
BROWN UNNERSITY

Department of Computer Science

Master's Thesis

CS-93-M18

"Local Database Support for Long-Tenn Multidatabase Transactions"

by

Ming-Tsung Lu

Local Database Support

for

Long-Term Multidatabase Transactions

by

Ming-Tsung Lu

B.A., Soochow University, Taiwan 1990.

Submitted in partial fulfillment of the requirements for the Degree of Master of

Computer Science in the Department of Computer Science at Brown University

May, 1993

Local Database Support for Long-Term Multidatabase Transactions.

Local Database Support

for

Long-Term Multidatabase Transactions

by

Ming-Tsung Lu

B.A., Soochow University, Taiwan 1990.

Abstract
This paper presents the interface between the Mongrel prototype multidatabase system and its
local database systems. The multidatabase supports long-term planning transactions that are reac
tive to the changes in the real world. The interface supports operations on heterogeneous data
bases that enforce local database autonomy. The data model and operations of the local databases
have to be encapsulated to the multidatabase users. The Multidatabase has to be informed of all
the relevant changes made to the local databases. This paper describes the design of a general-pur
pose interface, which is implemented on top of an Object-oriented Database called ObjectStore.

Page 1of 16Ming-Tsung Lu

Local Database Support for Long-Term Multidatabase Transactions.

1. Statement of Contributions

In this project, we designed and implemented the interface between the multidatabase system and

the local database systems and assisted the integration of the entire system.

The components of the interface we designed and implemented include:

* Activator.

* Global Subtransactions.

* Jump Vector

* Local Database Schema Definition.

* Step Libraries and Step Libra...] Functions.

* Interactive Test Driver acting as TaSL stub.

Ming-Tsung Lu Page 2 of 16

This research project by Ming-Tsung Lu is accepted in its present form by the
Department of Computer Science at Brown University in partial fulfillment of the

requirements for the Degree of Master of Science.

Date 28 ftpr; l
)

199:5 ~!u., 6. ~cJo-",l
v~

Local Database Support for Long-Term Multidatabase Transactions.

2. Project Overview.

2.1 What is a Multidatabase System?

Some applications, especially planning applications, require information from several different

existing databases. Manipulation of the information located in these databases requires an addi

tional software layer on top of the existing database systems. This layer is called a Multidatabase

system. A multidatabase is a collection of separate local databases. A user of a multidatabase can

access and update the information in these local databases in a consistent way to accomplish some

common purpose. Therefore, the multidatabase system extends user capabilities, enables users to

access and share data without learning the intricacies of different database management systems.

In addition, the existing programs and procedures of the local databases remain operational in the

integrated multidatabase environment.

2.2 Characteristics ofLocal Databases:

The local databases have the following characteristics:

(1) Heterogenity - The different local databases may support different data models, data manipu

lation languages and concurrency control protocol.

(2) Autonomy - There should not be any modifications made to the existing local database func

tions or protocols to support the multidatabase. While the multidatabase is accessing the data in

the local database, the user from the local database can still run independent transactions to access

the information in the local database. The independent transactions are not part of the multidata

base transactions.

(3) Distribution - The local databases may be geographically distributed.

Therefore, it is essential that we take the above characteristics into consideration and provide an

unifoTIn interface between the local databases and the multidatabase.

2.3 Characteristics ofLong-Term Transactions:

Traditional database transactions were developed in the context of data processing application in

which most transactions are noninteractive, of short duration and atomic. However, planning

application tasks tend to be Long-Term Transactions consisting of short activities separated by

long periods of idle time. It is not reasonable to represent a planning task to the database as a seri

Ming-Tsung Lu Page 3 of 16

Local Database Support for Long-Term Multidatabase Transactions.

alizable transaction because it may have a huge impact on database performance. Also, planning

applications need to respond to the changes in the real world. Therefore, a planning application

Global
Subtransaction

Interaction

Global
Subtransaction

Global
Subtransaction

Figure 1 - Interaction Structure.

can not run in isolation.

In this system, we call a Long-Term Transaction an InterAction. It is a partially-ordered set of

atomic Global Transactions. The Global Transaction execution dependencies are represented by

the partial order of the Global Transactions. Each Global Transaction consists of a set of Global

Subtransactions, each of which executes on a single local database. (See figure 1.)

2.4 Overall Structure.

We designed and implemented a multidatabase system, called Mongrel. It supports the long-term

transactions and is responsible for ensuring that the tasks it executes on the local databases main

tain data consistency. This system has two logical levels, a Global Level and a Local Level. (See

figure 2.) The local level consists of a set of local databases and the interface sitting on top of

them. The information in the local databases is accessed and updated using Global Subtransac

Page 4 of 16Ming-Tsung Lu

Local Database Support for Long-Term Multidatabase Transactions.

tions. The local level provides an uniform access interface, which ensures that the user of the mul

tidatabase can access information in the local databases using a single database access model, and

without having to learn the local data models or to know in which local database the information

TaSL - User Interface

IRS

Interaction Manager

Global Level

Local Level

Local Database Local Database Local Database
Interface Interface Interface

Figure 2 - Multidatabase Structure.

is stored. That is to say, the details of the local databases should be kept hidden from the multida

tabase users. In addition, we also monitor the changes made to the local database so that the mul

tidatabase system can react to the changes. Multidatabase users can tell the system what kind of

changes are relevant to the execution of the Interactions. The local level is responsible of check

ing to see if the event occurs in the local database and notifies the user.

Ming-Tsung Lu Page 5 of 16

Local Database Support for Long-Term Multidatabase Transactions.

3. Overview of Local Level.

The Local Level consists of five major components: Agent Manager, Global Subtransactions,

Step Library, LRS and Activator. (See figure 2.) The design and implementation of the Global

Subtransaction, Step Library, Activator and the Schema of the local databases are described in

Local Level· Local Database Interface.

(Agent Manager)

iC.·;;~IOb~1 stibtransaci;()n)

(JumpVector/· / ..)

(
... .-...... --=J

.".
.. .

..... . .Step Library .
.. .

.•.........•....

~ ~

Local Database

Figure 3 - Structure of the Local Level.

this paper.

3.1 Local Level Setup.

The Local Level basically consists of four processes running concurrently, including an Agent

Manager server, an LRS server, an Activator server and an Activator client. To support the multi-

Ming-Tsung Lu Page 6 of 16

Local Database Support for Long-Term Multidatabase Transactions.

database operations on a local database, we need to start an Agent Manager server on a local data

base. The Agent Manager forks an LRS server and an Activator server, which forks an Activator

client. (See figure 4.) When a Global Subtransaction is about to start, a Global Subtransaction pro

cess is forked and it lives until the Global Subtransaction is either committed and aborted. There

is one Global Subtransaction process per active Global Subtransaction. Global Subtransactions

access the local database through the functions defined in the Step Library. Note that Step Library

LRS server

:i::::::fiJiJi~J.:::::·::::::::::::::::::::::::::::::::::::,::\

<1~~BI~II'it:-~.

- Kif.1

Figure 4 - How processes are created.

is not a process. It is a shared library. There is a Jump Vector acting as the interface between the

Global Subtransactions and the Step Library.

If an Interaction wants to monitor the occurrence of a certain event, it tells the Agent Manager and

the Agent Manager tells the Activator to check on that event. The Activator client will be

explained later in this section.

During the life time of an Interaction, we may have to back out the effects of (undo) the Global

Subtransactions committed long time ago. Therefore, a Global Subtransaction has to log the

parameters necessary to the compensating steps. The LRS is responsible for do~ng the logging. If

later on we need to undo a committed Global SUbtransaction, we can retrieve the parameters to

the compensating functions from the LRS and run the function to abort the Global Subtransaction.

Ming-Tsung Lu Page 7 of 16

Local Database Support for Long-Term Multidatabase Transactions.

3.2 Activator

An event is some change in the multidatabase that influences the past execution of the Interaction.

It is an update operation on a specific data item that violates some conditions in the database. An

event is provoked by some other Interaction or some independent transactions in the local data

base.

During a specific execution span of an Interaction, there are some conditions that should be pre

served for its overall effects in the multidatabase to remain consistent. We call these conditions

weak conflicts.

There are events on the local database that are explicitly being waited for. We call them wait

events.

The job of the Activator is to monitor the changes made to the local database to check if the

changes may affect the execution of Interactions. The Activator receives messages from the Inter

action Manager via the Agent Manager. The messages indicate events that are interesting to some

Interaction. The events are stored in the event table, along with the conditions the Activator needs

to check on. Each event is either a wait event or a weak conflict. Wait events are events on the

local database that are explicitly being waited for. They are removed from the event table as soon

as they occur. Weak conflict events are events on the local database that indicate that a weak con

flict has been violated. The Activator polls the local database every certain period of time to see if

the events in the event table have occurred. If so, it notifies the Interaction Manager. The Activa

tor client process is responsible of calling the Activator server every certain period of time to poll

the local database.

3.3 Global Subtransaction

An Interaction is divided into several atomic parts called Global Transactions. Each Global Trans

action consists of a set of Global SUbtransactions, each of which executes on a single local data

base. No two Global Subtransactions of the same Global Transaction execute on the same local

database. A Global Subtransaction server process is forked by the Agent Manager when the Glo

Ming-Tsung Lu Page 8 of 16

Local Database Support for Long-Term Multidatabase Transactions.

bal Subtransaction begins. The process tenninates when the Global Subtransaction conunits or

aborts. The Global Subtransactions access the local database through Step Library. There are usu

ally a number of Global Subtransaction servers running concurrently on top of the local database.

Each Global Subtransaction process represents a Global Subtransaction of some active Global

Transaction.

In addition to accessing the data in the local database, the Global Subtransaction also needs to talk

to LRS in order to record the necessary information for later execution of compensating steps.

3.4 Jump Vector

The Jump Vector is the interface between Global Subtransactions and Step Library. It contains

function pointers to the functions in the Step Library as well as the function pointers to their cor

responding compensating steps. When a Global Subtransaction needs to run a function in the Step

Library, it gets the pointer to the function it wants to run from the Jump Vector and executes the

function. The Jump Vector also provides a convenient way to find the compensating step for the

Step Library Functions. To run a compensating step in order to abort a conunitted Global Sub

transaction, the Global Transaction gets the pointer to the compensating step from the Jump Vec

tor and retrieves the parameters to that function from LRS. Then it can do the compensating step.

3.5 Step Library

Step Library is the interface between the Global Subtransactions and the local database. It defines

how the multidatabase can access the local database and provides a uniform interface to the users

of the multidatabase. Each local database has its own Step Library. It provides the functions the

multidatabase needs to access the information in the local database. Since there is one Global

Subtransaction process per Global Transaction running on the local database, the Step Library is

constructed as a shared library in order to save main memory space. This is the bottommost layer

of the Local Level.

Ming-Tsung Lu Page 9 of 16

Local Database Support for Long-Term Multidatabase Transactions.

4. Problems.

We encountered some problems when we designed and implemented this system. The major

problems are listed as follows:

(1) Keeping Event Tables Persistent.

Each Activator has its own event table, which records all the events interesting to the currently

running Interactions. However, if the system crashes, we want to recover the information in the

event table. Thus, we need to make the table persistent.

(2) Compatibility between ObjectStore and RPC.

Since we use ObjectStore to construct the local databases and we do Remote Procedure Calls a

lot. We encountered a lot of problems when we try to link the object files generated by C++ com

piler and the ones generated by the ObjectStore C++ compiler. The ObjectStore compiler always

complains about "function undefined" if we try to compile a file, in which we make an RPC call,

using ObjectStore compiler. An interesting thing is that we later found out that other ObjectStore

users in industry also have the same problems.

(3) Global Subtransaction Memory Space.

We have one GlobalSubtransaction process running on top of local database for each Global

Transaction. If we have lots of active Global Transactions, they will occupy a lot of memory

space. However, it is essential that we have one process for each Global Subtransaction. We need

to keep the Global Subtransaction as small as possible.

(4) Activator Polling Local Database.

The Activator has to monitor the changes made to the local database and checks to see if the

update causes the occurrence of an event. The problem is that how does it find out if the data in

the local database has been updated?

(5) Step Library Parameters and Return Value.

The Step Library Functions provide the multidatabase with the ways to access the data in the local

database. Different functions do different things, (book a flight, cancel a reseIVation....) so they

take different parameters and return different values. However, they need to provide a uniform

interface. How do we arrange the parameters and return values so the user can pack the parame-

Page 10 of 16Ming-Tsung Lu

Local Database Support for Long-Term Multidatabase Transactions.

ters and unpack the results in the same way for all the Step Library Functions?

(6) Code Reusability.

Since the Local Level has to support the multidatabase running on top of all kinds of different

databases. They can be databases of a completely different data model, or of different schema.

How do we design the Local Level so that if we need to migrate the Local Level to a different

database, we need to change only a small portion of the code to support the new local database?

(7) Finding the Compensating Step for a certain/unction.

Each Step Library Function has a corresponding compensation step. For example, if we have a

function which books a plane ticket, there must be a function which deletes the reservation. We

need to provide an easy way to find the compensating step of a function.

Ming-Tsung Lu Page 11 of 16

Local Database Support for Long-Term Multidatabase Transactions.

5. Solutions

The solutions to the problems we encountered are described as follows.

(1) Keeping Event Tables Persistent.

We use the ObjectStore database to store the event table persistently. Thus, the event table is kept

in a separate database in the ObjectStore. There is another option for doing this. We can also keep

the event table using the UNIX file system. However, since we need to store some complex data,

such as the parameters to the Activator library functions, it is easier if we use the ObjectStore to

store the event table. Using the UNIX file system can increase the portability of the Activator

code. But it is harder to store and retrieve the event table information.

(2) Compatibility between ObjectStore and RPC.

A stub file is created for the ObjectStore functions making RPC calls. When the ObjectStore func

tions make RPC calls, they call the functions defined in the stub file. Then the stub file functions

makes the RPC call. We compile the stub file using AT&T C++ Preprocessor and compile the

ObjectStore functions using ObjectStore C++ compiler, then link them together. Thus we avoided

the compatibility problems of RPC and ObjectStore.

(3) Global Subtransaction Memory Space.

Since every Global Subtransaction accesses the local database in a uniform way, we defined a

Step Library for the local database. To save memory space, we construct the Step Library to be a

shared library. Therefore, all the Global Subtransaction processes share the same copy of the Step

Library code when they run.

(4) Activator Polling Local database.

The Activator forks a client, which goes to sleep and wakes up every five minutes. When it wakes

up, it calls the Activator server to poll the local database. Theoretically, a better approach is to poll

only when there is an update operation on the local database. In this method, the Activator always

receives an asynchronous copy of the actual input message to the local database. The messages in

this stream are in the local database's Data Manipulation Language. The Activator knows how to

parse these messages to determine which messages update the local database, and what relations

or sets in the database they update. After the Activator determines that, it checks whether con

straints were violated by the update event.

Page 12 of 16Ming-Tsung Lu

Local Database Support for Long-Term Multidatabase Transactions.

This is indeed a good approach, however, this approach requires knowledge of the Query Man

ager of the local database system and may violate the local database autonomy. Therefore, we

choose to use a simple polling approach. The advantage of the approach we chose is that it is sim

ple and it does not require parsing the local database input. However, the drawback is that it is not

very efficient. Each time it wakes up, it needs to poll the local database for every potential event.

(5) Step Libraly Parameters and Return Value.

Every Step Library Function has the san ,c arguments, argc and argv. Each function interprets argc

and argv differently inside the functions. When the functions return, we pack everything into a

structure called stepReturnStruct and return that structure.

(6) Code Reusability.

In order to enhance the reusability of the code, we defined the Step Library to interface between

the Local Level and the local database. There is also an interface between the Activator and the

local database, called ACLDBinif. If we need to support the Local Level on top of a different

ObjectStore database, the only parts that need to be changed are the Step Library, and the ACLD

Bintf class. However, since the whole Local Level is very specific to the local database system we

are using. We need to redefine the Global Subtransaction, Step Library and the Activator for dif

ferent local databases.

Transfer $x from
Account A to
Account B.

book a flight.

fire a missile

~
r - ..
~

- -

~

~....

Transfer $x from
Account B to
Account A.

cancel the reservation

send an apology.

Figure 5 - Jump Vector - Like a mirror.

Ming-Tsung Lu Page 13 of 16

Local Database Support for Long-Term Multidatabase Transactions.

(7) Finding the Compensating Step for a certain function.

The Jump Vector is defined as a 2-D array of function pointers. (See figure 5.) The 2-D array

serves like a mirror which reflects the function to its compensating step. Thus we can find the

compensating step function very easily. The parameters to the compensating steps can be

retrieved from the LRS system.

Ming-Tsung Lu Page 14 of 16

Local Database Support for Long-Term Multidatabase Transactions.

6. Bibliography

[1] Marian H. Nodine, Stanley B. Zelonik. Supporting Reactive Planning Tasks on an Evolving

Multidatabase.

[2] Marian H. Nodine. InterActions: Multidatabase Support for Planning Applications.

[3] Marian H. Nodine. Supporting Long-running Tasks on an Evolving Multidatabase Using

InterActions and Events.

[4] E. Simon, J. Kiernan, C. de Maindreville. Implementing High Level Active Rules on top of a

Relational DBMS.

[5] Henry F. Korth, Eliezer Levy, Abraham Silberschatz. A Formal Approach to Recovery by

Compensating Transactions.

[6] Nandit Soparkar, Henry F. Korth, Abraham silberschatz. Failure-Resilient Transaction Man

agement in Multidatabase.

[7] Dimitrios Georgakopoulos, Marek Rusinkiewicz, Amit Sheth. On Serializability of Multidata

base Transactions through Forced Local Conflicts.

[8] Ahmed K. Elmagarmid, Jin Jing, Won Kim. Global Commitment in Multidatabase Systems.

[9] W. Richard Stevens. Unix Network Programming.

Ming-Tsung Lu Page 15 of 16

Local Database Support for Long-Term Multidatabase Transactions.

7. Appendix.

[A] Activator

[B] Global subTransaction and Jump Vector.

[C] Local Databases and Step Library.

Page 16 of 16Ming-Tsung Lu

Appendix A: Activator

MONGREL· MULTIDATABASE SYSTEM

Design Document

Activator

Ming-Tsung Lu

Brown University

Providence, RI

Ming-Tsung Lu Page 1 of31

Appendix A: Activator

I. Introduction

The activator plays an essential role in the multidatabase system. During the time
span of a long term transaction, any outside events, such as cancellation of flight
reservation, can affect the result of the execution of long-term transactions. To mon
itor the changes made to the local databases, we need a process which is in charge
of keeping track of the changes to the databases and report relevant information to
the Interaction manager.

There are three processes in this Activator system. ACcreate sets up the Activator
database. This process is for creating activator only. Activ_init is an RPC server. It
takes RPC calls from the Agent Manager to insert an event, remove events...etc.
Activ_init is forked by Agent_init, which forks ACalarm. Since the Activator needs
to poll the local database every certain period of time, it needs another process to
remind it. Thus, Activ_init forks another process, ACalarm. Once the ACalarm pro
cess is created, it goes to sleep and wakes up itself every five minutes. Then it calls
the Activ_init and the Activ_init does a poll on the local database. It checks to see if
the conditions in the event table is violated. If any of them is, it calls the 1M to
notify the occurrence of the event.

Code reusability has been considered through out the design of this system. There
fore, if we need to support Activator on top of a new ObjectStore database, all we
need to do is to change the ACLDBintf.cc file in order to support that new database.
None of the rest of the system needs to be changed. However, if we have to support
a new database using anything other than ObjectStore, we need to change the pro
gram and use the persistence provided by the database system.

Ming-Tsung Lu Page 2 of31

Appendix A: Activator

II. Class Diagram of Activator

Events

Activator
Events

Events

ACLDBintf

Page 3 of 31Ming-Tsung Lu

Appendix A: Activator

III. Process Diagram of Activator

1M

Local Database

••,

~ ~

assignEvld

removeEvld
removeAl1
removeGT

pool ingDaemon

Agent init

ti_

IA EVENT OCCURED- -

Event Table Database

Ming-Tsung Lu Page 4 of 31

Appendix A: Activator

IV. Description of the Classes
* Class Activator
- Abstraction:
There is one instance of this class in every local database. We use ObjectStore to
store the object of this class persistently in the database so that if the system
crashes, we can recover the events easily. It acts as the interface between the agent
manager and the event table. To declare an event in the event table, 1M has to make
an RPC call to the Activ_init server, which calls the methods in this class.

- Data Members:
os_Set <Events*> evenCtable; II a set of events stored persistently.
int evenCid; II each new event gets a new event id from this

II member.

- Public Member Functions:
ActivatorO; II constructor.

-ActivatorO; II destructor.

int assignEvId(ACtype, int, int, int, char**, ACcond, char*, database*);

Status removeEvld(int);

Status removeGT(int);

Status removeAll(int);

void pollingDaemon(ACLDBintf*);

void printAllEventsO;

Ming-Tsung Lu Page 5 of31

Appendix A: Activator

** Member Function:
Activator: :Activator
· Semantics:
This is the constructor for the Activator class. There should be one instance of Acti
vator per local database. It initialize the value of evenCid to be O.

· Called by:
ACcreate.cc mainO.

· Calls:
None.

· Parameters:
None.

· Returns:
None.

Page 6 of 31Ming-Tsung Lu

Appendix A: Activator

** Member Function:
Activator::'"Activator
- Semantics:
Destructor.

- Called by:

- Calls:

- Parameters:
None

- Returns:
None.

Page 7 of31Ming-Tsung Lu

Appendix A: Activator

** Member Function:
Activator: :assignEvld
· Semantics:
This member function does the followings:
1. Assigns a unique event id and returns the event id to the agent manager at the

end.
This event id has to be unique through out the entire system. This new id can be
obtained from event_id of Activator.

2. Calls EventTable: :insertEvent to insert a new event in the event table.

· Called by:
int assignEvId(ACtype evenCtype, int ia, int step, int argc, char** argv,

ACcond condition, char *check_value);

· Calls:
EventTable::insertEvent(int);

· Parameters:
ACtype evenCtype; II ACtype is defined in Mongrel_types.H. It is an enum type.

II It can be either AC_WEAK, which stands for a weak event, or
II AC_WAIT, which stands for a wait event.

int ia; II The id number of the Interaction.
int stp; II Step id of the Activator step library. Defined in ACstep.H.
int argc; II Argument count for the Activator step library function.
char** argv; II Vector of arguments.for the Activator step library function.
ACcond condition; II ACcond is an enum type defined in Mongrel_types.H It can

II be one of the AC_DEL, AC _GT, AC_GE, AC_LT, AC_LE,
II AC_EQ.

char *check_value; II value to compare. "NULL" if condition is "delete"

· Returns:
int evid - a unique event id.

· Note:
The event id has to be unique through out the local database.

Page 8 of31 Ming-Tsung Lu

Appendix A: Activator

** Member Function:

Activator:: removeEvld

- Semantics:

This member function removes the designated event from the event table.

- Called by:
Status removeEvId(int event);

- Calls:
Events::getEventIdO;

os_Cursor: :removeO;

- Parameters:
int event_id; // id of the event to be deleted.

- Returns:
Status OK if the event id is found in the event table and deleted successfully or
NOT_OK if the event id can not be found.

{
\

Page 9 of 31Ming-Tsung Lu

Appendix A: Activator

** Member Function:
Activator:: removeGT
- Semantics:
This member function removes all the events whose log_no equals to the number in
the parameter.

- Called by:
Status removeEvId(int event);

- Calls:
Events::getLSNO;
os_Cursor: :removeO;

- Parameters:
int lsn; II log_no of the events to be deleted.

- Returns:
Status

(

\,

Ming-Tsung Lu Page 10 of3!

Appendix A: Activator

** Member Function:
Activator:: removeAll
- Semantics:
This member function removes all the events of an Interaction.

- Called by:
Status removeAll(int r_id);

- Calls:
Events::getIAldO;
os_Cursor: :removeO;

- Parameters:
int r_ia; II id of the interaction to be deleted.

- Returns:
Status OK if the ia id is found in the event table and deleted successfully or
NOT_OK if the ia id can not be found.

Ming-Tsung Lu Page 11 of31

Appendix A: Activator

** Member Function:
Activator::pollingDaemon
· Semantics:
This function is called by an independent function, pollingDaemon, which is called
by the ACalarrn process using RPC every 300 seconds. It polls the local database
and checks to see if the changes in the local database are conflict with the events
recorded in the event table.

If an event has occurred, it makes an RPC to 1M to notify the occurrence of the
event. And it checks to see what type of the event it is. It removes AC_WAIT event
as soon as it occurs.

· Called by:
pollingDaemonO

· Calls:
ACLDBintf::ldblntetface(int, int, char**);
Events::getEventIdO;
Events: :getIaIdO;
Events: :getEventTypeO;
RPC to 1M (IA_EVENT_OCCURRED); if an event occurs.

· Parameters:
none.

· Returns:
None.

· Note:
In order to resolve the RPC compatibility problems between ObjectStore compiler
and the RPC ftffictions, this function is defined separately in the ACactivatorRPC.cc
file.

Ming-Tsung Lu Page 120f31

Appendix A: Activator

** Member Function:
Activator::printAllEvents
- Semantics:
This function goes through all the elements in the event table and print out all the
events. It is created for testing purpose.

- Called by:

- Calls:
Events: :printEventO;

- Parameters:
none.

- Returns:
None.

Page 13 of31Ming-Tsung Lu

- -

Appendix A: Activator

* Class Events
- Abstraction:
The objects of this class are kept as a set in the class Activator. Each object repre
sents an event.

- Data Members:
ACtype evenCtype; II AC_WAIT, AC_WEAK. indicating whether this is a wait

Ilevent or a weak conflict.
int ia_id; II The Interaction ill. Indicates which IA this event belongs to.
int log_no; II log sequence number of the global subtransaction.
iut event_id; II The event ill. Assigned by Activator. It is unique through out

II the local database.
int step--,id; II Step ID of the activator step library function. The Step ill is

II defined as an enum type in ACstep.H file.
int arg_count; II argc to the Activator step library function.
char** arg_vector; II argv to the Activator step library function.
ACcond condition; II An enum type defined in Mongrep_types.H

II It can be AC_DEL, AC_GT, AC_GE, AC_LT,
IIAC_LE, AC_EQ.
II AC DEL: check to see if the data item has been deleted.

II AC_GT: check to see if the value> check_value.

II AC_GE: check to see if the value >= than check_value.

II AC_LT: check to see if the value < than check_value.

II AC LE: check to see if the value <= than check value.

II AC_EQ: check to see if the value == than check_value.

char* check_value; II This indicates the value to check for.
- Public Member Functions:
EventsO; II Constructor.

-EventsO; II Destructor.

ACtype getEventTypeO;

int getlaldO;

int getLSN0;

int getEventIdO;

int getArgcO;

char** gerArgvO;

ACcond getConditionO;

char *getCheckValueO

void printEventO;

Ming-Tsung Lu Page 14 of 31"

Appendix A: Activator

** Member Function:

Events: :Events

- Semantics:

Constructor for class Events.

- Called by:
Activator: :assignEventIdO;

- Calls:

- Parameters:
ACtype type; II value for evenCtype;

int iaid; II value for ia_id;

int lsn; II value for log_no;

int evid; II value for evencid;

int stpid; II value for step_id;

int ac; II value for arg_count;

i
\	 char **av; II value for arg_vector;

ACcond cond; II value for condition;
char* chv; II value for check_value;
database *ptr; II a pointer to the ObjectStore database. The event table is stored

II persistently using the ObjectStore. To make the object persistent,
II we need a database pointer.

- Returns:
None.

Ming-Tsung Lu	 Page 15 of31

Appendix A: Activator

** Member Function:
Events: :-Events
· Semantics:
Destructor for class EventTable.

· Called by:

· Calls:

· Parameters:
None

· Returns:
None.

,/
\

Page 16 of31 Ming-Tsung Lu

Appendix A: Activator

** Member Function:
Events: :getEventType
- Semantics:
This function returns event_type. It is defined as an in-line function.

- Called by:

- Calls:
None.

- Parameters:
None.

- Returns:
ACtype

(

Page 17 of31Ming-Tsung Lu

Appendix A: Activator

** Member Function:
Events::getlald
· Semantics:
This function returns ia_id. It is defined as an in-line function.

· Called by:

- Calls:
None.

· Parameters:
None.

· Returns:
int

Ming-Tsung Lu Page 18 of31

Appendix A: Activator

** Member Function:
Events: :getEventld
- Semantics:
This function returns evenCid. It is defined as an in-line function.

- Called by:

- Calls:
None.

- Parameters:
None.

- Returns:
int

(
\

Page 19 of31Ming-Tsung Lu

Appendix A: Activator

** Member Function:
Events: :getLSN
- Semantics:
This function returns log_no. It is defined as an in-line function.

- Called by:

- Calls:
None.

- Parameters:
None.

- Returns:
int

Page 20 of31 Ming-Tsung Lu

Appendix A: Activator

** Member Function:
Events::getStepld
· Semantics:
This function returns step_id. It is defined as an in-line function.

· Called by:

· Calls:
None.

· Parameters:
None.

· Returns:
int

Ming-Tsung Lu Page 21 of31

Appendix A: Activator

** Member Function:
Events: :getArgc
· Semantics:
This function returns arg_count. It is defined as an in-line function.

· Called by:

· Calls:
None.

· Parameters:
None.

· Returns:
int

Page 22 of31 Ming-Tsung Lu

Appendix A: Activator

** Member Function:
Events: :getArgv
· Semantics:
This function returns the argument vector. It is defined as an in-line function.

· Called by:

· Calls:
None.

· Parameters:
None.

· Returns:
char**

Ming-Tsung Lu Page 23 of31

Appendix A: Activator

** Member Function:
Events: :getCondition
- Semantics:
This function returns the condition associated with the event. It is defined as an in
line function.

- Called by:

- Calls:
None.

- Parameters:
None.

- Returns:
ACcond

Ming-Tsung Lu Page 24 of 31"

Appendix A: Activator

** Member Function:
Events: :getCheckValue
- Semantics:
This function returns the data member check_value. It is defined as an in-line func
tion.

- Called by:

- Calls:
None.

- Parameters:
None.

- Returns:
char*

Page 25 of31Ming-Tsung Lu

Appendix A: Activator

** Member Function:
Events: :printEvent
· Semantics:
This function prints out all the data members of an event object.

· Called by:

· Calls:
None.

· Parameters:
None.

· Returns:
None.

Page 26 of 31Ming-Tsung Lu

Appendix A: Activator

* Class ACLDBintf
- Abstraction:
This class is the interface between the local database and the Activator. If we need a
new activator sitting on top of a different local database using the ObjectStore, the
only thing that needs to be changed in the whole activator system is this class. This
increases the reusability of the code.

- Data Members:
ActFuncPtr function_ptr[AC_STEP_COUNT]; II ActFuncPtr is defined in

II Mongrel_types.H file. It is a function pointer. This data member is an
II array of function pointers.

- Public Member Functions:
ACLDBintfO;

Boolean IdbInterface(int, int, char**, ACcond, char*);

- Note:
In addition to the member functions of this class, there are several independent
functions defined for this class. (See Section V, ACLDBintf.cc for a list of the func
tions.) They all have the same signature as

Boolean function_name(int are, char **arv, ACcond cd, char* cv).
When the ACLDBintf constructor is called, their addresses are assigned to the func
tion pointer array of ACLDBintf. nlese functions do the operation on the local
database, get the value and compare the value with check_value cv to see if it
matches ACcond cd. If it does, it returns TRUE.

Ming-Tsung Lu Page 27 of 31

Appendix A: Activator

** Member Function:
ACLDBintf::ACLDBintf
· Semantics:
This is the constructor of the class ACLDBintf. It assigns the function pointers of
the independent functions listed in Section V, ACLDBintf.cc to the function pointer
array.

· Called by:
Implicitly called in pollingDaemonO.

· Calls:
None.

- Parameters:
None.

· Returns:
None.

Page 28 of31 Ming-Tsung Lu

Appendix A: Activator

** Member Function:
ACLDBintf: :ldbInterface
· Semantics:
This function is called number of events times by the
Activator::pollingDaemon(ACLDBintf*); It calls the independent functions listed
in Section V ACLDBintf.cc. IT the function returns TRUE, it returns FALSE. IT the
function returns FALSE, it returns TRUE.

· Called by:
Activator: :pollingDaemon(ACLDBintf*);

· Calls:
None.

· Parameters:
int index; II This indicates the function id to the independent functions listed

II in Section V.
int ac; II argc to the independent functions.
char **av; II argv to the independent functions.
ACcond cmp_cond; II Condition for comparison.
char *check_value; II value to compare.

· Returns:
Boolean. TRUE if the cmp_cond and check_value condition satisfies.

Ming-Tsung Lu Page 29 of 31

- -
- - - - -

Appendix A: Activator

v. Description of independent functions

ACalarm.C
main() - This is the main function of the ACalarrn process. It is a client of
Activ_init. This client wakes up itself every 300 seconds and calls the
pollingDaemonO function to poll the local database.

Activ serv proc.C
rpc result* activ call 1(rpc command *proc call) - This function is a dispatcher
function of the Activ_init server. It unpacks the parameters, make the calls to the
functions defined in ACmain.cc. And it packs the result and returns the result back
to the client.

Activ server.C

main(int argc, char** argv) - This is the main function of the Activ_init process,

which is forked by Agencinit process. It takes three parameters. argv[l] is the acti

vator program number. argv[2] is the agent hostname. argv[3] is the agent program

number. It sets up the communication channel to 1M, forks the ACalarm process

and enters the svc_Ioop when it finishes all the setup.

ACcreate.cc (

main() - This is the main function of ACcreate process. It has nothing to do with the \

rest of the activator system. It calls the Activator constructor to create a new

instance of the Activator class. Then it creates an activator database to store the

object persistently. The activator database name is defined in ACTIVATOR_DB,

which is defined in AC_name.H.

ACmain.cc

The functions defined in this file act as bridge between ObjectStore functions and

the RPC call. The Activ_init dispatcher responds to the clients' request by calling

the functions in this file. These functions open the activator database, find the root

of the database, and get the Activator pointer from the database pointer. Thus it can

call the member functions by using the pointer. After it calls the Activator member

functions, it closes the activator database and returns the value.

int assignEvld(ACtype event_type, int ia, int stp, int are, char** arv,
ACcond condition, char *check_value) - This function calls the
Activator: :pollingDaemon member function.

Status removeEvld(int event) - This function calls the Activator::removeEvId.

Page 30 of 31Ming-Tsung Lu

Appendix A: Activator

Status removeAll(int r_id) - This function calls the Activator::removeAll function.

void pollingDaemon() - This function calls the Activator::pollingDaemon function.

ACLDBintf.cc
Independent functions defined in this file acts as interface functions to the local
database. They all have the following format:

Booleanjunction_name(int arc, char **arv, ACcond, char *cv);
The functions open the local database, access certain value from the database, then
compare the value they get with the value defined in cv. If the comparison matches
the condition defined in cd, they return FALSE, else they return TRUE. There are
different sets of independent functions defined for different local databases. Cur
rently there are:

* For Car Rental Company database:
Boolean checkCarResv(int arc, char **arv, ACcond cd, char *cv) - It takes two
parameters. arv[O] is the plate number of the car. argv[l] is the reservation id. It
check the local database to see if the reservation given in the parameter exists.

* For Airlines database.

Boolean checkPassengerResv(int arc, char **arv, ACcond cd, char *cv) - This

function takes two parameters. arv[O] is the flight number. arv[l] is the reservation

id. It checks to see if the reservation given in the parameter exists in the local data

base.

Boolean checkFlightCancellation(int arc, char **arv, ACcond cd, char *cv) - This
function takes one parameter. arv[O] is the flight number. It checks the local data
base to see if the flight exists.

Ming-Tsung Lu Page 31 of31

Appendix B: Global Subtransaction and Jump Vector

MONGREL - MULTIDATABASE SYSTEM

Design Document

Global Subtransaction
Jump Vector

(
\

Ming-Tsung Lu

Brown University
Providence, RI

Page 1 of 22Ming-Tsung Lu

Appendix B: Global Subtransaction and Jump Vector

I. Introduction

Global Subtransaction.

The GST is the bottommost layer in an Interaction. When the Agent Manager starts

a GST on a local database, a new process of the GST is created. It exists until the

transaction is committed or aborted. In addition to executing the transaction on the

local database, GST is also responsible of calling the functions in LRS to log essen

tial infonnation for later execution of compensating steps.

jumpVector.

The jumpVector is the interface between the GST and the Step Library Functions.

When the GST calls the functions in the Step Library, it needs to find the addresses

of the functions from the jumpVector and calls the function.

Ming-Tsung Lu Page 2 of 22

Appendix B: Global Subtransaction and Jump Vector

** Member Function:
GST::vote

- Semantics:
This function executes the vote protocol specific to the ObjectStore. If the result of
the vote is yes, it puts the GST in the prepared state and returns a YES vote. If the
database votes NO, it aborts the GST and returns NO.

. Called by:
rpc_result *gst_call_l (rpc_command*);

- Calls:
VoteResponse GST: :doOSVote(transaction*);
Status GST: :abortGSTO;

- Parameters:
None.

- Returns:
VoteResponseStruct*

Ming-Tsung Lu Page 11 of22

Appendix B: Global Subtransaction and Jump Vector

** Member Function:
GST::doStep

· Semantics:
This function does the specified step in the context of the active transaction for the
Global SubTransaction object. It gets the function pointer of the step library func
tion from the jumpVector and calls the function. It sets the transaction status to
TS_ACTNE.

· Called by:
rpc_result *gst_call_l (rpc_command*);

· Calls:
jumpVector::getStepFuncPtr(StepIDs);
Step Library Function
step_info packStepInfo;
logStepInfo;

· Parameters:
StepIDs stepID; II step id for the step library function.
int argc; II for step library function.
char **argv II for step library function.

· Returns:
taslRetumStruct*

Ming-Tsung Lu Page 12 of22

Appendix B: Global Subtransaction and Jump Vector

II. Class Diagram of GST

jumpVectorGST

stepFuncPtr

database*
transaction*
TransStatus
int

One instance of each class is created for each local database. They are created when
the selVer starts. The pointers to the objects are stored as global variables.

Ming-Tsung Lu Page 3 of 22

Appendix B: Global Subtransaction and Jump Vector

III. Process Diagram of GST

fork Agent_init

fA" ..

Local Database

Ming-Tsung Lu Page 4 of 22

Appendix B: Global Subtransaction and Jump Vector

IV. Description of Return Structures.
The GST does the retrieving/updating operations on the local database. It has to
pass information back and forth between LRS and Agent. In order to make the
information passing easier, we defined some structures which serve as return struc
ture to the calling functions. Here is a description for the structures.

compJnfo: defined in LRS_global.H
When GST calls LRS to get information for running compensating steps, this struc
ture is returned from LRS. It contains a number of array vectors of arguments for
running compensating steps.
typedef struct { II Structure to return the compensation information

int LSN;

int num_rec ;

int cstep_id[MAX_RECl;

int argc[MAX_RECl;

char *argv[MAX_RECl[MAX_PARAMl;

} comp_info;

stepJnfo: defined in LRS_global.H

When the GTS calls LRS::logSteplnfo, it packs the information it wants to log into

this structure and passes it to LRS.

typedef struct { II Structure to store the step information

int step_id; II Step Info

int step_argc;

char **step_argv;

int cstep id; II CStep Info

int cstep_argc;

char **cstep_argv;

return_info r_info; II Ret Val Info

} step_info;

cstepJnfo: defined in LRS_global.H

When the GTS calls LRS::logCSteplnfo, it packs the information it wants to log

into this structure and passes it to LRS.

typedef struct { II Structure to store the compensation step information

int cstep_id;

int cstep argc;

char **cstep_argv;

return_info r_info;

} cstep_info;

Ming-Tsung Lu Page 5 of 22

Appendix B: Global Subtransaction and Jump Vector

taslRetllrnStrllct: defined in Mongrel_ALD.H
GST::doStep and GST::doCStep returns this structure. This structure is returned to
1M via Agent. It is ultimately parsed by the TaSL shell.
typedeJ struct {
Status ret_stat;
int argc;
char ** argv;
} taslReturnStruct;

VoteResponseStrllct: defined in VoteRespStruct.H
GST::vote returns this structure. If the result of the vote is YES, then the log
sequence number, which is important to the log, is returned in this structure
typedeJ struct {
VoteResponse vote_result;
int lsn;
} VoteResponseStruct;

(

I.

Ming-Tsung Lu Page 6 of 22'"

Appendix B: Global Subtransaction and Jump Vector

v. Description of the Classes
* Class GST
- Abstraction:
Once a GST begins on a local database, a GST server is created and an instance of
the class GST is created. There is only one GST on one local database for one Glo
bal Transaction.

- Data Members:
database *localDB; II a pointer to an ObjectStore database.
transaction *localDBTranID; II a pointer to an ObjectStore transaction.
TransStatus gsCstate; II the status of transaction.

II This is defined in Mongrel_types.H
int log_seq_no; II log sequence number. for LRS Jogging identification.

- Public Member Functions:
Public:
GSTO;

Status commitGST 0;

Status abortGST 0;

VoteResponseStruct *voteO;

taslRetumStruct *doStep(stepIDs, int, char **);

taslRetumStruct *doCStep(stepIDs, int, char**);

Status doCSub(int);

....GSTO;

Protected:
VoteResponse doOSVote (transaction*);

Ming-Tsung Lu Page 7 of 22

Appendix B: Global Subtransaction and Jump Vector

** Member Function:
GST::GST

- Semantics:
This is the constructor of the class GST. It opens the local database, sets the
geestate to TS_INACTIVE, declares the beginning of the transaction, and gets a
log sequence number from LRS.

- Called by:
void GST_managerO;

- Calls:
int logGSTBeginO;
database::openO;
transaction::beginO;

- Parameters:
None.

(
\- Returns:

None.

Ming-Tsung Lu Page 80f22

Appendix B: Global Subtransaction and Jump Vector

; - ** Member Function:
GST::commitGST

· Semantics:
This function puts the GST in commit state and completes the local commit process
for this database.

· Called by:
rpc_result *gsccall_l (rpc_command*);

· Calls:
Status logGSTCommit(int);

· Parameters:
None.

· Returns:
Status;

Ming-Tsung Lu Page 9 of 22

Appendix B: Global Subtransaction and Jump Vector

** Member Function:
GST::abortGST

- Semantics:
This function aborts the Global Subtransaction. If the GST is in either
TS_INACTIVE or TS_ACTIVE states, it aborts the GST directly. If the GST is in
the TS_PREPARED state, it gets the LSN for the compensating step information in
the log and runs it using doCSub. If the GST is in the TS_COMMITTED state, this
method should not be called.

- Called by:
rpc_result *gsccalCI (rpc_command*);

- Calls:
transaction::abort(int);
Status logAbortDecision(int);
transaction::beginO;
comp_info *readComplnfo(int);
doCStep
transaction::commit(int);

- Parameters:
None.

- Returns:
Status;

Ming-Tsung Lu Page lOof22

Appendix B: Global Subtransaction and Jump Vector

** Member Function:
GST::doCStep

- Semantics:
This function does the compensating step. It is similar to doStep but logs different
information.

- Called by:
rpc_result *gsCcall_l (rpc_command*);

- Calls:
jumpVector: :getStepFuncPtr(StepIDs);

Step Library Function

step_info packSteplnfo;

10gCSteplnfo;

- Parameters:
StepIDs stepID; II step id for the step library function.
int argc; II for step library function.
char **argv II for step library function.

- Returns:
taslReturnStruct*

Page 13 of 22Ming-Tsung Lu

Appendix B: Global Subtransaction and Jump Vector

** Member Function:
GST::doCSub

· Semantics:
This function reads the LRS and calls the step library function to run compensating
step.

· Called by:
rpc_result *gsccall_l (rpc_command*);

· Calls:
comp_info *readCompInfo(int);

· Parameters:
int 10gID; II log sequence number.

· Returns:
Status;

Ming-Tsung Lu Page 14 of 22

Appendix B: Global Subtransaction and Jump Vector

** Member Function:
GST::-GST

· Semantics:
The destructor. Ensures the transaction is committed or aborted. If not, aborts the
local transaction. Closes the connection to the local database.

· Called by:
rpc_result *gsccall_l(rpc_command*);

· Calls:
Status GST::abortGST();
database: :close();

· Parameters:
None.

· Returns:
None.

Page 15 of 22Ming-Tsung Lu

Appendix B: Global Subtransaction and Jump Vector

** Member Function:
GST: :doOSVote

- Semantics:
This is a protected member function. It commits the transaction, puts the GST in
commit state and returns YES.

· Called by:
VoteResponseStruct *GST::voteO;

· Calls:
transaction::commit(transaction*);
Status logPrepared(int);

· Parameters:
transaction*

- Returns:
VoteResponse;

Ming-Tsung Lu Page 16 of 21'

Appendix B: Global Subtransaction and Jump Vector

* ClassjumpVector
· Abstraction:
This class provides an interface between Step Library functions and the GST class.
This class is basically a 2-D array of function pointers pointing to the step library
functions. This class has to be modified if we need to support the GST operation on
top of a different database using the ObjectStore.

· Data Members:
stepFuncPtr function_ptr[STEP_COUNT][2]; II 2-D function pointers.

· Public Member Functions:
jumpVectorO;
stepFuncPtr getStepFuncPtr(stepIDs); 1* Step ptr *1
stepFuncPtr getCompFuncPtr(stepIDs); 1* Comp step *1

· Note:
The 2-D array serves as a quick way to find the compensating step for a certain step.
For example. if function_ptr[5] [0] points to makeFlightReservation, then
function_ptr[5][1] points to cancelFlightReservation. By doing this we make it a lot
easier to find the corresponding compensating steps for step library functions. The
first index of the array is defined as an enum type in stepIDs in StepID.H

Ming-Tsung Lu Page 17 of 22

Appendix B: Global Subtransaction and Jump Vector

** Member Function:
jumpVector: :jumpVector

- Semantics:
This is the constructor for the jumpVector class. It assigns the addresses of func
tions to the 2-D array.

- Called by:
void GSTManagerO;

- Calls:
None.

- Parameters:
None.

- Returns:
None.

Ming-Tsung Lu Page 18 of 22

Appendix B: Global Subtransaction and Jump Vector

" ** Member Function:

jumpVector: :getStepFuncPtr

,.; Semantics:
This function returns the function pointer to the step library function. The desired
function is designated in the parameter.

- Called by
taslReturnStruct *aST::doStep(stepIDs, int, char**);

- Calls:
None.

- Parameters:
stepIDs

- Returns:
stepFuncPtr; II a function pointer.

(

Ming-Tsung Lu Page 19 of 22

Appendix B: Global Subtransaction and Jump Vector

** Member Function:
jumpVector: :getCompFuncPtr

· Semantics:
This function returns the function pointer to the compensating step. The desired step
is designated in the parameter.

· Called by:
taslReturnStruct *GST::doCStep(stepIDs, int, char**);

· Calls:
None.

· Parameters:
stepIDs;

· Returns:
stepFuncPtr; // a function pointer.

Ming-Tsung Lu Page 20 of 22

- - - - -

Appendix B: Global Subtransaction and Jump Vector

VI. Description of independent functions

GST_serv_proc.C
rpc result* gst call 1(rpc command *proc call) - This function is a dispatcher
function of the GST_init server. It unpacks the parameters, make the calls to the
functions defined in ACmain.cc and packs the results returned by them. And it
packs the result and returns the result back to the client.

GST server.C
main(int argc, char** argv) - This is the main function of GST_init process, whjch
is forked by AM::beginGSTO. It takes three parameters. argv[l] is the GST pro
gram number. argv[2] is the LRS program number. argv[3] is the LRS hostname. It
creates an instance of GST and jumpVector, sets up the communication channel to
LRS server and then enters the svc_Ioop when it finishes all the setup.

gstCallLrs.C
The functions defined in this file act as bridge between ObjectStore functions and
the RPC call. Whenever the GST methods need to make an RPC to the LRS, it calls
the functions defined in this file. The functions in this file pack the parameter, make
the RPC call, get the result from LRS and unpack the result returned from RPC.
The functions here use three global variables defined in GST_server.C in order to
communicate with LRS. They are: int GST_LRSpnum, char *GST_LRShostname,
and CLIENT *GST_LRShandle. The functions are described as follows:

int logGSTBegin() - This function makes an RPC call to LRS_LOG_GST_BEGIN.
Status logSteplnfo(int Isn, step_info *sinfo) - This function makes an RPC call to

LRS_LOG_STEP_INFO.
Status logGSTCommit(int lsn) - This function makes an RPC call to

LRS_LOG_GST_COMMIT.
Status logGSTAbort(int lsn) - This function makes an RPC call to

LRS_LOG_GST_ABOR~

Status logPrepared(int lsn) - This function makes an RPC call to
LRS_LOG_PREPARED.

Status logAbortDecision(int lsn) - This function makes an RPC call to
LRS_LOG_ABORT_DECISION.

comp_info *readComplnfo(int lsn) - This function makes an RPC call to
LRS_LOG_GST_BEGIN.

Ming-Tsung Lu Page 21 of 22

Appendix B: Global Subtransaction and Jump Vector

GST_serv_procStub.C
The functions defined in this file act as a bridge between ObjectStore functions and
the RPC call. This stub file is created to resolve the conflict between OSCC and
RPC function calls.

void callGstDestr() - calls GST destructor.

Status callCommitGst() - calls GST::commitGSTO.

Status callAbortGst() - calls GST::abortGSTO;

taslReturnStruct *callDoStep(int stepid, int ac, char **av)

calls GST::doStep(int, int, char**)
Status callDoCSub(int subid) - calls GST::doCSub(int).
VoteResponseStruct *callVoteGst() - calls GST::callVoteGstO.

/

"

Ming-Tsung Lu Page 22 of 22

Appendix C: Local Databases and Step Library

MONGREL - MULTIDATABASE SYSTEM

Design Document

Local Databases and Step Library

Ming-Tsung Lu

Brown University

Providence, RI

Ming-Tsung Lu Page 1 of 18

Appendix C: Local Databases and Step Library

I. Introduction

In order to support the operation of the multidatabase, two sets of local databases
have been created using the ObjectStore. One supports a car rental company data
base system, the other supports an airlines database system. Each of them have their
own step libraries, which is constructed as shared libraries. The multidatabase
accesses the local databases via the step libraries. TIle system described in this doc
ument is the bottommost layer of the entire multidatabase.

Ming-Tsung Lu Page 2 of 18'

Appendix C: Local Databases and Step Library

II. Class Diagram of Database Schema: Car Rental Service.

os_Set
Car

CarRentalCompany

Car

os_Set
Reservationlnfo

Car

Reservationlnfo

Reservationlnfo

Ming-Tsung Lu Page 3 of 18

Appendix C: Local Databases and Step Library

II. Class Diagram of Database Schema: Airlines Reservation.

os_Set
FlightAirline

Flight

Seat

Flight PlaneI-I
VI

~\I
Seat (

\ I
os_Set

\i
Seat

Ming-Tsung Lu Page 4 of 18

Appendix C: Local Databases and Step Library

III. Step Library Functions.
* Introduction:

Why Use Shared Library?
Step Library defines a set of functions for the multidatabase to access the local data
bases. In the multidatabase system, each Interaction has one and only one Global
Subtransaction (GST) accessing one local database. Each GST is a process. Since in
a local database, every GST has a uniform way of accessing the data. Considering
the situation when there are hundreds of GSTs running concurrently on top of a
local database (See figure 1), if the Step Library is not shared library, we will waste
a lot of main memory space storing repeating executable code. Therefore, it is a bet
ter idea to keep the Step Library as a shared library to save space. (See figure 2.)

GST
1

GST
2

••,
GST

3

- ,

Local Database
Figure 1. Step Library - None Shared Library Method.

Ming-Tsung Lu Page 5 of 18

Appendix C: Local Databases and Step Library

GST
1

GST
2

GST
3

iii.

Local Database
Figure 2. Step Library - Shared Library Method.

Format of Step Library Functions.
Each Step Library Function has the following fonnat:

stepReturnStruct *Junctian_name(database *ptr, int argc, char **argv)
Every function assumes the database has been opened before it is called. Thus, as
the database has been opened, we get a pointer to the database which is passed to
the step in the first parameter. The argc and argv are for the execution of steps.

Every function returns a structure called stepReturnStruct, which is defined in
MongreLALD.H. It has the following fonnat:

typedeJ struct {
Status ret_stat;
int ret_argc;
char ** ret_argv;
int camp argc;
char ** camp_argv;

} stepReturnStruct;

Ming-Tsung Lu Page 6 of 18

Appendix C: Local Databases and Step Library

ret stat indicates the status of the execution of the function. If the execution is suc

cessful, it returns an OK. If it is not able to complete the execution because of some

natural reasons, say no cars available, then it returns a RETRY. If the error is caused

by some programming error, say unable to open the database, it returns NOT_OK.

In addition to the ret_stat which indicates the status of execution, we also put the

error message in ret_atgv[Oj if ret_stat is not OK.

When the ret_stat returns OK, the rest of the members in this structure return a lot

of essential information for the system.

ret_argc indicates the number of values it is going to return in ret_argv.

ret_argv contains all the information the user needs to know after the completion of

function execution. Take the airline reservation step as an example. If we book a

ticket from a flight, we need to know the departure time, arrival time, seat number,

reservation id of the reservation. All the information is stored and returned in the

ret argv vector. All the values in the ret_argv are converted to strings.

In order to support compensating operations, the arguments necessary to the execu

tion of compensating steps are returned in comp_argc and comp_argv. The argc and

argv for the compensating steps can be found in these two return values. All the val

ues in comp_argv are converted to strings.

Compensating Steps.

The compensating steps for the step functions can be found in the jumpVector

array.(See the design document for Global Subtransactions.)

Forcing Conflict.

In order to enforce conflict, every transaction has to take a "ticket" from the local

database, increment the ticket and write it back to the database. This operation is

supported in the takeTicket step.

Ming-Tsung Lu Page 7 of 18

Appendix C: Local Databases and Step Library

*Description of Step Library Functions.
** Car Rental Service
stepReturnStruct *reserveCar(database *db_ptr, int ac, char **av)

- Semantics:

This function makes a reservation on a rental car and returns a reservation along

with the stepRetiurnStruct.

- Parameters:
av[O]: name of the client.
av [l]: address of the client.
av[2]: phone number of the client.
av[3]: driver's license number of the client.
av[4]: begin date of reservation.
av[5]: end date of reservation.
av[6]: birthday of the client.
av[7]: Car Type. "SC" - Subcompact, "CP" - Compact, "MD" - Medium,

"LG" - Large,

- Return Value: (On Success of Transaction.)
ret_stat =OK.
reCargc = 5.
ret_argv[O] =reservation id.
ret_argv[1] =year of the car.
recargv[2] = make of the car.
ret_argv[3] =model of the car.
reCargv [4] = plate number of the car.
comp_argc = 2.
comp_argv[O] = plate number of the car.
comp_argv[l] =reservation id.

Ming-Tsung Lu Page 8 of 18

Appendix C: Local Databases and Step Library

** Car Rental Service

stepReturnStruct *deleteCarResv(database *db_ptr, int ac, char **av)

• Semantics:

This function deletes a reservation on a rental car.

• Parameters:

av[O] =plate number.

av[l] =reservation id.

· Return Value: (On Success of Transaction.)
ret_stat = OK.
ret_argc =O.
ret_argv =NULL
comp_argc =8.
comp_argv[O] =plate number of the car.
comp_argv[l] =reservation id.
comp_argv[O]: name of the client.
comp_argv [1]: address of the client.
comp_argv[2]: phone number of the client.
comp_argv[3]: driver's license number of the client.
comp_argv[4]: begin date of reservation.
comp_argv[5]: end date of reservation.
comp_argv[6]: birthday of the client.
comp_argv[7]: Car Type. "SC" - Subcompact, "CP" - Compact, "MD" - Medium,

"LG" - Large,

Ming-Tsung Lu Page 9 of 18

Appendix C: Local Databases and Step Library

** Car Rental Service

stepReturnStruct *takeTicket(database *db_ptr, int ac, char **av)

· Semantics:

This function takes a ticket, increment it by one. It does this as aspect of enforcing

Global Transaction serializability.

• Parameters:
None

· Return Value: (On Success of Transaction.)
NULL

Ming-Tsung Lu Page 10 of 18

Appendix C: Local Databases and Step Library

** Car Rental Service
stepReturnStruct *doNothing(database *db_ptr, int ac, char **av)

- Semantics:

This function does not do anything. It is the compensating step of takeTicket.

- Parameters:
None.

- Return Value: (On Success of Transaction.)
NULL.

Page 11 of 18Ming-Tsung Lu

Appendix C: Local Databases and Step Library

** Airlines Reservation
stepReturnStruct *makeReservationFlightNo(database *air_db, int argc, char
**argv)

• Semantics:

Given the flight number, this function reserves a seat in the given flight.

• Parameters:

argv [0]: flight number.

argv[l]: class: "1: First class. "2": Business class. "3": Coach class.

argv[2]: seat preference. "1": window, "2": aisle, "3": middle.

argv[3]: name of the passenger.

argv [4]: address of the passenger.

argv [5]: phone number of the passenger.

• Return Value: (On Success of Transaction.)

reCstat = OK.

ret_argc == 8.

ret_argv [0] = flight number.

ret_argv[l] == departure date.

ret_argv[2] = departure time.

ret_argv[3] = reservation id.

ret_argv[4] = seat row number.

ret_argv[5] = seat column number.

ret_argv[6] = arrival date.

ret_argv[7] = arrival time.

comp_argc =2.

comp_argv[O] = flight number.

comp_argv[l] =reservation id.

• Note:

This function shares the same compensating function with

makeReservationDatePort, which is deleteReservationFlightNo.

Ming-Tsung Lu Page 12 of 18

Appendix C: Local Databases and Step Library

** Airlines Reservation
stepReturnStruct *deleteReservationFlightNo(database *air_db, int argc, char
**argv)

- Semantics:

Given the flight number and reservation id. This function deletes the reservation.

- Parameters:

argv[O]: flight number.

argv[l]: reservation id.

- Return Value: (On Success of Transaction.)

reCstat =OK.

reCargc =O.

reCargv =NULL.

comp_argc =6.

comp_argv[O]: flight number.

comp_argv[:I]: class: "1: First class. "2": Business class. "3": Coach class.

comp_argv[2]: seat preference. "I": window, "2": aisle, "3": middle.

comp_argv[3]: name of the passenger.

comp_argv[4]: address of the passenger.

comp_argv[5]: phone number of the passenger.

- Note:

This is the compensating function of makeReservationFlightNo, and

makereservationDatePort.

Page 13 of 18Ming-Tsung Lu

Appendix C: Local Databases and Step Library

** Airlines Reservation
stepReturnStruct *makeReservationDatePort(database *air_db, int argc, char
**argv)

- Semantics:

Given the travel date and departure, arrival ports, this function finds a flight which··

matches the description and makes a reservation on that flight.

- Parameters:
argv [0]: date of travel.

argv[I]: departure port.

argv[2]: arrival port.

argv[3]: class: "1: First class. "2": Business class. "3": Coach class.

argv [4]: seat preference. "1": window, "2": aisle, "3": middle.

argv [5]: name of the passenger.

argv[6]: address of the passenger.

argv [7]: phone number of the passenger.

- Return Value: (On Success of Transaction.)

reCstat = OK.

ret_argc = 8.

reCargv [0] = flight number.

ret_argv [1] =departure date.

ret_argv [2] = departure time.

ret_argv[3] = reservation id.

ret_argv[4] = seat row number.

recargv[5] = seat column number.

ret_argv[6] = arrival date.

ret_argv[7] = arrival time.

comp_argc = 2.

comp_argv[O] =flight number.

comp_argv[I] = reservation id.

- Note:

This function shares the same compensating function with

makeReservationFlightNo, which is deleteReservationFlightNo.

Ming-Tsung Lu Page 14 of 18

Appendix C: Local Databases and Step Library

** Airlines Reservation

stepReturnStruct *addFlight(database *air_db, int argc, char **argv)

· Semantics:

This function adds a flight record to the local database.

• Parameters:

argv [0]: flight number.

argv [1]: departure port.

argv[2]: departure date.

argv [3]: departure time.

argv[4]: arrival port.

argv[5]: arrival date.

argv[6]: arrival time.

argv[7]: plane id number.

argv[8]: plane type. "1": 737, "2":747.

argv [9]: first class price.

argv[l 0]: business class price.

argv [11]: coach class price.

• Return Value: (On Success of Transaction.)

reCstat = OK.

ret_argc = O.

reCargv = NULL.

comp_argc = 1.

comp_argv[O] =flight number.

Ming-Tsung Lu Page 15 of 18

Appendix C: Local Databases and Step Library

** Airlines Reservation

stepReturnStruct *canceIFlight(database *air_db, int argc, char **argv)

- Semantics:

Given the flight number, this function cancels the specific flight.

- Parameters:

argv[O]: flight number.

- Return Value: (On Success of Transaction.)
ret_stat = OK.
ret_argc = O.

ret_argv =NULL.

comp_argc = 12.

comp_argv[O]: flight number.

comp_argv[1]: departure port.

comp_argv[2]: departure date.

comp_argv[3]: departure time.

comp_argv[4]: arrival port.

comp_argv[5]: arrival date.

comp_argv[6]: arrival time.

comp_argv[7]: plane id number.

comp_argv[8]: plane type. "I": 737, "2":747.

comp_argv[9]: first class price.

comp_argv[IO]: business class price.

comp_argv[ll]: coach class price.

Ming-Tsung Lu Page 16 of 18

Appendix C: Local Databases and Step Library

** Airlines Reservation

stepReturnStruct *takeTicket(database *air_db, int argc, char **argv)

- Semantics:

This function takes a ticket, increment it by one. It does this in order to enforce seri

alizability.

- Parameters:
None

- Return Value: (On Success of Transaction.)
NULL

Ming-Tsung Lu Page 17 of 18

Appendix C: Local Databases and Step Library

** Airlines Reservation

stepReturnStruct *doNothing(database *air_db, int argc, char **argv)

~ Semantics:

This function does not do anything. It is the compensating step of takeTicket.

~ Parameters:
None.

~ Return Value: (On Success of Transaction.)
NULL.

Page 18 of 18Ming-Tsung Lu

