
BROWN UNNERSITY

Department of Computer Science

Master's Thesis

CS-93-M15

"EREQ Query Representation and Cost Model"

by

Andrew Clement Thornton MacKeith

EREQ Query Representation
and Cost Model

Andrew Clement Thornton MacKeith
B. Sc., University of Leeds (England), 1968.

Submitted in partial fulfillment of the requirements for the Degree of Master of Science
in the Department of Computer Science at Brown University

May 1993

EREQ Query Representation and Cost Model

This research project by Andrew C. T. MacKeith is accepted in its present form by the
Department of Computer Science at Brown University in partial fulfillment of the

requirements for the Degree of Master of Science

Date 4-/~/~3> ~~8. ~~k.
J

Ileil

EREQ Query Representation and Cost Model

by

Andrew C. T. MacKeith

Computer Science Department

Brown University

e-mail: acm@cs.brown.edu

6 May 1993

ABSTRACT
This paper describes the implementation of a Tree Repre
sentation of a query in the Equal Query Language. The
tree is annotated with data such as local variables, and
cost of the sub query (in disk accesses). The cost func
tions used for these annotations are based on the paper
"An Analytical Model of Object-Oriented Query Costs"
by E. Bertino and P. Foscoli, March 30, 1992. This has
been adapted for used with the above Tree Representa
tion of an Equal Query.

EREQ Query Representation and Cost Model

Contents
page

1.0 Introduction 4

1.1 The EREQ query optimizer 4

2.0 Related Work 4

3.0 Implementation 4

3.1 Class and Type 4

3.1.1 USLC Class Library. 4

3.1.2 Multivalued Attributes 5

3.1.3 Primitive Types 5

3.2 EREQ Query Rep 5

3.2.1 Previous Work 5

3.2.2 Current Work 5

3.2.3 Annotations 7

3.2.4 Build Query Paths 7

3.3 Schema Manager. 8

3.3.2 Previous work. 8

3.4 Cost Model. 8

3.4.1 Basis 8

3.4.2 Use of the model 11

3.4.3 Class and Function names 10

3.4.4 Primitive Types 10

3.4.5 The Query Path. 10

3.4.6 Cost Parameters. 11

3.4.7 Cost Parameters D, fan, d and r. 11

3.4.8 Constraints on Cost Parameters 12

3.4.9 Execution Strategy 14

3.4.10 Cost Functions. 14

3.4.11 The Cost Model and the EAT. 14

4.0 Experiments 15

4.1 Sample Database: The Altair Travel Agency. 15

4.2 A driver program to create the EREQ rep. 18

4.3 Description of Experiments 18

4.4 Experiments 1.1.1 to 1.1.5. 19

4.5 Experiments 2.1.1 to 2.1.5. 20

5.0 Conclusions 23

6.1 Query Rep 24

6.2 Schema Manager 24

6.3 Cost Model 24

6.0 Further work 25

6.1 Query Rep 25

6.2 Schema Manager 25

6.3 Cost Model 25

6.4 General 26

Tables and Figures
Figure 1: C++ Class diagram for the Rep and SchemaMgr classes 6

Figure 2: qTree Query Tree as produced for the optimizer 9

Figure 3: Graphical Description of Cost Parameters. 13

Figure 4: Cost Parameters (continued) 17

Figure 5: The EREQ Query Tree in text format 21

RepCost 6 May 1993 page 3

EREQ Query Representation and Cost Model

Appendices
AppendixA: Class Definitions 27

Query Rep
class OptRepMetaClass 27

class vlist 27

class AnnotList 27

class Op 28

class Node 29

class FunctionNode 30

class DataNode 31

class InputDataNode 32

class ClnputDataNode 32

class VInputDataNode 32

class F1)~c 33

class DF~c 33

Schema Manager and Cost Model

class SchemaMgr 34

class TypeData 35

class PathString 37

AppendixB: Function Descriptions 39

B.1 Query Rep. 39

B.l.1: class ~cNode : OptRepMetaClass 39

B.1.2: class Op: OptRepMetaClass 40

B.1.3: class Node : ~cNode 41

B.1.4: class FunctionNode : Node 41

B.1.5: class DataNode: Node 42

B.1.6: class InputDataNode: DataNode 43

B.1.7: class VlnputDataNode : InputDataNode 43

B.1.8: class CinputDataNode : InputDataNode 43

B.1.9: class OtherDataNode : DataNode 44

B.l.10: class ~c : ~cNode 44

B.l.11: classDF~c:~c 44

B.1.12: class F1)~c : ~c 44

B.2 Schema Manager 45

B.2.1: class SchemaMgr: OptRepMetaClass 45

B.3 Cost Functions 46

B.3.1: class TypeData : SchemaMgr 46

B.3.2: class TypeDataType : TypeData 48

B.3.3: class PathString : SchemaMgr 49

B.3.4: Functions in file OptRepTable.c 54

AppendixC: Emacs conversion function o2-equal-conv. 55

AppendixD: Experimental Results 57

page 4 6 May 1993 RepCost

EREQ Query Representation and Cost Model

1.0 Introduction
This paper describes the implementation of sections of the EREQ project The three parts dealt with in this
paper are:

• A new query representation to be used by the EREQ query optimizer.

• A revised Schema Manager, and

• A cost model for the optimizer to be used in conjunction with that representation.

The EREQ query rep is a C++ model and is an extension of a previous model written in C.

Experiments have been done using the cost model to show how the cost of a query varies with respect to

the various parameters input to the cost model.

1.1 The EREQ query optimizer
The Encore Revelation Exodus Query (EREQ) project is a current joint project between Brown Univer
sity, Oregon Graduate Institute, and University of Wisconsin, Madison. The project aims to produce an
Object Oriented Query Language and two optimizers, one at Brown and one at Oregon Graduate Institute.
The Optimizer being built at Brown is called EPOQ.

2.0 Related Work

2.0.1 Query Representation
This work on the query representation follows work done by Gail Mitchell and led Leung. The query rep

resentation is described in chapter 7 of [MITCH93].

A previous implementation was made by George Lo, and is described in [L092]. This implementation is

used directly by the new EREQ rep described here.

2.0.2 Cost Model
The cost model described in this paper is an implementation of the model described by Elisa Bertino and
Paola Foscoli in [BERT92] and [BERT93].

3.0 Implementation

3.1 Class and Type
Please note that In this paper and in the program, I use the term "type" to refer to a type in the database.
Bertino uses the term "class" for this. I have used the term "e lass" to refer to c++ classes only.

3.1.1 USLC Class Library.

I have used two C++ classes from the USLC class library.

The first is Map. This class provides an extensible associative array structure which we have used for the

query tree annotations.

The second is USLString. This provides a class for strings. At present this is only as the key for the Map,

but it would seem to be a useful class to use generally for strings.

RepCost 6 May 1993 page 5

EREQ Query Representation and Cost Model

3.1.2 Multivalued Attributes
There are several different structures that a database schema may use for a multivalued object. The most
common description of on of these is a set. I have tried not to use the description "set" since this can be
confused with "set value" as a verb. The description "multivalued attribute" therefore is meant to cover
set, list, tree, array or any collections of objects in an attribute.

3.1.3 Primitive Types

Primitive types are defined in [BERf92] as Integer, Float, String and Boolean. (paragraph 2, Definition 4).

3.2 EREQ Query Rep

3.2.1 Previous Work
Work has been done previously on the parser and tree builder by George C. Lo (gel) in 1992. This formed
the basis of the tree which has been used to build the current query rep as described here. In this paper I
call this previous tree representation "qTree rep".
This previous work provided an API which was incorporated in a library called IibRep.a.

The library had been used to implement the following programs:

• "table". This could be used to build a data dictionary to describe the schema of the database being que
ried.
• "opt" This program calls an optimizer generated by the Exodus optimizer generator, and displays the
query tree in graphical form in an X-window. This is based on the API functions createQueryTreeO and
printTreeO. The displayed query tree is of the qTree type.

3.2.2 Current Work

The current work has included the following:

• Amendments and additions to previous program.
Several changes and additions to the previous work have been made. These have not changed the func
tionality of the qTree API, but have been done for two reasons: 1. To avoid duplication of functions in dif
ferent programs, and 2. to provide additional functions to access the data dictionaries created by gcl. The
original program "table" has been rebuilt and renamed "OptRepTable". Most of the functionality provided
by the functions in table (functions also in the library IibOptRep.a) are now provided by the
class SchemaMgr.

• Implementation of new Query Rep as proposed by T. W. Leung.
The aim of the new query rep is to provide an Object Oriented version of the query tree (an EAT or Equal
Annotated Tree) which can be used in the extensible optimizer now being built at Brown.
The qTree representation of the query tree has been used as a basis for the new Query Rep, to avoid having
to rebuild the query parser. The new rep uses the previous model as a basis, so the parsing of the query is
done by the functions that build the old rep.

page 6 6 May 1993 RepCost

EREQ Query Representation and Cost Model

File: OptRepMeta.H

";;i~~;~;:~~~::~;;"""'~"""""~"""""~"""'"""~"""'~~~:~:~::~~~~~~:~~~"""""'"
•
~
~••
~••
~•••l:
~

i•••
l•••
~
:•~~~~~~~~~~~~~~~~,~~~~~~~~~~~~~~ .

Figure 1: C++ Class diagram for the Rep and

SchemaMgr classes

RepCost 6 May 1993 page 7

EREQ Query Representation and Cost Model

Features of the new Rep are:
1. The Annotations are now fully extensible.

2. Arcs between Nodes are now objects and have Annotations.
3. Type checking of the graph is accomplished through the use of the C++ type checking mechanism.

4. New Annotations have been added: "path" Annotation, and "cost" Annotation.
. 5. An additional field of the DataNode enables the size of a multivalued variable (ie a SET) to be stored.
This information is required for cost calculations.

6. Methods of the new Rep include methods to build Query Paths of the kind used by Bertino. These
query paths are described in more detail below under Cost Model, but simply, a query path is of the form
VariableName.AttributeName. This can be extended as far as the schema allows such as Y.A 1.A2.A3.A4,
until a primitive type is reached. The function BuildQueryPathsO assumes that a FunctionNode operator
that is NOT predefined is an attribute of a type.

3.2.3 Annotations
Annotations may be of any type. Previously the qTree only supported a LambdaVar type in the Annotation

list. The annotation list is now implemented as an Associative Array of void*, via a Map structure. This

provides a fully extensible means of adding annotations using a string "name" as key.

One of the problems with the void* representation is that the data cannot be copied by a copy constructor,

neither can the data be deleted by a destructor.

A special class has been defined to use with Annotations, which is similar to a very simple list node, but

including the size of the data object of the list element. This will allow copying and deletion of an Annota

tion List without knowing anything about the list except the size of the data block in the list, however this

has not been implemented.

New Annotations have been added: "path" Annotation, and "cost" Annotation. Functions exist in the Rep
to manipulate these annotations, which questions the assumption that the annotations should be of type
void*. However, this question is left open.

3.2.4 Build Query Paths
There is a method of this name in the classes FunctionNode, DataNode, FDArc and DFArc. In each one the
principle is the same but the method has a different function. The tree is searched from the root for the
Query Paths, and the Paths are built as the tree is traversed. If the constructor
DataNode::DataNode(USLString) is called with no second argument, no paths are built, and no cost data is
calculated. If the constructor is called with a second argument of TRUE then the paths and the costs are
annotated to the tree. This allows the tree to be built without having a file of cost data available.
The methods in the Arcs just call the BuildQueryPathsO function of the Child and then copy the path and
cost annotations to themselves from the child. The methods in the Nodes are more complex, but in
principle, the DataNode::BuildQueryPathsO builds the paths, and FunctionNode::BuildQueryPathsO
calculates the costs that cannot be directly calculated by the PathString::getCostO function.

A Path is only built for a sub-tree below a FunctionNode that is an attribute, or for a leaf node that is a
global variable.

3.2.5 C++ Class descriptions

The class definitions are in Appendix A. Function descriptions are in Appendix B.

page 8 6 May 1993 RepCost

EREQ Query Representation and Cost Model

3.3 Schema Manager.

3.3.1 Function.
The Schema Manager is used to find details of any type in the database. The type details stored in the
schema manager for each type T include

• Structural details such as supertype and subtype ofT, and attributes ofT (and their types).
• Cost parameters used for calculating cost of a Path, as described below. See paragraph 3.4.5 The Query
Path. on page 10.

The principle is that the class SchemaMgr should replace the functions of the file "OptRepThble" previ

ously written by gcl. Class TypeData and PathString are both subClasses of class SchemaMgr. The type

names, attribute details and variable names are taken from the "gcl" data dictionaries.

3.3.2 Previous work.
The previous query rep and current optimizer use a schema manager written by gcl. The functionality of
this fonnaer schema manager is implemented in the files OptRepTable • e and OptRepCompute. e •
The "gcl" data dictionaries are named. type_diet, •attr_diet and • data_diet. The internal
"gel" data dictionary has to be initialized by calling the function readlnBufO which reads the *_diet
files in the current directory. This is done implicitly by calling ereateQueryTree ().

3.3.3 Class Descriptions.
The Schema Manager used for the cost functions is composed of three classes: SehemaMgr, TypeData,
and PathString.
The Functions of these classes are briefly:

SehemaMgr: provide a reference table of type data.
TypeData: provides a structure for data relating to each type.

PathString: calculates all the functions specified in the cost model of [BERT92].

3.3.4 Sequence of Operations.
The Schema Manager is not activated until the SchemaMgr constructor is called. This is called by the con
structor of any subclass of SchemaMgr, ie classes TypeData or PathString. The first call to the SchemaMgr
constructor calls the function buildTypeMapO, which builds the associative array typeMap that provides
the reference for all infonnation on the types in the schema via the type name. The typeMap is a structure
of class Map(USLString), TypeDataPtr).

3.4 Cost Model.

3.4.1 Basis
The basis of the cost model is the paper entitled "An Analytical Model of Object-Oriented Query Costs" by
E. Bertino and P.Foscoli dated March 30, 1992 [BERT91]. .

RepCost 6 May 1993 page 9

EREQ Query Representation and Cost Model

/
"

Figure 2: qTree Query Tree as produced for the optimizer
Query text:

Project(places,$p{ (place,p),

(Tours,Select(Tour,$tp memberof Image(t@description,$w w@what@address@city@title»)})

page 10 6 May 1993 RepCost

EREQ Query Representation and Cost Model

3.4.2 Use of the model

The cost functions described in [BERT92] are for evaluating a nested predicate of the fonn:

Cl.Al.A2.....An. op expo
I have asswned that the operator is of a fonn that requires equality, rather than a range to be resolved.
Without this constraint the number of objects which resolve the query is not detenninesd

3.4.3 Class and Function names
The function names which refer to the parameter fields of the PathString class have been kept as close as
possible to the names used by Bertino. The class which holds infonnation about each type is caIled
TypeData. This is roughly equivalent to the reference Cij adopted by Bertino. (See 3.1 Class and
Type on page 4.)

The reference method to the types of the attributes in the path is by indexing a two dimensional array
which is built whenever a PathString is built. The cost parameters are generally of the fonn XCi) or
X(i,j), where i refers to the type of attribute (i-I) in the path. The path is of length n since are n attributes
in the path. If the type of the last attribute is included, we have n+1 types. Bertino does not include the
type of the last attribute This is always a primitive type in her queries. I have included it in my Path
String, since the last attribute of a path taken from the EAT may have a non-primitive type. This data is
not used at present in this implementation. The access functions to the cost parameters are methods of the
class PathString, but there are parallel methods in the class TypeData. Where possible, if a parame
ter depends on more than one type, the access method calculates the parameter when it is called. For exam
ple N(i), which is a function of all the types in the type hierarchy rooted at C(i,I).

A complete class listing is given in appendix A on page 27.

3.4.4 Primitive Types
The end of a path as described in [BERT92] is always a primitive type. The paths that I consider do not
always keep to this restriction. A primitive type is a Integer, Float, String, or Boolean type.

3.4.5 The Query Path.

A Path is a string describing a type plus zero or more attributes. The length of the path is the number of
attributes in the path. Note that the type oJ Attribute(i) in the functions and in [BERf9I] is cei+1,1). The
definition of a path is shown below. The Type of each element of the path is shown under each element.
cei,l) refers to a Type. Generally, cei) refers to the type cei,I).

Type	 . Attribute(l). Attribute(2) Attribute(i) Attribute(n-I) . Attribute(n).

cel,l) . ce2,1) . C(3,1) cei+l,l) cen,I).

For the purpose of the EREQ query tree I have interpreted the Path as variable plus attribute(l) etc. The
variable at the start of the path is a variable named in a leaf DataNode of the tree.

RepCost 6 May 1993	 page II

EREQ Query Representation and Cost Model

3.4.6 Cost Parameters.
A full list of the Cost Parameters is given in the table on page 17. Some of the parameters have been elim
inated by making assumptions about the nature of the database schema. These assumptions are listed
below.

Assumption 1. Number of pages containing members of the type C(i) is assumed to be the sum of the
number of pages containing instances of each type in the hierarchy. This assumes the same clustering of
instances in the hierarchy based on a class as the instances of the base class. Therefore Ph(i) =:I:j P(i,j).
Assumption 2. Number of distinct values for attribute A(i) for all instances in the inheritance hierarchy
rooted at type CO, I) is assumed to be sum of those for each type in this hierarchy. Therefore
DO) = :I:j D(i,j).

Assumption 3. The average size of a multivalued attribute over the members of a type is assumed to be the
average over the average size for each of the constituent types. FanO) = (:I:j fan(i,j) * NO,j» / (:I:j N(i,j».
These assumptions reduce the number of statistical parameters supplied to 2 per'JYpe plus 4 x number of
attributes. (N(i,j), P(i,j), plus a value of D(i,j), fan(i,j), d(i,j), and rei) for each attribute of the 'JYpe.)

3.4.7 Cost Parameters D, fan, d and r.
DOJ), fan(iJ) and d(iJ). These parameter can be different for each attribute of a type. For example, with
reference to the above path, C(l,l) has an attribute Attribute(l) of type C(2,I). The value of fan(l, 1) in
this case is the collection size of Attribute(l) (See "Multivalued Attributes" on page 5.). If A is not multi
valued, the value offan(l, 1) is 1. As can be seen, the value offan(i,j) depends on the attributes in the par
ticular path..
rei). This parameter is a Boolean, TRUE if there exists a "reverse" reference from type C(i) to type CO-I).
Just as the average Set Size has to be stored for each attribute of a type, there could be a reverse reference
from type T to (theoretically) any other type in the schema. Since it would only be interesting for refer
ences (connections between types) that might exist in a path, I have stored the reverse reference as a
parameter of the type referenced. (ie the type that the reference points to rather than the referencing type.)
Type C(i) must therefore ask C(i-l) to find out if there is a reverse reference to C(i-l).

page 12 6 May 1993 RepCost

EREQ Query Representation and Cost Model

3.4.8 Constraints on Cost Parameters

There are several constraints that must be checked if values for the cost parameters are invented for exper
iments. These are:

d is the number of instances of C(ij) with no NULL vales for A(i). This cannot be greater than the number

of instances of the type, the cardinality Nij. Therefore:

d(i,j) <= N(i,j).

P is number of disk pages containing instances of the type C(ij). I have assumed that an instance does not

occupy more than a disk page; this allows a check to be made as to whether this parameter is sensible.

P(i,j) <= N(i,j)

D is the number of distinct values for Attribute A(i). There cannot be more distinct values than the cardi

nality of the domain of the attribute. Therefore:

D(i,j) <= Nh(i+l).

Similarly to the above, the if the attribute A(i) is a set (or more generally a collection), then the collection

size (or set size) of attribute A(i) cannot be greater than the cardinality of the domain of the attribute.

Therefore:

fan(i,j) <= Nh(i+ 1).

This is not true if duplicates are allowed in a set. I have assumed that they ar not.

The collection size of attribute A(i) cannot be greater than the number of distinct values for attribute A(i).

Therefore:

fan(i,j) <= D(i,j)

If this is violated, it affects cost functions PrllO and Pr12), thence ReffiyO and ReffiyhO.

These constraints are all checked during the building of a path, with the exception of DO which is checked

(together with the others) in function PathString: : getCost ().

The requirement fan<=D, means that another requirement k(ij)<=d(i,j) is not violated. This last affect the

other functions thus:

If k(i,j) > d(i,j), affects cost functions Pr210 and Pr(22) thence Ref0 and RethO.

If kh(i) > d(i), affects cost functions Pr310 and Pr320 thence EO, Refaand kbar().

RepCost 6 May 1993 page 13

EREQ Query Representation and Cost Model

possible reverse ref.
r

O(i+l,I,I)

0(i+l,I,2)
0(i,j,1) I ~ A(i)

fan(iJ) =3 0(i+l,I,3)

0(i+l,I,4)

I O(iJ,2) ~ A(i)

NULL

N(iJ) = 2 N(i+l,j) =4
D(iJ) = 5
fan(iJ) =(3+4)/2 =3.5

d(iJ) = N(iJ) = 2

O(iJ,k) indicates an object of type C(iJ).
In this case the RH objects are type O(i+l,l) since they are
referenced by A(i).

fan(iJ) = 4

Figure 3: Graphical Description of Cost Parameters.

page 14 6 May 1993 RepCost

EREQ Query Representation and Cost Model

3.4.9 Execution Strategy
There are 2 Graph traversal (FoIWard & Reverse) and 2 Retrieval (Nested Loop and Sort Domain) strate

gies mentioned in [BERT92] § 3.2, which give 4 basic query execution strategies. The cost functions are

different for each one.

FOIWard Traversal is to compute the cost of accessing the type C(n,l) (as well as its subtypes if applicable)

from just the type C(I,1) or from CO, 1) and its subtypes according to the type of the query.

Reverse Traversal is to compute the cost of accessing a type C(1,1) (as well as its subtypes if applicable)

from the type C(n, 1) and its subtypes.

Nested Loop searches for each attribute in the path in tum using a sequential search loop.

Sort Domain sorts the whole domain of a type and then passes this to the next type in the path to be fil

tered.

The strategy is given as an argument to the getCost function of PathString. The 4 strategies are

therefore:

NLFf Nested Loop FOIWard Traversal

NLRT Nested Loop Reverse Traversal

SDFT Sort Domain FOIWard Traversal

SDRT Sort Domain Reverse Traversal

The SaRTO function used in the retrieval method Sort Domain assumes 100 OlD's per disk page for the

sort. OIDperPage = 100;

In the cost functions the Cardinality of the range of values that resolve the predicate has an effect on the

cost. For a predicate of the type "attribute==value", the cardinality is 1, whereas if the relational operator

is <, >, <=, >=, the cardinality is unknown. I have therefore assumed a cardinality constant

cardPred = I.

3.4.10 Cost Functions.
Details and a brief description of each of the cost functions are given in Appendix B2, page 46.

3.4.11 The Cost Model and the EAT.
On essential difference between the path used Bertino cost model and the path used in the query tree Rep
(the EAT), is that in the path built by the EAT, there are no multivalued attributes. For example, if we have
a type "Hotel" which has a multivalued attribute "facility", and a variable "TheRitz" of type Hotel. Ber
tino would allow a path which includes TheRitz.facility. In our Query Tree, the operator Image (or Select)
is used to iterate over the values in the set, and the operator Image is represented by a FunctionNode in the
Tree. The Path therefore stops before the Image operator.

In the experiments therefore, I have used a Path which is not obtained from the EAT, but built directly from
a string representation of a Path.

3.4.12 Cardinality of values that resolve the predicate.
I have assumed a value of I for this factor (cardPred=I). This implies Attribute==Value, rather than
<,>,<= or >=. Values for the other comparison operators would be I~er, but undefined. This factor is used
by cost functions NIO and V30. See [BERNI] paragraph 3.2.

RepCost 6 May 1993 page 15

EREQ Query Representation and Cost Model

;"3.4.13 Target Class (targetType)
The meaning of Target Class in [BERT91] is not clear. It would appear that this would be type qn,l), ie
the class at the end of the query path, but on paragraph 3.2 of the paper (category 1) it is clear that the tar
get class can be C(l,l) with the path length greater than 1 (k=2 where 1<k<=n in NI(k) for Execution Strat
egy SDFf). I first assumed that the Target Class (named targetType in PathString) is C(n,l), however I
believe that the definition is in paragraph 2.2 of [BERT91] implies that the target is the type at the start of
the path. If the attribute specified is an attribute of the base type (or the most specialized type in this spe
cific hierarchy) then targetType is the type C(l). If the attribute is not an attribute of the base type, but of
one of the sub types in the hierarchy, then the targetType is "IN" type C(l). This is the same as saying that
the targetType is a member of C(l).

4.0 Experiments

4.0.1 Location of Rep/ directory.

The full path name of directory Rep/ is /pr%odb/opt/Rep/.

4.1 Sample Database: The Altair Travel Agency.

4.1.1 Source of the Schema.

The database schema for the Altair Travel Agency is a sample 02 database schema. The data for this data
base schema is in the directory Rep/altair. The program OptRepTable in the directory
Rep/RepLib (formerly table in directory Rep/rep_lib) has been amended to be able to import a
text file of this type, and the file. text_diet has been read into the data dictionary files. type_diet,
•data_diet and •attr_diet in this directory.

4.1.2 Source of Cost Parameter values.

The parameter values used to calculate costs are in the disk file. OptRepTypeCostData. This file is
intended to simulate statistical information obtained from a real database. This file must be in the default
directory.
Information is read from this file when the first instance of the class SehemaMgr is declared. This hap
pens when an EREQ query tree Rep is built, and the "path" annotations are added. This class data is
stored in a Map structure named typeMap, which is a static field of the class SehemaMgr, the super
class of both TypeData and PathString.

The values of these parameters is invented, and because of the constraints between the parameters that
need to be maintained it is difficult to maintain compatibility between parameters when varying one
parameter at a time. See 3.4.8 Constraints on Cost Parameters on page 12.

page 16 6 May 1993 RepCost

EREQ Query Representation and Cost Model

Figure 4: Cost Parameters
"

These parameters are described in [BERT92] paragraph 3.1. They refer to a PATH composed of a variable

and n attributes, each one an attribute of the previous type in the path. The type of each of the objects in

the path is shown below as C(i, 1). In our implementation C(i, 1) refers to an instance of the class TypeData.

Object. Attribute(l) . Attribute(2) Attribute(n-I) . Attribute(n)

C(l,I) . C(2,I) . C(3,I) C(n)

Many of the parameters described in [BERT92] are derived from a few basic parameters; in addition some

assumptions (given below) reduce the required cost parameters per type to 5 plus one for each multivalued

attribute of the type.

All the parameters are integers.

i indexes into the path length. 1<=i<=n.

j indexes into the members of the type hierarchy based at C(i,I). 1<=j<=nc(i).

Note that parameters D(i,j), fan(i,j), d(i,j) and k(i,j) depend on the type and an attribute of the type, param

eters N(i,j) and P(i,j) depend only on the type.

LOGICAL Data Parameters (data)
D(i,j)	 Number of distinct values for attribute A(i) of type C(i,j), I<=i<=n, I<=j<=nc(i).

N(i,j)	 Cardinality of type C(i,j), I<=i<=n, 1<=j<=nc(i).

fan(i,j)	 Average number of references to members of type C(i+I ,j), contained in the attribute A(i) for an instance of type C(i,j),
1<=i<=n,I<=j<=nc(i). Note that for single valued attributes, fan=!.

d(i,j)	 Average number of instances of type C(i,j), having a value different from NULL for attribute A(i), 1<=i<=n and
I<=j<=nc(i).

PHYSICAL Data Parameters (data)
P(i,j)	 Number of pages containing instances of the type C(i,j) for I<=i<=n, I<=j<=nc(i) .

r(i)	 A binary variable asswning value equal to I if members of type C(i,j) have reverse references to members of type
C(i-I,I) in the path, equal to 0 otherwise for 2<=i<=n. This value obviously varies depending on type C(i-I).

The following parameters are all derived from the above parameters and the particular path being
considered, either by summing over the sub-classes of the type C(i,l), or by other means.

LOGICAL Data Parameters (derived from Path)
n	 Path length.

nc(i)	 Number of classes in the inheritance hierarchy rooted at type C(i,I), 1<=i<=n.

Dh(i)	 Number of distinct values for attribute A(i) for all instances in the inheritance hierarchy rooted at type C(i,I).

Nh(i)	 Number of members of type C(i,I), 1<=i<=n.

RepCost 6 May 1993	 page 17

EREQ Query Representation and Cost Model

Figure 4: Cost Parameters (continued)

fanh(i)	 Average number of references to members of type C(i+1,1) contained in the attribute A(i) of a member of type C(i, I),
1<=i<=n. The difference between this parameter and fan(i,j) is that this parameter is obtained as the average evaluated
on all members of a type hierarchy, while in fanCi,j) the average is for each class.

dh(i)	 Average number of members of type C(i,l), having a value different from NULL for attribute A(i), 1<=i<=n;
dh(i) = SUM(1<=j<=nc(i))(d(i,j)).

k(i,j)	 Average number of instances of type C(i,j) having the same value for attribute A(i), l<=i<=n and l<=j<=nc(i);
k(i,j)=CEILING((d(i,j)*fan(i,j))JD(i,j)).

kh(i)	 Average number of members of type C(i, 1) having the same value for attribute A(i), 1<=i<=n.
kh(i) = SUM[j] k(i,j).

PHYSICAL data parameters (based on Path)
Ph(i)	 Number of pages containing members of the type C(i,l) for 1<=i<=n. Assumed to be SUM[j] P(i,j); theoretically could

be smaller than the sum, if there is some clustering.

QUERY parameters (based on Path)
NI(i)	 Number of members of type C(i,1) to be searched for, 1<=i<=n.. Depends on previous parameters.

AP(i)	 Number of accessed pages containing members of the type C(i,l) for 1<=i<=n.

DERIVED parameters. See appendix A of [BERT92].
Reffiy(i,s,y,k) Average number of values contained in the nested attribute A(y) for a set of k instances of type C(i) whose

position is s in the inheritance hierarchy. 1<=i<=y<=n, 1<=s<=nc(i), 1<=k<=Nh(i).

Reffiyh(i,y,k) Average number of values contained in the nested attribute A(y) for a set of k members of type C(i, I),
1<=i<=y<=n, 1<=k<=Nh(i).

k_bar(i,j)
Average number of instances of type C(i,j) having the same value for the nested attribute A(n), 1<=i<=n, 1<=j<=n.

kh_bar(i)
Average number of members of type C(i,l) having the same value for the nested attribute A(n), 1<=i<=n.

Ref(i,s,y,k)
Average number of instances of type C(i,s) having as value of the nested attribute A(y) a value in a set of k elements for
1<=i<=y<=n, 1<=s<=nc(i), 1<=k<=Nh(i). Also in this case, as for RefBy(i,s,y,k), s determines the position of the
type in the inheritance hierarchy supposing that the classes are sorted in the hierarchy.

Retb(i,y,k)
Average number of members of type C(i,l), having as value of the nested attribute A(y) a value in a set of k elements for
1<=i<=y<=n, 1<=k<=Nh(i).

page 18	 6 May 1993 RepCost

EREQ Query Representation and Cost Model

4.2 A driver program to create the EREQ rep.

4.2.1 Instructions
The files are located in the directory

/pr%odb/opt/Rep/.

The executable which drives the current programs is named makeRep. This takes 2 arguments. First a file

name which should contain a query in the correct format, and second an integer which selects certain out

puts.

Use 1 to just output the query paths and the cost of each query path.

Use 2 to output the query tree in the EREQ Rep format. This produces quite a lengthy output, but the

fields can be inspected this way.

Use 3 to output the Class Map which is used when calculating the cost.

Use 4 to create a qTreeType tree from the EREQ query tree and display it using TREEprincqTreeO.

Use 0 to output all 4 of the above.

For example, to print the costs for the query paths generated by the query contained in the file

altairll.input, type:

> makeRep altairll.input 1

alternatively, use makeRep from the altair subdirectory, type:

> •• /makeRep altairll.input 1

4.2.2 Input Queries.
The queries used for testing were taken from the file test-queries. In order to get these into the fonn
required by the "opt" parser, I wrote a translator in emacs lisp. This function is named o2-equal-conv
and is in the file o2-equal-conv. el. A listing of the latter file is in Appendix C.

4.2.3 Typical Output.
The graphical output from opt, produced using the function TREEprint_qTree () is shown on page 9
The output from the EREQ Rep has not yet been output in graphical fonn. A sample of the output from the
EREQ rep, indicating the fields of the Nodes, is included on page 9.
There is a paradoxical result in the "cost" annotation that the cost is zero when the strategy is Reverse
Traversal and reverse references are provided. See note in [BERT92] section 3.2 after the section on
Nested Loop Reverse Traversal. This is because in those cases the path length is I and in this case, the
reverse pointers, that are given as OlD's form the solution of the query.

4.3 Description of Experiments
Experiments have been carried out to see hoe the cost varies as the input parameters are changed. To do
this I have built a PathString from scratch, not via the Query Rep, and varied one parameter at a time.
The driver used for these experiments is named costExp, and is in the directory Rep/work..

4.3.1 Use of the experiment driver programs, costExp and costTest.
These programs are in the directory Rep/work/.

The driver program costExp will produce calculate the results of varying one parameter of N, fan, D,

d, or P. All 5 can be done in one run in series, and each execution strategy can be selected. In addition,

RepCost 6 May 1993 page 19

EREQ Query Representation and Cost Model

both values for the parameter r can be displayed. It is assumed that the user of the program will be able to

amend the source code file costExp . C if more experiments are to be carried out.

In order to trace the reasons for the relationships described below, I compiled the cost functions with the

variable TESTING defined. This is done in the makefile by giving a flag -DTESTING. This causes addi

tional output giving the values of individual functions. The library functions have been compiled with

TESTING not set.

The driver costExp produces several temporary files, suffixed. tmp, and two results data files. The first

(named "plotnnnn.xy") is used to plot the points using xgraph, and the second (named

"plotnnnn. txt") which prints out the data points in a more readable fonnat..

In addition there is a second test file, named costTest, which can be used to test individual PathString

functions. At present only HO works, but it is easy to add a function to this program and then test a

function by caIling costTest <function name> <arg 1> <arg 2> etc.

4.3.2 Graphical output.
The above programs call the program xgraph to display their results graphically. These have been included

in Appendix D.

The output from the experiments is shown in Appendix D: Experimental Results on page 57.

4.3.3 Method of including graphical results.

To import the plots into this document, the xgraph file was written out to an idraw file. The idraw file was
then imported to idraw and written out as an EPSI file (the "save as" option). Since an encapsulated post
script file can be imported into framemaker, this is then imported into framemaker as a graphic file.

To dump the xgraph direct via xwd or the frame capture option would have printed the data lines as colored
lines, which are fairly unreadable in monochrome.

4.4 Experiments 1.1.1 to 1.1.5.

4.4.1 Introduction
This is based on the Path "City.places_to~o.name". I have varied each parameter of the type "City" in
tum, keeping all others constant. The plots of these are shown as Experiment I. I.l to Experiment U.S.

The constant parameters of the PathString are as follows:
City.p1aces_to~o.name

Parameters given.
Object: Class: Dij Nij fanij dij Pij ri
city :City 100 100 10 80 100 o
Attribute:
places_to~o :Place_tg 200 200 1 71 200 o

: Monument 1 10 1 1 5
: Museum 1 10 1 1 10
:'l'heater 1 12 1 1 12

name : string 1 10000 1 1 10000 o

Parameters calculated:
Object: Class: kij Di Nh fani di kh Ph
City :City 8 100 100 10 80 8 100
Attribute:
places_to_go :Place_tg 1 203 232 1 74 1 227

:Monument 1
•Museum 1
.'l'heater 1

name : String 1 1 10000 1 1 1 10000

Note that some of these parameters seem a bit dumb. For example, what does it mean that a primitive type
such as "string" has a cardinality N ? This should be an exception, but it is not done this way yet.

page 20 6 May 1993 RepCost

EREQ Query Representation and Cost Model

4.4.2 Results
The first result from 1.1.I.and 1.1.2 shows that NLFT depends directly on Cardinality "N", and the set size
of attribute "fan", and not on the other parameters. The functions for NLFT are just this: (see [BERf92]
para 3.2 Category I). The cost is N(l,l) *fan(1,I), then progressively cost = cost * fan(i,l) along the path.
If all the parameters (fan==I) then the cost will be the size ofN(1,I) only.

Experiments 1.1.3 and 1.1.4 shows that nothing depends on parameter D or d. This seems surprising and
may be due to this being the first attribute in the path.

Experiment 1.1.5 shows the effect ofP, number of Pages containing instances of the type. As the number of

pages increases, the cost increases.

4.5 Experiments 2.1.1 to 2.1.5.

4.5.1 Introduction
The second set of experiments is based on a similar Path to the first. In this case the parameters of the sec
ond type C(2, I) are varied.
City.places_to-9o. address. street

Parameters given,
Object: Class: Dij Nij fanij dij Pij ri
City :City 100 100 10 80 100 o
Attribute:
places_to-9o :Place_tg 61 200 1 71 100 o

: Monument 1 10 1 1 5
: Museum 1 10 1 1 10
: Theater 1 12 1 1 12

address :Address 12671 155 1 134 155 o

street 'String 1 10000 1 1 10000 o

Object: Class: Parameters calculated:
City
Attribute:

,City kij
8

Di
100

Nh
100

fani
10

di
80

kh
8

Ph
100

places_to_go :Place_tg
: Monument 2 64 232 1 74 2 127
lMuseum 1
lTheater 1

1
address lAddress

1 12671 155 1 134 1 155
street

1 1
: String
10000 1 1 1 10000

4.5.2 Results
• Experiment 2.1. The top graph (NJ...,) shows that N(2,1) does not alter the cost. This is as expected; see
note in 4.4.2 above. The particular parameters selected for this case produced an error message, that
N(2,1) is smaller than D(1,I) and P(2,l). The bottom graph (SD), shows that there is an inverse relation
ship between cost and N, for SDFT, values of N>=73. The reason for the out-of-range values for cost is
that the parameter Ph>Nh. This causes the function of Yao (pathString::HQ) to give a stupid answer. The
program gives error messages if it detects such a conflict. The reason for the inverse relationship also lies
with the function HO; this is because, as N(2) increases, with P constant, the concentration of records per
page is increasing. This increases the hit rate. The number of records to be searched for is constant, since

RepCost 6 May 1993 page 21

EREQ Query Representation and Cost Model

Creating new rep for:

Project {Places, $p
«(Place,p), (
Tours, Select (Tour, $t

p memberof Image(t@description,$w w@what@address@city@ti
tIe)))))

PRINTING DETAILS OF NEW REP.

DataNode: Ptr=Ox41geB.
X=O, Y;O, ... ID [0)

Annotations:
Key;: "avai 1" Ptr=OxO
KeY="cost" Ptr=Ox6bOl0

NLFT cost = 1085400

NLRT cost = 4461480

SDFT cost = 123120

SDRT cost = 145216800

KeY="path" Ptr;Ox6a5b8
Places
p
Tour
p
t.description
w.what . addn"ss. ci ty. tit Ie

KeY="used" Pt r=OxO

ParentFD->ParentFN ; OxO->OxO
Chi IdDF->ChildFN = Ox49b58->Ox49c38
Data = OxO
DataType = "Set [Tuple: (P!ace,Place_tg), (Tours,Set [Tour])]"
Name = -
Multivalued, sizE" 300

FunctionNode: Ptr=Ox49c38.

X=O, Y;2, ... 10 [00]

Operator name: -Project
Arity=3, Input args=2, Other args=l

Annotat ions:

Key=-avail Ptr=OxO

Key=-cost- Ptr=Ox69848

NLFT cost = 1085400

NLRT cost = 4461480

SDFT cost = 123120

SDRT cost = 145216800

KE"y=-def- Ptr=Ox45710
p : PI ace_tg

Key="path" Ptr=Ox5e8f8

Places

p

Tour

p
t.description
w.what.address.city.title

Key=-used- Ptr=OxO

ParentDF()->ParentDN() = Ox49b58->Ox495eO

Funct ionNodE" Ox49c38: INPUT * 0:
NthlnputFDI)-',ChildDN() = OX430c8-~Ox43IdO

Clnput Oat aNode: Pt r;Ox431 dO.
X=O, Y=4, ... lD [0000]

Annotat ions:
Key=-avail Ptr=OxO
foiey=-cost- Ptr=Ox5e730

NLFT cost = 0

NLRT cost = 0

SDFT cost = 0

SORT cost = 0

Key=-path- Pt r=Ox5e6 fO

Places

Key::=-used- Ptr=OxO

Parent FD->Parent FN = Ox430c8->Ox4 9c3 8

Chi IdDF->Chi IdFN = OxO->OxO

Data; OxO

DataType = "Set (Place_tg)"

Name = -Places-

Multivalued Global variable, size 300

LEAF NODE.

Funct ionNode Ox4 9c3 8: INPUT It 1:

NthlnputFD() ->ChildDN() = Ox433aO->Ox434a8

VlnputDataNode: Ptr=Ox434a8.
X;l, Y;4, ... ID [0001]

Annotations:
Key;"avail" Ptr;Ox477bO

p Place_tg
Key= ·cost" Pt r=Ox5edaO

NLFT cost = 0
NLRT cost = 0
SOFT cost = 0
SORT cost = 0

Key;"path" Ptr;Ox5ed60
p

Key="used" Ptr;Ox47890
p

ParentFD->ParentFN = Ox433aO->Ox49c3B
ChildDF->ChildFN = OxO->OxO

Dat..=t = OxO

DataType = ·PlacE'_tg"

Name = .p.

Local variable

LEAF NODE.

Funct ionNode Ox49c38: OTHER ARGUMENT R 0:
NthotherFD() ->ChildDN() = Ox43678->Ox43780

OtherDataNode: Ptr=Ox43780.
X=2, Y;4, ... ID [0002]

Annotations:
KeY="avail" Ptr;Ox47820

p Plac€'_tg
Key;"cost" Ptr;Ox68750

NLFT cost = 1085400
NLRT cost ; 4461480
SDFT cost; 123120
SDRT cost; 145216800

Key=-path- Ptr=Ox68078
Tour
p
t.description
w.what.address.city.title

Key=-used- Ptr=Ox49570
p:

ParentFD->ParentFN = Ox43678-~Ox49c38
ChildDF->ChildFN = Ox43950->Ox43a58
D..=tta = OxO
DataType = "Set (Tour)"
NamE" = -
Multivalued, size 36

(Funct ionNode: Ptr=Ox43a58.

X=O, Y;6, ... ID [000200]

Operator name: -Select
Arity=2, Input args=l, Other args=l

Annotations:

Key=-avail- Pt r;Ox4 7 900

p : Place_tg
Key="cost" Ptr;Ox67688

NLFT cost = 1085400

NLRT cost = 4461480

SDFT cost = 123120

SDRT cost = 145216800

Key=-def- Ptr=Ox45bOO
t : Tour

Key;"path" Ptr;Ox5f548

Tour

p

t.description

w.what.address.city.title

Key;"used" Ptr;Ox49500
p :

ParentDF()->ParentDN() = Ox43950->Ox43780

FunctionNode Ox43a58: INPUT R 0:

NthlnputFD() ->childDN() ; Ox43beO->Ox43ce8

CInputDataNode: Ptr=Ox43ce8.

X;O, Y;8, •.• ID [00020000]

Annotations:

Key=-avail- Ptr;Ox47970

p : Place_tg
Key=-cost- Ptr=Ox5f358

NLFT cost = 0

NLRT cost; 0

SDFT cost ; 0

SORT cost = 0

Key=-path-	 Ptr=Ox5fla8

Tour

Figure 5: The EREQ Query Tree in text format.
Query text:

Project(places,$p{ (place,p),

(Tours,Select(Tour,$tp memberof Image(t@description,$w w@what@address@city@title)))})

page 22	 6 May 1993 RepCost

EREQ Query Representation and Cost Model

Key=·used- Pt r=OxO	 NthotherFD()->childDN() = Ox446f8->Ox44800

Parent FD->P~'l.rE"ntFN = Ox43beO -",.Ox4Ja58 OtheroataNode: Ptr=Ox44800.
Chi IdDF-'>Chi IdFN = OxO-:>OxO X=I. Y=12 •... 10 [00020001000lJ
Data = OxO
Data'Iype = ·Set [Tour]· Annotat ions:
Name = -Tour- Key="'avail· Ptr=Ox47cBO
Multivalued Global variable, sizE' 120 P Place_tg

t Tour
LEJIF NODE. Key=·cost" Ptr=Ox64b68

NLFT cost = 335
FunctionNode Ox4Ja58: OTHER ARGUMENT" 0: NLRT cost = 1377
NthOtherFD () -:>Chi IdDN() = Ox43eb8->Ox43 fcO SOFT cost = 38

SDRT cost = 44820
OtherDataNode: Ptr=Ox43fcO. KeY='path' Ptr=Ox647a8
X=I. Y=8 •... lD 100020001] t.description

w.what. address .ci ty. tit Ie
Annotations: KeY='used' Ptr=Ox49260
Key=-avdil· ptr=Ox47geO t :

p : PlacE'_tg
t Tour ParentFD->ParentFN = Ox446fB->Ox44298

Key=·cost- Ptr=Ox66B4B Chi IdDF- >Chi IdFN = Ox449dO->Ox44ad8
NLFT cost = 9045 Data = OxO
NLRT cost = 37179 oataType = 'Set [StringJ'
SDFT cost = 1026 Name = ••
SORT cost = 1210140 Multivalued, sizE' 27

KeY='path'	 Ptr=Ox662c8
p
t.description FunctionNode: Ptr=Ox44ad8.
w.what . address. ci ty. tit Ie X=O. Y=14 •... ID [00020001000100J

Key=·used· Ptr=Ox49340 Operator name: -Image
p :	 Arity=2, Input args=O, Other args=2
t :

Annotations:
P"rent FD-·... P.:\rent FN = Ox43eb8->Ox43aS8 Key='avai I' Ptr=Ox47ddO
ChildDF-:>ChildFN = Ox44190->Ox44298 p Place_tg
Data = OxO	 t Tour
O.:\ta'JYpe = "Boolean"	 Key=-cost" Ptr=Ox640dO
Name =	 NLFT cost = 335

NLRT cost = 1377
SOFT cost = 38
SORT cost = 44820

FunctionNode: Ptr~Ox44298.	 Key='def' Ptr=Ox46120
X=O. Y=lO," .. J[l 10002000100J	 w : Stage
Oper~'l.t or nam'?: "rnembero f"	 Key='path' Ptr=Ox60bfO
Arity=2, Input args=l, Other "rgs=l	 t .description

w.what.address.city.title
Annot "t ions: KeY='used' Ptr=Ox492dO
Key;"avai1" Ptr=Ox47ClCO t :

p Place_tg
t Tour	 ParentOF()->ParentON() = Ox449dO->Ox44800

KeY='cost' Ptr=Ox65628
NLFT cost = 9045	 FunctionNode Ox44ad8: OTHER ARGUMENT ~ 0:
NLRT cost = 37179	 NthOtherFD () ->chi ldDN() = Ox44c60->Ox45160
SOFT cost = 1026
SDRT cost = 1210140 OtherDataNode: Ptr=Ox45160.

Key='def' Ptr=OxO X=O. Y=16 ••.• ID 10002000100010000J
KeY='path' Ptr=Ox5fa88

p	 Annot at ions:
t.description	 Key=-avail- Ptr=Ox47ebO
IN.wh<=lt . .:\ddress.city.title	 p : Place_tg

Key="used" Ptl'=Ox493bO	 t Tour
P	 Key="cost - Ptr=Ox609aO
t	 NLFT cost = II

NLRT cost = 0
ParentDF{)->Pal'entDN{) = Ox44IQO->Ox43fcO	 SOFT cost = II

SORT cost = 0
FunctionNode Oxo404298: INPUT ~ 0:	 Key='path' Ptr=Ox60960
NthlnputFD{)->ChildDN() = Ox44420->Ox44528	 t.description

KeY='used' ptr=Ox48380
VInput[J~'t~'\Node: Pt r=Ox4 4528. t :
X=O, Y=12," .. 1D 10002000100001

ParentFO->ParentFN = Ox44c60->Ox44ad8
Annotations: Chi ldDF->ChildFN = Ox45330->Ox45438
Key="av.:\il" Ptr=Ox47baO Data = OxO

p Place_tg	 OataType = 'Set [StageJ'
t Tour	 Name = ••

Key=-cost" Ptr=OxSfBcO	 Multivalued, size 27
NLFT cost =	 0
NLRT cost =	 0
SOFT cost = 0	 FunctionNode: Ptr=Ox45438.
S[lRT cost = 0	 X=O. Y=18 •..• 1D 1000200010001 OOOOOOJ

KeY='path' Ptr=Ox5f880 Operator name: -description- ATTRIBUTE

p Arity=l, Input args=l, Other args=O

Key::"used" Ptr=Ox47d60

p :	 Annotations:

Key=-avail- Ptr=Ox480eO

P"rent F[l-">F'drent FN = Ox444 20->Ox44 298 p Place_tg

ChlldDF-".Chi IdFN = OxO->OxO t Tour

[l~'tll = OxO

[latdType = ·Pl.:\ce_tg"

Name :: "p"	 etc.

Loc.,l v.u·i.,ble
This is	 about half of the query tree,

LEJIF NODE.
The bottom leaf is at Y=32,

Funct ionNode OX44298: OTHER ARGUMENT ~ 0:

Figure 5: The EREQ query tree in text format (continued).
This output is produced by the functions DataNode::printNodeO and FunctionNode::printNodeO. A call to
DataNode::printNodeO calls the printNodeO function for its child. recursively.

RepCost 6 May 1993	 page 23

EREQ Query Representation and Cost Model

this depends on N(l) and not N(2), therefore the cost reduces as N(2) increases. Note that increasing N(2)

without increasing P(2) is not a realistic relationship.

SDRT with and without reverse references are constant, although not the same value.

• Experiment 2.2. Since this attribute is not multivalued, there is no experiment .2 in this series.

• Experiment 2.3 and 2.4. Similar conflicts to 2.1 above have given cause to the steps in the graphs of
NLRT for varying D (graph 2.3), and NLRT for varying d (graph 2.4). From graph 2.3 we see that for
SDFT, cost is proportional to D, the number of distinct values for attribute A(2).

• Experiment 2.5 shows a linear relationship between P and cost for SOla when r=0, (SDRT and r= I is
flat. There is a more complex relationship for cost when SDFT is considered. This is the effect of the
function of Yao, which calculates the "hit rate" when searching for records from the disk.

5.0 Conclusions

5.1 Query Rep
The new query rep provides all the functionality of the old, plus more facilities, with one exception, and
that is the fact that the annotations are not typed.. There are some unsolved problems with the Annotations,
due to the fact that they are not typed, and therefore cannot be copied, deleted, or checked for equality in a
general way.

5.2 Schema Manager
The Schema Manager has been written to enable access to type details, and to include type cost parameters.
It does these successfully, although the functionality which has been added in comparison to the previous
schema manager is only in relation to the cost parameters.
Schema Manager class provides a framework for adding further properties of types in the future.

5.3 Cost Model

5.3.1 Interpretation
There have been some problems in interpreting Bertino's model. One of these is the interpretation of a
"class hierarchy". The idea is to assume that each hierarchy will be separate until a TOP_CLASS is
reached. It seems that there will be a schema where the classes are related, and so the hierarchies will not
be so distinct. I have assumed in the implementation that the named class C(i,j) is the root of a hierachy,
but this may not be the intention of [BERT92].

Overall this cost model may provide the best model in the absence of a specific database model to base a
cost model on.

5.3.2 Parameter difficulties
The [BERT92] cost model has been shown to have some problems. One of the worst of these is the
difficulty of inventing values for the cost parameters in the absence of "real" data to work on. The problem
is that it is almost impossible to keep all parameters constant and vary just one to see what effect this has

page 24 6 May 1993 RepCost

EREQ Query Representation and Cost Model

on the cost. This has particularly inhibited the testing of the model, perhaps it is a function of the models

comprehensiveness.

One possibility would be to generate random values for the cost parameters, constrained as indicated in

this paper, and use these to generate costs. If this were done many times, perhaps some trends could be

seen.

6.0 Further work

6.1 Query Rep
There are functions not yet implemented, such as copy constructors, and operators such as equality and
assigrunent. Should these be recursive'!
The graphical output is at present only possible by converting the EREQ rep back to the qTree rep (using
DataNode::createQueryTreeO) and printing qTreeType. If the EREQ rep could be displayed graphically, it
would then be possible to add selected fields from the rep to display; fields which are not present in the old
rep.

6.2 Schema Manager
The next step would be to ensure that no functions from OptRepTable.c are called by the Rep classes or
RepCost classes, except via the class SchemaMgr. This would provide an easy way to substitute the new
schema for the old one at some future date, when the optimizer can access the new one.

6.3 Cost Model
The next step to incorporate this model into the EREQ query tree would be to use the cost model functions
to calculate the costs of paths that include a FunctionNode of the type Image or Select. This would require
modification of the function FunctionNode::BuildQueryPathsO.

RepCost 6 May 1993 page 25

EREQ Query Representation and Cost Model

6.4 General

6.4.1 Location of files.

The files for this work are in the following directories.

Files for public use are in directory Ipro/oodb/opt/Rep/. This directory should be used as the

"include" and "library" directory in a makefile. This directory includes:

• header files OptRepMeta. H. OptRep. H, OptRepCost •H, • OptRepLib. H.

• the OptRep library 1 ibOptRep • a;

• the working driver program makeRep; and
• the data dictionary files. data_diet, • type_diet. attr_diet and • text_diet.

• The cost data file .OptRepTypeCostData. All these data files are for the Altair Travel Agency
database.
All compilation is done in the directory Ipro/oodb/opt/Rep/work/.

This includes

• .C files OptRepMeta.C, OptRep.C, OptRepCost.C. makeRep.C, eostExp.C,
eostTest. C.

• Makefile for compilations of makeRep, libOptRep. a, eostExp, eostTest.

This directory also includes test output, executables of the driver files and copies of certain altair input
files.
Files relating to the "gcl" rep are in directory Ipro/oodb/opt/Rep/RepLib/. This contains the
older version of the library, named 1 ibRep. a, which is now included in libOptRep. a. The header
file OptRepIntRep. h, which contains enums for the operators etc. is in this directory, and is included in
the .H files.

6.4.2 Makefile

The Makefile used is in directory pro/oodb/opt/Rep/work/. Compile options with this Makefile

are:

With no target - compiles makeRep.

make exp - compiles costExp.

make lib - compiles the library libOptRep.a

make est - compiles costTest.

The -DTESTING flag will cause many print statements to be activated. The library option should not be

compiled with this flag set.

page 26 6 May 1993 RepCost

EREQ Query Representation and Cost Model

Appendix A: Class Definitions

The header files are summarized below.

Header file: OptRepMeta.H

class OptRepMetaClass

class OptRepMetaClass (

private:
char fOptRepClassName[64];

public:
char *OptRepClassName() (return fOptRepClassName;
void OptRepClassName(char *newName);

};

class vlist
1*

* Generic linked list type to use with annotations.
* Any data pointer can then be listed.
*
*1

class vlist {
public:

void *data;
struct vlist *next;

};

class AnnotList
1*

* Generic linked list type to use with annotations.
* This has rather more functionality than vlist.
*
*1

class AnnotList (
private:

void *fData;
int fDataSize; II to allow arbitrary copying of the AnnotList
struct AnnotList *fNext;
char *fAnnotName; II the annotation key.

public:
void *Data() {return fData; }
void *getNthVar(int);
int getListSize(); II number of elements
AnnotList *Next() { return fNext; }
char *Name() { return fAnnotName; }

AnnotList();

AnnotList(int); II arg is size of the data

AnnotList(AnnotList*,int); II 2nd arg is size of the data

-AnnotList();

} ;

RepCost 6 May 1993 page 27

EREQ Query Representation and Cost Model

Header file: OptRep.H

Op

class Op : public OptRepMetaClass {

private:

char fName[OP_SYM_LEN];

int fArity;

int fNumInputArguments;

public:

II constructor

Op() /

Op(char*, int ,int);

OP(OP&)/

II destructor
-Op() ;

public:
char *Name() { return fName; }
operType OperType()/
int Arity() { return(fArity)/ }
int NumInputArguments() { return (fNumInputArguments); }
int NumOtherArguments() { return (fArity - fNumInputArguments)/ }

int isAttribute();

void PrintOp () ;

}; /I class Op

page 28 6 May 1993 RepCost

EREQ Query Representation and Cost Model

class ArcNode
class ArcNode : public OptRepMetaClass { II Abstract Class

private:
II fAnnotations should be a pointer to a property list
Map (USLString,voidPtr) fAnnotations;

protected:
II Keep some identification for this object:
static int perGen[64]; II keep track of number per generation
int fDimX; II number in generation
int fDimY; II generation.
char fIDStr[64]; II record of ancestry, one char per generation
int fSiblingNum; II which number sibling is this?

public:
ArcNode(qTreeType*, ArcNode*); II constructor from MGeorge" rep
ArcNode(ArcNode&); II copy constructor

-ArcNode();

public:
void *GetAnnotation(USLString index);
void SetAnnotation(USLString index, void *value);
Map (USLstring,voidPtr) Annotations() { return fAnnotations;

int numAnnotations();

II Functions for the Upath" annotations
void SetPathAnnot(PathString *qPath); II put this path only in annot
void AddPathAnnots(vlist*); II Add an annot to this one
void CopyPathAnnot(ArcNode*); II copy another path annot to *this
vlist* CopyPathVList(vlist*);
void freePathVList(vlist*);

II function to be used with PrintNode or PrintArc

void PrintAnnotations();

public:
char *IDStr() { return fIDStr;
void setIDStr(ArcNode*);
int diroX() { return fDimX;
int dimY() { return fDimY;
void setDimX(int value) { fDimX = value; }
int SiblingNum() { return fSiblingNum; }

};

class Node
class Node : public ArcNode II Abstract class

public:
Node (qTreeType*, Arc*); II constructor from MGeorge" rep
Node(Node&); II copy constructor
-Node();

public:
virtual Arc *Parent(int) = 0;

public:
qTreeType *createQUe~ree(qTreeType*);

};

RepCost 6 May 1993 page 29

EREQ Query Representation and Cost Model

class FunctionNode

class FunctionNode : public Node {

private:
Arc *fParent[MAX_DrM];

Op *fOper;

int fNumInputs; II perhaps these should be covered by Op 11

int fNumOthers;

II see Op. We have Arity = Input arguments + Other arguments

FDArc *fInputs[MAX_ARITY]; II input arguments

FDArc *fOthers[MAX_ARITY]; II non input arguments

public:
II constructor
FunctionNode();
II constructor from "George" rep
FunctionNode(qTree~e*gTree, DFArc *parentDF);
FunctionNode(FunctionNode&); II copy constructor

II destructor

-FunctionNode();

public:
Arc *Parent(int dim=O) { return fParent[dim]; }
FDArc *Child(int i,int dim=O); II returns NthInput(i) up to (numInputs()-1)

II then returns NthOther(i-numInputs(»

DataNode *GChild(int i,int dim=O);

II normally the dimension is 0 (for default)

FDArc *NthInput(int n, int dim = 0);

FDArc *NthOther(int n, int dim = 0);

int numInputs() { return fNumInputs;

int numOthers() { return fNumOthers;

void IncInputs(FDArc *newFD);

void IncOthers(FDArc *neWFD);
 (

\
DataNode *ReplaceNthInput(int n, InputDataNode *theNode, int dim = 0);

DataNode *ReplaceNthOther(int n, OtherDataNode *theNode, int dim = 0);

Op *Oper() { return fOper; } II because operator is a reserved word in c++

int ChangeOper(Op);

Boolean buildQueryPaths(Boolean);

II a function to print the contents of the node

void PrintNode();

void addIDStr();

public:
qTree~e *CreateQueryTree(qTree~e*);

} ;

page 30 6 May 1993 RepCost

EREQ Query Representation and Cost Model

class DataNode

class DataNode : public Node { II abstract class

private:
Arc
DFArc

*fParent [MA,}CD:IM];
*fChild [MA,}CDD!] ; II ?? or MA,}CARITY

void *fData;
char *fDataTYPe;
char *fName;
Boolean fIsMultivalued;
int fNumValues;

II Does the data represent a set (multivalued)
II Size of the set. This is less confusing than
II using the set word.

public:
II constructor
DataNode(); II constructor from MGeorge" rep
II Takes an BQUAL query as argo 2nd arg is flag to build Paths.
DataNode(USLString, Boolean buildQP=FALSB);

II Takes a gcl query tree as argo 2nd arg is flag to build Paths.
DataNode(qTreeTYPe*, Boolean buildQP=FALSB);

DataNode(qTreeTYPe *, FDArc *); II recursive constructor from Mgcl" rep
II DataNode(DataNode&); II copy constructor - must decide if this

II should copy a node or a tree.

DataNode(qTreeTYPe *, FDArc *);

II destructor
-DataNode();

public:
Arc *Parent(int dim = 0) return fParent[dim];} II virtual in Node
DFArc *Child(int dim = 0) return fChild[dim]; }

FunctionNode *GChild(int dim = 0);

void *Data(int dim = 0) { if (dim); return fData; }

void SetData(void *data, int dim = O){ if (dim); fData = data;

char *DataTYPe() {return fDataTYPe; }

void SetDataTYPe(char *dataTYPe) { fDataTYPe = dataTYPe; }

char *Name() { return fName; }

void SetName(char *name) {fName = name; }

void Splice(DataNode *theNewNode); II splice the new Node in for this node

Boolean IsMultivalued() { return fIsMultivalued; }

int NumValues() { return fNumValues;} II size of set if multivalued

II
II question: this splice replaces one node with another -- how do we
II create shared structures using splice? Or do we only allow that at
II rep creation time?

Boolean isLeafNode();

Boolean IsGlobalVar () ; II Does this node represent a global variable

Boolean IsLocalVar () ; II Does this node represent a local variable

Boolean buildQueryPaths(Boolean);

II a function to print the contents of the node

void PrintNode();

void addIDStr();

private:
void copyFields(DataNode*);

public:
qTreeTYPe *CreateQueryTree(qTreeTYPe* QTN=NULL);

};

RepCost 6 May 1993 page 31

EREQ Query Representation and Cost Model

class InputDataNode
class InputDataNode : public DataNode { II abstract class

public:
II constructor from "George" rep
InputDataNode(qTreeTYPe*, Funct ionNode* , FDArc*);
InputDataNode(InputDataNode&); II copy constructor

-InputDataNode();
} ;

class VlnputDataNode
class VInputDataNode : public InputDataNode { II leaf variable node

public:
II constructor from "George" rep
VInputDataNode(qTreeTYPe*, PunctionNode*, FDArc*);
VInputDataNode(VInputDataNode&); II copy constructor

-VInputDataNode();
} ;

class ClnputDataNode
class CInputDataNode : public InputDataNode { II leaf constant node

public:
II constructor from "George" rep
CInputDataNode(qTreeTYPe*, PunctionNode*, FDArc*); (
CInputDataNode(CInputDataNode&); II copy constructor \

-CInputDataNode();
};

class OtherDataNode
class OtherDataNode : public DataNode { II interior other node

public:
II constructor from "George" rep
OtherDataNode(qTreeTYPe*, Punct ionNode* , FDArc*);
OtherDataNode(OtherDataNode&); II copy constructor

-OtherDataNode();
};

page 32 6 May 1993 RepCost

EREQ Query Representation and Cost Model

class Arc
;, class Arc : public ArcNode { II Abstract Class

public:
Arc (qTreeType*. Node*); II constructor
Arc (Arc&) ; II copy constructor
-Arc ();

} ;

class FDArc
class FDArc I public Arc { II represents arc from function to data

private:

FunctionNode *fParent;

DataNode *fChild;

public:

II constructor

FDArc() ;

FDArc(qTreeType*);

FDArc(qTreeType*, FunctionNode*);

FDArc (FDArc&) ;

-FDArc();

public:
FunctionNode *Parent(int dim = 0) { if (dim); return fParent; }
DataNode *Child(int dim = 0) {if (dim); return fChild; }
void SetChild(DataNode *theNode, int dim = 0) {

if (dim);
fChild = theNode;

}
void MakeChild(qTreeType*, FunctionNode*);

public:

Boolean buildQUeryPaths(Boolean);

void addl:DStr();

} ;

class DFArc
class DFArc : public Arc { II represents arc from data to function

private:

DataNode *fParent;

FunctionNode *fChild;

public:

DFArc();

DFArc(qTreeType *. DataNode *);

DFArc(DFArc&);

-DFArc ();

DataNode *Parent(int dim = 0) { if (dim); return fParent; }
FunctionNode *Child(int dim = 0) {if (dim); return fChild; }

public:

Boolean buildQUeryPaths(Boolean);

void addl:DStr();

};

RepCost 6 May 1993 page 33

EREQ Query Representation and Cost Model

OptRepCost.H

class SchemaMgr

class SchemaMgr : public OptRepMetaClass {
protected:

II The Map will not work as a static, only as a static*

II rt is initialized by the first call to PathString constructor.

static Map(USLString, TypeDataPtr) *typeMap;

static fCountSM;

public:

SchemaMgr () ;

-SchemaMgr () ;

protected:

int buildTypeMap();

II Build a Map(String, TypeDataPtr) so that data no any type can be

II located from the name of the type. The data to build the Map will

II come A. Prom the data dictionary - This gives superType, subType, and

II attributes of the type.

II and B. Prom the file of Cost Data which will give values of the

II parameters required for the cost functions

(
public:

void printTypeMap();

TypeDataPtr getTypeData(char*); II Argument is a type name.

TypeDataPtr getTypeDataBrr(char*,char*); II 2nd arg is mag

Boolean TDAttrBxistsBrr(char*,char*,char*,TypeData**,int*);

II Access functions required for experiments - parameters are varied

II one by one, specifying the Type and Attribute of the type ••

public:

void Setfan(char*,char*,int);

int Getfan(char*,char*);

void SetD(char*,char*,int);

int GetD(char*,char*);

void SetN(char*,int);

int GetN(char*);

void Setd(char*,char*,int);

int Getd(char*,char*);

void Setr(char*,char*,int);

int Getr(char*,char*);

void SetP(char*,int);

int GetP(char*);

protected:

Boolean PirstBrr(char *mag=NULL); II Set or Read a first time flag.

}; II end class SchemaMgr

page 34 6 May 1993 RepCost

EREQ Query Representation and Cost Model

class TypeData

1*
* The class Cij is designed to contain the data referred to in
* the B.Bertino paper. There is a mapping function using
* Map (USLString, CijPtr) to retrieve to correct
* instance of this class for a particular type name.
*
*1

II Maximum spread in hierarchy, UP or DOWN
#define MAX_FAN 20
II The meta-type uType" may have many children
#define MAX_FAN_TYPB 500

II Maximum number of attributes in a type.
const int MAX_NUM_ATTR = 100;

class TypeData : public SchemaMgr

II allow access by functions in class PathString
friend class PathString;

protected:

II structural data

TypeData *fParent[MAX_FAN]; II superType of this type

TypeData *fChi1d[MAX_FAN]; II subTypes of this type

int fNumParents;

int fNumChildren;

II The attribute array is a struct, since there are several parameters

II which are different for each attribute.

int fNumAttributes;

struct {

char *Name;

char *Type;

int IsSet;

int D; II Parameter 3

int fan; II Parameter 4

int d; II Parameter 5

int r; II Parameter 6

fAttr[MAX_NUM_ATTR];

private:

II Logical Data Parameters

char fTypeName [64] ; II The Bqual type name

int fnc; II members of this type.

int fNij; II Parameter 1

II Physical data parameters

int fPij; II Parameter 2

public:

TypeData(char*); II the argument is the Type Name

-TypeData();

public:

II structural data

TypeData *Parent(int dim) {return fParent[dim]; }

TypeData *Child(int dim) { return fChild[dim]; }

int NumParents() { return fNumParents; }

int NumChildren() { return fNUmChildren; }

II The following functions refer to Attributes of the type

II described by this instance of TypeData.

int NumAttributes() {return fNUmAttributes;

Boolean AttrBxists(char*);

Boolean AttrBxists(char*,int*); II index returned as 2nd arg

char *AttrName(int i) { return fAttr[i].Name; }
char *AttrType(int i) { return fAttr[i].Type; } II T or Set[Tl
Boolean AttrIsSet(int i) { return fAttr[i].IsSet; }

int AttrD(int i) return fAttr[i].D;

RepCost 6 May 1993 page 35

EREQ Query Representation and Cost Model

int Attrfan(int i) { return fAttr[i].fan; } II =1 by default

int Attrd(int i) {return fAttr[i].d; }

int Attrr(int i) {return fAttr[i].r; }

void SetAttrD(int i, int value) { fAttr[i].D = value; }

void SetAttrfan(int i, int value) { fAttr[i].fan = value; }

void SetAttrd(int i, int value) { fAttr[i].d = value; }

void SetAttrr(int i, int value) { fAttr[i].r = value; }

public:

int nc() { return fnc;

int NO { return fNij; } II Parameter 2

void SetN(int value) { fNij = value; }

int PO { return fPij; } II Parameter 3

void SetP(int value) { fPij = value; }

private:

II The following functions get type and attribute information from the

II data dictionary using the functions in OptReptable.c

void readParent(); II read the superTYPe of this type

void readChild(); II not used

public:

void readAttributes(int varFlag=O); II read the attributes of the type

void checkAttrTYPes();

protected:

void addChild(TYPeData*);

void addMember(TYPeData*); II like addChild() but recursive

public:

char *TYPeName() {return fTYPeName; }

public:

int readData();

II read parameters from disk file. Pass the name of the type as

II parameter. This function will be called for each type. This

II returns 0 if successful.

} ;

class TypeDataType
1*

* class TYPeDataTYPe is the same as the TYPeData class except that it contains
* more fields for its children.
*
*1

class TYPeDataTYPe : public TYPeData
private:

TYPeData *fChildT[MAX_FAM_TYPB];

public:

TYPeDataTYPe(char*);

-TYPeDataTYPe();

TYPeData *Child(int dim) {return fChildT[dim]; }

};

page 36 6 May 1993 RepCost

EREQ Query Representation and Cost Model

class PathString

class PathString : public SchemaMgr (
private:

int fn;

char fName [MAJCPATBSTRING_LBN] ;

II NOTE: The first field of this Map is fAttrTD[l] and refers to

II C(l) (which is same as C(l,l». fAttrTD is a 2 dimensional array

II since typedef MapiTDP is itself a Map(int, TypeDataPtr).

/I C(l,l) is fAttrTD[l] [1].

II Note that Attribute A(i) is of type c(i+l,l).

Map(int, MapiTDP) fAttrTD;

TypeData *targetType; 1/ See [BBRT92] pB para 2.2

BxStrategy fBxStrategy;

public:

PathString(char*); II Path begins with an object in the data

II dictionary

PathString(char*,char*); II Arg 2 is Type C(l)

PathString(PathString&); II copy constructor

-PathString();

void parseString(char*);

void addFirstObject(char*);

char *getAndRemoveFirstToken(char*,char*);

void addAttrI(char*); II add type (i) to fAttrTD[*]
int addAttrJ(TypeData*,int*); II add types (j) to fAttrTD[i][*]

int addAttributeToPath(char*); II Atribute name as a string
int addToPath(char*,char*); II Atribute name and type as string
int addToPath2(char*,char*); II Used by addAttrToPath & addToPath

void getAttrType(char*,char*); /1 Args are: Attribute, Type returned.
void printPath2(); II Path with all the type names
void printPath3(); II Path with sub types and names
void printPath4(); II as 3 with parameter data

public:

int n() return fn; }

int len() return fn; }

char *Name() (return fName; II string version of the path
char *attrName(int i);
char *attrName(int i ,char*); II The ith Attribute name from the

II string representation of the
II PathString. ~nd arg is return value.

TypeData *C(int,int); II returns C(i,j)

TypeData *c (int); II returns C(i,l)

TypeData *Cl (); II returns C(l,l)

TypeData *dom() ; II returns C(n,l)

public:

Boolean AttrTDInArray(char*,int);

Boolean AttrTDInArray(char*,int,int);

public:

II COMPUTBD FUNCTIONS based on [BBRT92] and [BBRT9ld]

int RefBy(int,int,int,int);

double Prll(int,int,int);

double Pr12(int,int,int);

int Bl(int,int,int,int);

double PA(int);

int RefByh(int,int,int);

double Prlll(int,int);

double Pr12l(int,int);

int Bll(int,int,int);

int Ref(int,int,int,int);

double Pr2l(int,int,int);

double Pr22(int,int,int);

RepCost 6 May 1993 page 37

EREQ Query Representation and Cost Model

int B(int,int,int);

double Pr31(int,int);

double Pr32 (int, int) ;

double PB(int) ;

int kbar(int,int);

int Refh(int,int,int);

int khbar(int);

double power(char*,double,double); II as pow() with error message.

II physical data parameters

int NI(int i);

int NI2(int i); II for TESTING mode only. Undefined if TESTING

II not defined during compilation.

int NIkl();

int Vl(int);

int V2 (int) ;

int V3 (int) ;

int V4 (int) ;

int targetTYPeIn(int i);

int getCost(BxStrategy); II Argument is Bxecution Strategy

int AP (int i);

int AP2(int i); II for TESTING only

int sumAP(int,int);

int SORT_NI(int i);

int sumSORT_NI(int,int);

int B(int,int,int); /I [Yao77l

int nc (int) ;

int D(int,int);

int D(int) ;

int N(int,int);

int Nh(int) ;

int fan(int,int);

int fan(int);

int d(int, int);

int d lint) ;

int klint,int);

int khlint) ;

int Plint,int);

int Phlint);

int r (int) ;

} ; II end class PathString

page 38 6 May 1993 RepCost

EREQ Query Representation and Cost Model

Appendix B: Function Descriptions

The class layout is as shown on the diagram on page 26. The following paragraphs describe the function of
each class, and the semantics of the class methods.

Note that the functions are not described where they are thought to be self explanatory.

B.1 Query Rep.

B.1.1: class ArcNode : OptRepMetaClass
This class is a superclass for the Node and Arc classes of the query rep.

The main function of this class is to provide functions for accessing the Annotations. In addition there are

functions to keep track of the position of a node or an Arc in the tree (The IDString) and the position of a

Node on the output plot (an X and Y coordinate).

ArcNode();
ArcNode(qTreeType*, ArcNode*)

Arguments are qTreeType node from the "gcl" rep, and a pointer to the parent of class ArcNode.

-ArcNode();

void *GetAnnotation(USLString index)
void SetAnnotation(USLString index, void *value)
Map (USLString,voidPtr) Annotations()

int numAnnotations()

The number of different Annotations.

void SetPathAnnot(PathString*); II put this path only in annot

void AddPathAnnots(vlist*); II Add an annot to this one

void SetCostAnnot(PathString*); II 4 values of cost in annot

void CopyPathAnnot(ArcNode*); II copy another path annot to *this

void COPYCostAnnot(ArcNode*); II copy another cost annot to *this

vlist* CopyPathVList(vlist*);

void freePathVList(vlist*);

The above functions relate to the "path" and "cost" annotations only, and are used to copy the annotations

up the tree as they are built, or calculated..

public:

void PrintAnnotations();

Called by printNodeO to print the Annotations.

RepCost 6 May 1993 page 39

EREQ Query Representation and Cost Model

The following functions keep track of the shape of the tree.
char *IOStr ()

void setIOStr(ArcNode*);
int dimX()

int dimY() { return fOimY; }

void setOimX(int value) { fOimX = value; }

int SiblingNum() { return fSiblingNum; }

B.1.2: class Op : OptRepMetaClass

opO

Empty Constructor

Op(char*, int ,int)

Constructor used when building the rep from the "gcl" rep.

Arguments are Operator Narne, Arity, number of Inputs. Arity is Number of Arguments, Input + Other.

Op(Op&)

Copy constructor.

-Op 0;

char *Name ()

Returns operator narne.

operType operType()

returns operator type, from the enum oper'JYpe. (Opetrype is defined in OptRepIntRep.h.

int ArityO
int NumlnputArguments()
int NumOtherArguments()

int isAttribute()

Returns TRUE if the operator narne is NOT predefined. This is taken to mean that the operator is in fact an

attribute of the previous type. Called by FunctionNode::BuildQueryPathsO and FunctionNode::print

NodeO.

void PrintOp ()

Called by FunctionNode::printNodeO to print out the fields of this class.

page 40 6 May 1993 RepCost

EREQ Query Representation and Cost Model

B.1.3: class Node: ArcNode
1. \

The class Node, has no data fields.
Node ();

Node (qTreeType*, Arc*); II constructor from uGeorge U rep
Node(Node&); II copy constructor

-Node();

virtual Arc *Parent(int) = 0;

Returns the parent Arc of this node.

qTreeType *CreateQueryTree(qTreeType*)

Called by DataNode::CreateQueryTreeO and FunctionNode::CreateQueryTreeO.

B.l.4: class FunctionNode : Node
FunctionNode();

FunctionNode(qTreeType *gTree, DFArc *parentDF)

Constructor from "gcl" rep

FunctionNode(FunctionNode&)

Copy constructor not yet implemented.

-FunctionNode();

Arc *Parent(int d~=O) (return fParent[dim];)

FDArc *Child(int i,int dim=O)

Returns NthInput(i) up to (numlnputsO-l) then returns NthOther(i-numlnputsQ)

DataNode *GChild(int i,int d1m=O)

Returns Child of Child function above. This is a shorthand that skips the Arc class.

The argument dim in the following functions is not used at present.

FDArc *NthInput(int n, int dim = 0);

FDArc *NthOther(int n, int dim = 0);

int numInputs() (return fNumInputs;)

int numOthers() (return fNumOthers;)

void IncInputs(FDArc *newFD);

void IncOthers(FDArc *newFD);

DataNode *ReplaceNthInput(int n, InputDataNode *theNode, int dim = 0);

DataNode *ReplaceNthOther(int n, OtherDataNode *theNode, int dim = 0);

op *Oper() (return fOper;) II because operator is a reserved word in c++

int ChangeOper(op);

Functions relating to the operator of theis FunctionNode. Named Oper because operator is a reserved word

in C++.

RepCost 6 May 1993 page 41

EREQ Query Representation and Cost Model

Boolean BuildQueryPaths(Boolean)

This function will build the "path" and "cost" annotations.
calculated.

In the FunctionNode the cost annotations are

II a function to print the

void PrintNode()

contents of the node

void addJ:DStr()

Creates the ID string by concatenating the correct entry for this node to that of the parent.

qTreeType *CreateQueryTree(qTreeType*)

Used to rebuild a query tree of type qTreeType.

B.1.5: class DataNode : Node
DataNode();

II Takes an EQUAL query as argo 2nd arg is flag to build Paths.

DataNode(USLString, Boolean buildQP=FALSE);

Constructor. Used to create a EREQ query tree from an equal string. This constructor calls the "gel"
function createQueryTreeO and passes the resulting qTreeType tree to the next DataNode constructor. The
fields of the root DataNode are then copied into this DataNode. The second argument is a flag to build
Paths The default is NOT to build the paths. This enables a tree to be built without having the
.TypeCostData file available. (

\

DataNode(qTreeType*)

Constructor taking a "gel" qTreeType as argument. This is used to create a ROOT node.

DataNode(qTreeType*, FDArc*)

Constructor taking a "gel" qTreeType and parent DFArc as arguments. This is used to recursively fonn the
non-root DataNodes in the tree.

-DataNode()

Arc *Parent(int dim = 0)

DFArc *Child(int d~ = 0)

See note regarding dim under FunctionNode.

FunctionNode *GChild(int d~ = 0)

See note regarding GChildO under FunctionNode.

void *Data(int d~ = 0)

void SetData(void *data, int dim = 0)

The above functions refer to the data field of the DataNode. This has not yet been used.

page 42 6 May 1993 RepCost

EREQ Query Representation and Cost Model

char *DataType()

void SetDataType(char *dataType)
char *Name ()

void SetName(char *name)

void Splice(DataNode *theNewNode); II splice the new Node in for this node

This function not yet implemented.

Boolean IsMultivalued()

int NumValues()

The above two functions refer to the "size" of a set, if the type of the data is multivalued (ie a SET).

Boolean IsLeafNode()

Boolean IsLocalVar() II Does this node represent a local variable

If the variable is in the avail list, it is a Local Variable.

Boolean IsGlobalVar()

A DataNode is assumed to be a global variable if it is not a local variable.

Boolean BuildQueryPaths(Boolean)

This function will build the "path" and "cost" annotations. In the DataNode the PathString's are built.

void PrintNode()

A function to print the contents of the node

void addIDStr ()

void copyPields(DataNode*)

Called by the constructor DataNode(USLString,Boolean) after a secondary node has been used to build a

new query tree.

qTreeType *CreateQueryTree(qTreeType* QTN=NULL);

Recursively rebuilds the qTreeType tree from the EREQ rep (This rep). With no argument, builds a root

node.

B.1.6: class InputDataNode : DataNode
InputDataNode(qTreeType*, PunctionNode*, PDArc*)

-InputDataNode()

B.1.7: class VlnputDataNode : InputDataNode
VlnputDataNode(qTreeType*, PunctionNode*, PDArc*)

-VlnputDataNode()

B.1.8: class CinputDataNode : InputDataNode
ClnputDataNode(qTreeType*, PunctionNode*, PDArc*)

-ClnputDataNode()

RepCost 6 May 1993 page 43

EREQ Query Representation and Cost Model

B.1.9: class OtherDataNode : DataNode
OtherDataNode(qTreeType*, FunctionNode*,

-OtherDataNode()

FDArc*)

B.1.10: class Arc: ArcNode
Arc (qTreeType*, Node*)

-Arc ()

B.1.11: class DFArc : Arc
FDArc ()

FDArc(qTreeType*, FunctionNode*)

-FDArc ()

The argument dim in the following applies to the dimension and is always set to zero.
FunctionNode *Parent(int d~ = 0)

DataNode *Child(int d~ = 0)
void SetChild(DataNode*,int d~ = 0)

void MakeChild(qTreeType*, FunctionNode*)

This function decides whether the grand child is a VInput, CInput or Other DataNode. (
i\

Boolean BuildQueryPaths(Boolean)

Called by DataNode::BuildQueryPaths. Copies the Annotations from its child to itself.

void addIDStr ()

See FunctionNode: :addIDStrO.

B.1.12: class FDArc : Arc
The functions for FDArc are similar to DFArc, but returning different types. Refer to the listings above.

page 44 6 May 1993 RepCost

1

(
\

EREQ Query Representation and Cost Model

B.2 Schema Manager

B.2.1: class SchemaMgr : OptRepMetaClass
void

SchemaMgr::buildTypeMap()

Called by SchemaMgr constructor. The class SchemaMgr is a virtual class, so the constructor is only called

by the sub elasses DataType and PathString.

Builds an associative array of type Map(USLString, TypeDataPtr). The type information for this array

comes from the "gel" data dictionaries.

void

SchemaMgr::printTypeMap()

Called by the user.

Prints out details of all instances of TypeData in the TypeMap array.

TypeDataPtr

SchemaMgr::getTypeData(char*)

Argument is the type name.

Called by any function requiring access to details of a specific Type.

Returns a pointer to the specific instance of TypeData.

TypeDataPtr

SchemaMgr::getTypeDataErr(char*, char*)

Second argument is an error message.

Functionality as getType DataO above, but prints an additional error message if the type is not found.

Boolean

SchemaMgr::TDAttrExistsErr(char*, char*, char*, TypeData**, int*)

Arguments are (input) Type name, attribute name, error message.

(Output) Pointer to specified TypeData and index to the specified attribute.

Called by access functions which need data relating to a specific attribute of the type. If TRUE then the

type instance and index of the attribute in that type are returned.

Returns TRUE if the specified attribute of the specified type is found, else returns FALSE.

Access functions are provided which supplement the PathString access functions. These provide access to
the cost parameter fields in instances of TypeData by reference to their names. The first two Get functions
take argument of Type name, and the rest take type name, attribute name. The Set functions take the
same arguments plus a value as the last argument.

RepCost 6 May 1993 page 45

EREQ Query Representation and Cost Model

int SchemaMgr::GetN(char*) void SchemaMgr::SetN(char*, int)

int SchemaMgr::GetP(char*) void SchemaMgr::SetP(char*, int)

int SchemaMgr::GetD(char*,char*) void SchemaMgr::SetD(char*, char*, int)

int SchemaMgr::Getfan(char*,char*) void SchemaMgr::Setfan(char*,char*, int)

int SchemaMgr::Getd(char*,char*) void SchemaMgr::Setd(char*, char*, int)

int SchemaMgr::Getr(char*,char*) void SchemaMgr::Setr(char*, char*, int)

Boolean

PirstErr(char* msg=NULL)

If called with an argument, the static field in the function is set to TRUE and returns FALSE. The next call

returns TRUE, subsequent calls return FALSE.

8.3 Cost Functions

B.3.1: class TypeData : SchemaMgr
An instance of the class exists for each type in the data schema. The class contains data on both the type
realationships, or structure of the schema (ie superclass(es) and subclass(es)), and cost data. A structure
array is provided in the class to store details relating to each attribute.

TypeData::TypeData(USLString)

This is the standard constructor for an instance of the DataType class. The argument is a type name. This is

called by the function SchemaMgr: : buildTypeMap () .

char*

TypeName ()

Returns the name of this type.

The following functions return super type and sub type repectively.

TypeData* TypeData::Parent(int)

TypeData* TypeData::Child(int)

The following functions are self explanatory.

int TypeData::NumParents()

int TypeData::NumChildren()

int TypeData::NumAttributes()

TypeData::readData()

Called by SchemaMgr::build1)'peMapO.

Reads the file of cost data, looks for this type name, and attribute names, and reads in the relevant type cost

parameters.

Boolean

TypeData::AttrExists(char*)

Returns TRUE if the type has an attribute of the name specified.

page 46 6 May 1993 RepCost

EREQ Query Representation and Cost Model

Boolean

TypeData::AttrExists(char*, int*)

As above, but returns the index of the attribute in the second argument.

The following access functions relate to fields of each attribute. The first three fields may only be set from
inside an instance of TypeData.

char* AttrName(int i)

char* AttrType(int i)

Returns the type of the attribute. The type may be "Set[T]" or "T", depending on whether the type is multi

valued.

Boolean AttrIsSet(int i)

Returns TRUE if this attribute is multivalued.

int AttrD(int i) void SetAttrD(int i, int value)

int Attrfan(int i) void SetAttrfan(int i, int value)

int Attrd(int i) void SetAttrd(int i, int value)

int Attrr(int i) void SetAttrr(int i, int value)

TypeData: : nc ()

Returns the number of members of the type hierarchy based at this type, including this type.

The following functions are access functions for the cost parameters N (Cardinality) and P (Number of

disk pages used by the type).

int NO void SetN(int value) { fNij = value; }

int PO void SetP(int value) { fPij = value; }

void readAttributes(int varFlag=O); II

Read the attributes of the type from the "gel" data dictionaries.

Called by the TypeData constructor, and, for VARIABLE only, called by buildTypeMapO.

void checkAttrTypes()

Checks to see if the attributes of this type exist in the typeMap.

RepCost 6 May 1993 page 47

EREQ Query Representation and Cost Model

The following are private functions that get type and attribute infonnation from the "gel" data dictionaries
using the functions in OptReptable.c
void readParent()

Reads from the table of types in .type_dict. to find super type(s). If a parent is found in the table, the par
ent's functions addChildO and addMemberO are called to add this instance as a sub type of the super type.
Called by TypeData constructor.
void readChild()

Returns sub types of this type. This is not used, since the sub types are aften not in the table when the con
structor is called.

The following are protected functions:
void addChild(TypeData*)

Increments the field tNumChildren, and adds the calling type to the array of fChildren.

Called by a sub type of the type.
void addMember(TypeData*); II like addChild() but recursive

Called by a sub type (or lower) of the type. See readParentO above.

B.3.2: class TypeDataType : TypeData
Only one instance of this class exists. It is for the meta-type ''Type''. The difference between this type and
DataType is that this has a larger array for its sub types.

page 48 6 May 1993 RepCost

I

EREQ Query Representation and Cost Model

B.3.3: class PathString : SchemaMgr
PathString constructors:

Pathstring(char*)

Argument is the name of a variable in the data dictionary. [Note. The constructor needs to be revised to use

SchemaMgr functions rather than OptRepTable functions.]

PathString(char*,char*)

Argument 1 is a variable name, argument 2 is the type of the variable. This constructor is used when the

variable is a temporary variable declared in the tree. This is, I think, the closest to the Bertino model.

PathString(Pathstring&)

Copy constructor.

-PathString();

Destructor.

void parseString(char*)

Input argument is a path string as a string.

The assign an instance of TypeData to each Attribute in the path.

Called by PathString::PathString(char*, char*) and PathString::PathString(char*).

void addPirstobject(char*);

Input argument is a path string as a string.

This assumes that the first object in the path is a variable in the data dictionary, and starts the PathString

with this variable and its type.

Called by PathString::PathString(char*).

char *getAndRamovePirstToken(char*,char*);

Input argument is a path string as a string.

Output argument is the token from the front of the string. Note that the string is returned without the first

token.

Called by parseStringO, addFirstObjectO , attrNameO.

void addAttrI(char*)

Input argument is a type name, may be of the fonn Tor Set[T].

Adds the type T and its sub classes to the array fAtttfD using addAttrJO.

Called byPathString(char*,char*), addFirstObjectO, addToPath20.

int addAttrJ(TypeData*,int*); II add types (j) to fAttrTD[i] [*]

Input arguments are the type to be added and the current number of types in this hierarchy, index j.

Add the TypeData to the array fAtttfD as the next jth entryand increment the number of types in this hier

archy. This is the only place that an addition is made to fAtttfD.

Called by addAttrIO, addAttrJO.

RepCost 6 May 1993 page 49

EREQ Query Representation and Cost Model

int addAttributeToPath(char*)

Input argument is attribute name. as a string.

Adds the named attribute to the end of the PathString.

Called by parseStringO.

int addToPath (ehar*, ehar*)

Arguments are attribute name and type name.

The named attribute and its type are added to the path.

NOT Called.

int addToPath2(ehar*,ehar*);

Arguments are attribute name and type name.

The named attribute and its type are added to the path.

Called by addAttributeToPathO, addToPathO.

void getAttrType(ehar*,ehar*);

Input argument is attribute name,

Output argument is attribute type.

Reads the last attribute name in the string representation of the path, and looks for this type in the

• type_diet. [Note. This needs to be revised to use the Schema Manager. functions]

Called by addAttributeToPathO, addToPathO.

The following three print functions print the path to the standard output in increasing detail.

void printPath2()

Print Path and its types on one line. No sub-types shown.

void printPath3(); II Path with sub types and names

Print Path and its types and sub types..

void printPath4(); II as 3 with parameter data

Print Path and its types and sub types.. This version prints in a verbose fonn all the parameters used for cal

culating the cost of the path.

page 50 6 May 1993 RepCost

EREQ Query Representation and Cost Model

int nO

Returns the length of the path. Field fn.

char *Name ()

Returns the path as a string.

char *attrName(int i);

Input argument is the number of the attribute in the path.

Output argument is the attribute name.

Returns the ith Attribute name from the PathString.

char *attrName(int,char*)

As above, but output argument is the attribute name returned.

TypeData *C(int,int); II returns C(i,j)

TypeData *C(int); II returns C(i,l)

Input arguments are indices into the array fAttrTD, i,j.

The above functions return an instance of TypeData from the array fAttrTD. The second returns C(i, I), the

root of the hierarchy based at CO, 1).

TypeData *dom()

The Domain of the path, as described by Bertino. Returns C(n,I).

(

Boolean AttrTDlnArray(char*,int);

First argument is a message to identify the caller. The second argument is index i into the array fAttrTD.

This checks to see if the array fAttrTD[i] exists.Returns TRUE if found. Prints an error message and

returns FALSE if not found. [Note that fAttrTD is a two dimensional array.]

Called by all functions that access the array fAttrTD.

Boolean AttrTDlnArray(char*,int,int);

Similar to AttrTDlnArray above, but the third argument is index j into the array fAttrTD. This therefore

checks to see if the element fAttrTD[i][j] exists.

The following are COMPUTED FUNCTIONS based on [BERT92] and [BERT91d]
For details of the functions it is necessary to read the papers.

int getCost(ExStrategy)

This function calculates the cost in disk acces of accessing the path given in this instance of PathString.

The argument is the execution strategy as described in the text. See paragraph 3.4.9 Execution Strategy on

page 14.

RepCost 6 May 1993 page 51

EREQ Query Representation and Cost Model

The first function in each of the following groups is one called by the getCostO function or a secondary
function of getCostO.. The following in each group are called by the first function.

int RefBy(int,int,int,int);
double Prll(int,int,int);

double Pr12(int,int,int);
int El(int,int,int,int);

double PA(int);

int RefByh(int,int,int);

double Prlll(int,int);

double Pr121(int,int);

int Ell(int,int,int);

int kbar(int,int);

int khbar(int);

int Ref(int,int,int,int);

int Refh(int,int,int);

double Pr21(int,int,int);

double Pr22(int,int,int);

int E(int,int,int);

double Pr31(int,int);
double Pr32(int,int);

double power (char*, double, double)

This function is the same as the math library powO, but prints an error message if it detects a domain error.

II Physical data parameters

int NI(int i);

int NI2(int i);

int NIkl();

Nwnber of records to be searched for. The function is divided for TESTING purposes only, to enable an

intermediate result to be printed. See also APO below. NIklO calculates NIO when the argument k==l.

int Vl(int);

Called by NI(k) in case NLRT.

int V2(int);

Called by NI(k) in case NLRT and SORT.

int V3(int);

Called by NI(k) in case SORT.

int V4(int);

Called by AP(k) in case SORT

Argument to each of the above 4 functions is k. 1<=k<=nO. They are called by NI(k) or AP(k) as shown.

page 52 6 May 1993 RepCost

EREQ Query Representation and Cost Model

int targetTypeln(int i);

Returns TRUE if the targetType is a member of the type hierarchy i.

int AP(int i);

int AP2(int i);

int sumAP(int,int);

Describes the number of accessed pages. The function is divided into APO and AnO at TESTING stage

only. sumAPO sums APO over a range.

int SORT_NI(int i);

Calculates the number of disk accesses required to sort the records. Argument is int k, 1<=k<=n.

int sumsoRT_NI(int,int);

Sums the above over several class hierarchies.Arguments are i,j. 1<=i<=j<=n.

int H(int,int,int);

This function is based on the paper [YA077]. It describes the "hit rate" achieved when searching for

records on the disk. Arguments are k, the number of records being searched for, m, the blocks containing

the n records, and n, the number of records to be searched.

int nc(int);

Number of types in the hierarchy based at C(i,l). Argument is int i. 1<=i<=nO.

(
\

The following 13 functions are access functions as described in [BERT92]. For the description of each one.
see Figure 4: Cost Parameters (continued) on page 17.

int D(int,int);

int D(int);

int N(int,int);

int Nh(int);

int fan(int,int);

int fan(int);

int d(int,int);

int d (int) ;

int k(int,int);

int kh(int);

int P(int,int);

int Ph(int);

int r (int) ;

The next six functions are Setting functions for the 6 cost parameters that are settable. The names are not
SetNO etc, since this would hide the declaration of SetNO in class 'JYpeData. The arguments of each one

RepCost 6 May 1993 page 53

EREQ Query Representation and Cost Model

are int i, int j, and int vlaue. The i and j refer to the 2 dimensions of the PathString type array; 1<=i<=n,

1<=j<=nc.

void SetD(int,int,int);

void SetN(int,int,int);

void Setfan(int,int,int);

void Setd(int,int,int);

void SetP(int,int,int);

void Setr(int,int,int);

B.3.4: Functions in file OptRepTable.c
The following functions from OptRepTable.c are used by the classes in files OptRep and OptRepCost, and
were written as part of this project. For descriptions of the API functions provided by gel, see the paper
"Documentation for the Query Tree Interface".

char *getTypeFromset(char*,char*); /* by acm */

Input arguments is type name, possibly as Set[T].

Output argument is type name T.

int typeIsSet(char*); /* by acm */

Input arguments is type name, possibly as Set[T]

Returns TRUE if Set[T] or List[T].

int typeExists(char*)

Argument is type name.

Returns TRUE if type exists in .type_dict.

int attributeExists(char*,char*)

Input arguments are type name, attribute name.

Returns TRUE if the attribute exists.

char *getAttribute(char*,int,char*,char*)

Input arguments are type name and index.

Output arguments are attribute name and attribute type. This type may be of the fonn ''T'' or "Set[T]".

Returns attribute name.

char *getAttributeType(char*,char*,char*)

Input arguments are type name and attribute name.

Output argument is attribute type.

Returns attribute type.

int objectExists(char*)

Argument is a variable name.

Returns TRUE if the named variable exists in .data_dict.

page 54 6 May 1993 RepCost

EREQ Query Representation and Cost Model

ehar *getObjeetType(ehar*,ehar*,int)

Input argument is a variable name in .data_dict..

Output arguments are type nae and Boolean variable which is TRUE if the type is a set.

void readText()

Read a data schema written in a text file and put the data into the data dictionary files •type_diet,

.attr_diet and •data_diet. This enables a data schema to be input far more easily than the previ

ous method, in which each type, attribute and variable had to entered separately.

The following three functions all retrieve data from the gel data dictionaries.

ehar *getObjeetFromTable(int, ehar*)

Input argument is index into the variable table of the data dictionary.

Output argument is variable name. (Object refers to a variable).

Read the .data_diet and return the indexed entry. The variable name is returned.

ehar *getTypeFromTable(int, ehar*)

Input argument is index into the type table of the data dictionary.

Output argument is type name.

Read the .type_diet and return the type field of the indexed entry. The type name is returned.

ehar *getSuperTypeFromTable(int, ehar*);

(Input argument is index into the type table of the data dictionary.
\

Output argument is a type name from the super type field of the type dictionary.

Read the •type_diet and return supetrype field of the indexed entry. The super type name is returned.

Appendix C: Emacs conversion function o2-equal-conv.
The following emacs lisp function "o2-equal-eonv" can be used to convert a query in the 02 syntax as
written in the file test-queries to the form used by the optimizer parser. The usage is described in the
listing.

The file name is o2-equal-eonv.el and is in the Rep/altair directory.

/1 02-equal-conv.el

// To convert from 02 to Bqual.

// 1. lambda (x) ---> $x
// 2. M:m,T: ---> (M,m),T,

// 3. IN ---> memberof

1/ 4. AND ---> &

II S. = ---> ==

;;---
(defun 02-equal-conv ()

"Convert 02 syntax query to Bqual syntax"

(interactive)

(setq close-b (string-to-char ")" »

(save-excursion

(while (not (eq (point) (point-max»)

(02-equal-conv-lambda)

(forward-char)

)

)

(save-excursion

RepCost 6 May 1993 page 55

EREQ Query Representation and Cost Model

(while (not (eq (point) (point-max»)

(o2-equal-conv-colon)

(forward-char)

)

)
(save-excursion (replace-string H[H "(H»
(save-excursion (replace-string H]" H}"»
(save-excursion (replace-regexp "AND" "&H t»
(save-excursion (replace-regexp "INH "memberof" t»
(save-excursion (replace-regexp "=" "==" t»
(save-excursion (replace-string "." "@"»
)

(defun beginning-sexp ()

~ove point to parenthesis at start of current balanced expression."

(interactive)

(setq open-bl (string-to-char "(" »

(setq open-b2 (string-to-char "[" »

(setq open-b3 (string-to-char "(" »

(while (not (or (char-equal (preceding-char) open-bl)

(char-equal (preceding-char) open-b2)
(char-equal (preceding-char) open-b3)
)

(backward-sexp)
)

(forward-char -1)
)

(defun o2-equal-conv-lambda ()

"Replace lambda (x) with $x"

(interactive)

(setq close-b (string-to-char ")" »

(setq comma (string-to-char "," »

(cond «and « (point) (- (point-max) 7»

(string-equal (buffer-substring (point) (+
(point) 7»

"lambda (" »

(delete-char 7)

(insert H$H)

(while (not (char-equal (char-after (point» close-b»

(forward-char)
(cond «char-equal (char-after (point» comma)

(delete-char 1) 11 in case of >1 variable
(insert "$"») 11 replace "," with "$"

)
(delete-char 1)
)

)

(defun o2-equal-conv-colon ()

"Replace X:x,Word()I with (X,x), (Word(), OR Xlx,Word()I with (X,x), (Word,"

(interactive)

(setq colon (string-to-char "I" »

(cond «char-equal (char-after (point» colon)

(setq this-point (point»

(backward-wsexp)

(insert "(H)

(forward-wsexp)

(delete-char 1) (insert ",")

(forward-wsexp)

(delete-char 1) (insert "),(")

(save-excursion

(beginning-sexp) (forward-sexp) (forward-char
1) (insert ")")

(forward-wsexp)

(while (not (char-equal (char-after (point» colon»

(forward-char))

(delete-char 1)

(insert ",")

)

)

(defun forward-wsexp ()

"move forward a word, or if word followed by (, forward to end of)."

page 56 6 May 1993 RepCost

EREQ Query Representation and Cost Model

(interactive)

(setq open-b (string-to-char "(M »

(forward-word 1)

(cond «char-equal (char-after (point» open-b)

(forward-sexp)
»

(defun backward-wsexp ()

"move backward a word, or if word followed by (, backward to end of).n

(interactive)

(setq close-b (string-to-char ")n »

(cond «char-equal (preceding-char) close-b)

(backward-sexp)
»

(forward-word -1)

)

;; End of o2-equal-conv.el
ii---

Appendix D: Experimental Results

The following pages illustrate the experiments carried out using the cost model. A description of these
experiments is in the text. See section 4.0 "Experiments" on page 16.

(

RepCost 6 May 1993 page 57

EREQ Query Representation and Cost Model

Cost x leT' Experiment 1.1.1
NIFT

1.10 N'LRT
- I + I SOFT ~ 1/1.00 I SDRT

- I '/0.90

l /0.80

'__ I
I

I
I

I I

0.70

_ I I /V 1

0.60

I

I I

'0.50

V

DAD 1/1

, I I
]1
• 11 •••••••• •••• 11 •••••••••• 11 ••• 11 ••••

0.30
. ·,·1········, .. .

_ I ••••• v·······.········.'··.'.~'.'.'.

0.20 I' 1

~ I I I t
0.10

0.00 - I

I I i II I t - N
0.00 20.00 40.00 60.00 80.00 100.00

File: "plotAllOl0l.txt".

Parameter Cost Cost Cost Cost
N NLFT NLRT SDFT SDRT

10 110 242 100 329

20 220 252 100 329

30 330 262 100 329

40 440 272 100 329

50 550 282 100 329

60 660 292 100 329

70 770 302 100 329

80 880 312 100 329

90 990 322 100 329

100 1100 332 100 329

page 58 6 May 1993 RepCost

---------- ---------- ----------

EREQ Query Representation and Cost Model

Cost x 103 Experiment 1.1.2
NI:FT

10.00

/
/

/
/

/
/

/
/

/
~------.................... --------_..

NLRT
'SOFT
SDRT9.00

8.00

7.00

6.00

5.00

4.00

'<
3.00

2.00

1.00

0.00

fan
0.00 20.00 40.00 60.00 80.00 100.00

Parameter C08t C08t C08t C08t
fan NLFT NLJlT SDPT SDRT

0 100 332 100 329
11 1200 332 100 329
22 2300 332 100 329
33 3400 332 100 329
44 4500 332 100 329
55 5600 332 100 329
66 6700 332 100 329
77 7800 332 100 329
88 8900 332 100 329
99 10000 332 100 329

RepCost 6 May 1993 page 59

EREQ Query Representation and Cost Model

,

Cost x 103 Experiment 1.1.3
NrFT

1.10

...... """"""""""""" r- i'o

NLRT
SOFT

1.00 SORT

0.90

0.80

0.70

0.60

0.50

0040 (
\,

0.30

0.20

0.10

0.00

D
0.00 50.00 100.00 150.00 200.00

Pile: NplotAllOl03.txt".

Parameter Cost Cost Cost Cost
D NLPT NLRT SDPT SDRT

40 1100 332 100 329
57 1100 332 100 329
74 1100 332 100 329
91 1100 332 100 329

108 1100 332 100 329
125 1100 332 100 329
142 1100 332 100 329
159 1100 332 100 329
176 1100 332 100 329
193 1100 332 100 329

page 60 6 May 1993 RepCost

EREQ Query Representation and Cost Model

:I~ Cost x lrf Experiment 1.1.4
NCFT

1.10

"' "II'''' "" " ... "". " ~

M..RT
SOFT

1.00 'Sm~.T

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

d
0.00 20.00 40.00 60.00 80.00 100.00

Pile: "plotAllOl04.txt".

Parameter Cost Cost Cost Cost
d NLP'l' NLR'l' SDP'l' SDR'l'

20 1100 332 100 329
28 1100 332 100 329
36 1100 332 100 329
44 1100 332 100 329
52 1100 332 100 329
60 1100 332 100 329
68 1100 332 100 329
76 1100 332 100 329
84 1100 332 100 329
92 1100 332 100 329

100 1100 332 100 329

RepCost 6 May 1993 page 61

EREQ Query Representation and Cost Model

Cost x 103 Experiment 1.1.5
NI:FT

1.10~ I I \ I ~m.RT
5DFT

1.00 ---J I I I I L SDRT

0.90 I ',',

0.80 I "

0.70 I I

0.60 -+I-------t-----t------t--------+------+-

0.50 I "

0.40 I " /
\

....................
 ..._ ~~~

0.30 .. ". "1'1"""·""
••••• 1 •••••••••

II "11'1'1'1'"

.1 •••• ·'·······,·,

0.20 I I I,

0.10 _
I

0.00
1~ r-'-"_._._._._._._._._._._••_._._·_·_·i·..·······..···..···L.·······..··..·····~· ..·· ,

I f-
p

0.00 .20.00 40.00 60.00 80.00 100.00

File: "plotAll0105.txt".

Parameter Cost Cost Cost Cost
P NLFT NLRT SDFT SDRT

20 1100 332 20 249
28 1100 332 28 257
36 1100 332 36 265
44 1100 332 44 273
52 1100 332 52 281
60 1100 332 60 289
68 1100 332 68 297
76 1100 332 76 305
84 1100 332 84 313
92 1100 332 92 321

100 1100 332 100 329

page 62 6 May 1993 RepCost

EREQ Query Representation and Cost Model

Cost x 103

ExperiIDent 2.1
NLFT (r=O

20.00 I •••••••••••••••••••, •••••••••••••••••••••••• ~ ••••••••• 1' rrr~r!':'~:':":':':':-':':::':":'::::::::1	 ~~~~~~
NLRT (r=l
Cost: x 10

18.00 I I

16.00 I "	 I

14.00--+1----------1---------+-----------1---------+

12.00 I	 I I " "

10.00 1 I

I8.00 --11---------t--------+---------~-------J-
6.00 1 I,	 I "

I4.00 I I

2.00 I Ii

o_~) , :I I
N

0.00 :50.00 100.00 1S0.00 200.00

ExperiIDent 2.1
500.0<:1 ,	 I I I I ~g~ ~~;;:;'i

SORT (r=OI ~_SORT (r==f
450.00

400.00

(

\ _"i50.00

~ 3()().OO,..;;

250.00

200.00

150.00

100.00

50.00

0.00

I N
0.00 :50.00 100.00 1S0.oo 200.00

File name:	 uplotAll020l.txt n •

Calculating C08t8 of path: City.place8_to~o.addre88.8treet.
Changing parameter N for All): Namezplace8_to~ol type=Place_tg.

Parameter C08t C08t
N NLFT NLRT

r=O r=l r ..O r=l

10 2100 2100 20197 20157
31 2100 2100 20218 20157
52 2100 2100 20239 20157
73 2100 2100 20260 20157
94 2100 2100 20281 20157

115 2100 2100 20302 20157
136 2100 2100 20323 20157
157 2100 2100 20344 20157
178 2100 2100 20365 20157
199 2100 2100 20386 20157

C08t C08t
SDFT SDRT
r ..O r ..1 r=O r=l

-2147483486-2147483486 482 255
-2147483486-2147483486 482 255
-2147483486-2147483486 482 255

333 333 482 255
295 295 482 255
281 281 482 255
273 273 483 255
268 268 483 255
265 265 484 255
262 262 484 255

RepCost 6 May 1993	 page 63

EREQ Query Representation and Cost Model

Cost x 103

Experin:aent 2.3
NLF'T" (r=O

NLRT (r=120.00=1 • • ..····r··.. ·······~,. t= ~~?~.:.~~
18.00 '\ Cost x 10

\
16.00 I ':

\.
14.00 I \

12.00 I \ "

10.00 I	 I, \':::'::"'r:"::::::"::::::"::"'::::': I

,8.00 I ,

6.00 I "

4.00 I	 I

2.00 ---ll-----~---+--------+---------+--

0.00 _-+1------------1----------+----------+--
D

0.00	 50.00 100.00 150.00

Experin:aent 2.3
500.00	 I I I SOFT (r=O

SOFT (r=1

SORT (r=O

450.00 I I ~~~T (r= 1

400.00 I	 "

350.00 I l l	 I
\:::j ·~==f=:=:·~E	
(

150.00----IIf-------------+------------+------------t---

100.00_-+1 --,-- +--	 -+- --+ _

50.00 I "

0.00 I	 "
D

0.00	 50.00 100.00 150.00

File name:	 "plotAll0203.txt".
Calculating costs of path: City.places_to~o.address.street.
Changing parameter 0 for type places_to~o.

Parameter Cost Cost Cost Cost

0 NLFT NLRT SOFT SORT

reO r=l reO r=l rcO r=l rcO r=l

31 2100 2100 20387 20157 201 201 345 255

44 2100 2100 20387 20157 214 214 345 255

57 2100 2100 20387 20157 227 227 345 255

70 2100 2100 20387 20157 240 240 345 255

83 2100 2100 10387 10156 253 253 345 255

96 2100 2100 10387 10156 266 266 345 255

109 2100 2100 10387 10156 279 279 345 255

122 2100 2100 10387 10156 292 292 345 255

135 2100 2100 10387 10156 305 305 345 255

148 2100 2100 10387 10156 318 318 345 255

page 64	 6 May 1993 RepCost

•••••••••••••••••••••

EREQ Query Representation and Cost Model

Cost x 103

Experi.uent: 2.4
NLFT(r=O

20.00 NLFT (r= 1
NLR.T (r=O
NLR.T (r=l

18.00 COS~ x 10

16.00--t------------t----/-------+-------------+-----------+_-

14.00--t------------t----JL-------+-------------+-----------+_-

12.00--t--------------l[-Jf---------+-----------+------------I--

10.00 I I

8.00 I " " I

6.00 I I

4.00 I "

2.00 I 'i 'i 'i

0.00 I I
d

0.00 50.00 100.00 150.00 200.00

Experi.uent: 2.4
500.00 I	 I I I I SOFT (r=O

450.00 I'
i

400.00

(
350.00

300.00

250.00

200.00

150.00
f'7

~---/

100.00

50.00

0.00

I

SOFT (r=1
SOR.T (r=O

'"SOR.T(r=l
i COS~

d
0.00 50.00 100.00 lSO.OCJ 200.00

Pile name:	 "plot0204.txt".
Calculating costs of path: City.places_to~o.address.street.

Changing parameter d for type places_to~o.

Parameter Cost Cost Cost Cost
d NLPT NLRT SDPT SDRT

r=O r=l r=O r=l r ..O r=l r ..O r=l

40 2100 2100 10387 10156 235 235 355 255

57 2100 2100 10387 10156 172 235 355 255

74 2100 2100 20387 20157 235 235 355 255

91 2100 2100 20387 20157 235 235 355 255

108 2100 2100 20387 20157 235 235 355 255

125 2100 2100 20387 20157 235 235 355 255

142 2100 2100 20387 20157 235 235 355 255

159 2100 2100 20387 20157 235 235 355 255

176 2100 2100 20387 20157 235 235 355 255

193 2100 2100 20387 20157 235 235 355 255

Pile name:	 "plot0205.txt".
Calculating costs of pathl City.places_to~o.address.street.

RepCost 6 May 1993	 page 65

•••••••••••••••••••••••

Cost x 103

EREQ Query Representation and Cost Model

ExperiIIllen t: 2.5
NLFT (r=D

20.00 I if!,; if;; i i.i; ;ii;;;;; ; iii! ;j;:I=- i:ii iii;;;;; ji::j ;i::: ;~i;iiii:'iii i iii; iii; i; ~~~~::~
NLR..T (r=I

Is.OO--+I--------+--------+--- + Cost. x+-_ 10

16.00--+1--------f--------+ -+ ---__

14.00 I I "

12.00 I I I "

10.00 I I

8.00 I - I

6.00 --II--------+--------+---------+--------+-

4.00 I "

2.00 ---1I---------!---------!---------!r-------~j_-

0.00 I I
0.00 50.00

500.00

450.00

400.00

350.00

....-.....
300.00 I

250.001 :j::::" 0"

200.00 I I

150.00 I

100.00 I

50.00 I '.

0.00 I
0.00 50.00

I
p

100.00 150.00 200.00

ExperiIIllent: 2.5
SOFT (r=O
SOFT (r=1

••••• SORT (r=O
•••••• SORT (r=1

._••••_ .- Cost. ..,
.--_•••--_.-.

"

0" 0.0 .. 0 .. 0 or" 0 I I....... 0 II.....

I

"

"

I

I
p

100.00 150.00 200.00

Changing parameter P for type places_to~o.

Parameter Cost Cost Cost Cost
P NLFT NLRT SDFT SDRT

reO r=l reO r=l reO r=l reO r=l

40 2100 . 2100 20387 20157 220 220 324 255
57 2100 2100 20387 20157 229 229 341 255
74 2100 2100 20387 20157 236 236 358 255
91 2100 2100 20387 20157 242 242 375 255

108 2100 2100 20387 20157 246 246 392 255
125 2100 2100 20387 20157 250 250 409 255
142 2100 2100 20387 20157 254 254 426 255
159 2100 2100 20387 20157 256 256 443 255
176 2100 2100 20387 20157 259 259 460 255
193 2100 2100 20387 20157 261 261 477 255

page 66 6 May 1993 RepCost

EREQ Query Representation and Cost Model

References

[BERT92] Bertino, E., Foscoli, P. An Analytical Model of Object-Oriented Query Costs. Ii,
March 30 1992.

[BERT93] Bertino, E., Foscoli, P. On Modeling cost functions for object-oriented databases.
January 20, 1993.

[MITCH91] An Architecture for Query Processing in Persistent Object Stores. Gail Mitchell,
Stanley B. Zdonik:, Umeshwar Dayal, June 1991.

[MITCH93] Extensible Query Processing in an Object-Oriented Database. Doctoral Thesis by
Gail Mitchell April 1993; Chapter 7 titled Internal Query Representation.

[L092] Query Tree Interface, Report on OODB Query Optimizer, by George C. Lo,
February 1992.

[Ya077] Yao, S. B. Approximating block accesses in database organisations. ACM Comm.
Vol 20, N. 4 (1977), 260-261.

(

RepCost 6 May 1993 page 67

