
, BRO\VN UNIVERSITY
Department of Computer Science

Master's Project

CS-94-Mll

"Hierarchical Learning in Stochastic Domains"

by

Rachita (Ronny) Ashar

Hierarchical Learning in Stochastic

Domains

Rachita (Ronny) Ashar

Computer Science Department

Box 1910

Brown University

Providence, RI 02912

ra@cs.brown.edu

May 1994

This thesis by Rachita (Ronny) Ashar is accepted in its present form by the

Department of Computer Science as satisfying the requirement for the Master

of Science degree.

Date [1 ma., :t~ ~P~
Leslie P. Kaelbling

Approved by the Graduate Council

Date _

Contents

1 Introduction 1

2 Foundation 4

2.1 Q Learning " " " " "

2.2 Method of exploration 7

(3 Dynamically Changing Goals of Achievement 8

\

3.1 Simulated Domains " 8

3.2 Gaea .. 12

3.3 Evaluation Criteria 19

4 DG Learning 21

4.1 Multiple Goals Update 22

4.2 Method of Exploration 23

4.3 Empirical Results .. 23

4.4 Computational Complexity 25

4.5 Discussion . 25

5 Hierarchical Learning 26

5.1 Landmark Networks. 26

Jll

5

5.2 HDG Learning Algorithm 28

5.2.1 Executing Actions . .. 28

5.2.2 Data Structures 28

5.2.3 Incrementally Learning DG Values 29

5.2.4 Updating Gamma Values. 29

5.2.5 Paths followed by HDG 30

5.3 Empirical Results .. 31

5.4 Computational Complexity 33

5.5 Discussion . 33

6 Incrementally Learning r Values 34

6.1 Empirical Results .. 34

6.2 Computational Complexity 39

6.3 Discussion . 40

7 Method of Exploration 41

7.1 Empirical Results 42

7.2 Discussion 44

8 Learning the Hierarchy 46

8.1 HDGL .. 46

8.2 HDGM 47

8.3 Empirical Results .. . 48

8.4 Computational Complexity 55

8.5 Discussion . 56

IV

9 Walls and Membranes 57

9.1 Modifications to the algorithm 57

9.1.1 Mappings 57

9.1.2 DG values 58

9.1.3 The algorithm 58

9.2 Empirical Results .. 58

10 Multiple Levels of Hierarchy 61

10.1 The Landmark Network 61

10.2 The Algorithm . 61

10.2.1 Executing Actions 62

10.2.2 Data Structures 62

10.2.3 Learning .. 62

10.3 Empirical Results 63

10.4 Computational Complexity 65

10.5 Discussion 66

11 Landmark Layout 70

11.1 Optimal Landmark nodes in a planar graph 71

11.2 Incrementally adjusting landmark layout . 73

11.2.1 Kohonen Maps 73

11.3 Discussion 76

12 Related Work 77

12.1 Feudal Reinforcement Learning 77

v

12.2	 Reinforcement Learning with a hierarchy of abstract

models .. 78

12.3	 Parti-game Algorithm " 79

12.4	 Ariadne's Clew Algorithm 80

13 Conclusion	 82

13.1	 Summary and Future Work 82

13.2	 Perspective .. 85

vi

Prologue
I like to think of flexible systems (be they carbon-based or silicon-based) that

have the potential of evolving into independent thinking beings as Unconven­

tiona/Intelligences or Ul's. A quest for VI's inspires me to play with learning

systems and robots. This thesis constitutes my first endeavor towards the

quest for VI's.

My parents gave me a ZX Spectrum home computer when I was in the

tenth grade. Dr. Ralph Hollingsworth, Muskingum College, provided encour­

agement when I needed it. Dr. Leslie Kaelbling taught me to do painstaking

research, to make slides, to write papers and much more. Andrew Zolli added

Geoff's pickles, Nietschzean conversations and chaotic games to life in Provi­

dence. I immensely thank all these people

This thesis is dedicated to my father who shewed me to value the truth\

and to dream big.

Vll

Chapter 1

Introduction

This thesis explores feasible methods for teaching autonomous and adaptive

intel1igent systems to accomplish dynamically changing goals in stochastic do­

mains. The methods that we experimented with have been tested in various

simulated domains. \Ve provide an empirical and theoretical complexityanal­

ysis for these methods.

Imagine programming a robot to pick up interesting rock samples from the

surface of Mars and collect them in some section of a spaceship.

You want this robot to be adaptive while functioning in a complex, un­

known terrain. Even if you knew precisely what task the robot had to accom­

plish, and exactly how the robot worked (i.e., it had precise, perfect sensors), it

would be at best extremely time-consuming, and at worst impossible to hand­

code a static program that enabled such a robot to survive and accomplish

its goal. Even if the robot were not autonomous, and you could constantly

change your program very quickly, you would then have to assume the role of

a baby-sitter for the robot.

Imagine teaching a child to collect her toys that are scattered across the

1

carpet and place them in a box.

It is highly unlikely that you will try to give precise instructions to the

child indicating how she must pick up a toy, how she must walk, how many

steps she must take, and exactly where in the box she must place a toy. You

could demonstrate that task to the child and ask her to imitate you. That

approach is akin to supervised learning. But, if she is self-styled or if you

want her to be self-motivated at this task, the above approach might not fly.

You could still accomplish your goal. Your strategy could be to not explicitly

order the child, but merely to observe her, and, encourage her whenever she

happens to place some toy in the box after she has finished playing. You could

indeed evolve a strategy that is a conglomeration of the above approaches and

works best for the task at hand. That is, you could explicitly mention that

toys must be placed in boxes after one has finished playing, demonstrate by

yourself placing a toy in the box, and then encourage the child with various

kinds of reinforcements to follow your example.

One of the reasons that intelligence is such an intriguing subject is that

despite our exquisite communication skills we are often unable to explicitly

describe the intelligent tasks that we can so easily perform. Yet, we seem to

readily learn these tasks via trial and error by evolving strategies to optimize

trials that appear causally linked to beneficial effects.

The approach of training organisms to perform actions to acquire rewards

(and to not exhibit behavior that entails negative rewards or punishments)

is termed reinforcement learning by psychologists. A similar method can be

applied to train autonomous agents such as robots.

2

".i.!

The reinforcement learning problem is that of an agent placed in a world

(which may be dynamically changing) balancing exploratory vs. exploitary

actions and interacting with its environment to optimize long-term rewards
",

received. For a succinct formal definition and details about reinforcement

learning refer to [2].

In this thesis we first review some existing reinforcement learning algo­

rithms and discuss the results that we obtained by replicating certain exper­

iments comparing these algorithms in simulated domains. We then motivate

reasons for wanting hierarchical reinforcement learning algorithms, focus on

a previously developed hierarchical algorithm, and discuss the various modi­

fications that we have made and the versions of that algorithm that we have

spawned in an attempt to make that algorithm robust for large, complex do­

mains. "V/e do a complexity analysis and compare empirical results obtained by

running the above-mentioned algorithms. We also review some other hierarchi­

cal algorithms from literature and contrast our approach with those methods.

\Ve conclude with some speculations on how this work can be extended.

Typically, while developing our algorithms, we make some simplifying as­

sumptions. However, with a little ingenuity, the same algorithms can later

be adapted for domains in which those assumptions no longer hold. In this

work, we focused on reinforcement learning algorithms in Markov domains.

The algorithms can potentially be integrated into a system that also has other

components using other forms of learning.

3

":":L--_

\

Chapter 2

Foundation

Consider a learning agent named Zorbi. Zorbi can be a robot or a softbot or

a small component of some other learning system. The domain Zorbi lives in

can range from the surface of mars to a sub-section of a huge data-base. Let S

denote the set of world states that are perceived by Zorbi, and, let A be the set

of actions that Zorbi can perform. We model the world as a Markov process

and consequently we deal with discrete time intervals. Hence, given that the

world is in state SI at time t l , and that Zorbi performs action al at that~
time, then, the world will transition to some new state at time t2 , and, what

state it transitions to is contingent solely on SI and al. Zorbi uses a policy

while selecting actions. A policy is simply a mapping from states to actions,

n : S t-+ A. Zorbi receives some reward from the world upon performing

an action in the world. Note that we model the state transitions and reward

functions as probability distributions. Let T(8}, a, 82) represent the probability

of transitioning from state 81 to state 82 upon performing some action a E A.

Let R(s, a) be the reward received upon performing action a while in state s.
,~

Zorbi's goal is to derive and execute optimal policies, and thereby to optimize

4

>

the rewards received.

Note that ideally we want an agent to follow a policy that will optimize

its total expected reinforcement. However, if learning proceeds infinitely, it

is difficult to mathematically model such reinforcement values. Hence, we

introduce a decay factor, " and decay future reinforcements by this value. If

ER(i) indicates the reinforcement expected at time step t, then we focus on

optimizing

L
00

,tER(t) .
t=O

Although, in several applications the task might involve optimizing a mea­

sure of performanre other than total expected reinforcement. Recent rein­

forcement learning literature indicates that algorithms to achieve such tasks

are being actively researched. Schwartz formulated the average-adjusted value
\

as a metric for such tasks and presented the R learning algorithm that is

analogous to Q learning [14].

Stochastic dynamic programming methods such as value iteration and pol­

icy iteration [2] can be used to find optimal policies if we have the transition

probabily function, T, at our disposal. But, in several important applications

such information about the domain is not available or highly inaccurate.

2.1 Q Learning

\\'atkins' Q learning is an elegant reinforcement learning algorithm [9]. Q

learning is an on-line version of value iteration that runs in domains where

the transition probability function T is not available, by maintaining the Q

values for each state-action pair and backpropogating reinforcement values

5

across states.

Let Q : SXA 1-+ Value. The Q values are arbitrarily initialized. As

learning progresses, at each step we update

Q(s,a) = (1 - O')Q(s,a) +O'(R(s,a) + "YmaxQ(sl,a'))
o'eA

where 0' is the learning rate, s was the old state of the world in which Zorbi

performed action a, and S' is the new state that the world transitions to.

The expected discounted reinforcement for taking action a while in state s

and continuing to act optimally is given as

Q~(s, a) := ER(s, a) + "Y L T(s, a, s')maxa'eAQ"(S', a'l
a'es

Given certain assumptions (such as that all state-action pairs be tried

infinitely often), the Q values are guaranteed to converge to the optimal

values[1 i].

As learning progresses, the Q values converge towards optimal, and then

it is in the agent's interest to exploit this knowledge and perform an action a

that optimizes Q(s, a). However, initially the Q values are largely inaccurate.

At that point the agent must perform a great deal of exploration in order

to incrementally update its Q values. Gradually, as learning proceeds, the

exploration vs. exploitation ratio must change. In practice, this exploration

vs. exploitation trade-off is resolved by using a suitable method (for example,

Boltzmann distribution) to stochastically select actions.

6

2.2 Method of exploration

In our Q learning experiments we used a Boltzmann distribution to stochasti­

cally select actions.

When Zorbi was in some state 5, she selected an action a with probability

eQ(&,a)/T

l:aEA eQ(&,I1)/T

where T is the temperature parameter of the Boltzmann distribution. T should

be in the (0,1] range. A higher temperature introduces a high degree of ran­

domness in action selction.

!
\

7

Chapter 3

Dynamically Changing Goals of
Achievement

Many real-world applications req'.:ire an agent to optimally achieve a specified

goal. Often, this goal is dynamically changing. And, typically the agent

does not receive much reinforcement from the environment until this goal is

achieved. For example, a courier robot in a hotel or an office might start

out at the reception desk, be asked to make a delivery to a certain specified

location, be rewarded when it makes the delivery, and then be requested to

make another delivery to a different location.

V\,'e tested the Q learning algorithm and the DG learning algorithm (dis­

cussed in the next section) and the hierarchical algorithms that we have been

developing (which will be discussed extensively in the following sections) on

such goal-of-achievement tasks in simulated domains.

3.1 Simulated Domains

As mentioned earlier, the algorithms discussed here can be applied to various

domains. In our experiments, we have applied them to robot navigation tasks

8

in simulated domains.

each grid represents

a state of the world

SOUTH WALL

along this state

~

Since a membrane is

one-way.

ZoIbi can go east

from this state

:.::;

·::1"1 WEST MEMBRANE
1[::[: along this state

if

t
NORTH WALL
along this state

Figure 3.1: a 4X4 grid-world with walls and membranes.

We worked extensively with simulated grid-world domains of varying sizes

and complexities. Figure 3.1 displays a sample domain. As indicated in the

legend, each cell represents a state of the world. The very thick black lines

constitute walls. The thick shaded lines represent membranes or one-way walls.

A = {N, S, E, lV} constitutes the action set. That is, Zorbi can attempt to

9

move North, South, East or West in the simulated worlds. Upon performing

an action, the state transitioned to is determined probabilistically based on

the transition probability parameter of the world. Any attempt to move out

of the boundary of the world is futile and results in no change of state.

10

--

For our experiments, the transition function was set up such that, with

probability trans_prob, the world transitioned to the expected state, and with

probability (1 - trans_prob)j4.0 the world transitioned to one of the four

neighboring states of the expected state. Figure 3.2 illustrates this.

neighbor of 52

54

expected state neighbor of 5
neighbor of 52

555253

t neighbo
of 52

current state
51

L.­

Figure 3.2: Actions and state transitions in grid worlds: if the world is in state
S1 and Zorbi performs action NORTH then with probability trans_prob the
world transitions to the expected state, that is, state 52. With probability
(1 - trans_prob) j4.0 the world transitions to one of the fOUf neighboring states
of the expected state. The neighboring states os state 52 in this figure are
states 51, 53 54 and 55.

11

3.2 Gaea

\Ve developed a graphical interface simulator called Gaea for running experi­

ments. Gaea is a useful debugging tool since running the algorithms in Gaea

and getting dynamic pictorial results helps us better understand how things are

really working. Needless to say Gaea adds a colorful twist to our work. Gaea

was developed using BAUM (Brown Augmented Utilities for Motif) which is

a C++ shell over Motif developed at Brown.

Gaea has various features that are especially relevant for the hierarchical

algorithms discussed later. Of course, Gaea also supports the non-hierarchical

algorithms that '~"e have been experimenting with. Sincp all the algorithms

have at some point been tested in Gaea, I have placed the Gaea description

here so that while reading about the empirical results in various later sections

it is easy to visualize the kinds of test domains that were created. However,

knowing what the algorithms do and how they work will help better appreciate

this section. It is important to know that for the hierarchical algorithms some

states of the world are selected to be landmarks. As explained in the later

sections, a landmark network is constructed on the world by partitioning the

world into regions around these landmark states.

A few of Gaea's salient features are:

•	 Main Window: Gaea has one huge window split-up into left and right

sections.

- Grid World: The right half has some menu options at the top

boundary. A major portion of the right half contains the graphical

12

grid-world as illustarated in figure 3.3.

• .~

.O;-:::;_:::;::$~"'~~:;,,":'-:''';:~:::'~;x::~·-·-·-·-·i·;n-'·-·iiiiIii·:;:::~::::~;

Figure 3.3: Gaea's Grid World Window

In the IOXIO hierarchical world of figure 3.3 the partitions have

been constructed using Voronoi diagrams. The grid-world can have

walls and membranes as indicated in figure 3.4. The thinner lines

are the membranes and the thicker lines are the walls. Figure 3.4

shows a 20X20 hierarchical world in which Zorbi the learner has just

started learning partitions. Figure refflB in chapter 9 illustrates

the partitions that are learned in a similar world when the run com­

pletes. The black squares in some states of the grid-world indicate

that those states are landmarks. Each landmark has its own color,

13

and states belonging to a landmark's region have the same color as

the landmark state. When the hierarchical algorithms are learning

to partition states into regions, the regions are constantly chang­

ing, and those changes are reflected graphically in the grid-world

by changing the colors of the states. That makes an enchanting

display.

Figure 3.4: a 20X20 grid-world with walls and memebranes and 40 landmark
states.

14

(

\

Figure 3.5: Gaea's User Interface

- User Interface for Parameters: The left half has various switches

that allow users to enter the learning parameters. This is illustrated

in figure 3.5.

15

t ~~
; l!. r·, 1"'111; r I, ~il
5: !!;: } :. ! l.: : ! .. , ";! I
.' " f' " r \ :""i LJ t" ~ t.l ,:). ~ 1'1 f ';.isl '\ .l' l,,;: r I

, 1 : ' ... " . I' 'J'~ l t fI ~' , ~'! i "I

~\ 1
~ Of

i

Figure 3.6: Learning curve displayed in Caea as a run progresses. The Y­
axis represents the average number of goals reached per tick, and the X-axis
represents the number of steps taken.

(

\

• Running Curve: Caea has a tiny window that dynamically displays

a learning curve plotting the average number of goals reached per tick

as the run progresses. Figure 3.6 illustrates a sample curve that was

obtained by running the DC algorithm in a 10XIO grid-world for 30,000

steps.

16

Figure 3.7: A graph of the landmark network for the hierarchical al­
gorithms dynamically plotted in Gaea. Each node of this graph repre­
sents a landmark state, and, as a neighborhood relationships between land­
marks are formed/dissolved, arcs connecting their corresponding nodes are
added/deleted in the graph .

•	 Landmark Network Graph Window: The other tiny window, shown

in figure 3.7, plots a graph of the landmark network for the hierarchical

algorithms. The landmark network is explained in the HDG algorithm

section. In the graph plotted, the landmark states are the nodes, and,

neighboring landmarks are connected by arcs. Gaea offers various other

options that facilitate development of the hierarchical algorithms. When

the partitions are being learned by DGHDG, each time a partition up­

date is performed the regions displayed in Gaea's world window, and,

the landmark network in Gaea's network window dynamically change to

reflect the new world structure.

•	 Running Options: Gaea can run the algorithms for the specified num­

ber of steps while in automode. Alternatively, a user can toggle off the

automode and pause at desired break-points.

17

!

\

Figure 3.8: this figure illustrates the policy learned by DG for goal state 55.
The up, down, right and left directions of the arrows correspond to actions
Korth, South, East and West respectively

•	 Displaying Policies: The policy option allows the user to specify a goal

state and display the learned optimal policy from every other state of

the world to that state. The states of the world are implicitly numbered

from 0 (top-left) to S - 1 (bottom right). Figure 3.8 shows the policy

learned for goal-state 55 by running DG learning for 30,000 steps.

18

•	 Statistics: Relevant statistical information about the learning curve

(such as average number of goals reached during the last interval of the

run) is available if desired.

•	 Saving Files: The running curves and the constructed worlds can be

saved in files.

•	 Online help: Some basic information about reinforcement learning,

and instructions on running the algorithms are available in Gaea's Help

menu option. Hence a novice user can build-up a good intuition for these

algorithms by playing with Gaea.

3.3 Evaluation Criteria

Note that while comparing the performance of our algorithms on goal of'"
achievement tasks, we consider the performance factor which gives the av­

erage number of times that Zorbi reached the goal state per step. To obtain

the performance factor we divide the number of times that Zorbi reached her

goal in the course of the entire run by the total run length.

\Ve will often compare the performance of our algorithms with an optimal

agent in the same domain. An optimal agent executes an optimal (usually

hand-coded) policy.

Each algorithm that we discuss was first run severa] times with varying

learning parameters. To obtain suitable parameters for the algorithms, in

some cases, we ran the algorithms several times while systematically varying a

single parameter at fixed intervals over an exhaustive range, and then selected

19

the value that produced the best average performance factor over those runs.

But, usually, we simply selected values that seemed suitable for a parameter,

ran the algorithm several times and narrowed down to a suitable range. After

that we varied the parameter value over this small range and values that were

determined to be optimal in the course of such ad-hoc experimentation were

then used during subsequent runs. For all the results discussed in this thesis

each algorithm was run with optimal parameters thus obtained.

While comparing algorithms we ran the student's t-test and tested the

performance factors at 5% levels of significance. Unless specified otherwise,

whenever we mention that a result was significant we mean significant at 5%

le\"el as per the t-test.

20

Chapter 4

DG Learning

Previously existing reinforcement learning algorithms such as Q learning can

be easily applied to goal of achievement tasks. These algorithms can also be

modified to handle situations where the goal varies dynamically; however that

causes a substantial degradation in performance.

(Kaelbling [9] presented the DG learning algorithm which is a descendant

of Q learning and learns to efficiently accomplish goal of achievement tasks.

This algorithm readily incorporates tasks with dynamically changing goals.

The DG algorithm uses the fact that the goal is explicitly named, and,

hence there is no need for a reinforcement function. The algorithm must

simply find a policy that minimizes the expected number of steps (i.e., the

expected distance) to the goal.

Let G indicate the set of goal states. At any given point, Zorbi's task is

to aim for some goal-state 9 E G from her present state s E S by performing

some action a E A. Hence, Zorbi must have a policy mapping states to actions

for a given goal state.

Following Kaelbling [7], we define the estimated cost of executing action a

21

while in state s, and thereafter following the optimal policy to get to state 9

as DG*(s,a,g), which can be written as

when s = 9
DC*(s,a,g) = { ~ +Ls'EST(s,a,s')mina'EADG*(s',a',g) otherwise

'Ne start with DG(s, a, g) set to any arbitrary value (usually 0). Then, at

each step, upon taking an action a and reaching some new state s', update,

DC(s,a,g) := (1 - o)DG(s,a,g) +0(1 +mina'EADG(s',a',g))

where 0' is the learning rate.

\Ve effectively maintain a running average of the DG values. Initially, we

would prefer to have a high 0 to expedite learning. As learning proceeds, the

DG values stabilize and converge towards optimal. At that stage, we prefer a

10"" value for 0 since a single bad trial could unduly disrupt the learned policy

if 0' is too high. Hence we decay a: at each step.

Watkins and Dayan have proved that a Q learning system will converge if

certain conditions are satisfied and if all state/action pairs are tried infinitely

often [17]. Vo./e conjecture that DG learning can be shown to converge under

similar conditions.

4.1 Multiple Goals Update

In the case of multiple goals, instead of updating the DG value for the single

selected goal 9 E G, we do the update for all 9 E G. While this incurs an

additional time-cost at each step, it enables Zorbi to perform global learning

even as she focuses on achieving a single goal.

22

Note that the DG values converge towards the actual expected distances

between the states of the world, and hence if we run DG in the all-goals mode

by setting G =S then a world-model is implicitly learned.

4.2 Method of Exploration

In the set of experiments comparing DC with Q learning we used a Boltzmann

distribution to select actions. (We later evolved a new method for stochasti­

cally selecting actions that better balances exploration vs. exploitation. That

method is discussed later in the hierarchical learning section and was used in

later experiments comparing DC learning with the hierarchical algorithms.)

Since the minimum DC value is optimal, while in some state s, Zorbi selects

an action a with probability
(
\

eDGma% (s,g)-DG(s,a.,g)/T

LaEA eDGmC,%(s,g)-DG(s,a,g)/T

where DGmax(s, a) = maxaEA DG(s, a,g).

4.3 Empirical Results

\\~e replicated Kaelbling's results [9] comparing DC and Q learning on goal­

of-achievement tasks in lOXlO grid-world domains.

For those set of experiments, the trans_prob parameter of the world was

set to 0.2. We used such a low value (that particular value was arbitrarily

selected) so that the model may reflect the unpredictable nature of the real­

world. During those experiments we had a learning rate 0' =0.4, and, we did

not decay 0'. For Q learning, the decay-factor "y was set to a high value that

23

I

was experimentally determined to be optimal for those experiments. We had

=0.995. The temperature parameter of the Boltzmann distribution was set

to O.l.

We first tested the algorithms on tasks involving a single goal state. We

arbitrarily selected state 5 of the 10XI0 grid-world to be the goal. Zorbi

started at some random location, learned to converge towards this goal and

when she reached the goal she was teleported to a different location. For

DG learning, the performance factor averaged over 10 runs was 0.07184 with

a standard deviation of 0.01184, and for Q learning the performance factor

averaged over 10 ~uns was 0.07475 with a standard deviation of 0.00927. The

performance of the optimal learner averaged over 10 runs was 0.10523 with a

standard deviation of 0.00108. The difference between the DG learning and

Q learning performance factors is not significant whereas both performance

factors are significantly lower than that of the optimal learner.

Next, we tested the algorithms with multiple goal states. Since Q learning

cannot really handle multiple goals in its usual form, we modified problem de­

scription by considering the goal state to be an additional aspect of the state

description. Hence the algorithm essentially had to maintain Q values for a

total of S x G states. For our experiments, we set G = S. During that set of

experiments, Zorbi started at some random state and aimed for a randomly

selected goal 9 E G. When she reached the goal, a new goal was randomly

selected, and, Zorbi was teleported to a different location. We compared the

performance of the algorithms averaged over 10 runs each. The learning pa­

rameters for both algorithms were set to be the same as in the above single-goal

24

case. For DG learning in all-goals mode, the performance factor averaged over

10 runs was 0.07334 with a standard deviation of 0.001532, and for Q learning

the performance factor averaged over 10 runs was 0.005335 with a standard

deviation of 0.0005169. The performance of the optimal learner averaged over

10 runs was 0.10419 with a standard deviation of 0.00123. The Q learning

performance factor is significantly lower than the DG learning performance

factor and both performance factors are significantly lower than that of the

optimal learner.

4.4 Computational Complexity

As explained in [7], with DG learning, at each step we require O(A) time for

action selection and O(GA) time for updating the DG values. Hence in the
(

all·goals model we require O(SA) time per step.

Storing the DG values entails a space requirement of O(SAG). Thus we

require 0(S2 A) space in the all-goals mode.

4.5 Discussion

\Ve described the DG learning algorithm. Our experimental results on DG

learning in the all-goals mode illustrate that the algorithm successfully achieves

transfer of learning across tasks. However, we note that the algorithm does

require a considerable amount of time and space while running in the all-goals

mode.

25

i

Chapter 5

Hierarchical Learning

DC learning is difficult to implement in larger domains owing to time and

space costs. A plausible solution is to split up the domain and use some form

of divide-and-conquer. Kaelbling [7] presents the HDG learning algorithm

that uses a 2-level hierarchy consisting of a partition of the domain and then

uses a modified version of the DC algorithm to learn to achieve goals in the

partitioned domain.

5.1 Landmark Networks

If you were at home and intended to attend a conference in a different country,

on a different continent, how would you accomplish your goal? You might

plan out an itinerary that includes going to the airport, catching a flight,

disembarking from the flight at the proper city, and, then reaching a certain

hotel in that city. Given that high-level plan, you would commence by focusing

on getting to the airport from home. This task might include driving down

from your garage to a main street, from there to some highway exit and so on

until you reach the airport.

26

People tend to organize spatial information hierarchically, and at each level

of hierarchy the information tends to revolve around certain cognitive refer­

ence points or landmarks (16). Effectively, people form cognitive maps by re­

organizing the information provided in a conventional map or obtained from

the real-world via observations. As explained and illustrated via several inter­

esting examples in (16), while such cognitive maps do not reflect precisely the

real-world information, the distortions introduced by such maps are systematic

and help people to retain and utilize relevant information.

Kaelbling's HDG learning algorithm exquisitely renders this aspect of hu­

man spatial organization while accomplishing dynamically changing goals in

stochastic domains. The algorithm uses hierarchical constructs called Land­

mark J\Tfiworks. At each level of hierarchy, certain states are selected to be

(landmarks. The world is partitioned into regions by clustering states around

the landmarks. Each landmark is associated with other nearby landmarks via

a neighborhood mapping. Essentially, intra-regional goals can be accomplished

by simple DG learning. For inter-regional goals, the landmarks are used as

way-points to aim for, and, the algorithm follows a shortest path along the

landmark graph to get to the region corresponding to the goal state [7).

Given the set 5 of states, a landmark network is specified by the tuple

(L, NL, N), where L C 5 is a distinguished set of landmark states, N L :

5 ~ L is a mapping from each state to its nearest landmark, and N : L ~ 2L

is a mapping from each landmark to a set of neighbor landmarks [7].

27

5.2 HDG Learning Algorithm

The HDG algorithm summarized below has been adapted from [7].

5.2.1 Executing Actions

Given a landmark network (in later sections we will discuss how to create/learn

landmark networks), the current state 8 E S and the goal state g,

1.	 Find NL(s) and NL(g), i.e., the nearest landmarks corresponding to s
and g.

2.	 If l\'L(s) = N L(g), then execute the best local action to reach from s to
g.

3.	 Else, let ii be the second landmark on the shortest high-level path from
NL(s) to NL(g).

4.	 Perform the best local action to reach from 8 to Ij •

5.2.2 Data Structures

\\'e must maintain the Nand N L mappings for the landmark network and the

inter-state distances. There are two structures for maintaining the distance

values between states. At the lower level, we maintain the DG values from

every state s to every other state s' such that NL(8) = NL(s'), and from

every state 8 to every neighboring landmark of its corresponding landmark,

that is, to every landmark ii such that Ii E N(NL(8)). At the next level of

abstraction,we maintain r values between landmarks. Following [7], we define

r(i], i2 , i3) to be the shortest distance from landmark 1] to i3 on a path that

starts by visiting landmark i2 where 12 is a neighbor of i].

28

Let

D(lbI2) = min DG(ll,a, 12), where 12 E N(ll),
II

then,

f(III 12,13) = D(lt, 12) + min f(I2,li, 13)
Ii

and the

Ii E N(NL(s)) that minimizes f(NL(s), Ii, N L(g))

corresponds to the second landmark on the shortest path from s to g.

5.2.3 Incrementally Learning DG Values

The DG values ate learned exactly as they were with the bflsic DG algorithm.

While running DG in all-goals mode, we had G = S, and hence explicitly

(learned DG values from every state to every other state. With HDG, we only

maintain explicit DG values from a state s to a systematically selected set of

goal states Gs . Specifically, Gs = N L(s) U N(N L(s)).

5.2.4 Updating Gamma Values

1\ote that the f values are contingent on the DG values, making it difficult to

learn them incrementally because DC values are being simultaneously learned.

Kaelbling [7] resolves this issue by periodically recomputing the f values as

follows:

They are initialized such that,

for all landmarks 11 and for all landmarks 12 such that 12 E N(lt),

f(II, 12,12) = D(II, 12)

29

and,

for all landmarks 11 and 12 ,

f(Ib h, 11) = 0

Then a modified version of the Floyd-Warshall all-sources shortest-paths

algorithm [3] is used to compute the rest of the f values.

5.2.5 Paths followed by HDG

An interesting aspect of this a:,lgorithm is that during inter-regional travel it

results in a behavior of aiming towards the next landmark on the path, but

does not require that Zorbi actually reach the next landmark. Figure 5.1

displays a path found by HDG for naviagtion from state 70 to goal-state 76.

Zorbi notes that goal state 76 is in a different region than state 76 and begins

aiming for the next landmark on the shortest path from current landmark

state 50 to goal landmark state 77. But Zorbi need not actually reach the

intermediate landmark state 55. Upon reaching state 63 she starts aiming

for the next nearest landmark that is state 77. This behavior of aiming for

but not necessarily reaching intermediate goals results in paths that are on

average far better than paths that would result if the landmark graph were

rigidly followed. Hence even though the paths traversed by executing HDG can

be slightly longer than the paths that could be followed in a non-hierarchical

world the penalty tends to be very small.

..

30

] 7 84 60 2 3 5 9

:'\]]lO 12 1413 17 1916 18).....1V-,
r ­
20 21 2423 26 , 28 292SZZJ 27

35~ 31 32 3634 38 3937.1103

"1

r-­
40 42 43 44 45 46 47 49~r

~ --
~, I 5451 52 57 58 ~5 S6)~~ r-... :" ~

_(j!e -6!>- elJl'e ~.,~ -ej6 6800· .,}t ­ 67 69 -
79(77 7873 75 I ~ 72 74;0 I 71

-80 82 8')8] 83 88 8984 85 86
........,

9~ 9690 91 92 9994 95 97 98

Figure 5.1: The dotted line illustrates a pdth found by the HDG algorithm
to naYigate from state 70 to state 76 in a lOX10 grid world. The states with
circles in them are landmarks and the thick black lines represent the partitions
on the domain.

Also, all global planning is implicit. At any given moment, Zorbi perceives

the state of the world at that moment, and decides what action to perform

locally. Hence, if an action results in an unexpected outcome, Zorbi can easily

adapt to the new situation. For example, in figure 5.1, if while traversing

from 70 to 60, Zorbi ends up reaching 80 instead, she can simply decide that

the next landmark on the path from 80 to 76 is 93 and satrt aiming for that

landmark.

5.3 Empirical Results

In our initial experiments, following Kaelbling [7], we used Delaunay trian­

gulation [13] to construct landmark networks. We select a certain number of

31

world states as landmarks, construct a Voronoi diagram on those landmarks

and thereby partition the world into regions corresponding to the landmarks.

Also, landmarks whose regions are adjacent are considered to be neighbors.

We replicated Kaelbling's [7] results comparing the DG and HDG algo­

rithms in simulated domains. Learning curves comparing DG and HDG in

gridworld domains of size IOXIO and 20X20 are shown in figures 10 and 11

respectively. Since figures 10 and 11 also plot the learning curve for an algo­

rithm dicussed in chapter 6 they are included in that chapter. For a discussion

of those results and details about the learning parameters please refer to sec­

tion 6.1.

Kote that our results from the figure 6.1 experiment indicate that DG

learning performs significantly better than HDG learning. The nature of our

learning curves is somewhat different than those of Kaelbling's similar ex­

periment [7]. In Kaelbling's experiment in the IOXIO domain HDG initially

performs better than DG but DG performs better in the asymptote. Whereas

our learning curves indicate that DG performs better than HDG throughout

the run. We had 10 landmark states as opposed to Kaelbling's 12 landmarks.

Also, for this set of experiments we independently selected 10 random land­

marks for each run. Our run length was 30,000 and we plotted buckets of

500 ticks as opposed to Kaelbling's runs of length 20,000 with 200 ticks per

bucket.

The learning curves in the 20X20 grid-world plotted in figure 6.2 appear

rather similar to Kaelbling's learning curves in the IOXIO world. That is, the

HDG algorithm initially performs better than DG and DG eventually catches

32

\:

,.

\

up. The algorithms do not seem to have reached an asymptote at the end of

the runs.

5.4 Computational Complexity

\Vhen we introduce a single level of hierarchy wherein ILl is the number of

landmarks, IDI is an upper bound on the number of neighbors a landmark

can have and Irl is an upper-bound on the region size, we entail time costs of

O(IAI(lrl + IDI)) at each step, and a cost of O(IDIILI3
) for performing Floyd

Warshall update on the r values at each set interval [7]. Kaelbling [7] also

derives the space complexity O(ISIIAI(lrl + IDI) + IDIILI 2
).

5.5 Discussion

We motivated reasons for wanting hierarchical algorithms and presented Kael­

bling's HDG learning algorithm. 'VIle presented empirical results comparing

HDG with DG learning (in all-goals mode). While DG does perform better

than HDG, the hierarchical algorithm has the potential of being adapted for

really large domains since it is faster and requires less space. Also the results

from our 20X20 domain suggest that in larger worlds HDG might initially

out-perform DG eventhought DG may perform better asymptotically.

33

Chapter 6

Incrementally Learning r
Values

In the earlier version of the algorithm, the f values were coLJputed periodi­

cally using a modified version of the Floyd V\'arshall all-sources shortest-paths

algorithm [3]. There was a trade-off involved in selecting the update inter­

vals since smaller intervals increased the time requirements of the algorithm

whereas larger intervals caused the algorithm's performance to deteriorate.

\Ve introduced an incremental method for updating f values. Whenever

there is a regional transition, say from the region corresponding to landmark

11 to the region corresponding to landmark 12 , we update for all Ii E L

f(11,/2, Ii) = (1 - (2)f(lh 12, Ii) +Q2(minaEA DG(III a, 12) +mini'ELf (12,z', Ii))

where Q2 is the learning rate for r.

6.1 Empirical Results

Our experiments in simulated grid-world domains indicated that HDG-Incremental

(this newer version of the algorithm) performs as well as HDG-Floyd-Warshall

34

(the older version) and is far more efficient.

Figures 6.1, 6.2 and 6.3 display the learning curves comparing these newer

versions. In all cases, the transition probability parameter of the domain was

set to 0.2. In the 10XlO world, the initial learning rate for DG was 0.75, and

for HDG was 0.6. This was eventually decayed to 0.4 with both algorithms.

HDG had 10 randomly picked landmark states. In the larger worlds, the

learning rate for all algorithms was initially 0.4 and eventually decayed to 0.3.

In the 20X20 domain HDG had 20 randomly selected landmark states, and,

in the 30X30 domain there were 30 randomly distributed landmark states.

In the lOX 10 world, the performance factor for DG learning averaged over

10 runs was 0.08054 with a standard deviation of 0.001542023. For HDG­

Floyd-\Varshall , we obtained an average performance factor of 0.06116 with a

standard deviation of 0.001824654. HDG-Incremental gave an average perfor­

mance factor of 0.0605 with a standard deviation of 0.001124782. DG learning

performed significantly better than the two hierarchical algorithms whereas

the difference in performance of the Floyd-Warshall vs. Incremental versions

is not significant.

In the 20X20 world, we obtained different results. In this case DG learning

gives an average performance factor of 0.0189 with a standard deviation of

0.001542023. V\Tith HDG-Floyd-Warshall we have a performance factor of

0.02528 and a standard deviation of 0.001824654. The Incremental version of

HDG produces a performance factor of 0.0245 with a standard deviation of

0.0009362954. Our tests indicate that both the hierarchical algorithms perform

significantly better than simple DG learning, and, also the performance of the

35

Floyd-Warshall version is better than that of the incremental version at the

5% level of significance.

goals per tick

l\/,,/,V_.I\/,',\.f\-Yl/,-V\ryg
0.08

0.06

G.04

Ai
• '-I;'" .

J ...

I
i
/.:'gl
:

1[,/ , . . ,
10 20 30 40 SO 60 bucket of 500 ticks

Figure 6.]: g, hi and hf represent the learning curves for DC, HDG-Incremental
and HDG-Floyd\Varshall algorithms respectively in lOXlO gridworld domains.
Each of these curves is averaged over 10 runs of length 30,000 each. (

\

36

goals per tick

Figure 6.2: g~ hi and hf represent the learning curves for DG, HDG-Incremental
and HDG-FJoyd\Varshall algorithms respectively in 20X20 gridworld domains.
Each of ~nese curves is averaged over 10 runs of length 30,000 each.

(gOols ;::er ~ick

0.04

0.03

0.02

0.01

,­]0 20 30 40 5'0 60 bucket of 500 ticks

100 bucket of 1000 ticks

Figure 6.3: g, and h represent the learning curves for DG, HDG-Incremental
algorithms respectively in 30X30 gridworld domains. Each of these curves is
over a single run of length 100,000 each.

O.C~

c.o::.

Q.Cl

C. DC'S

I""" • t20 40 60 80

37

We compared DG and HDDG-Incrernental in a 30X30 world and our re­

sults were similar to those of the 20X20 world. As indicated by the learning

curves plotted in figure 6.3, HDG-Incremental initially performs better than

DG and DG eventually catches up. Over a run of length 100, 000 DG learning

had a performance factor of 0.0076 and HDG had a performance factor of

0.01919.

(

38

World Size Landmarks Algorithm Run Length CPU Time
10 x 10 0 DG 30000 18
10 x 10 10 HDG-Floyd Warshall 30000 23.7
10 x 10 10 HDG-Incremental 30000 9.5
20 x 20 a DG 30000 77
20 x 20 20 HDG-Floyd Warshall 30000 168
20 x 20

'---­ -­
20 HDG-Incremental 30000 17

Table 1: Comparing Running time of the algorithms

Table 1 gives the running time of DG, HDG-Incremental and HDG-Floyd

\Varshall in 10XlO and 20X20 grid-world domains. With the Floyd Warshall

versions the r values were updated at intervals of 100 steps. The Incremental

version of HDG is tremendously faster than the Floyd Warshall version and

much faster than DG.

(6.2 Computational Complexity
\

When we introduce a single level of hierarchy wherein ILl is the number of

landmarks, IDI is an upper bound on the number of neighbors a landmark

can have and Irl is an upper-bound on the region size, we entail time costs of

0(IAI(l1" + IDI)) at each step. This is exactly the same as the cost incurred

by HDG-Floyd \\TarshalI. Learning can cost O(IAI(ro + IDI) + ILI 2 IDI). since

the cost of updating the DG values at the lowest level is O(IAI(ro +IDI)). The

cost of updating the r values during a regional transition is O(lLIIDI) which

is far more efficient than the cost of performing a Floyd Warshall update.

! 39

6.3 Discussion

We presented an efficient method to incrementally learn the r values. In the

10XIO domain our experiments indicated that HDG-Incremental performs as

well as HDG-Floyd Warshall. In the 20X20 domain the Floyd Warshall ver­

sion performs slightly better but the difference between the two algorithms'

performance factors is not that large. We derived the computational com­

plexity for the incremental version and it indicates that this version is less

complex than the Floyd \\'arshall version. And, as indicated by table 1 the

Incremental version runs much faster. Based on these results we conclude that

it is preferable to use the Incremental version of the algorithm.

Our experiments from the 20X20 and 30X30 domains indicate that initially

HDG performs better and DG eventually catches up. Also, the learning curves

do not seem to have reached asymptotic levels during these runs.

40

Chapter 7

Method of Exploration

Initially, we were using a Boltzmann distribution to stochastically generate

actions in the siIT..ulator. That method of exploration placed a high level of

confidence in the learned DG values and we discovered scenarios wherein a few

erratic trials could result in certain actions being rarely explored.

We noted that the Interval Estimation algorithm or IE algorithm [8] re­

solves the above-mentioned problem by maintaining confidence intervals. Since

the IE algorithm requires a stationary distribution, it is not directly applicable

in our domains.

Instead, we experimented with an alternative method of exploration, called

liE (for Uncertainty Estimation), wherein we account for our confidence in a

particular DG value by introducing an uncertainty factor. With exploitation

probability, p, we let the agent select action a that minimizes DG(s, a,g) ­

cf/requency(s,a), where c is the confidence factor, and, /requency(s,a) is

the number of times action a was attempted from state s. With probability

1 - p, we uniformly select a random action. We also increment p at certain

intervals, so that eventually p = 1 - f for some small constant f.

41

Intuitively, the confidence factor can be interpreted as the number of times

that Zorbi must perform some action from some state before she starts being

confident about her knowledge regarding that state action pair. Since our

domains are stochastic, even when Zorbi is very confident about her learned

values she must continue performing some amount of random exploration. To

ensure such occassionally adventurous behavior we let Zorbi perform actions

that she considers optimal with probability P and we let P converge towards

but never reach 1.0. .

DE can also be used to select intermediate landmarks. For each landmark

I, we maintain the transition frequency, TF(I,ln) for all In E N(l), that indi­

cates the number of times the agent made a transition from some state in the

region of 1 to some state in the region of In' Let PI and CI be the exploitation

probability and the confidence factor respectively at leevel I of the hierarchy.

Then, to go from the region of 1to some region corresponding to 19 , with prob­

ability PI the agent aims towards an intermediate landmark In that minimizes

f(l, In' 19) - edTF(l,ln). With probability 1 - Pb an intermediate landmark

In such that In E N(l) is randomly selected.

7.1 Empirical Results

We performed experiments comparing DG-Boltzmann and DG-UE over 5 runs

of length 30,000 in lOxIO grid worlds. The transition probability parameter of

the domain was set to 0.2 for these experiments. For both algorithms we had

a learning rate of 0.75 which was gradually decayed to 0.4. The Boltzmann

temperature parameter was set at 0.1. For UE, the confidence factor was set to

42

goals per tick

0.12

0.1

0.08

0.06

0.04

0.02

""e

". f\ :A...••, A/-"'\ /'./'J'-'~ f''\­ JI-b
V\./ l ",," V~'

I' 10 20 3D 40 50 60 bucket of 500 ticks

Figure 7.1: g-ue and g-b are the learning curves for DG-UD and DG­
Boltzmann respectively in a 10XlO grid world domain.

20.0. The exploitation probability p was set to 0.95 and eventually increased to

0.99·5. For DG-Boltzmann, the performance factor averaged over 10 runs was

0.08012 with a standard deviation of 0.0000912, and, for DG-UE we had an

average performance factor of 0.104167 with a standard deviation of 0.0010915.

The VE version performed significantly better than the Boltzmann version.

The learning curves for these algorithms are given in figure 7.1. We observe

that the Boltzmann version initially leads. Then, as Zorbi gains confidence,

the t'E version overtakes the other algorithm. Also, the DE version performs

asymptotically better than the Boltzmann version.

\\'e also compared HDG-Boltzmann and HDG-UE in 10x10 grid worlds

with 10 randomly selected landmark states. For the HDG algorithms the

learning parameters were the same as those used in the experiments dicussed

in figure 10. For HDG-UE, at the lower level we had c = 0.1, p = 0.95

(

43

and f = 0.005. At hierarchical levell, we had CI = 1.0, PI = 0.6, and,

fl = 0.005. We performed 10 runs of length 30,000 each. For HDG-Boltzmann

we obtained a performance factor of 0.06262 with a standard deviation of

0.00249, and, for HDG-Incremental-DE a performance factor of 0.0573 with a

standard deviation of 0.00201. The difference in performance factors of these

two algorithms is not significant.

\Ve have also performed some ad-hoc experiments in 20X20 domains for

runs of length 70,000 and discovered no significant difference between DG-DE

and DG-Boltzmann. However, it is possible that we simply haven't fined-tuned

l:E with optimal parameters for that domain.

7.2 Discussion

\\'e determined that the Boltzmann distribution method of exploration can

cause problems in certain situations. We proposed the DE method to resolve

those difficulties and expected the DE version of the algorithms to perform

better than the Bolzmann version. Our experiments produced results indicat­

ing that the DG algorithm performs significantly better with this new method

of exploration and that there is no significant differnce in the performance of

the HDG algorithm.

Since the DE version of DG is so encouraging we are inclined to perform

additional experiments to determine whether the performance of the HDG

algorithm can also be enhanced. We have already experimented with sev­

eral different combinations of values for the DE parameters for HDG. Yet, it

might be worth further investigating this issue (specifically, by tweaking the

44

\
/

)

Chapter 8

Learning the Hierarchy

In the HDG version described in [7], the researchers construct the landmark

networks. Vv'e induce hand-coded partitions to form regions of states cor­

responding to nearest landmarks by constructing Voronoi diagrams on the

landmarks.

However, we would prefer that our algorithms bootstrap from scratch as (

far as possible. That is, we would like the algorithms to learn or derive the

1\L and N mappings given incomplete information or no information about

the domain. 'We have been exploring various means of accomplishing this.

8.1 HDGL

\\'e can obviously automate the process of finding the nearest landmark to each

state if we have information regarding the distances from states to landmarks.

V/e can run the DG algorithm to learn the distances and then use those dis­

tances to construct the NL mapping. Given the NL mapping, we can derive

the N mapping and induce partitions on the domain. We have implemented

this algorithm and call it HDGL.

46

With the HDCL algorithm, we do the following:

1. start by letting DC learn for some fixed interval

2. use those learned values to bootstrap HDC

3. start running HDC and DC in parallel for some fixed interval

4. use the learned DC values to create new partitions for HDC

5. goto step 3

The advantage of this method is that initially we can run DC only for a

short interval and get approximate distances, use those distances to bootstrap

HDG, and, then onwards run DC and HDG in parallel. The disadvantage is

that we do have to run DC and allocate the time and space required by DC.

(
8.2 HDGM

HDGL incurs all the time and space costs required for running DC. However,

our entire motivation in developing hierarchical algorithms is to reduce the

time and space requirements. We would like to have the hierarchical algorithms

start learning given negligible information, induce a suitable structure on the

domain and not incur too much additional cost. To achieve these goals we

propose the HDGM algorithm.

(

I" 47

We can bootstrap HDGM with arbitrary mappings. As learning progresses,

we	 can incrementally modify these partitions. The HDGM algorithm is given

below:

1.	 Construct Nand N L mappings with initial partitions (which may be

random allocations)

2.	 Use the Nand NL mappings to construct a landmark network

3.	 Run the HDG algorithm for some set interval.

4.	 Modify the Nand N L mappings as follows:

•	 For each state, S with NL(s) = lold' set NL(s) ­
ClosestNeighbor(s) where the closest neighbor of s is the lj cor­
respond.ing to

min min DG(s, a, li)
IjE(N(loId)ulold) aEA

•	 For each landmark l, let lj E N(l) if there was a transition from Sl
to Sli' where N L(sl) = land N L(Slj) = li. (
Note that in practice having too many neighbor landmarks increases
time and space requirements. Hence, in recent versions, we update
the transition frequency from landmark 1to landmark li each time
there is a transition from the region of landmark 1to that of li, and
then let the n (some prespecified constant) landmarks to whose
regions states of 1 most frequently transition be in N(l).

5.	 Goto step 2.

8.3 Empirical Results

Intuitively, we felt that starting HDGM with somewhat reasonable parti­

tions (HDGM-GOOD) as opposed to completely random partitions (HDGM­

RANDOM) should enhance performance. We performed experiments to test

48

out this intuition. We constructed a grid-world domain with several walls in

it. 'We bootstrapped HDGM-GOOD with partitions that would be optimal

if there were no walls in the domain. Hence the initial partitions were good

approximations for the domain, but, were not optimal. HDGM-RANDOM

was bootstrapped by randomly allocating states to regions.

'While referring to figures 8.1 to 8.4 please note that the thick black lines

are the walls. The states with black squares in them are landmarks. Each

landmark has a different color, and, states allocated to that landmarks region

haye the same color as the landmark.

Our experiments were performed in a 10XlO grid-world with 10 landmark

states and several walls. The domain is illustrated in figure 8.1. Figure 8.1

also depicts the initial partitions for HDGM-GOOD. We performed 10 runs

(of the algorithms of length 30,000 each. For these algorithms the learning

rate was set at 0.75 and eventually decayed to 004. The transition probability

parameter of the domain was set at 0.2. We observed that the modified par­

titions found by the algorithm were impressive in all those runs. Figure 8.2

illustrates a sample partition found during one of those runs after 20,000 steps.

Although we ran these algorithms for 30,000 steps and continued modifying

the partitions at each update interval throughout the run, the partitions sta­

bilized and rarely changed after about 20,000 steps. Figure 8.3 illustrates the

initial partition for HDGM-RANDOM. Note that the domain was exactly the

same as that of figure 8.1, even though some of the landmark states have not

been plotted in the figure 8.3 picture. Figure 8.4 illustrates a partition found

at the end of one such run of HDGM-RANDOM. In all runs, we noted that

49

the partitions found by this algorithm were sub-optimal, and, the partitions

did not stabilize at the end of 30,000 steps. As expected the performance of

HDGM-GOOD was tremendously better than that of HDGM-RANDOM. The

average learning curves for the two algorithms are plotted in figure 8.5. With

HDGM-GOOD, the average performance factor was 0.05632 with a standard

deviation of 0.00514507. HDGM-RANDOM produced a performance factor of

0.02991 with a standard deviation of 0.001452176.

\

50

Figure 8.1: This figure illustrates the initial partitions provided to HDGM­
GOOD in a 10X10 grid-world with walls and 10 landmark states.

1!,[I~;~lt!r.lij:lill"~·:i;[~~

Figure 8.2: This figure illustrates the modified partitions formed on the domian
from figure 8.1 during a run of HDGM after 20,000 steps.

51

Figure 8.3: This figure illustrates the initial partitions provided to HDGM­
RANDOM in a lOXlO grid-world with walls and 10 landmark states.

Figure 8.4: This figure illustrates the modified partitions formed on the domian
during a run of HDGM-RANDOM after 30,000 steps.

52

goals per t i ek

9
0, 08

O.O£,

~ ~ ~ f J:
O. C4)V~ -.J\!.. J;:~». ly~ n,J"Vtr;.... V....·....Jt 0,;'.-..1 "(~

c. ~:

I . lC 20 30 40 SO 60 buc)(et of 500 tic;)(s

(

Figure 8.5: In a 10xlO grid-world with 10 landmark states and with walls. hg
and hr denote learning curves for HDGM-GOOD and HDGM-RANDOM re­
spectiYely. Each of these curves is an average of 10 runs; each point represents
the average goals achieved per tick for that bucket, where 500 ticks comprise
a bucket.

!\ext. we compared HDGM-GOOD with HDGL. We expected that initially

HDGM-GOOD would perform better but in the asymptote both algorithms

would display similar performance.

\Ve tested the two algorithms in a domain that was rather similar to that

of figure 8.1 and had the same landmark states but the layout of the walls was

somewhat different. For these algorithms the learning rate was set at 0.75 and

eventually decayed to 0.4. The transition probability parameter of the domain

was set at 0.2. The Nand NL mappings were modified at update intervals

53

0.04

of 500 steps. Our results indicated that the partitions formed by HDGL were

also very nearly optimal although not perfect. The learning curves for the

two algorithms are displayed in figure 8.6. The performance factor for HDGL

averaged over 10 runs of length 50,000 each was 0.02466 with a standard

deviation of 0.001105328. HDGM had a performance factor of 0.0647 with a

standard deviation of 0.006027418.

geal!' p.r r:lC"k

c.ce

c.CE.

(
I. \

i\ ,." •
r ...·J I.' \".'.. • ,-.. .. i\

/',,: " :'.., \.l\ ,_". t" ",
Cl.D:? ,./, 'I \...1" '-..' ''''''1

,~ ..

r] 0 2C1 3C 40 so 60 bucker of 500 tick.

Figure 8.6: In a 1Ox1 0 grid-world with 10 landmark states and with walls. ghg
and hghg denote learning curves for HDGL-Boltzmann and HDGM-Boltzmann
respectively. Each of these curves is an average of 10 runs; each point rep­
resents the average goals achieved per tick for that bucket, where 500 ticks
comprise a bucket.

Figure 8.6 indicates that HDGM performs asymptotically better than

HDGL. Since we have observed that the partitions found by HDGL are very

close to optimal this is rather surprising. We speculate that the learning rate

might be a relevant factor for this difference. In our current implementation,

with both algorithms, we start with a high learning rate, linearly decay it for

54

\Vorld Size Landmarks Algorithm Update Interval Run Length CPU Time
lOx 10 10 HDGL 500 30000 61
lOx 10 10 HDGM 500 30000 61
20 x 20 20 HDGL 500 30000 184
20 x 20 20 HDGM 500 30000 . . ~. ? ? •

168 .. - ~ -parIng liunnmg tIme 01 the algorIthms. The Up
an algorithm denotes the number of steps after which the algorithm modifies its
partitions. The CPU time is given in seconds.

a while, and, thereafter logarithmically decay it. With HDGL, since initially

the partitions are arbitrary the learning rate ought to be low. At some stage,

when reasonable partitions have been formed the learning rate should get

really high and then again be gradually decayed. Hence a Gaussian function

might be appropriate. We have not yet tested out such a function for the

learning rate. But we further speculate that if such a mechanism enhances

(the performance of HDGL then it should propably cause HDGM-RANDOM

to learn better also.

Table 2 gives the CPU times comparing HDGM and HDGL algorithms.

In the lOXlO world both algorithms take the same time to complete a run

of length 30, 000. The partitions are updated every 500 steps. In the larger

20X20 domain HOGM runs faster.

8.4 Computational Complexity

\\'jth HDGL, if we run OG and HDG in parallel then our space and time

requirements are similar to simply running DG.

'With HOGM, we require the same time and space as HOG for learning.

'While updating the partitions, for each state, we require O(D) time to decide

55

what region the state belongs in, and hence we need O(SD) time for all states.

Also, we require O(L2) time to construct the neighborhood mappings. Hence

we need O(SD + L 2) time to modify partitions, and this time is amortized

over a moderately large number of steps.

8.5 Discussion

\Ve noted that we would prefer the hierarchical algorithms to bootstrap given

little or no information about the domain. We proposed the HDGL algorithm

that runs DG and HDG in parallel and bootstraps from scratch. We also

proposed the HDGM algorithm that bootstraps with arbitrary initial parti­

tions and then modifies them to converge towards optimal partitions. Our

experimental results verfified the intuition that bootstrapping HDGM witb

reasonable partitions as opposed to totally random partitions should enhance

performance. Vie further compared HDGM witb HDGL and were surprised

that the tv.·o algorithms do not appear to converge asymptotically. We spec­

ulated on reasons for this and proposed a way of resolving the problem. It

should be interesting to further investigate this issue in the course of future

work.

56

Chapter 9

Walls and Membranes

We can simulate complex domains by introducing walls. Since the DG values

maintained by the algorithms are asymmetric, slight modifications to the al­

gorithms enable us to tackle learning in domains with membranes or one-way

walls.
(

9.1 Modifications to the algorithm

\\"e ha\"e to tweak our algorithms to incorporate asymmetric distances.

9.1.1 Mappings

\\"e maintain two sets of nearest landmark mappings, N LFROM and N LTO .

In the FROM mappings, each state is in the region of the nearest landmark

that can be reached from that state, whereas TO mappings place a state in

the region of the landmark from which there is an optimal path to the state.

The N mapping is the almost same as before. That is Ii E N(ll) if there is a

transition from some state in N LTo(ll) to some state in N LFRoM(IJ

57

9.1.2 DG values

We maintain DG values from every state s to its corresponding FROM land­

mark, N LFROM (s), and, to every neighbor ofthat landmark, all Ii such that Ii E

N(NLFROM(S)). Also, we maintain DG values from every state s to every

other state in the region of its N LTO landmark, and, to all the neighbors of

its N LTO landmark.

The r values are maintained exactly as in the earlier versions of the algo­

rithm.

9.1.3 The algorithm

The HDG algorithm is now given as:

Given a landmark network, the current state s E S and the goal state g,

1.	 Find N LFROM(S) and N LTO(9), i.e., the nearest landmarks correspond­
ing to sand g.

2.	 If .7\,7 LFRO M (s) = N LTO (g), then execute the best local action to reach
from s to g.

3.	 Else, let ii be the second landmark on the shortest high-level path from
N LFROM(S) to N LTO(g).

4.	 Perform the best local action to reach from s to Ii'

9.2 Empirical Results

Vie have obtained various interesting pictures of mappings learned by the

HDGL and HDGM algorithms in such domains. In the FROM mappings,

each state is in the region of the nearest landmark that can be reached from

58

that state, whereas TO mappings place a state in the region of the landmark

from which there is an optimal path to the state.

Figure 9.1 displays the FROM mappings learned by the DG-HDG algo­

rithm (a version of HDGL that runs DG and HDG in parallel) in a 20X20

grid-world with walls and membranes during a run of length 30,000. For this

run the learning rate was initially 0.4 and eventually decayed to 0.3. The

transition probability parameter of the domain was set at 0.2. Each little grid

in that figure represents a state of the world. As indicated in the legend, the

states with large black circles in them are the landmarks. All states have the

same color and pattern combination as their corresponding nearest landmark

(it may be somewhat difficult to discriminate regions if you have a black and

whiteas opposed to a colored copy). Clearly, the learned mappings are very
(

close to optimal, and, the partitions respect membranes and walls.

59

1j.II::!':::!::!!:il::,llllil:l:oll,llllollof,;,I::o:lrl!'~I:II'!~JI'I,II!i"lo~"I:IIIIIIIIIII:I~lo°li

... ,. ///,/;.,~).
";l',"/",',,1'/-/'//j
-,',"///"I";tI':/"//j
:/.,,////~..//~
'"'/"//"I'/r///~ ;\,

"'////"I'/-/'//~
-""','",,/ / /./'/;f'j
"'..'/////,'///j
-///////'//j
"'//////""..,.."')
-""'/////-/,,,./;f')
- ~ '- --- - ­ -~:~~

. f.~"
... _4 ~-.f'!"..t.

1' //;
~L:.

~,,~~
Maze or wall Figure 1
Membrane or one-way wall -Ibe short slanted lilies iDdicale tbe porous direction
(COl" example, 1be membrane shown in this smnple is porous in Ibe South 10 North""'''''''''''

•
direc:lion, but impenetrable while going from North 10 Soulhl

Undmark stale

Figure I: Mappings learned by DG-HDG in 20 x 20 grid-world

Run Length: 30,000

Figure 9.1: Mappings Learned by HDGL in a 20X20 grid-world.

60

Chapter 10

Multiple Levels of Hierarchy

As mentioned in [7], the hierarchical process can be continued by introducing

additional levels of hierarchy.

10.1 The Landmark Network
(

Given the set S of states and h hierarchical levels, let Lh, represent the set of

landmark states at level h'. At each hierarchical level h' , where 1 ~ h' ~ h,

we have a tuple (L h" N Lh" Nh,). At level 1, N L1 : S-+ L is a mapping

from each state to its nearest landmark, and at every other level h', N L h , :

II/ -1 1--+ Lh, is a mapping from each level h' -1 landmark to its corresponding

level h' landmark. For each hierarchical level, Nh, : Lh,-+ 2L
h' is a mapping

from each landmark to a set of neighbor landmarks at the same level.

10.2 The Algorithm

The algorithm with h hierarchical levels, HDG-h, is a straightforward extension

of the HDG algorithm with a single level of hierarchy.

61

10.2.1 Executing Actions

To get from current-state S to goal-state g,
1.	 let gint = g and h' = 1.

2.	 if NLh,(s) = NLh'(gint} or gint E Nh,(NLh,(s)) then execute best level

h' - 1 action to get from s to gint.

3.	 else while NLh,(s) =J NLh,(gind and gint f/. Nh,(NLh,(s)) and h' =:; h

h' = h' + 1

4.	 Let gird = the level h' - 1 intermediate goal to get from s to gint.

5.	 goto step 2.

10.2.2 Data Structures

The distance values at the lowest level are maintained exactly as before. At
(

the highest level of hierarchy we maintain r values between the Lh landmarks \

exactly as the r values between L landmarks were maintained in HDC. At all

intermediate hierarchical levels, the r values are maintained analogous to the

way the DC values are maintained. That is, for 1 =:; h' < h, we maintain r h'

yalues from every landmark Ii E Lh, to every other landmark Ij E Lh, such

that 1\T L h, +1 (Ii) = N L h, +1 (Ij) and to every level h' + 1 landmark Ih ,+l.n such

that Ih'+1.n E Nh'+1(NLh'+1(li))'

10.2.3 Learning

The DC values and the r values at each hierarchical level are learned incre­

mentally exactly as they were with the HDC algorithm.

62

10.3 Empirical Results

\Ve have a generic implementation that enables us to specify and construct an

arbitrary number of hierarchical levels. Until now we have experimented with

one and two levels of hierarchy.

For the experiments discussed in this section the transition parameter of

the world was set at 0.5. Policy iteration was run off-line to determine the

distance valu~s between states and then those values were used to form the

I\L and N mappings for bootstrappping the hierarchical algorithms.

Figure 10.1 displays the learning curves for DC, HDC and HDC-2 in a

10X10 grid-world. For HDC there were 10 randomly selected landmark nodes

and for HDC-2 there were the same 10 level 1 landmarks, and 5 of those were

hand-picked to be level 2 landmarks. For DC learning, the learning rate was set

at 0.75 and then decayed to 0.3. For the hierarchical algorithms, at the lowest

level the learning rate was 0.6, and at higher levels of hierarchy the initial

learning rate was 0.75. At each level, the learning rate was eventually decayed

to 0.3. In these experiments, the performance factor for DC learning averaged

oyer 5 runs was 0.07873 with a standard deviation of 0.0009419162. The

a"erage performance factor for HDC was 0.04824 with a standard deviation

of 0.0006456659. HDC-2 had an average performance factor of 0.04217 with a

standard deviation of 0.001701859. DC learning performed significantly better

than the two hierarchical versions but the difference between HDG and HDC-2

was not significant.

We also experimented in a 30X30 domain. There were 30 landmark states

at the first level of hierarchy, and, 10 of those states were also landamrks

63

at the second level of hierarchy. The partitions induced on the domain with

1 level of hierarchy are illustrated in figure 10.3. The learning rates of all

algorithms were maintained constant at 0.4. The learning curves comparing

DG, HDG and HDG-2 are plotted in figure 10.2. The performance factor of

the optimal learner was 0.0339. DG had a performance factor of 0.023366.

HDG had a performance factor of 0.015196 and HDG-2 had a performance

factor of 0.010878. It took DG learning a little over 4 hours to finish this run

of length 500,000. The same run was completed by HDG in 80 minutes, and,

HDG-2 took 60 minutes to finish.

I

<

64

10.4 Computational Complexity

Consider a domain with lSI states partitioned into h hierarchical levels. Let

ISol be the number of states at the lowest level, and ro be an upper-bound on

the region-size (i.e., the number of states in each region) at the lowest level.

Let ISh,1 be the total number of landmark states at level h', and, rh , be an

upper-bound on the number of states in each region at level h' (At level h, we

will get a single region with IShl = rh).

Further assume, for simplicity, that IDI is an upper bound on the number

of neighbors that a landmark state can have at each hierarchical level.

Then, in the worst case, executing a single step can cost O(IAI) +O(hIDI),

since we require O(h) time to look up the nearest landmarks at each of

the hierarchical levels, O(IDI) time to find the next best landmark at each
(

hierarchical level, and O(IAI) time to select an action. Learning can cost

O(IAI(ro + IDI) + IDI(rI + \DI) + ... + IDI(rh + IDI)), since the cost of up­

dating the DG values at the lowest level is O(IAI(ro + IDI)), and the cost of

updating the r values at each hierarchical level h' is O(\DI(rh, + IDI)). As­

suming that IAI and IDI are small, we have worst-case of O(hrlargest), where

TZargest is the largest regional size amongst all the levels. To optimize this cost,

we must have the same upper bound on regional sizes at each level. Then

T = Tlargest = TO = TI ... = rh, and we have, lSI = rh+1
•

If S is of the form kn
, we want h = n - 1 with no more than k states in

each region at each level to get the optimal cost of O(nk).

If we can empirically determine a suitable region size Tlargest then we can

set k = Tlargest, and, determine h = 19k S. Alternatively, if we have a pre­

65
I.,"

fixed number of hierarchies that we want to implement then, we can find the
1

corresponding region size, rlargest = Sl+h.

In really large domains introducing several hierarchical levels will optimize

the time requirements. Also, each additional level of hierarchy will add to the

sub-optimality of the paths found by the algorithm.

10.5 Discussion

We presented a starightforward extension of the HDG learning algorithm that

enables us to implement several levels of hierarchy. Our empirical results in

the lOX 10 domain indicate that DG performs better than HDG and HDG

performs better than HDG-2 although the difference in performance factors

of these algorithms is not that large. Even in the 30X30 domain the results

are similar. \\'hereas, in the 30X30 experiment presented in chapter 6 we had \
(

obtained learning curves indicating that HDG initially performs better than

DG. In these two sets of experiments the run lengths were different, the algo­

rithms had varying learning rates and the transition probability parameters of

the domain were different.

Our computational complexity results indicate that it would be very ef­

ficient in terms of time and space to implement several hierarchies in larger

domains. We indeed discovered that the hierarchical algorithms run substan­

tially faster in the 30X30 domain.

Our results to date suggest that it is worth implementing several levels of

hierarchy in larger domains and exploring how the algorithms perform upon

varying the number of landmarks and the learning parameters across hierar­

66

L9

,
}

\1

goals per tick

rl.~,!,,·~r~AV\,..,..y,jVV</'v""l~\~ [g
0.08 I V

lv /';h,' ,N'
~ 0.06

0.04

0.02

{fI ," -,\" ,-'

/

. " a. J..'--".''/\ \: "
I r-' ,," . ".
f ,-"
j

;
J

r'}

I' 10 20 3'0 40 50 60 bucket of SOD ticks

Figure 10.1: The gray l;ne, the dashed line and the black line denote learning
cun'es for DG, HDG and HDG-2 respectively. Each curve is averaged over 5
runs of length 30,000

(

g:.a~s per tick

G.04

G.03

0.02

C.Ol

-¥i*,,':*i'''' ".iII' , ~~... 300 400 SOD bucket of 1000 ticks

figure 10.2: The gray line, the dashed line and the black line denote learning
curves for DG, HDG and HDG-2 respectively. Each curve is over a single run
of length 500,000.

68

69

Chapter 11

Landmark Layout

In our HDG algorithm, we either randomly select the landmark states or hand­

pick them so that they are well-distributed over the domain. We must address

the question of whether there is such a thing as an optimal landmark layout,

that is, a landmark layout that minimizes the additional cost incurred owing

to the hierarchical framework.

For simplicity, let us consider a single level of hierarchy. Let k be the total

number of landmark states selected. Also, let us assume that we have an oracle

that provides us with the correct distance from every state 81 to every other

state S2.

\'"hen the HDG algorithm converges, the distance values found by the

algorithm will be given as:

minaEA DG(S1, a, S2) if NL(s]) = NL(S2)
D(S1,S2) = minaEADG(s,a,NL(s)) +minl.ELr(NL(s),li,NL(g))

{ +mincEA DG(NL(g), a,g) otherwise

V·/e want to minimize some measure that correlates the above D values

with the actual distances d. For example, we could consider minimizing the

70

sum squared diffrence, that is

L L (D(sI, S2) - d(sI, S2))2
61eS 62eS

We have so far investigated two different approaches to resolve this prob­

lem.

11.1	 Optimal Landmark nodes in a planar
graph

Kaelbing [7] had suggested that it might be possible to use some recent work

on approximation algorithms for all-pairs shortest path problems to provide

an upper bound on the suboptimality of paths found by the hierarchical DG

algorithms.

\Ve studied an algorithm for maintaining all-pairs shortest-paths in planar

graphs [10]. Given k selected nodes all on the boundaries of a constant number

of faces in the graph G, and given some 0 < { <= 1, the algorithm provided

in [10] will find a sparse-substitute graph to approximate all-pairs shortest

paths in G to within a 1 + f factor in O({-In 10g2 n log D) time, where D is

the sum of the lengths of all the edges and n is the number of nodes in G.

The algorithm mentioned above divides the graph G into several clusters and

integrates the partial solutions for different clusters to derive a solution for the

entire graph [10]. Note that this approach is very analogous to the approach

used by the HDG algorithms, i.e, HDG algorthms impose a partition on the

domain, maintain DG values for each region, and use the r values to achieve

inter-regional travel.

71

A k-cluster partition can be obtained from a two-connected planar graph

Gin O(nlogn) time [10]. Essentially a sparse-substitute graph is constructed

from G by placing substitute nodes in G. This is analogous to constructing

a landmark network by placing landmarks in the world. If we had a domain

that satisfied the planarity and two connectivity restrictions, and if we wanted

to optimally place k landmark states in such a domain, we could apply the

partitioning technique given in [10].

Once we determine the number k, we can select k states/nodes that lie near

the boundaries of our domain, select some desired value for f, and construct a

face-boundary substitute as shown in [10]. One problem is that [10] assumes

that the domain is continuous, and, while constructing a face-boundary sub­

stitute. substitue nodes can be placed anywhere in the domain. In our case

the substitute nodes (which will become landmark nodes) must be placed only

at some state of the world. However, at least in our grid-world domains, for

every point that lies within G there will be a corresponding world-state at a

distance of at most J2 units. Hence given a domain with S states, we can use

the above approach to optimally select k landmark states in O(SlogS) time,

and then trivially form partitions around those landmarks in O(kS) time.

In order to run the above algorithm to select landmark states, we must

have the correct distance values between states available. Hence, there is a

boot-strapping problem. We have not as yet implemented this algorithm, but,

it might be worth implementing it, so that it can constitute a benchmark

while comparing the performance of other partitioning and alndamrk layout

methods.

72

Also, if the domain is planar and we use this approach to find partitions

then we get an upper bound on the path degradation incurred by introducing

hierarchies.

Note that the above algorithm approximates all-pairs shortest paths in G to

within a 1+f factor. Hence even if Zorbi were to travel in the hierarchical world

by rigidly following the landmark graph the paths would be approximated to

within a 1 + f factor. But, recall that Zorbi need only aim towards nearest

landmarks and not necessarily reach them. Hence if the graph algorithm is

used to select the landmark nodes then when the DG and r values converge

all paths will be approximated to within a 1 + f. factor.

11.2 Incrementally adjusting landmark lay­
/ out

We haye been investigating other incremental approaches for adjusting the

landmark nodes. The motivation for this is that we might initially start with

randomly selected landmark states and approximate distance values, as learn­

ing progresses, at intermediate stages we can incorporate the additional knowl­

edge acquired and adjust the positions of the landmark states.

11.2.1 Kohonen Maps

Kohonen maps are self-adjusting feature detectors [5]. As explained in [5],

given a collection of points in the input space with neighborhood relations

specified on them, the Kohonen algorithm adjusts these units (achieving an

effect analogous to the Mexican hat lateral interconnections) such that they

73

converge towards optimally modeling the entire input space.

Kohonen maps seem to be a promising approach to learn the landmark

layout. We can initially start with random or handpicked landmark nodes.

The number of landmark nodes at each level must remain fixed. At each level

of hierarchy we have a constant number of landmark indices and each index

points to a landmark state in the world. We introduce the landmark-position

mapping that maps landmark indices to their corresponding world states, LP

: L1 1-+ S. The state corresponding to a certain landmark index may change

with time The landmark indices form the nodes of the Kohonen map, and each

node has the appropriate position attributp.s mapping it to its corresponding

world state.

74

Let	 Position(li) = LP(li) V Ii ELI.

The landmark-position mapping maps landmark indices to their corre­

sponding world states, LP : LI H S. We have, Position(li) = LP(li) V Ii E

LI.

\\'e have the new-Iandmark-position mapping that maps landmark states to

new positions that approximate some world state, but, may not precisely cor­

respond to a world state. Initially, VIi E LI , N ewPosition(li) = Position(ld.

As learning progresses,

1. at each step

(a)	 the learning agent performs some action that causes the wcdd to
transition to state s

(b) look up N L(s) = Is and its index lSi

(c) Pull Is towards s. N ewPosition(lsi) := (1 - o:)NewPosition(lsi) +
aPosition(s)

(d) Pull
all the neighbors of Is towards s Visn E N(Is)NewPosition(lsr.) =
(1 - (3)NewPosition(lsn) + (3Position(s)

2. at each partition update interval

(a) for each landmark index	 Ii, find a worldstate Sli that is nearest to
NewPosition(Ii), and let Position(Ii) = NewPosition(Ii) = Sli.

(b) Map each	 state to its corresponding nearest landmark and hence
update the N L mappings.

(c)	 Update the N mappings.

Since the Kohonen map would learn incrementally, it would only require a

constant amount of additional time per step. At fixed intervals, we would need

O(SD + L 2
) time to update the partitions, and this would be amortized over

75

a moderately large number of steps. If there are certain states in the domain

that are frequently visited, then the landmarks will be drawn towards those

states, and hence the Kohonen maps would adapt to achieve a domain-specific

landmark layout.

We expect to implement this approach and obtain experimental results in

the near future.

11.3 Discussion

We motivated reasons for wanting the algorithm to incrementally learn optimal

landmark layouts and sketched some thoughts on how to achieve this. The

Eohonen map approach should be implemented and tested out in the future.

If it is successfull, we should introduce additional complexity in the domain

by non-uniformly selecting gola-state (that is, frequently picking states from

certain regions of the domain), and by dynamically placing and removing walls

and membranes (that is introducing walls at certain places for a reasonably

large interval and the removing the wall etc.).

76

Chapter 12

Related Work

In this chapter, we review some approaches from literature dealing with hier­

archical learning Imd navigation problems. Whenever possible we discuss how

these approaches are similar or differ from our algorithms.

12.1 Feudal Reinforcement Learning

Dayan and Hinton [4] present a feudal reinforcement learning architecture

wherein they have a Q learning managerial hierarchy composed of managers,

super-managers, sub-managers, sub-sub-managers etc. There is a strict hierar­

chical diYision in their system, for example, a sub-manager is merely concerned

with satisfying the commands of its manager and is oblivious to the wishes of

the super-manager; a sub-manager will be rewarded if and only if it satisfies

the command of its manager regardless of whether or not the sub-manager's

actions were beneficial to the highest level task. Also, managers only need to

know the state of the system at their own level of granularity.

As illustrated by the results in [4], this model of learning works well in a

grid-world domain similar to the domains in which we have simulated our HDG

77

algorithms. However, unlike our domains, the domain in the feudal learning

experiments [4] is deterministic. Since a low-level manager concentrates on

satisfying the wishes of its immediate superior and is unaware of the global

goal it is very crucial that a low-level manager always receive orders from the

appropriate superior. In a stochastic domain this might be difficult to ensure.

Also, a manager is rewarded by its superior whenever the action performed

by the manager is consistent with the superior's orders. But, in stochastic

domains it is possible that such a consistent action results in a consequence

that is inconsistent with the superior's order.

In the maze task illustrated in [4], managers are assigned to separable

portions of the maze at each level. As noted in [4], while the separation into

quarters at the various levels is fairly arbitrary, the system would not perform

well if the regions at the high levels did not cover contiguous areas at the lower

le\"els. Hence this approach demands a plausible managerial system preferaply

based on some domain-dictated partitioning of the state space. Providing such

a hierarchical partitioning to the system is analogous to providing hand-coded

partitions to the HDG learning algorithm.

12.2	 Reinforcement Learning with a hierar­
chy of abstract models

Singh presents the H-DYNA architecture [15] that learns a hierarchy of ab­

stract models to solve composite sequential tasks. As Kaelbling notes [7], since

the tasks are sequntial a natural task decomposition is introduced. Hence while

splitting up at hierarchical levels this algorithm does not have a boot-strapping

78

problem like the HDG or feudal RL algorithms.

12.3 Parti-game Algorithm

The parti-game algorithm induces partitions on the domain using geometric

techniques, explicitly retains records of partition, system state, action, and

outcome tuples, and, uses a game-theoretic approach to achieve goals via inter­

partition travel [11]. This algorithm is applicable for goal-of-achievement tasks

in deterministic domains.

The parti-game algorithm induces partitions on the state space using geo­

metric techniques. There is no notion of landmark states with this algorithm,

but, given a partition with N neighbors the learning agent can perform N dis­

crete actions to traverse across partitions. During such traversals the agent

aims towards the center of the partition that it wants to reach. This is very

akin to Zorbi aiming towards the next landmark during inter-regional travel

with the HDG algorithm.

A neat feature of this algorithm is that it dynamically and reactively adjusts

the partitions such that a high resolution is achieved in relevant areas of the

domain. We expect and hope that when Kohonen maps are incorporated into

the HDGl\1 algorithm so that the landmarks can be concentrated in critical

sections of the domain and the partitions can be suitably modified, a similar

behavior will result.

79

12.4 Ariadne's Clew Algorithm

The Ariadne's Clew algorithm builds a global path planner using two local

components called a SEARCH algorithm and an EXPLORE algorithm [12].

The EXPLORE algorithm helps collect information about the environment by

placing landamrks in the searched space. The SEARCH algorithm is based on

genetic programming and determines whether the goal can be reached from

any of the placed landmarks. While this approach is rather different than the

reinforcement learning algorithms discussed in this thesis, it does achieve the

goal of building a path planner for a robot in a dynamic environment, and

it does use a landmarl-.-based ??proach, hence it is worth reviewing in this

chapter.

Note that unlike our reinforcement learning algorithms, Ariadne's Clew al­

gorithms have access to a lot of domain-dependent information. The SEARCH

algorithm uses a backprojerction method and a genetic algorithm to determine

whether a "simple" path exists, i.e., whether some goal target may be reached

by performing a few elementary motions from a given starting position [12].

This algorithm may be used by itself, but, it might get stuck in local minima.

Adding the EXPLORE component makes the algorithm complete. This

component places landmarks in the searched space. A new landmark is placed

such that there is a known path from the initial position to that landmark,

and, it mainatins the property that all landmarks are placed as far from each

other as possible [12]. Also, the number of new landmarks placed depends on

the complexity of the domain.

The Ariadne's Clew algorithm, as described in [12], first uses the SEARCH

80

algorithm to find a "simple" path from the initial position to the goal position.

If no such path is found then until such a path can be found the EXPLORE

component places a new landmark, and the SEARCH component looks for a

simple path.

81

Chapter 13

Conclusion

\\'e will briefly summarize the work presented in this thesis and conclude by

sketching some thoughts for future work.

13.1 Summary and Future Work

\Ve started with an introduction to reinforcement learning, reviewed the Q

learning and DG learning algorithms and discussed replicated empirical re­

sults comparing these two algorithms on goal-of-achievement tasks. Then we

explained the motivations for having hierarchical learning algorithms, repro­

duced Kaelbling's HDG algorithm and discussed replicated results comparing

HDG and DG learning in simulated stochastic domains. We then discussed in

detail the various aspects of HDG that we have modified in the course of this

work in order to make the algorithm more robust, and, presented experimental

results comparing these newer versions of HDG with the older version or with

themselves and computational complexity results for the newer versions.

Vv'e presented the HDG-Incremental algorithm to learn r values between

landmarks and presented empirical results and computational complexity fac­

82

tors determining that this version of the algorithm is preferable over HDDC­

Floyd Warshall.

We proposed the DE method of action selection. Our results indicated that

DC-UE out-performs DC-Boltzmann in a 10XI0 domain whereas there is no

significant difference between the performance factors of HDC-UE and HDC­

Boltzmann. \Ve speculate that tweaking the DE parameters might enhance

the performance of the hierarchical algorithm.

We implemented programs enabling us to generate arbitrary numbers of

hierarchical levels. We presented empirical results comparing DC l HDC and

HDC-2 algorithms in 10XlO l 20X20 and 30X30 domains. Our results in chap­

ter 6 (over relatively shorter runs) indicated that HDC initially outperforms

DC in larger domains. \Vhereas results in chapter 10 (over very large runs) in­

dicated that DC outperforms the hierarchical algorithms throughout the run.

We confirmed that the hierarchical algorithms run much faster as compared

with simple DC in larger domains. Our results to date are encouraging but

additional experiments should be performed with several levels of hierarchy in

larger domains before we can reach any conclusions regarding the hierarchical

algorithms. Can we theoretically quantify the efficiency achieved vs. the path

degradation incurred by the hierarchical algorithms? Towards the end of sec­

tion 11.1 we alluded to one method for providing an upper bound on the paths

traversed by the hierarchical algorithms as they converge to optimal DC and

r values. Can a tighter bound be discovered?

We introduced walls and one-way walls or membranes to make our domains

more interesting. At present our walls are absolutely impermeable. Potentially

83

we could make them semi-porous.

Ideally, our hierarchical algorithms should learn to induce partitions on the

domain given little or no domain-specific information. To achieve this goal we

proposed the HDGL and HDGM algorithms. Empirical results obtained with

HDGM (when bootstrapped with reasonable partitions) in a lOXIO domain

with walls are very promising. This suggests that future work should include

experiments with this algorithm in huge complex domains with several levels of

hierarchy. In several real-world situations, it is possible to obtain approximate

information about the domian, and, also, a lot of doamin-specific information

is likely to dynamically change. Since our preliminary experimental results

do indicate that starting HDGM with reasonably good approximate partitions

enhances performance, we expect HDGM to be very robust and to perform

well in such scenarios.

Kohonen maps can be implemented to produce a landmark layout that dy­

namically adapts to generate optimal (we hope) landmark networks. It should

be interesting to integrate the Kohonen map method of landmark placement

with the HDGM algorithm for modifying partitions.

It will be really interesting to implement the hierarchical algorithms on

a real-robot. In order to embark on such an implementation, it might be

necessary to integrate HDG at a higher level of abstraction with an approach

such as neural networks or hand-coded reactive layers at a lower level.

In the long term, it would be interesting to implement the HDG algorithms

on a coarse-grained parallel machine. Each cluster of such a machine can

perform DG learning, and there can be landmark clusters that have more

84

computational power and maintain the r values.

When we start thinking of parallel implementations, it is easy to imagine

a team of robots working in parallel. Each of these robots can primarily

reside in a certain region and perform DG learning, and, some mechanism

should enable robots from neighboring regions to communicate and thereby

maintain r values. In such a scenario, while delivering objects for example,

for inter-regional travel, a robot from a certain region would head towards a

neighboring region, and the robot from that neighboring region would meet it

at the boundary so that they can exchange the package being delivered.

13.2 Perspective

Our dream is to create autonomous and adaptive learning agents that will

accomplish dynamically changing goals in stochastic domains.

We realize that learning in huge domains can incur huge time and space

constraints and we attempt to resolve these problems using hierarchical con­

structs. At this stage we have obtained encouraging results with the nierar­

chical algorithms. 'Work from other disciplines studying human learning also

lends support to the concept of hierarchical learning. Research from Cog­

nitive Science supports the conclusion that people can significantly improve

their memory upon hierarchically organizing large amounts of information (J.].

Empirical results on simulations of olfactory paleocortex layers of the brain

indicate that the learned cues are organized in a hierarchical pattern in that

section of the brain [6].

This thesis has extended Kaelbling's hierarchical learning work and pre­

85

sented interesting new results. As mentioned in the previous section there is

tremendous scope for expanding this work.

86

Bibliography

[1]	 Lawrence \\7. Barsalou. COGNITIVE PSYCHOLOGY An Overview for

Cognitivt Scientists. Lawrence Erlbaum Associates, Hillsdale, New Jersey,

1992.

[2)	 A. G. Barto, R. S. Sutton, and C. J. C. H. \~/atkins. Learning and sequen­

tial decision making. Technical Report 89-95, Department of Computer

and Information Science, University of Massachusetts, Amherst, Mas­

sachusetts, 1989. Also published in Learning and Computational Neuro­

scitnct.' Foundations of Adaptive Networks, Michael Gabriel and John

:t\1oore, editors. The MIT Press, Cambridge, Massachusetts, 1991.

[3)	 Thomas H. Cormen, Charles E. Leiserson, and Ronals L. Rivest. In­

troduction to Algorithms. The MIT Press / McGraw Hill, Cambridge,

:t\lassachusetts, 1990.

[4]	 Peter Dayan and Geoffrey E. Hinton. Feudal reinforcement learning. In

Advances in Neural Information Processing Systems 5, San Mateo, Cali­

fornia, 1993. Morgan Kaufmann.

8i

[5]	 John Hertz, Anders Krogh, and Richard G. Palmer. Introduction to the

Theory of Neural Computation. Addison Wesley, Redwood City, Califor­

nia, 1991.

[6]	 Gary Lynch Jose Ambros-Ingerson, Richard Granger. Simulation of pa­

leocortex performs hierarchical clustering. Science, 247:1344-1348, 1990.

[7]	 Leslie Pack Kaelbling. Hierarchical learning in stochastic domains: Pre­

liminary results. In Proceedings of the Tenth International Conference on

Machinf Learning, Amherst, Massachusetts, 1993. Morgan Kaufmann.

[8]	 Leslie Pack Kaelbling. Learning in Embedded Systems. The MIT P~ess,

Cambridge, Massachusetts, 1993. Also available as a PhD Thesis from

Stanford University, 1990.

[9]	 Leslie Pack Kaelbling. Learning to achieve goals. In Proceedings of

ih (Thirteenth International Joint Conference on A rtificial Intelligence,

Chambery, France, 1993. Morgan Kaufmann.

[10]	 Philip Klein and Sairam Subramanian. A fully dynamic approximation

scheme for all-pairs shortest paths in planar graphs. "~DS proceedings,

1993.

[11]	 Andrew \\7. Moore. The parti-game algorithm for variable resolution. In

Proceedings of the NIPS 93, 1993. submitted to NIPS 93.

[12]	 El-Ghazali TaIbi Pierre Bessiere, Juan-Manuel Ahuactzin and Emmanuel

Mazer. The "ariadne's clew" algorithm: global planning with local meth­

ods.

88

[13]	 Franco P. Preparata and Michael Ian Shamos. Computational Geometry:

An Introduction. Springer-Verlag, New York, 1985.

[14]	 Anton Schwartz. A reinforcement learning method for maximizing undis­

counted rewards. In Proceedings of the Tenth International Conference on

Machine Learning, Amherst, Massachusetts, 1993. Morgan Kaufmann.

[15]	 Satinder Pal Singh. Reinforcement learning with a hierarchy of abstract

models. In Proceedings of the Tenth National Conference on Artificial

IntelligEnce, pages 202-207, San Jose, California, 1992. AAAI Press.

[16]	 Barbara Tversky. Distortions in cognitive maps. In Geoforum, volume 23.

Permagon Press Limited, Great Britain, 1992.

[17]	 C. J. C. H. \\7atkins and P. Dayan. Q-learning. Machine Learning,

8(3):279-292, 1992.

89

