
BROWN UNIVERSITY

Department of Computer Science

Master's Thesis

CS-93-M16

"FutureFone' ,

by

Christopher Nuzum

This research project by Christopher J. Nuzum is accepted in its present form by the
Department of Computer Science at Brown University in partial fulfillment of the

requirements for the Degree of Master of Science.

Date: S/tu/r f, ~~ I ./

Steven P. Reiss

1

FutureFone

A Splash ofMultimedia

Christopher Nuzum

May 1993

Submitted in partial fulfillment of the requirements for the Degree of Master of

Science in the Department of Computer Science at Brown University

Abstract

We present a framework for distributed multimedia applications with recording and
synchronized playback, capable of supporting browsing of the time dimension.

3

FutureFone

SECTION 1	 Introduction 7

1.1	 Overview 7

SECTION 2	 Network Architecture and Interprocess

Communication 9

2.1	 Requirements and Issues 9

2.2	 Overall Design 10

2.2.1	 The daq process 10

2.2.2	 The audiO process 10

2.2.3	 The ff process 10

2.2.4	 Network specifics 10

2.3	 Picture of the Network Architecture 11

2.3.1	 Audio Lines 11

2.3.2	 Control Lines 11

2.3.3	 Event line 13

SECTION 3	 Design of the Audio Substrate 14

3.1	 daq design 14

3.2	 audiO design 15

3.3	 actrl: Using audiO without ff 15

3.4	 Fault tolerance 15

SECTION 4	 Design of!! 16

4.1	 Devices 16

4.2	 Startup 17

4.3	 Establishing a Connection 18

4.4	 Recording and Playback 19

4.4.1	 Parallax 19

5

SECTION 5	 A Sample Device: dd The Distributed

Drawing Program 21

5.1	 But First, A Closer Look at Devices, Events and the

Dispatcher 22

5.1.1	 Devices 22

5.1.2	 Events 22

5.1.3	 The Dispatcher 22

5.2	 Deciding the Interaction Granularity 22

5.3	 Compound Events 23

5.4	 The Importance of Insulating State... 23

SECTION 6	 Future Work 24

6.1	 Time 24

6.1.1	 Time Controllers, Time Devices, Devices, and The Dispatcher 24

6.1.2	 Devices as Time Controllers 25

6.1.3	 Multiple Time Controllers 26

6.1.4	 Status of TIme Controllers 26

6.2	 Other Devices 26

6.2.1	 A Ringer Device 27

6.2.2	 A Marker Device 27

6.2.3	 A Text Device 27

6.2.4	 Other Devices 27

6.3	 Messaging Systems 27

6.4	 Shortfalls and Enhancements 28

6.4.1	 ff Needs more GUI 28

6.4.2	 Conference Calls 28

6.4.3	 TImer Synchronization 28

6.4.4	 Domain Address Server 29

SECTION 7	 Comparison With Other Work and

Influences 30

SECTION 8	 Conclusion 31

8.1	 Acknowledgments 31

6

SECTION 1 Introduction

The ff system provides a mechanism for easily creating distributed multimedia
applications. It is currently geared towards groupware applications, which fall under the
rubric of Computer Support for Cooperative Work (CSCW).

ffbegan as an alternative to the telephone, capable of providing simple workstation­
to-workstation audio communications, but the possibilities for developing interesting
applications on top of such a transport were too numerous to be ignored.

A typical session with ff has an audio connection and some number of non-audio
applications running. These applications, referred to as devices, need only generate and
respond to events. ffmanages routing the events over the network, dispatching them to the
various devices, recording them and playing them back in real time. Currently, "real time"
is provided by the underlying audio signal; during playback, all events are synchronized
with the audio signal.

1.1 Overview

The paper is divided into the following sections:

Section 2: Network Architecture and Interprocess Communication

We begin with a description of the design of the ff system, from the outside in. ff
consists of three communicating processes. In this section we discuss the issues surrounding
this architecture.

Section 3: Design of the Audio Substrate

We next look more closely at the two processes which manage the audio portion of the
system and present their internal design.

Section 4: Design of ff
Next we present the control process ffitself. All of the devices are bundled in this

process. We present the device model, events and the dispatcher.

7

Section 5: A Sample Device: dd, The Distributed Drawing Program

We have implemented a shared, object-oriented drawing program. We will briefly
discuss it in this section.

Section 7: Future Work

In this section, we describe how the ft system is capable of dealing with time, present
designs for several unimplemented devices, describe various messaging systems which
could be integrated into ft and discuss some of the shortfalls of and possible enhancements
to the system.

Section 8: Comparison With Other Work and Influences

We briefly compare ft to some other systems in the CSCW literature, and we discuss
some of the ideas which have appeared in other places which have surfaced in the design or
implementation of ft.

Section 9: Conclusion

B

SECTION 2 Network
Architecture and
Interprocess
Communication

Although it would have been nice to have bundled all of the functionality of ff into one
process, several factors intervened. While it is true that these factors derive, to a certain
extent, from the Sun hardware and operating system on which we implementedff, they are
indicative of more general UNIX multimedia support problems.

First of all, the audio device / dev / audio must be continuously sampled in order to
maintain a high level of audio quality. If a process doesn't sample the device continuously,
data may be lost, which could result in unintelligible sound. Additionally, network
throughput does not necessarily keep pace with the audio data rate, so the data which is
sampled continuously must be buffered somewhere.

This buffered data must then be routed to its destination, incoming audio data must
simultaneously be played, and we would like to be able to record all the audio data.
Furthermore, we would like to do all this without affecting the performance of the rest of the
ffsystem.

2.1 Requirements and Issues
•	 The process should be able to place and accept calls.
•	 The network behavior should be robust; it should only be necessary to run ff once

per session.
•	 In order to maximize performance, each process should be an equal peer, rather

than designating one process as a server. Thus, the communications paradigm
should be peer-to-peer.

•	 Audio performance should not adversely affect the performance of the rest of the
system.

•	 The network paradigm should support multiple participants, even though the
initial implementation will support only point-to-point communications.

9

2.2 Overall Design

Our solution was to divide the work between three communicating processes. The daq
process manages data acquisition, the audIO process manages audio input/output, and the ff
process deals with devices.

2.2.1 The daq process

The daq process continuously monitors / dev / audio, piping everything to the audIO
process. This generates approximately 8,000 bytes/second of u-Iaw encoded audio data.

The pipe takes care of buffering the audio data, assuring that none will be missed
unless the pipe overflows. If this actually happens, some data will be lost as the daq blocks
during a write; we are willing to accept this, since in practice it happens very rarely.

2.2.2 The audIO process

The audIO process broadcasts all of the audio data from the daq to another connected
audIO process across the network, and it plays the audio data from the other audIO
process(es) to / dev / audio. It also manages the recording and playback of audio data. The
audIO process runs as a server on the network, but it can connect to another audIO process
as a client.

Additionally, audIO gets control commands from a separate network client, a control
process which connects to it. These control commands include placing a call to another
audIO process, activating or deactivating the daq, starting recording, etc. audIO can run as a
network daemon, much like the talk daemon talkd; we have implemented a very simple
control process, much like talk, which allows audio-only point-to-point communications.

2.2.3 The ff process

The third process is the ff process itself, which runs as a client of the audIO process and
as a server or a client of another ff process.

2.2.4 Network specifics

Both ff and audIO run as non-blocking servers, awaiting a connection. When a user
places a call, the caller connects as a client to the callee's server port. If either peer receives
calls during the session, the called process forks, accepts the call, then terminates the
connection by dying. This indicates that the process is busy.

10

2.3 Picture of the Network Architecture

la - daq data pipe
Ib - daq controfpipe
2a - ff control port
2b - audIO control port
3 - ff event port
4 - audIO data port

II.. /--1

111: 11../ ..
Net

If you are reading the color version of this document, notice that audio data flows
along the red lines (la, 4), control commands along the blue (lb, 2), and events along the
magenta line (3). The numbering and colorings of these lines are consistent throughout this
paper.

2.3.1 Audio Lines

The audio lines are pure; we do not modify the signal in any way. We experimented
with subsampling, but found that the time necessary to compress and expand each sample
obviated the decrease in network latency, unless such small samples were taken that
intelligibility was sharply diminished.

2.3.2 Control Lines

The audIO process sends only one type of control command to ff: a time update
command. During recording, the time specified is used as the timestamp for the events
being dispatched and recorded. During playback, ff responds to the time update command
by dispatching all events up to the given time to the various devices.

11

ff sends several commands to audIO. The commands are:

Network Commands

• call address. This command is used to tell an audIO process to connect as a client to
another audIO process running on the node specified by address.

Time Commands

•	 time on. Activates the counter. When the counter is active, a time update
command is sent to the control process (usually ff) after every [increment] samples.

•	 time off. Suspends the counter.
•	 time reset. Sets the counter to aand resets the increment to the default of 1000.

•	 time n. Sets the counter to time n.
•	 increment n. Sets the increment to n. Since audio data comes in at a rate of 8000

samples per second, using an increment of 1000 generates eight time updates per
second. This means, in turn, that the synchronization granularity is 1/8 of a
second.

Recording Commands

• open filename. When this command is issued, the filename is opened for recording,
and all of the audio data is stored in it. Currently, only the data from the local
node's microphone is stored. We have experimented with various recording
mechanisms.

•	 close. When it's time to stop recording, this command takes care of closing the file.

Playback Commands

•	 play filename. This command sends all of the audio data in the file to the audio
device.

•	 playsynch filename. This is the same as play, except that it also generates time
update events after every [increment] bytes of data and sends them over the
control line (2a) to the control process.

Daq Commands

These commands are ignored by audIO and are forwarded to the daq process through
the control pipe (lb) which connects audIO and daq.

• on. This tells the daq to begin polling the audio device and sending the output to
audIO.

• off. This tells the daq to stop polling the audio device.
•	 n. An integer sets the current subsampling rate. 1 specifies that no samples are to

be skipped, 2 specifies that every other sample should be taken, 3 specifies every
third, etc.

•	 die. If this command is issued, the daq process exits. If audIO detects that the daq
died, it creates a new daq and reestablishes the connection exactly as before.

12

2.3.3 Event line

The events which are generated, broadcasted, dispatched and responded to by the
various devices pass over this line, insulated from the audio data. This mechanism is
described in more detail below.

13

SECTION 3 Design of the
Audio Substrate

As we saw before, local microphone input is captured by the daq, piped to audIO and
then sent out to the network. Remote audio data is received by audIO and sent to the audio
device. Most control commands are responded to by audIO, but some are forwarded to the
daq.

:;.....

.....
Ii i W"""

/ - d' & !!En iii iiii i i/devau 10'

When it starts up, audIO creates pipes la and Ib and forks. The child process becomes
the daq. When an audIO process connects as a client to another audIO process, data will
travel through the first process' client socket (4C) to the second process' server socket (45).
Since it is irrelevant which socket is used, these sockets are referred to collectively as the
audIO data port.

3.1 daq design

The daq's activity is centered in a loop, wherein the daq performs a select on pipe Ib,
responds to any commands, then, if it is currently on, sends a sample through pipe la to
audIO.

14

3.2 audIO design

audIO is a somewhat more extensive implementation of the daq's basic design; in its
main loop, audIO selects on pipe la and sockets 2b and 4. During every pass through its
main event loop, it checks:

•	 Whether a control connection is pending. If so, it is accepted, unless there was
already a control connection, in which case audIO forks, the child process accepts
the connection and dies, which is interpreted by the calling process as a busy
signal.

•	 Whether a control command is pending. If so, it is handled.
• Whether a data connection is pending. It is handled the same way as a control

connection request.
•	 Whether network data is incoming. If so, a buffer's worth is channeled to the

audio device.
•	 Whether data is incoming from the daq. If so, it is sent out on the network.
•	 Finally, if a recording is being made, audIO writes the buffers containing the audio

data read during this pass.

3.3 actrl: Using audIO without ff
It is possible to use audIO and daq without the ff process; the actrl process connects to

audIO and allows the user to type control commands, which are relayed verbatim to audIO.
A typical session would look like

actrl hostname-running-audIO

call hostname-to-connect-to

At this point, the audIO connection should be made. actrl can then be used to start and
stop recordings, test the daq, etc.

3.4 Fault tolerance

Special care was taken to insure that the network behavior of each of these processes is
as robust as possible. If a connection is broken, the processes go back into a server state,
awaiting a new connection. Thus, these processes are long-lived; they typically stay alive for
as long as a user is logged in. If they are run as setuid root, audIO and daq are analogous to
talkd and can stay alive as long as the system.

ff tries to start up audIO when it is run. However, if an audIO process is already
running, the new process will exit immediately (when it can't bind a socket) and ffwill
connect to the extant audIO process.

15

SECTION 4 Design oft!

Like audIO, ff always runs as a server, and may run as a client as welt depending on
which process initiates the connection. Once the connection is established, the distinction is
irrelevant. The figure below depicts ff running as a server.

(

Unlike the invisible daq and audIO processes, ff is a graphical application. We
implementedff using Motif (facilitated by the Baum encapsulation), using the
XtAppAddlnput interface to select for notification of incoming commands or events.

4.1 Devices

The fundamental paradigm of the ff system is that of event-generating-and-handling
devices clustered around an event dispatcher which is connected to the network.

In order to facilitate network transparency, devices should be constructed in two
insulated parts: the event-generation part and the event-handling part. A device should be
able to respond to any valid event from devices of the same type, at any time, regardless of
where the event originated.

All events are broadcast before being handled. For example, if a drawing program
wishes to draw a rectangle, the rectangle should first be specified (via rubber-banding, but
without leaving any imprint once the specification is complete). Next, the device should

16

create an event which describes the rectangle and broadcast it by sending it to the
dispatcher. The device should then relax.

As events arrive for the device, the device will be called to handle them. In order to
maintain high interactive performance, events broadcasted by a device will be immediately
echoed to the network and dispatched back to the device. It is possible that other events will
arrive and need to be handled while an event its being specified. This is why it is important
that the event-generation part and the event-handling part not rely on each others' state.

Here is an illustration of how the dispatcher functions.

4.2 Startup

When ff is run, it forks and execs an audIO process. It then connects to the running
audIO process as a client. While awaiting connections, Motif is in control and the user can
interact with any available devices or use the lIT to place a call, start recording, etc.

17

4.3 Establishing a Connection

When the user specifies "call" in the "session" menu, he is prompted for an address to
which to connect. The port numbers used by ff are currently hardcoded; using these well­
known ports, a network address suffices for specifying a connection.

Before it actually tries to call the other if process, if tells audIO to call the same address.
When both processes have connected to their peers on another node, the connection is
complete. Although not currently implemented, timeouts should be used to detect
connection problems.

As an alternative to having the connection happen at two levels, we could have waited
to fork the audIO process until after all the connections were made. Several factors
influenced our choice:

•	 / dev / audio is not a shared resource. IfaudIO is run setuid root, or if another user
owns / dev / audio and is running an audIO process, the running audIO process
will be able to service any user's requests, whereas an audIO process forked by if
could fail to obtain access to the audio device.

•	 We wanted to be able to use audIO separately, such as with actrl.

(
\

18

4.4 Recording and Playback

This figure depicts the control port's time input to the dispatcher.
~

input file

Dispatcher

output file

During recording, two or more files are written: ff writes the events to an event file,
and audIO writes one or more audio files, which may later be mixed using the mix program
to form one audio file. The events are timestamped and recorded immediately before being
dispatched so the recording is as close as possible to what the user actually sees.

To begin playback, ff issues the playsynch command on the audio file. To handle each
time update command, ff reads and dispatches the events with smaller timestamps from the
event file. The resulting synchronization is excellent for everything we have seen so far
except for drawing device move events, which are jerky. Adding a timer to ff would be
trivial and would allow for synchronization with a much finer granularity, independent of
the audio stream.

4.4.1 Parallax

An interesting feature of this system is that each user on the network will handle (and
record) events in a slightly different order, since a user's own events are received much
more quickly than those from remote hosts. By recording events in exactly the order they are

19

handled, a user's recording will reflect the user's own perception of a session, which is fine,
since there is no one "true" session which can be recorded.

20

SECTION 5 A Sample Device: dd
The Distributed

Drawing Program

The dd device functions very well within the ft framework, confirming that the model
is indeed viable and the performance entirely acceptable for interactive applications.

Jeff's Text is up here!! (M
1<:~:~

Chris' text is blue; his ~~~f
k:

thesis is due tomorrow ~.
/~~.,_..._<~

r tomorrot.....
is <;
today'~l

.._, ..., ...,----_/'~~

::~n

I
¥':'1 q

:~ .~ l~
!ill J.\."" l.

4l\~

dd supports a useful set of drawing primitives, including: lines, rectangles, freehand
(polylines), text, various colors and line widths, selection and motion. Objects may be
created and manipulated by any user connected to the system.

For a complete description of dd's architecture, please refer to Jeff Stamm's dd project
summary. Here we will use dd as an example of a typical device in order to illustrate some
of the issues related to designing devices for use with ft.

21

5.1 But First, A Closer Look at Devices, Events and the
Dispatcher

5.1.1 Devices

The C++ class which implements devices defines several methods as well as the
protocol for handling device responsibilities.

Each device which is derived from class Device inherits an event queue, with
enqueue and dequeue operators, and a constructor which registers the device with the
dispatcher.

5.1.2 Events

Events are fairly simple constructs in ft. They contain fields describing their creator,
device type, receipt time, how much data is associated and a pointer to the data itself.
Events know how to create themselves from and write themselves to a network connection
or file.

5.1.3 The Dispatcher

To broadcast an event, the dispatcher requests that the event write itself to the network
stream. To dispatch an event, the event is enqueued on the appropriate device's event
queue.

5.2 Deciding the Interaction Granularity

While writing dd, it became necessary to ask, "what should be an event?" One
possibility was to make events out of every user action, cursor movement, rubberbanding
motion, color selection, etc. The problem with this approach is that the number of events
skyrockets, but the advantage is that every user sees exactly what every other user is doing.
Another disadvantage is that certain things,like color selection, tend to want to modify the
device's state, which is a bad idea, since the states of various users' devices are likely to
become inconsistent very quickly.

At the other extreme, events could correspond only to completely specified objects, so
that once a user finished drawing a box, the finished box would appear to everyone. This is
fine for lines and boxes, but suffers when dealing with long freehand objects and movement
commands - things it is interesting to talk about while specifying.

22

5.3 Compound Events

If all we have available to us are events, we must break down objects like polylines
into several events. When this is the case, we must be careful in how we deal with incoming
events; some may pertain to the polyline one user is drawing, while another event may
specify a totally unrelated move or even part of another, different polyline. To deal with
these problems, the event handler may need to maintain a certain minimal amount of state.
In the drawing program, it sufficed to keep a certain amount of state for each user during
polyline specification.

5.4 The Importance of Insulating State...

CANNOT BE OVERSTATED!!! (no pun intended) During our initial experiments,
polylines frequently changed color while being specified because another event, which
arrived from the net, changed - and forget to change back - the state of the graphics
context.

23

SECTION 6 Future Work

6.1 Time

The ff framework was designed to allow browsing of the time dimension of recordings
as well as simple playback. ffs notion of time is maintained by Time Controllers.

6.1.1 Time Controllers, Time Devices, Devices, and The Dispatcher

Both the Dispatcher and Device classes inherit from the TimeDevice class. This is
a very simple class which defines the protocol for how derived classes should handle time
requests and contains a pointer to a TimeController object.

Normally, each TimeDevice points to the same TimeController, the Universal Time
Controller, which is always associated with the Dispatcher. This is depicted below. In fact,
when the Dispatcher responds to a time update command, it actually sets the time value of
the Universal Time Controller.

Dispatcher

The primary methods declared by the TimeDevice class are jumpTo and playTo. A
TimeController will call the j umpTo methods of each device it controls to tell the device to
update its screen so that it looks like it did at the given time.

24

The TimeController class has a time data member, and it also has a method
sendAndSetTime, which tells each device associated with the Time Controller to j umpTo
the specified time.

This allows the user to use a graphical user interface to a Time Controller, such as the
one depicted above, to jump to any point in time in a recording.

Once there, the user may press play (depicted as » in order to commence playback at
the current time. There are two ways of handling this; either the device can keep track of all
of its data structures over time, so that it is capable of moving forward in time as well as
backward, or the dispatcher can fetch all of the events from the events file and re-dispatch
them to the device as necessary; this allows the device to throwaway all data that occurs
after the current time. The second approach is simpler for the device implementor, but it
suffers from decreased performance.

6.1.2 Devices as Time Controllers

Devices also inherit from the TimeDevice class, which means that they also have an
associated Time Controller, and are therefore capable of using the sendAndSetTime
method. This allows many time control tools to be written as devices, and it allows other
devices to implement certain interesting functions.

For example, one possible function would be to allow a user of dd to click on an object
in the graphics window, jump to when in time it was defined, and play the recording
forward from that point. This would make it very simple to review an interesting part of a
discussion.

25

6.1.3 Multiple Time Controllers

Occasionally, it is desirable to de-couple the notion of time associated with a certain
device from that controlled by the dispatcher. For example, imagine a text device which
operates like a talk window. While listening to the audio portion of a conversation, a user
may wish to have the entire text available to scroll through. He would accomplish this by
creating a separate time controller for the text device and positioning it at the end of time.
This would allow him to scroll through the full temporal extent of the text while he listens to
the recording in real-time.

Dispatcher

6.1.4 Status of Time Controllers

The Time Controller work was the next step in the implementation of If. It was

6.2 Other Devices

While the number of devices currently implemented in ff is small, the number of
devices imaginable is very large. Furthermore, the design, implementation and
functionality of these devices is easily understood. Here are some examples:

26

6.2.1 A Ringer Device

A ringer device could be built which sends a user's icon and signature audio file. This
would allow the callee to know to whom he is talking. The data could be stored in a
preferences file. The device could be implemented with one event for each type of ring, and
each event could be broadcast. When the data is received, the audio file could be stored in
the / tmp directory and the device could request audIO to play the sound file.

6.2.2 A Marker Device

It would be useful to be able to "dog ear" moments in a conversation like pages in a
book, so that they can be easily returned to at a later time. A marker device would broadcast
events which contain a short textual description of what is currently happening. These
descriptions would be displayed in a scrolled window. During playback, a user could click
on any marker and jump to the point in time specified by that marker.

6.2.3 A Text Device

A text device could look like talk, except that each user would have a scrolled window
of text. Every letter typed could be an event, and clicking on any letter could jump to when
in time it was defined.

6.2.4 Other Devices

One can also imagine a memo device which would take advantage of the feature that
events may be marked as private, in which case they will be recorded but not broadcast to
other users. The user could click anywhere in the memo and jump to that point in time.

Another possibility would be a screen grab device, or a device which customizes an
existing device, or a device which can send X text events to someone else's Emacs process.

6.3 Messaging Systems

Given that we have the ability to play and record files of audio and events, it's almost
possible to add just a nice Gill and call it multimedia voicemail. With the time-browsing
functionality added, such messages could become a very useful resource. However, there
are a few other, subtler issues which must be addressed before ff would be a convenient
voicemail facility.

•	 Messages should be consolidated into one file. There are many possible ways of
doing this. In order to support rapid browsing of the time dimension, an index
which cross references event times with offsets in the audio data might also be
bundled into this file.

•	 A transport must be chosen for the message. If smtp mail is used, it may be
necessary to segment long messages into several mailings and reconstruct them

27

later. If a shared filesystem and file-based messaging is used, messages will be
limited to the reach of the shared file system.

•	 A mechanism would need to be developed which would allow access to outgoing
messages, even if ffis not running. One possibility would be an OGM server
which either knows everyone's OGM or is capable of peeking into private places
in the user's account where OGM's are stored. Another would be to keep OGM's
in a well-known place,like ,...,/.ogm. This would limit OGM's to working on a
shared filesystem, and would make it difficult to keep different OGM files private,
but would be easy.

6.4 Shortfalls and Enhancements

The current proof-of-concept implementation is rough carpentry; you can lean on it,
but you might get a splinter if you sit on it. Some of the following refinements are analogous
to sanding, others to building a sun deck.

6.4.1 ff Needs more GUI

In our rush to complete the proof-of-concept implementation, we neglected to build
dialog boxes for fetching addresses or selecting files; although a pull down menu is used to
choose to place a call, the address must still be entered on the command line.

6.4.2 Conference Calls

The current implementation is restricted to point-to-point communications. It would
be a simple matter to support multi-way event dispatch by connecting every pair of
participants in a conference call.

The audio data represents a more formidable challenge; while it is a simple matter to
mix all the audio data coming in on multiple pipes, it is unusual for data to arrive
simultaneously. It would be necessary to buffer a quantity of data from all parties (waiting,
if necessary, until enough has arrived, to prevent dropouts), mix it, and then send it to the
audio device. While not impossible, this is non-triviaC and a certain amount of "tuning"
would probably be necessary to produce acceptable performance.

Alternatively, broadcast could be used instead of a completely connected graph, but
reliability could suffer.

6.4.3 Timer Synchronization

Although the initial motivation for ff was partially to provide an alternative to the
telephone, audIO and daq tend to use a disproportionate amount of system resources. When
these processes aren't desired, they should not be required. In their absence, timer callbacks
could be used for timestamping and playback synchronization.

28

6.4.4 Domain Address Server

It is currently necessary to know what machine a friend is logged on to in order to
establish a connection. An address server could simplify this process and allow calls to be
specified using the recipient's name or userid instead of the network address of the machine
where he is sitting.

29

SECTION 7 Comparison With
Other Work and
Influences

We intentionally designed the original ff system before doing any research on other
systems, hoping that this would allow us to dream up a clean model. Nonetheless, the
literature on other systems later proved useful for how it helped to elaborate the design and
to warn against certain implementation choices.

The architecture of the MMConP system is similar to that of ff.1t also uses events.
However, it does not make any attempt to record conferences, and therefore has no built in
time support. It did identify and expound upon various relevant issues, including
centralized vs. replicated architectures, misordered inputs, non-determinism and late
comers. Where they implement no solution to the latecomers problem, once the multi-party
network support is installed, ff could easily be extended to pause while a late joiner reads in
the contents of an event file.

Degen et al introduce a primitive version of time markers in their "Working with
Audio"2 paper. Since they use a personal tape recorder, their markers are limited to two
tones which can later be identified and annotated in a graphical representation of the
recording. They do have a sound browser utility, but we question the utility of actually
displaying the sound waveform in a system like ours; it makes more sense for us just to
display the semantic markers and provide a time controller for browsing the time
dimension. The waveform display is most useful for editing sound, which is a dangerous
idea when the sound is used for synchronization.

Goldfarb's HyTime article3 and the current draft of the ISO HyTime standard were
useful while thinking about how to accomplish and represent the synchronization.

Finally, the network support in the axross project in the Brown University Computer
Graphics group evolved along the same lines as ffs. Axross'limitations motivated much of
dd.

1. Crowley, Milazzo, Baker, Forsdick and Tomlinson, "MMConf: An Infrastructure for Building Shared Multimedia
Applications", in Proceedings of the Conference on Computer-Supported Cooperative Work, October 1990, page 329.
2. Degen, Mander and Saloman, Apple Computer Advanced Technology Human Interface Group, "Working with
Audio: Integrating Personal Tape Recorders and Desktop Computers" in CHI '92 Conference Proceedings, page 413.
3. Charles F. Goldfarb, IBM Almaden Research Center, "HyTIme: A Standard for Structured Hypermedia Inter­
change", IEEE Computer, August, 1991.

30

SECTION 8 Conclusion

The ff system allowed us to explore many issues related to shared multimedia
applications and synchronization in a UNIX environment. Although the implementation of
ff could continue for many months, we are satisfied that we have demonstrated that the
system's model, design and foundation are sound. Furthermore, the current working
implementation is usable, useful and fun.

We would like to see the integration of time controllers and synchronized multimedia
messages into popular messaging applications; our experience with the system suggests
that recording such messages is simple and natural; although the result is often similar to a
video recording of the screen, the user doesn't suffer from the feeling of being in front of a
camera.

As the hardware for multimedia support becomes available, we look forward to the
applications that people will create, and expect that a simple, uniform system architecture
like ff will facilitate the implementation process.

8.1 Acknowledgments
(
\

Thanks to Steve Reiss for his advice and sponsorship of the ff project; Jeff Stamm for
dd, his input on the ff architecture and his patience, enthusiasm and companionship in the
face of what all-too-occasionally seemed like a dangerously over-ambitious undertaking;
Jeremy Gaffney for the initial Connection class which we stretched, patched and cajoled into
supporting non-blocking 10; Andy van Dam, who provided us with a valuable mental
model of the system's most skeptical potential user; Mike Anderson and Chris Brown, for
sharing their experience from axross; and to my family and friends, for not understanding,
but caring anyway.

31

\
)

