
BROWN UNNERSITY

Department of Computer Science

Master's Thesis

CS-93-Mll

"The Concurrency Control Mechanism

of the Mongrel System

Design and Implementation"

by

Sergio A. Nakai

The Concurrency Control Mechanism

of the Mongrel System

Design and Implementation

Sergio A. Nakai

Department of Computer Science

Brown University

Submitted in partial fulfillment of the requirements for the Degree of

Master of Science in the Department of Computer Science at Brown University

May 1993

This research project by Sergio A. Nakai is accepted in its present form by the
Department of Computer Science at Brown University in partial fulfillment of the

requirements for the Degree of Master of Science.

Professor ~ B. Zdonik

Advisor

The Concurrency Control Mechanism of the Mongrel System

Design and Implementation

Sergio A. Nakai

Department of Computer Science

Brown University

May 1993

Abstract

A multidatabase is a distributed database system which creates
the illusion of logical integration of heterogeneous local
databases without requiring physical database integration. The
local database systems may have different logical models and data
definition and manipulation languages, and furthermore, may
differ in their concurrency control and transaction processing
mechanisms [KS91}.

The Mongrel system is a multidatabase system based on the
Interactions model (described in detail in [N09l] and [N092]).
This work describes and analyzes the concurrency control
mechanism of the Mongrel system. It includes design and
implementation problems encountered and the solutions chosen, as
well as the reasoning behind the decisions made.

A brief description of the more important aspects of the
Interactions model and the architecture of Mongrel are first
presented. This is followed by the detailed analysis of the
concurrency control mechanism. The appendix includes the design
documentation ofthe relevant modules (all were written in C++).

1

1. Introduction

The main objective of the concurrency control scheme of a database is to ensure

the correct serialization of transactions. The most widely used concurrency control

protocols are locking, timestamp, and graph based. In a multidatabase (MOBS),

concurrency control is becomes much more complex than in an isolated database

management system (DBMS). The protocol of a MOBS has to be sufficiently

sophisticated and flexible to be able to synchronize the concurrency control schemes of

all the DBMSs that compose the MOBS.

The implementation of the Mongrel system, a multidatabase system designed

based on the Interaction model [N091], is currently under way. In this work, the

concurrency control mechanism of the Mongrel system is presented and analyzed.

Moreover, the design and implementation issues are described in detail.

2. Background

Assuming knowledge of the multidatabase model, this section will only present an

overview of the aspects of the Interaction model that are relevant to this study. For a

more detailed description of the Interaction model, please refer to the work [N091].

Similarly, the discussion on the architecture of Mongrel focuses on those components of

Mongrel that are part of or are related to its concurrency control mechanism.

2.1 Interactions and Transactions

In the Interactions model, an interaction is the top-most unit of work and the task

to be accomplished. In comparison to a DBMS, an interaction is analogous to a long

term transaction. For instance, if the Interaction model is applied to the implementation

of a travel agency's multidatabase system--where the databases that compose the MOBS

are airline, hotel, and car rental companies'--an interaction would represent a trip plan.

2

Consider a customer's request for a round-trip ticket, hotel, and car reservations. Clearly,

this requires accessing at least three databases, and therefore, it needs at least three

transactions. In this example, the interaction is the set of the transactions required to

completely and successfully service the request of the customer.

Transaction are categorized into two groups, global and local transactions. Local

transactions are executed in the a single database and are viewed and treated by the

DBMS alike a transaction that is not controlled by the MOBS. Global transactioris are

sequences of one or more local transactions that are executed in different DBMSs. In the

example above, the three reservations requested are handled by three different global

transactions. When reserving a car, a global transaction may check several car rental

companies' databases for availability and prices. For each database accessed, a local

transaction is created to execute the transaction at its particular DBMS. Therefore, an

interaction is composed of one or more global transactions, which in turn are composed

of one or more local transactions.

In the following figure (fig. 1), the transaction diagram of a common interaction

of a travel agency MOBS is shown. The interaction is represented by the trip plan of

customer John Doe. This interaction is divided into three global transactions, namely

plane, car, and hotel reservations. Each of these global transactions is in turn broken up

into a collection of one or more local transactions.

3

HotelPlane
ReservationReservation

Trip for John Doe

Car

Reservation

LT6LTI LT2 LT3 LT4 LTS

United lWA Hertz Avis Dollar Days Inn

fig 1. Transaction Diagram of a typical Interaction

2.2 Architecture of the Mongrel System

The Mongrel System is divided into three main components: (1) TaSL, the

graphical user intetface, (2) the Interaction Manager (1M), the core module of the system,

and (3) the Agents, the modules (one for each DBMS that fonns part of the Mongrel

MDBS) that intetface the 1M with the different DBMSs.

The 1M is the core of Mongrel, its central system. It is responsible, among other

things, for processing the infonnation entered through TaSL, which usually requires

logging data for recovery reasons, updating the data it stores to keep track of the global

transactions in execution and the local transactions each of them creates, and naturally,

communicating with the proper local databases requesting some service or executing a

4

local transaction. Clearly. this is a very simplified description of the basic functionalities

of the 1M. To this study. the most important element of the 1M is the Concurrency

Control Manager (CCM). which is in charge of enforcing the proper serialization of

global transactions.

The main responsibility of the Agents. the interfaces between the 1M and the

databases. is to manage the local transactions executing at the DBMS associated with it.

This involves. among other things. spawning new processes to run the local transactions

(a local transaction is handled by one and only one process). keeping track of the

serialization order of the local transactions for concurrency control reasons (explained in

the next section). and logging information needed to perform recovery procedures. The

Serialization Enforcer (SE) is the component of the Agent that performs the concurrency

control tasks. The CCM works together with the SEs to ensure proper serialization of the

Interactions. The following figures. fig. 2 and fig. 3. illustrate the architecture of the

Mongrel MOBS system. The first one depicts the overall system. whereas the latter one

shows a detailed description of the Agent.

5

TaSL TaSL

1M

Agent Agent

DBMS DBMS

fig. 2: Main Componenets of the Mongrel System

6

To 1M

1M

AGENT AGENT MANAGER

~ \
SERIALIZAnON

ENFORCER
 - GST

STEP LffiRARY

Co :::::
•

DBMS
........
 -

To

To Log DBMS

I
ALD

ACTIVATOR -

fig. 3: Architecture of the Agent

In fig. 3, all the components that run at each DBMS in the Mongrel system are

shown: the Agent and its two side modules, the Agent Logger Daemon (ALD) and the

Activator. Both of these sub components are elements of the Recovery and Rollback

Mechanism and will not be discussed further in this work. The Agent, on the other hand

is the most important piece of the Concurrency Control Mechanism of the Mongrel

system. As depicted, it is composed of a Agent Manager (AM), a Serialization Enforcer

(SE), a Step Library, and a set of Global Subtransaction objects (GSTs).

7

The Agent Manager is the interface of the Agent. All messages are ftrst received

by the AM which then redirects it to the proper recipient. In addition, it locks and

unlocks the Agent (necessary when committing, as explained later) and keeps track of the

transactions executing at the associated DBMS. The SE was briefly described above, and

will be studied in detail in the next sections. The Step Library contains a collection of

functions or steps that perform a speciftc task in the database. For instance, an airline

Agent's Step Library might contain steps such as make_reservation or delete_reservation.

The GST objects are processes that handle the local transactions. Each local transaction

requires a dedicated process to execute it, thus one GST object is necessary for each

transaction running a database.

3. The Concurrency Control Mechanism

In the Interactions model, the basis of the Mongrel system, interactions are non

atomic transactions, whereas global transactions are atomic. To illustrate these

characteristics of the interactions, consider two interactions la and Ib' where la is

composed of global transactions GTal and GTa2 and Ib is composed of GTbl and GTb2.

Since the interactions are non-atomic, it is valid to interleave the global transactions of la

and Ib without having to serialize them. Thus, the schedule <GTah GTbl' GTb2, GTa2> is

correct, even though la is not executed atomically. However, since global transactions are

atomic, it is not valid to interleave the local transactions of any global transactions.

Hence, ifGTal is composed of local transactions LTall and LTal2, and GTbl is composed

of a single local transaction LTbll' the schedule <LTall' LTblh LTa12> is not valid since

GTal is not executed atomically.

In order to enforce a correct serialization of global transactions, Theorem 4.1

introduced in [N091] shows that it is sufftcient to enforce the serialization of the local

transactions according to the serialization order of the global transactions, which we will

8

call the Global Serialization Order (GSO). In other words, if for any global transactions

GT. and GTb, where GT. is before GTb in the GSO, Theorem 4.1 affirms that if for any

local transactions LT. and LTb, where LT. is a local transaction of GT. and similarly LTb

is of GTb and LT. and LTb are executed in the same local database, then if LT. is

serialized before LTb in this local database, then GT. is executed atomically and is

serialized before GTb.

Therefore, Theorem 4.1 tells us that it is enough to enforce the GSO on all the

local databases, to ensure the correct serialization of global transactions. Thus, the main

objective of the concurrency control mechanism of the Mongrel system is to enforce the

GSO in all the databases that form part of the MOBS, which involves serializing all the

local transactions according to one unique serialization order, the GSO.

Naturally, the component responsible for computing the GSO is the 1M. The 1M

is aware of all the interactions and their global transactions executing in the system at any

point in time, since all Mongrel users have to communicate only with the 1M (using

TaSL) to initiate and execute interactions and transactions. The CCM and the Agents

then work together to enforce the GSO in all the local databases.

The following section discusses the implementation of four different concurrency

control protocols. The next section analyzes the three most widely used concurrency

control protocols for DBMSs, namely the timestamp, the two-phase lock, and the

serialization graph test protocols. The serialization point of a transaction is the point in

time when a transaction is serialized (against all the other transactions being executed in

the same database). The three schemes are examined to fmd when each of them serializes

a transaction, or in other words, what their serialization points are. The important issue of

how commit is handled in the Mongrel system is investigated next. And, finally, a

description of how all the components of the concurrency control m~chanism work

together to accomplish the enforcement of the GSO is presented.

9

3.1 Enforcing A Global Serialization Order· Four Approaches

The concurrency control mechanism of the Mongrel system did not only require a

careful design, where all possible cases had to be thoroughly examined, but also involved

some performance considerations. A major performance problem we foresaw is that in

some cases, cascading aborts could not be avoided. Four different approaches to enforce

a global serialization order were proposed. Two of them were based on the certifier

scheme. In [No91], it is maintained that a "certifiers do not check whether or not a

transaction conflicts until the transaction commits. Then, using a procedure depending

on the type of certifier, [the certifier] decides whether or not the transaction conflicted

with other active transactions". In Mongrel, the clear choice of entity that acts as certifier

is the 1M (i.e. the core system), making its decisions on the information provided by the

Agents. The second two approaches are based on less centralized methods. The Agents

not only keep information about the active transactions, but have the power to enforce the

GSO themselves. Whenever an Agent detects a conflicting action is about to happen or

has just happened, it performs a procedure to ensure that the GSO is maintained (e.g.

aborts a transaction, reports the problem to the 1M, etc.).

Both of the two groups described, certifiers and non-certifiers, are divided

depending on when the scheme serializes the transactions. In particular, it can either

serialize the transactions when they begin or when they commit. In other words, this sub

division is based on whether the GSO is enforced to be the same as the order in which

transactions begin or the order in which they commit. Hence, the four cases considered

were named Non-Certifier Begin Order, Non-Certifier Commit Order, Certifier Begin

Order, and Certifier Commit Order.

One might think that the certifier cases should have worse performance results

because in these cases, an entire transaction has to be performed before the 1M can decide

whether it can commit or not, whereas in the non-certifier cases, problems can be

detected earlier on and thus, no time needs to be wasted running a transaction that is not

10

going to commit in any case. However, this was not the only consideration. It is difficult

to predict which of the four approaches would produce the least aborts, which is perhaps

the main performance issue. It was decided that the four schemes had to be implemented

and then tested against each other.

3.2 Understanding the Concurrency Control Protocols • Analysis of the Timestamp,
Two-Phase Lock, and Serialization Graph Testing Schemes

An important characteristic of multidatabase systems is the fact that the databases

that are part of it may be completely different from each other. This includes the

concurrency control mechanisms of the various databases. In the Mongrel system, the

three most widely used protocols, namely timestamp, two-phase lock, and graph-based,

were taken into consideration. These mechanisms ensure proper serialization of

transactions in very different ways. An important objective of the concurrency control

mechanism of the Mongrel system is to synchronize the concurrency control mechanisms

of the DBMSs that form part of it.

A correct serialization in an isolated DBMS implies that although the transactions

were executed concurrently, the results obtained are the same as if they had been

executed one after the other. Proper concurrent execution of transactions, and thus

correct serialization, can be achieved if the concurrency control mechanism ensures the

transactions are executed atomically.

Concurrency control in MDBS becomes a more complex problem. The MDBS

does not have the complete control of the execution of transactions that an isolated

DBMS has. Moreover, as was stated above, the concurrency control of Mongrel has to

be able to control the order in which the different databases serialize the transactions.

And since there is unique GSa that has to be enforced in all databases, the Mongrel's

concurrency control mechanism has to synchronize the serialization order in database

systems using different concurrency control protocols.

11

In order to enforce a unique GSO, an analysis of the three concurrency control

protocols named above is necessary. In particular, we need to know the exact point in the

lifetime of a transaction in which the concurrency control scheme serializes a transaction.

The Timestamp protocol is the perhaps the simplest to analyze. A transaction's

serialization order is detennined by its timestamp, which is gotten by the transaction

when it starts executing. Consider any two transactions TI and T2, with timestamps TOI

and T<h respectively. It is important to note that we are only concerned with transactions

that conflict in at least one data item. If the transactions do not conflict, then any

schedule is correct, and there was no problem to start with. If TI starts before T2 (Le.

TOI < T(h), then if T2 commits before TI. we can conclude that TI has aborted and

rolled back. Therefore, the concurrency control mechanism of the Mongrel system can

rely on the timestamp mechanism of a DBMS to enforce the GSO. In order to have a

transaction TI be serialized before T2, it is enough to make TI get a lower timestamp than

T2. If TI commits, then we can be sure that T2 has not yet committed. If TI aborts for

any reason, the 1M can be notified, and either cascading aborts may occur or a

reorganization of the GSO can be performed so that TI can be executed again at a later

time.

In the Two-Phase Lock protocol, it is not quite as simple to detennine the order in

which transactions are serialized. In fact, the serialization order of a transaction cannot

be determined until it commits. Consider two transactions Tl and T2 which conflict in at

least two data items x and y. Let us assume Tl gets a write lock for x, and thus, T2

cannot use x until Tl releases the lock. By the same token, assume T2 get the write lock

for y, and thus Tl cannot access y until T2 releases the lock, thus creating deadlock. The

deadlock detection mechanism then runs a procedure in which either Tl or T2 is aborted

and the other is allowed to continue execution. Since no order list is kept by the

concurrency control mechanism, it is impossible direct it to abort one or the other based

on some pre-defined ordering. Therefore, we can say that the transactions are serialized

12

only at commit time; that is, if Tl commits before 1'2, then Tl is serialized before 1'2, or

vice versa.

In the Timestamp case, a method was found by which the concurrency control

mechanism of the DBMS could be used to enforce the GSO. It should be obvious that for

the Two-Phase lock protocol, such a method cannot be found so readily. For the Commit

Order approaches, both Certifier and Non-Certifier, we can rely on the DBMS's

concurrency control mechanism, since it serializes transactions at commit time.

Transactions are allowed to executed freely until one of them is ready to commit (Le. all

its instructions have been sent from the 1M to the Agent, and from the Agent to database

and this transaction is the next in the GSO). If the transaction commits, then it is

serialized properly. If it does not commit, we can conclude that it must have been queued

waiting for some lock, and thus, it can be aborted. Aborting a local transaction implies

that the global transaction it forms part of must be aborted as well as all its other local

transactions. Then the aborted global transaction can be moved down in the GSO list and

executed again at a later time (aborting a global transaction may involve aborting other

global transaction which must be serialized after the aborted transaction).

However, for the Begin Order approaches, the solution is not quite as simple. In

the certifier case, a local serialization order list is kept by the Agents. At commit time,

the 1M requests all the local serialization order lists from the Agents and then compares

the unique the GSO to these lists. If any discrepancies are found, the 1M can act

accordingly. In the non-certifier case, two different algorithms were examined. The fIrst

one also involves keeping a local serialization order list. A transaction is inserted into

this list when it starts and is allowed to commit if and only if it is the fIrst item in the

local list. When a transaction commits or aborts, it is taken off the local list. Since a

transaction is added to the list when it starts and the transactions are started by the 1M in

the order indicated by the GSO, the local list keeps the transactions in the same order as

they appear in the GSO. The second approach is based on the forced-local conflict

13

algorithm and is described in detail in the analysis of the graph-based protocols which

follows.

Finally, in the graph-based protocols, the serialization order of transactions is also

determined only at commit time. In this protocol, a directed graph is kept, where the

"nodes represent transactions and the edges represent conflicting operations in those

transactions [connected by the edge], specifically form the earlier operation in the

[schedule] to the later operation" [N091]. If at any time, a cycle is formed, the resulting

schedule would not be serializable, and thus, the transaction is aborted. The schedule of

execution of a database cannot be predicted, and thus, the serialization order of a

transaction cannot be determined until it commits.

The graph-based protocols is the most challenging of the three studied, in terms of

fmding an algorithm to enforce the GSO that takes advantage of the characteristics of the

graph-based protocol. The solution chosen is based on the forced-local conflict method

introduced in [GRS91]. In this work, a "ticket" algorithm is described. This algorithm

enforces a serialization order on transactions by making them conflict on a single data

item called the "ticket".

In the Begin Order cases, certifier and non-certifier, transactions are started

according to the GSO. The first instruction a transaction attempts to executes is to "take

the ticket", which basically means, "touching" the "ticket" data item in the database. This

action causes edges to be formed in the graph kept by the concurrency control

mechanism--one edge for every node in the graph, since all active transactions must have

"taken the ticket". Since the transaction is just starting, a node has to be created first, and

since no edge can yet be directed into the new node, no cycle can yet be formed.

However, by having all the transactions access this "ticket", we are effectively forcing all

transactions to conflict with each other in at least this data item. If no other edges are

formed between two nodes, then the two transactions represented by these nodes were

non-conflicting transactions. However, if two transactions are conflicting ones, then all

14

other edges must also go from the node that represents the transaction that "got the ticket"

f11"st to the other transaction's node, or otherwise a cycle would be formed. Thus, the

GSO is enforced.

For the Commit Order approaches, a very similar procedure is followed. The

main difference is the time in which transactions attempt to "take the ticket". In this case,

a transaction accesses the "ticket" after all of its instructions have been executed, but

before starting the commit process. "Taking the ticket" causes edges to be created only if

there are other transactions that have already "taken the ticket", but have not yet fmished

(Le. committed or aborted).

In the description of the Two-Phase Lock protocol, it was stated that it used the

"ticket" algorithm. This approach uses this algorithm very much alike the graph-based

Non-Certifier Begin Order case. When a "ticket is taken", the transaction gets a write

lock on the "ticket" data item. Thus, if a transaction Tl "gets the ticket" before a

transaction TI, then either Tl commits before TI or Tl aborts. A major performance

problem with this approach is that concurrency is effectively eliminated, since a

transaction's f11"st step is to "get the ticket", and thus, all transactions that do not "get the

ticket" will be queued up waiting for the transaction that has the write-lock for the

"ticket" data item to release it.

In this section, methods to enforce a serialization order in databases with

Timestamp, Two-Phase Lock, and Graph-Based Protocols were presented. Moreover, a

description of the "ticket" algorithm, which is based on forced conflicts, was presented.

3.3 The Commit Protocol

When a global transaction commits, to ensure atomicity, all the local transactions

that formed part of it must also commit. If at least one does not commit, then all must be

aborted and thus, the global transaction also aborts. Two approaches for committing

15

transactions in distributed databases were considered--global commit before local commit

and local commit before global commit. In the former one, the global transaction is ftrst

committed and then all of its local transactions attempt to commit. If at least one does

not commit, then all the ones that did commit have to be semantically undone and ftnally,

the global transaction has to be undone (which in the Mongrel system would require

mostly only changes in the log flles). In the second case, the local transactions attempt to

commit first. If they are all successful, then the global transaction commits. If at least

one fails then the abort procedure is the same as in the ftrst case with the difference that

the global transaction does not have to be undone since it was never committed. We

opted for the second approach.

The Mongrel system uses a two-phase commit protocol with a few simple

variations. When a global transaction reaches its commit point, the 1M performs the

following steps:

(1) Checks with the CCM, using the service commitCheckGSO. The CCM in turn,

depending on whether a non-certifter or certifter mechanism is in use, checks with the

participating Agents' Serialization Enforcers (SE) using the services checkSO and

requestSO respectively. CheckSO indicates the SE it should verify if the local

transaction of the global transaction that wants to commit can commit in the local

database. RequestSO just returns a copy of its local serialization order list to CCM. In

either case, the CCM validates or invalidates the request depending on the information it

receives from all the participating SEs.

(2) If the CCM validates the request, all the local transactions execute a vote

procedure. This vote procedure places the databases in the "Prepared" state of a two

phase commit protocol. If any of the databases is unable to go to the "Prepared" state, all

other local transactions are aborted, regardless of their vote.

(3) In the case that all votes were successful, the 1M sends a commit message to all

the participating databases to commit the local transactions.

16

One of the important features of the Mongrel system is the fact that the DBMSs

that fonn part of it retain their autonomy; in other words, in addition to the Mongrel

clients, a DBMS may have other users which are not related to the Mongrel system. In

fact, these independent users should not need to know of the Mongrel system to operate

in the DBMS, nor should they even notice the fact that the database is part of the Mongrel

MOBS (except for perfonnance drop). This was accomplished by enforcing two

constraints. First, the independent clients' transactions also reach the DBMS through the

Agents. And second, when a commit process is perfonned, all other transactions must be

put on hold (independent and Mongrel transactions). This second constraint was

enforced by having the Agent Manager lock the database when a commit process is

started (Le. the vote request is received). The Agent Manager unlocks the database when

the transaction either commits or aborts. Since all transactions must go through the

Agent (constraint one), and the interface to the Agent is the Agent Manager it was the

logical choice to enforce this constraint.

3.4 ArChitecture of the Concurrency Control Mechanism

The concurrency control mechanism clearly requires a global level component

which can produce a global serialization order. The Concurrency Control Manager

(CCM) is the component of the 1M that is responsible for this task. Moreover, it also acts

as the central certifier in those cases. The CCM relies on their Agent's counterparts, the

Serialization Enforcers(SE) to service the three functions it provides to the 1M. Both the

CCM and the SEs work as validators; that is, they are consulted to validate some action

before it is perfonned. The CCM provides services that verify if a global transaction may

begin (beginChkGSO), commit (commitChkGSO), or abort (abortChkGSO). To reply

one of these requests nonnally require checking some internal data and/or requesting

some infonnation from one or more SEs.

17

The SE provides 5 services, namely--beginCheck, serializeNow, checkSO,

requestSO, and cleanUp. A detailed description of these services follows.

(1) beginCheck, called to verify whether or not a local transaction for a given global

transaction can be started at the local database. More than checking, it updates local data

structures such as local serialization lists. In only one case it actually has to verify

whether the local transaction can be started. In all other cases this function always

responds affmnatively. To illustrate a reason for rejection, it is necessary to understand

the fact that a local transaction may be serialized before it has even started. In the Non

Certifier Begin Order case, the local transactions have to be serialized when the global

transaction starts. However, the CCM does not know which databases are going to be

accessed, and thus, cannot detennine where local databases are going to be created.

Thus, the CCM broadcasts to all DBMSs in the system to serialize a local transaction for

the starting global transaction. However, it is not actually necessary to start a transaction.

On the contrary, in several cases it would cause serious perfonnance problems. The Non

Certifier Begin Order Timestamp Agent keeps a list of the local transactions. This list is

not used to keep the order of the transactions (it can use the Timestamp mechanism for

this purpose), but to keep track of the status of the local transactions. Since the SE

receives the message serializeNow before the transaction is actually started, it just adds

this transaction to the local list and marks the transaction as "Inactive". When the

transaction starts, its label is changed to "Active". Thus, to ensure the Begin Order

constraint, this function (Le. beginCheck) verifies that no transaction that follows the one

that is trying to start has been labeled "Active", and thus has already started in the local

database. If at least one is "Active", the request is rejected.

(2) serializeNow, used only in the non-certifier cases, indicates the SE that it is time

to serialize a given local transaction. The action that the SE perfonns varies depending

on whether a Begin or Commit system is in use and also on whether it is a Timestamp,

18

Two-Phase Lock or Graph-Based DBMS (for a detailed, per-case description, please refer

to the appendix).

(3) checkSO, used only in the Non-Certifier Begin Order case. Called to verify if a

local transaction can commit. For the two cases in that use the "ticket" algorithm, it is

irrelevant (Le. they always return a positive answer). These two cases are for the Graph

based databases, and one of the Two-Phase Lock approaches (see section 3.2). In the two

approaches for Timestamp-based databases, it is also irrelevant. Therefore, it is only

useful in the Two-Phase Locking case which uses a local serialization list to enforce the

GSO. In this case, it checks whether the transaction that made the request is actually the

first in the local list. If it is not, it rejects the request; if it is. it allows it to continue (after

a transaction commits or aborts. it is taken off the local list).

(4) requestSO. used only in the certifier cases. If a local serialization list is kept, it

sends a copy of this list to the CCM. In several cases, the length of this list is always one

when this service is requested because the list is empty before the request, and the first

instruction is to append itself to the local list.

(5) cleanUp. called after a transaction fmishes, either commits or aborts, to inform the

SE that it can get rid of any information that it may be yet holding.

19

Appendix: Design Documentation· The C++ classes

20

Design Specifications

Two classes conform the core portion of the Agent, namely, the Agent Manager (AM) and
the Serialization Enforcer (SE). The AM is the interface of the entire Agent process. Among its
functionalities, it is in charge of directing the calls it receives to the proper Agent entities. This
requires keeping track of all the different processes in the Agent. Moreover, it starts and finishes
GSTs, taking care it is done correctly.

The SE has a more passive role. It is responsible for the proper serialization of the transac
tions executed at any particular database. In essence, it acts like a validator. When a GST is to be
either started or finished, the SE is first consulted (by the AM). It also provides functions that indi
cate the SE when to serialize a transaction and that check the serialization order, for the non-certi
fier cases. For the certifier cases, it has a function that returns the Local Serialization List (LSO).

Class Diagram

The AM does not have any superclasses nor subclasses, thus its graphical representation
will not be presented. The SE, on the other hand, has a complex structure. The abstract base class,
SE_Base, defines the public interface of any implementation of the SE. Since several serialization
approaches are being considered and different concurrency control protocols (lock, timestamp,
and graph-based) require customized serialization synchronization mechanisms, there are four
teen differen Serialization Enforcers. Each of these is implemented using a different subclass of
SE_Base. The following diagram depicts these relationships.

SE_Base

~E_C_CO_SGT - ~ l~E_C_BO_SGT

~E_C_CO_2PL ~ l~E_C_BO_2PL-

- ..
SE_C_CO_TO ~E_C_BO_TO

~SE_CO_SGT SE_BO_SGT-

~SE_CO_2PL SE_BO_2PLI-

SE_CO_TO
 . SE_BO_2PL2
~ --

SE_BO_TOI.....

SE_BO_T02.....

Following, a detailed description of the various AM and SE classes is included. The member
functions of these classes are also presented with particular detail.

Description of the Classes

Class AM

- Abstraction:
The AM, or Agent Manager, is the interface of the Agent. All messages to any of the com

ponents of the Agent module (SE, GSTs, Activator, and ALD) are first examined by the AM
which then redirects this message to the proper recipient. When a new GST process is started for
a given global transaction with identifier GTid, the AM stores the RPC client handle to this new
process in an internal table. This table is then indexed using the GTid to obtain the corresponding
RPC handle. To serve its function as a dispatcher, the AM stores RPC handles to all the other pro
cesses that form the Agent Module. All redirections but the ones for the SE need to be made using
RPC calls (since the SE is the only other component that is in the same process).

When a global transaction commits, no other transactions should be allowed to make any
changes in the databases accessed by the commiting transaction. The AM provides a mechanism
to ensure this is not violated. If the vote, the first stage of the global 2-phase-commit, is succesful,
the AM sets some internal flags. The AM can then be consulted to check whether the database is
in the middle of a commit process or not. These flags are reset by either commiting or aborting the
transaction that performed the succesful vote.

- Data Members:
CLIENT * 1M_handle; //RPC handle to the 1M
CLIENT * ACTIV_handle; //RPC handle to its Activator
CLIENT * ALD_handle; //RPC handle to its ALD
CLIENT * PNUM_handle; //RPC handle to the Program Number Server
char * agencname; //Name of the Agent-usually same as LDB
DoublelntList map_table; //GTid-GST RPC handle table
char * agenChostname; /!Hostname where the AM process is running
int agenCprognum; //Program number of the Agent server process
Boolean in_commit; //Indicates if a GT is in the commit process
int gCin_commit; //Indicates which GT is commiting, if any
SerialMethod serial_case; //Indicates which serialization method is in use

- Private Member Functions:
None.

. Public Member Functions:

IIConstructor
AM (CLIENT * IM_h, CLIENT * AC_h, CLIENT * PNUM_h, char * ag_name,

char * hname, int pnum, SerialMethod s_case);

Ilretums in_commit

Boolean isInCommitO;

Ilchecks if in_commit is TRUE and gein_commit is GTid

Boolean isGTInCommit(int GTid);

Iisets in_commit to TRUE and gein_commit to GTid

void setGTInCommit(int GTid);

Ilif GTid is gein_commit then sets in_commit to FALSE and gein_commit to-l
void resetGTInConunit(int GTid);

Ilgets the RPC handle for a given GTid

CLIENT * map(int GTid);

Iistarts a new GST process and inserts a new entry into the map_table. it first checks

Ilwith the SE if it's OK to start a new GST.

Status beginGST(Oid GTid);

Ilcommits or aborts a transaction, depending on the flag 'C' or 'A'. Either way, kills
lithe GST process, removes the entry from the map_table and tells the SE to clean

Ilits own data storage.

Status finishGST(Oid GTid, char CAflag);

Iisends the stepld, argc and argv parameters to the GST process associated with GTid

Ilif such a GST process does not yet exist, a new one is exec'd (updating the map_table

Iland checking with the SE first) and the call is made.

char * doStep(Oid GTid, int stepId, int argc, char * argv);

Ilit simply calls the Activator's server with the argument pcall

rpc_result * activCall(rpc_command * pcall);

. Relationships:

None.

Member Functions of class AM

1. AM::AM

-Semantics:

The constructor of the class AM. It basically gets some parameters and sets the corre
sponding data members to these values.

-Called by:

- main lIthe Agent server's main function.

-Calls:

None.

-Parameters:

CLIENT * IM_h I/RPC handle for the 1M
CLIENT * AC_h I/RPC handle for its Activator
CLIENT * PNUM_h I/RPC handle for the Program Number Server
char * ag_name lIthe name of the agent - usually same to the LDB's
char * hname I!hostname where the AM is running
int pnum Ilprogram number of the Agent's server
SerialMethod s_case Ilserialization case in use

-Returns:

None.

2. AM: :islnCommit

-Semantics:

Checks whether any transaction is commiting. Does this by checking the internal flag
in_commit.

-Called by:

- agenccall_l II the Agent's dispatcher

-Calls:

None.

-Parameters:

None.

-Returns:

The value of data member in_commit (TRUE or FALSE).

3. AM::isGTlnCommit

-Semantics:

Checks whether a particular transaction is commiting. Does this by checking the internal
flags in_commit and gcin_commit.

-Called by:

- agenccall_l II the Agent's dispatcher

-Calls:

None.

-Parameters:

int GTid II the GT to be verified

-Returns:

TRUE if in_commit is TRUE and gCin_commit equals GTid; FALSE otherwise.

4. AM::setGTlnCommit

-Semantics:

Called when a vote was sucessful. Sets in_commit to TRUE and gCin30mmit to the glo
bal transaction that just voted succesfully.

-Called by:

- agenccalLl II the Agent's dispatcher

-Calls:

None.

-Parameters:

int GTid II the GT to set gcin_commit to

-Returns:

None.

5. AM::resetGTlnCommit

-Semantics:

Called after a transaction has commited or aborted. If gCin_conunit equals the parameter
GTid, resets in_comrnit to FALSE and gCin_commit to -1.

-Called by:

- agenccalLl II the Agent's dispatcher

-Calls:

None.

-Parameters:

int GTid II specifies the GT that just finished. it is used to check the validity.

-Returns:

None.

6. AM::map

-Semantics:

Searches the map_table for the RPC handle for a given GTid. If no entry for the GTid is
found, returns NULL

-Called by:

- agenccall_l II the Agent's dispatcher
- AM::doStep
- AM::finishGST
- SE_CO_SGT::serializeNow
- SE_BO_SGT::serializeNow
- SE_BO_2PL2::serializeNow
- SE_C_CO_SGT::requestSO
- SE_C_BO_SGT::beginCheck_D

-Calls:

DoublelntList: :findThroughEntry I

-Parameters:

int GTid II the GT for which the RPC handle is requested

-Returns:

The RPC handle is found, NULL otherwise.

7. AM::beginGST

-Semantics:

It starts a new GST process. It first checks that a GST for the given GTid does not yet
exist. If it does, does not proceed reporting the error. If it does not exist, it consults the SE to see if
a new GST can be started. If so, a new GST process is exec'd, and a new RPC handle is obtained
for this process which is stored in the map_table. If the serialization case is case 4, Certifier Begin
Order (CERT_BO), a second check with the SE is necessary.

-Called by:

- agent_call_1 II the Agent's dispatcher
- SE_BO_SGT::serializeNow
- SE_BO_2PL2::serializeNow
- SE_BO_T02::serializeNow

-Calls:

SE::beginCheck Ilcheck with SE if a new GST can be started
SE::beginCheck_II Iionly in case 4, second SE validation
DoubleIntList::findThroughEntry I Ilverify if GT is in map_table
DoubleIntList::append Ilinsert new GST handle in map_table
pnum_serv_call_I Ilcall to prognum server for new GST's pnum
pack_rpc_call Ilrpc utilities
unpack_rpc_result II
clnccreate Ilcreate RPC handle for new GST

-Parameters:

int GTid II the GT for which a new GST is to be started

-Returns:

OK if all goes fine and a new GST process is started. RETRY if the SE does not allow the
initialization of a new transaction. NOT_OK, otherwise.

8. AM::finishGST

-Semantics:

It finishes a GST, by either commiting it or aborting it. It first checks whether such GST
already exists. If it does not, it reports the error. However, case 2 Non-certifier Begin Order, is an
exception. In this case, if the GT does not have a GST, it cleans up and returns OK. Case 2 is spe
cial because it uses a broadcast method to serialize the transactions, and thus every agent in the
system knows of its existence but not all may have actually started a GST process for it.

Depending on the parameter CAftag which must be either 'C' or 'A', it calls one of the
GST functions commitGST or abortGST. It then removes the entry from the map_table and
reports the SE that it can remove GTid from its data storage.

-Called by:

- agenccall_l II the Agent's dispatcher

-Calls:

AM::map Ilverify if GT is in map_table
SE::cleanUp Iitell SE to clean its data structures
DoublelntList: :removeThroughEntry1 Ilinsert new GST handle in map_table
gsccalLl Ileall GST process
pack_rpc_call Ilrpc utilities
unpack_rpc_result II

-Parameters:

int GTid II the GT of which the GST is to be finished

char CAftag II'C' for commit, 'A' for abort

-Returns:

OK if all goes fine and the GST is finished. RETRY if an error packing the rpc call occurs.
NOT_OK, otherwise.

9. AM::doStep

-Semantics:

It redirects the step call to the proper GST process for execution. First checks if the GTid
has a running GST process associated with it. It it does, the step call and its arguments is sent to it.
If it does not, it starts a new GST process, following the same steps as in AM::begin GST (please
refer to this function for a more detailed description). It then sends the step call and srguments to
this newly created GST process.

-Called by:

- agenccall_l II the Agent's dispatcher

-Calls:

AM::map Ilverify if GT is in map_table
SE::beginCheck Ilcheck with SE if a new GST can be started
SE:: beginCheck_II Iionly in case 4, second SE validation
DoublelntList::findThroughEntryl Ilverify if GT is in map_table
DoublelntList::append Ilinsert new GST handle in map_table
gsccall_l Ilcall GST process
pnum_serv_call_l Ilcall to prognum server for new GST's pnum
pack_rpc_call Ilrpc utilities
unpack_rpc_result II
clnccreate Ilcreate RPC handle for new GST

-Parameters:

Oid GTid II the GT for which the step is to be executed

int stepld II the step id number

int argc II the number of arguments

char * argv II string containing arguments

-Returns:

The string returned by the step call. NULL, if anything went wrong. Notice that the step
call may return NULL.

10. AM::activCall

-Semantics:

This simple functions passes the rpc call down to the Activator associated with it. It does
not process the input nor the output.

-Called by:

- agenccall_l II the Agent's dispatcher

-Calls:

activ_call_l Ilcall Activator

pack_rpc_result Ilrpc utility

-Parameters:

rpc_command * pcall II the rpc call to pass to the Activator

-Returns:

It returns the rpc_result * returned from the RPC call to the Activator. If an error occurs, it
returns an rpc_result which status field is set to NOT_OK and with no arguments.

The Serialization Enforcer Classes

Class SE Base

- Abstraction:
This abstract base class defines the public interface of any SE class, which must be a sub

class of it.

- Data Member:

None

- Private Member Functions:

None.

- Public Member Function:
Ilcheck if a new subtransaction can be begun, before it is started

virtual Status beginCheck(Oid) =0;

Ilafter a new subtransaction has been started, check if it was valid

virtual Status beginCheck_II(Oid) =0;

Iitells the SE it is time to serialize a particular transaction

virtual Status serializeNow(Oid) =0;

l/check if the serialization order is valid when comrniting

virtual Status checkSO(Oid) =0;

Ilreturns the LSO list, if any

virtual Status requestSO(Oid) =0;

Ilcleans up the LSO list and any other internal structures after a transaction is finished
virtual Status cleanUp(Oid) =0;

-Relationships:
Superclass of: SE_CO_SGT, SE_CO_2PL, SE_CO_TO, SE_BO_SGT, SE_BO_2PL1,

SE_BO_2PL2, SE_BO_TOl, SE_BO_T02, SE_C_CO_SGT, SE_C_CO_2PL, SE_C_CO_TO,
SE_C_BO_SGT, SE_C_BO_2PL, SE_C_BO_TO.

Class SE CO SGT

· Abstraction:
SE for the Non-Certifier Commit Order for a database using a serialization-graph-test con

currency control protocol.

· Data Member:

None.

· Private Member Functions:

None

· Public Member Function:
Same as SE_Base (but non virtual)

-Relationships:

Subclass of: SE_Base

- -Class SE CO 2PL

- Abstraction:

SE for the Non-Certifier Commit Order for a database using a two-phase-Iock concur
rency control protocol.

- Data Member:

None.

- Private Member Functions:

None

- Public Member Function:
Same as SE_Base (but non virtual)

-Relationships:

Subclass of: SE_Base

Class SE CO TO

- Abstraction:
SE for the Non-Certifier Commit Order for a database using a timestamp-based concur

rency control protocol.

- Data Member:

lithe local SO list

OidList LSO_Iist;

- Private Member Functions:

None

- Public Member Function:
Same as SE_Base (but non virtual)

-Relationships:

Subclass of: SE_Base

Class SE BO SGT

- Abstraction:

SE for the Non-Certifier Begin Order for a database using a serialization-graph-test con
currency control protocol.

- Data Member:

None.

- Private Member Functions:

None

- Public Member Function:

Same as SE_Base (but non virtual)

-Relationships:

Subclass of: SE_Base

Class SE 80 2PLI

- Abstraction:

SE for the Non-Certifier Begin Order for a database using a two-phase-Iock concurrency
control protocol. This approach uses a LSO list to ensure serialization.

- Data Member:

lithe local SO list

OidList LSO_list;

- Private Member Functions:
None

- Public Member Function:
Same as SE_Base (but non virtual)

-Relationships:

Subclass of: SE_Base

Class SE BO 2PL2

- Abstraction:

SE for the Non-Certifier Begin Order for a database using a two-phase-Iock concurrency
control protocol. This approach uses the ticket algorithm to ensure serialization.

- Data Member:
None.

- Private Member Functions:

None

- Public Member Function:

Same as SE_Base (but non virtual)

-Relationships:

Subclass of: SE_Base

Class SE BO TOI

- Abstraction:

SE for the Non-Certifier Begin Order for a database using a timestamp-based concurrency
control protocol. This approach uses a LSO list to ensure serialization.

- Data Member:

lithe local SO list

DoublelntList LSO_list;

- Private Member Functions:

None

- Public Member Function:

Same as SE_Base (but non virtual)

) -Relationships:

Subclass of: SE_Base

Class SE DO T02

- Abstraction:
SE for the Non-Certifier Begin Order for a database using a timestamp-based concurrency

control protocol. This approach uses the timestamp mechanism of the database to ensure serializa
tion.

- Data Member:

None.

- Private Member Functions:

None

- Public Member Function:

Same as SE_Base (but non virtual)

-Relationships:

Subclass of: SE_Base

Class SE C CO SGT

- Abstraction:

SE for the Certifier Commit Order for a database using a serialization-graph-test concur
rency control protocol.

- Data Member:

None.

- Private Member Functions:
None

- Public Member Function:

Same as SE_Base (but non virtual)

-Relationships:

Subclass of: SE_Base

Class SE C CO 2PL

- Abstraction:

SE for the Certifier Commit Order for a database using a two-phase-lock concurrency con
trol protocol.

- Data Member:

None.

- Private Member Functions:

None

- Public Member Function:

Same as SE_Base (but non virtual)

-Relationships:
) Subclass of: SE_Base

Class SE C CO TO

- Abstraction:

SE for the Certifier Commit Order for a database using a timestamp-based concurrency
control protocol.

- Data Member:

lithe local SO list

OidList LSO_Iist;

- Private Member Functions:
None

- Public Member Function:

Same as SE_Base (but non virtual)

-Relationships:

Subclass of: SE_Base

Class SE C BO SGT

· Abstraction:

SE for the Certifier Begin Order for a database using a serialization-graph-test concur
rency control protocol.

· Data Member:

lithe local SO list

OidList LSO_list;

· Private Member Functions:
None

· Public Member Function:
Same as SE_Base (but non virtual)

-Relationships:

Subclass of: SE_Base

Class SE C BO 2PL

. Abstraction:

SE for the Certifier Begin Order for a database using a two-phase-lock concurrency con
trol protocol.

- Data Member:

lithe local SO list

OidList LSO_list;

- Private Member Functions:

None

- Public Member Function:

Same as SE_Base (but non virtual)

-Relationships:

Subclass of: SE_Base

Class SE C BO TO

- Abstraction:

SE for the Certifier Begin Order for a database using a timestamp-based concurrency con
trol protocol.

- Data Member:

lithe local SO list

OidList LSO_Iist;

- Private Member Functions:

None

- Public Member Function:

Same as SE_Base (but non virtual)

-Relationships:

Subclass of: SE_Base

Member Functions of Class SE

The descriptions of the member functions of the SE classes that follows include each the
details of the different implementations of the SE.

1. SE::beginCheck

-Semantics:

Checks if a new subtransaction can be begun, before it is started. If a LSO list is kept, it
appends the new gt id's to the list.

-Called by:

- agenccalLI II the Agent's dispatcher
- AM::beginGST
- AM::doStep

-Calls:

SE_CO_TO: Oidlist::append
SE_BO_TOI: DoublelntList::findAfterEntry

DoublelntList::changeEntry2
SE_C_CO_TO: Oidlist: :append
SE_C_BO_2PL: Oidlist::append
SE_C_BO_TO: Oidlist: :append

-Parameters:

Oid GTid; lithe GT for which the start of a new transaction is to be validated

-Returns:

SE_CO_SGT:
SE_CO_2PL:
SE_CO_TO:
SE_BO_SGT:
SE_BO_2PLI:
SE_BO_2PL2:
SE_BO_TOI:

SE_BO_T02:
SE_C_CO_SGT:
SE_C_CO_2PL:
SE_C_CO_TO:
SE_C_BO_SGT:
SE_C_BO_2PL:
SE_C_BO_TO:

returns OK
returns OK
returns OK
returns OK
returns OK
returns OK
if any gt id located after the parameter GTid has already started,
returns NOT_OK. returns OK otherwise.
returns OK
returns OK
returns OK
returns OK
returns OK
returns OK
returns OK

2. SE::beginCheck_II

-Semantics:

It checks whether the initialization of a new gst was valid. It is only used in case 4, Certi
fier Begin Order..

-Called by:

- AM::beginGST
- AM::doStep

-Calls:
SE_C_BO_SGT:

-Parameters:

Oid GTid;

-Returns:

SE_CO_SGT:
SE_CO_2PL:
SE_CO_TO:
SE_BO_SGT:
SE_BO_2PLI :
SE_BO_2PL2:
SE_BO_TOI:
SE_BO_T02:
SE_C_CO_SGT:
SE_C_CO_2PL:
SE_C_CO_TO:
SE_C_BO_SGT:
SE_C_BO_2PL:
SE_C_BO_TO:

AM::map
pack_rpc_call
gsccall_l
unpack_rpc_result
Oidlist: :append

lithe GT for which the start of a new transaction is to be validated

returns BUG
returns BUG
returns BUG
returns BUG
returns BUG
returns BUG
returns BUG
returns BUG
returns BUG
returns BUG
returns BUG
if succesful taking the ticket, returns OK. NOT_OK otherwise.
returns OK
returns OK

3. SE::serializeNow

-Semantics:

This function is used to notify the SE when to serialize a particular GST. Used only in the
Non-Certifier cases land 2.

-Called by:

- agenccall_l

-Calls:

SE_CO_SGT:

SE_CO_TO:

SE_BO_SGT:

SE_BO_2PLl:

SE_BO_2PL2:

SE_BO_TOl:

SE_BO_T02:

-Parameters:

Oid GTid;

AM::map
pack_rpc_call
gsccall_l
unpack_rpc_result
Oidlist: :getFirst
AM::beginGST
AM::map
pack_rpc_call
gsccall_l
unpack_rpc_result
Oidlist::append
AM::beginGST
AM::map
pack_rpc_call
gsccalCl
unpack_rpc_result
Oidlist::append
AM::beginGST

AM::map
pack_rpc_call
gsccalCl
unpack_rpc_result
Oidlist: :append

lithe GT that is to be serialized

-Returns:
SE_CO_SGT:

SE_CO_2PL:
SE_CO_TO:
SE_BO_SGT:

SE_BO_2PLl:
SE_BO_2PL2:

SE_BO_TOl:
SE_BO_T02:
SE_C_CO_SGT:
SE_C_CO_2PL:
SE_C_CO_TO:
SE_C_BO_SGT:
SE_C_BO_2PL:
SE_C_BO_TO:

returns NOT_OK, if it does not find it in the map_table. if it has
problems packing/unpacking, returns RETRY. Otherwise, it
returns the result of the attempt to take the ticket.
returns OK
if GTid is the first in the LSO list, returns OK; NOT_OK, otherwise
if AM::beginGST does not return OK, then this is returned. Else,
returns NOT_OK, if it does not find it in the map_table. if it has
problems packing/unpacking, returns RETRY. Otherwise, it
returns the result of the attempt to take the ticket.
returns OK
if AM::beginGST does not return OK, then this is returned. Else,
returns NOT_OK, if it does not find it in the map_table. if it has
problems packing/unpacking, returns RETRY. Otherwise, it
returns the result of the attempt to take the ticket.
returns OK
returns whatever its call to AM::beginGST returns.
returns BUG
returns BUG
returns BUG
returns BUG
returns BUG
returns BUG

4. SE::checkSO

-Semantics:

It is only used in case 2, Non-Certifier Begin Order. Before comrniting the SE is requested
to verify that its LSO does not have any conflicts.

-Called by:

- agenccall_l

-Calls:

SE_C_BO_SGT:

-Parameters:

Oid GTid;

-Returns:
)

SE_CO_SGT:
SE_CO_2PL:
SE_CO_TO:
SE_BO_SGT:
SE_BO_2PLl:
SE_BO_2PL2:
SE_BO_TOl:
SE_BO_T02:
SE_C_CO_SGT:
SE_C_CO_2PL:
SE_C_CO_TO:
SE_C_BO_SGT:
SE_C_BO_2PL:
SE_C_BO_TO:

Oidlist: :getFirst

lithe GT to be validated

returns BUG
returns BUG
returns BUG
returns OK
returns OK if GTid is the first in the LSO list; NOT_OK, otherwise
returns OK
returns OK
returns OK
returns BUG
returns BUG
returns BUG
returns BUG
returns BUG
returns BUG

5. SE::requestSO

-Semantics:

It is only used in the Certifier cases 3 and 4. Before commiting the SE is requested to
check/return the LSO list.

-Called by:

- agenccall_l

-Calls:
SE_C_CO_SGT: AM::map

pack_rpc_call
gsccall_l
unpack_rpc_result
Oidlist: :clear
Oidlist::getFirst
Oidlist: :append
Oidlist::getNext
Oidlist: :clear
Oidlist: :getFirst
Oidlist::append
Oidlist: :getNext
Oidlist: :clear
Oidlist::getFirst
Oidlist::append
Oidlist: :getNext
Oidlist: :clear
Oidlist::getFirst
Oidlist: :append
Oidlist::getNext

-Parameters:

Oid GTid; lithe GT to be validated

-Returns:
SE_CO_SGT:
SE_CO_2PL:
SE_CO_TO:
SE_BO_SGT:
SE_BO_2PLl:
SE_BO_2PL2:
SE_BO_TOl:
SE_BO_T02:
SE_C_CO_SGT:

SE_C_CO_2PL:
SE_C_CO_TO:
SE_C_BO_SGT:
SE_C_BO_2PL:
SE_C_BO_TO:

returns BUG
returns BUG
returns BUG
returns BUG
returns BUG
returns BUG
returns BUG
returns BUG
returns NOT_OK, if it does not find it in the map_table. if it has
problems packing/unpacking, returns RETRY. Otherwise, it
returns the result of the attempt to take the ticket. The list is
always returned empty.
returns OK, list empty.
returns OK and a copy of the LSO list
returns OK and a copy of the LSO list
returns OK and a copy of the LSO list
returns OK and a copy of the LSO list

6. SE::cleanUp

-Semantics:

Cleans up the LSO list and any other internal structures after a transaction is finished.

-Called by:

- agenccall_l
- AM::finishGST

-Calls:

SE_CO_TO:
SE_BO_2PL1 :
SE_BO_TOl:

-Parameters:

Oid GTid;

-Returns:

SE_CO_SGT:
SE_CO_2PL:
SE_CO_TO:
SE_BO_SGT:
SE_BO_2PLl:
SE_BO_2PL2:
SE_BO_TOl:
SE_BO_T02:
SE_C_CO_SGT:
SE_C_CO_2PL:
SE_C_CO_TO:
SE_C_BO_SGT:
SE_C_BO_2PL:
SE_C_BO_TO:

Oidlist: :remove
Oidlist: :remove
DoublelntList::findThroughEntry 1
DoublelntList::changeEntry2
DoublelntList::getFirstEntry2
DoublelntList: :removeFirst
Oidlist::getFirst

lithe GT that is to be cleaned from the LSO list.

returns OK
returns OK
if it does not find GTid in the LSO list, returns BUG; else OK
returns OK
if it does not find GTid in the LSO list, returns BUG; else OK
returns OK
if it does not find GTid in the LSO list, returns BUG; else OK
returns OK
returns OK
returns OK
returns OK
returns OK
returns OK
returns OK

References

• [N091] Marian H. Nodine, "InterActions: Multidatabase Support for Planning
Applications," Technical Report No. CS-91-64, Brown University,
December 1991.

• [N092] Marian H. Nodine, "Supporting Long-Running Tasks on an Evolving
Multidatabase Using InterActions and Events," Brown University, June
1992.

• [GRS91] Dimitrios Goergakopoulos, Marek Rusinkiewicz, snd Amit Sheth, "On
Serializability of Multidatabase Transactions Through Forced Local
Conflicts," Proceedings olthl! IEEE Seventh International Conference on
Data Engineering, Apri11991.

• [MR91] Peter Muth and Thomas C. Rakow, "Atomic Commitment for Integrated
Database Systems," Proceedings olthl! IEEE Seventh International
Conference on Data Engineering, April 1991.

• [EJK91] Ahmed K. Elmagarmid, Jin Jing, and Won Kim, "Global Commitment in
Mutidatabase Systems", Technical Report No. CSD-TR 91-017, Purdue
University, March 1991.

• [KS91] Henry F. Korth and Abraham Silberschatz, Database Systems Concepts,
McGraw-Hill, 1991.

