and the
last term is the improvement constraint and the simplex constraint.

Since this is formulated as an LP, it can be solved in a time that is poly
nomial in the input constraint size. Recall that the interior point methods

86

could take time that is exponential in the input size. The one problem with
the Witness algorithm is that there is the extra solution verification step.
In the worst case it will involve calculating IAI161M formulas for each LP

(when slack variables aren't available). Also worth noting is that the num
ber of variables for the Witness algorithm is lSI + 161 whereas for all the
other algorithms there were only lSI.

For small problems, the comparative execution speed between Linear Sup
port and Witness will only depend on which is implemented better, but as
the problem sizes increase, the Witness algorithm's savings will make it the
faster of the two.

4.10 Complications

This section presents some of the implementation complications that we have
encountered in our implementations which are not specific to anyone algo
rithm.

As the problem size increases, the value function will typically be com
prised of a larger number of vectors. As this number increases the difference
between vectors becomes harder to distinguish. The vectors begin to get
closer and closer to each other as the solution requires minute differences
to differentiate between different regions of the policy. The floating point
precision of the existing computers will impose an upper limit on the size
of problems that can be solved. After so many decimal places, two slightly
different vectors will appear equal to the precision of the machine. Even
for modest sized problems this becomes an issue, because there are many
instances in the algorithms where these vectors must be compared to each
other. Unless extreme care is taken during implementation, this could result
in poor algorithms. Round off errors can lead to duplicate slightly different
vectors when there should only be one. But if you try to make your imple
mentation distinguish these errors and ignore them, you might be classifying
two different vectors as being the same since there difference is not that great.

The heavy dependence on linear programming techniques presents many
difficulties. None of these algorithms should be attempted without a stable,
robust LP package. Among the more serious problems encountered are those
of precision and scaling.

The precision that the LP software uses internally needs to be consistent
with those used and assumed by the rest of the implementation. This is

87

closely related to the machine precision problems.
The LPs generated by the algorithms have constraint coefficients that

are based upon the differences between two vectors. As the problem size
increases, these vectors will get closer and closer in value making the dif
ferences extremely small. This results in LPs with a wide dynamic range of
coefficients which causes the LPs to be extremely unstable. Good LP packages
will scale the constraints to avoid this instability. If the package used does
not provide this functionality, erratic and even incorrect answers can result.

5 Conclusions

5.1 Advantages of POMDPs

In this section we try to show why the POMDP model is worth exploring
and why deriving optimal solutions is desirable. Obviously, for the latter,
optimality is always more desirable (all else being equal) than sub-optimal
policies. Even when the computational costs of finding optimal policies is
prohibitive, knowing the form and methods for finding the optimal policy
can help guide the process of exploring the space of approximate solution
techniques.

Another way in which exact solution techniques might be useful is in
sub-components of a larger system. For large world models or environments,
finding optimal solutions for every decision process will not be feasible. How
ever, there might be small sub-problems that can be cast in a compact POMDP
model, for which we will be able to obtain the optimal policy.

5.2 Drawbacks/Assumptions of POMDPs

In this section we attempt to list the major problems with POMDP models
and exact solutions procedures for these models. One of the most glaring
deficiencies is expecting an agent to know the model. The POMDP model
requires knowing a vast amount of information (e.g., transition probabilities,
observation probabilities, rewards, etc.) and all of this supposes that the
agent knows the number of states, actions and observations. This is not
realistic for many problems and it is highly desirable to have algorithms that
perform well without having access to such complete information about the

88

environment.
Another limitation is that of finiteness of the model. The POMDP model

assumes finiteness of the states, actions and observations, but many problems
are better modelled with continuous quantities for these. A robot that has a
turn-left action, can usually be given any angle not a finite set of angles.
The same would be true for a robot's location and its sensory readings.

The solution procedures for POMDPs assume that the model is static. It
does not permit the model to change over time. Actually, we can model
change over time, but it requires exploding the state space to deal with all
the possible changes that could occur. While theoretically feasible, this state
space expansion is impractical and leads to a model of the world which is
very unintuitive.

While the notion of a belief state proves to be convenient for some aspects
of the model, it requires time to compute this at run time. For certain
applications, the resources to maintain and update belief states might not be
available.

The most depressing news of solving the POMDP model is that it is im
possible to compute the optimal policy for anything but small problems.

5.3 Contributions

The existing literature on POMDPs suffers from a few problems which this
work has addressed. The papers that present specific algorithms [16, 15, 6, 4]
are difficult to follow unless the reader has an intimate knowledge of the area
to begin with. The survey articles [11, 8] are at too high level to give much
insight into the details of POMDPs and the solution procedures. To compound
this problem, each author has adopted different notation and terminology
than the others. This makes exploring this field very difficult for persons not
already familiar with this area.

This paper has tried to present some of the major work in the POMDP
area in consistent notation and terminology. The paper's length is a direct
result of our attempt to explain the algorithms and intuitions behind them
in language that can be understood by persons not already familiar with the
area. We have presented the structure of POMDP solutions in many forms
and have tried to relate each of these to the others. We believe our approach
is helpful for understanding POMDPs and have not seen it done this way in
any other work to date. This paper has also attempted to sort out and clarify

89

many of the existing bugs in the literature.
We have also presented a new algorithm, Witness, for computing optimal

solutions to finite horizon POMDPs which does not suffer from the problems
of previous solutions. Empirically we have been able to solve problems much
larger than any other previously presented work.

The Operations Research community, where most of the POMDP work
has come from, does not address the complexity issues when comparing al
gorithms. In this work we have attempted to classify a number of finite
horizon algorithms by their complexity. This analysis identifies the limiting
elements of the running times of each and allows comparison between them.
This theoretical analysis coincides with the existing empirical performance
results, based upon our results and those of [4].

90

References

[1]	 K. J. Astrom. Optimal control of markov decision processes with in
complete state estimation. J. Math. Anal. Appl., 10:174-205, 1965.

[2]	 L. E. Baum. An inequality and associated maximization technique in
statistical estimation for probabilistic functions of a markov process.
Inequalities 3, pages 1-8, 1972.

[3]	 Richard Bellman. Dynamic Programming. Princeton University Press,
Princeton, New Jersey, 1957.

[4]	 Hsien-Te Cheng. Algorithms for Partially Observable Markov Deci
sion Processes. PhD thesis, University of British Columbia, British
Columbia, Canada, 1988.

[5]	 A. W. Drake. Observation of a Markov Process Through a Noisy Chan
nel. PhD thesis, Massachusetts Institute of Technology, Cambridge,
Massachusetts, 1962.

[6]	 James N. Eagle. The optimal search for a moving target when the search
path is constrained. Operations research, 32(5):1107-1115, 1984.

[7]	 Ronald A. Howard. Dynamic Programming and Alarkov Processes. The
MIT Press, Cambridge, Massachusetts, 1960.

[8]	 William S. Lovejoy. A survey of algorithmic methods for partially
observed markov decision processes. Annals of Operations Research,
28(1):47-65, 1991.

[9]	 T. H. Mattheis. An algorithm for determining irrelevant constraints
and all verticies in systems of linear inequalities. Operations Research,
21:247-260, 1973.

[10]	 T. H. Mattheis and David S. Rubin. A survey and comparison of meth
ods for finding all vertices of convex polyhedral sets. Mathematics of
Operations Research, 5(2):167-185, 1980.

[11]	 George E. Monahan. A survey of partially observable markov deci
sion processes: Theory, models, and algorithms. Management Science,
28(1):1-16, 1982.

91

[12]	 H. Mukherjee, N. Shahabuddin, and K. Setk. Optimal control policies
for partially observable markov processes - a corrected and improved
algorithm. Technical report, Indian Institute of Technologu - Delhi,
Delhi, India, 1985.

[13]	 Anton Schwartz. A reinforcement learning method for maximizing undis
counted rewards. In Proceedings of the Tenth International Conference
on Machine Learning, Amherst, Massachusetts, 1993. Morgan Kauf
mann.

[14]	 Satinder Pal Singh, Tommi Jaakkola, and Michael I. Jordan. Model
free reinforcement learning for non-markovian decision problems. In
Proceedings of the Machine Learning Conference, 1994. To appear.

[15]	 Richard D. Smallwood and Edward J. Sondik. The optimal control of
partially observable markov processes over a finite horizon. Operations
Research, 21:1071-1088, 1973.

[16]	 Edward J. Sondik. The Optimal Control of Partially Observable Markov
Processes. PhD thesis, Stanford University, Stanford, California, 1971.

[17]	 C. J. C. H. Watkins and P. Dayan. Q-Iearning. Machine Learning,
8(3):279-292, 1992.

[18]	 Wayne L. Winston. Introduction to Mathematical Programming: Appli
cations and Algorithms. PWS-KENT, Boston, Massachusetts, 1991.

92

