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Abstract 

Developing and testing a new debugging tool on a collection of n parallel machines would 
require developing n implementations of that tool, one for each machine. Re-implementation is 
also required to run existing distributed programs (programs developed for a specific target 
machine) on some other system. Portability tools do exist which allow users to develop programs 
using communication primitives that have been implemented on a collection of distributed 
machines. However, they do not apply to existing programs which use the primitive operations of 
a particular machine. This paper describes the design of Earl, a system for program portability 
and the portable implementing and testing of debugging techniques for message-passing 
machines. A message-passing program (written for some parallel machine) is linked with a spe­
ciallibrary that maps the machine's native message-passing primitives to our generic set. Another 
group of libraries maps the generic set back to the native primitives of some - but not necessarily 
the same, parallel machine. To test a debugging tool using Earl, only a single instance of the tool 
need be implemented, and only for our generic set of message-passing routines (instead of the 
peculiarities of any particular machine). Since the primitive operations of all machines are 
mapped to and from this same set, the debugging algorithms incorporated into these routines can 
be used with any program on any supported machine. The ability to transport a program to other 
machines and run with a number of debug algorithms allows the user to quickly analyze the results 
of debug/performance tools across many architectures; possibly unveiling sensitivities of a debug 
algorithm's implementation to those architectures (e.g buffering of messages may be more feasible 
on one type of architecture than on another). Our results show little overhead for the mappings; 
both in the common-case (porting programs to and from the same machine) and cross-machine 
mappings. In fact, significant speedup can be achieved when porting to some target machines 
(those better suited for a programs' inherent characteristics). Finally, with the completion of the 
Message-Passing Interface (MPI) Standard on the horizon, combined with the strong need of the 
community to utilize such a standard, the Earl Library may prove valuable for porting existing 
programs to this standard. 
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1. Introduction 

Developing and testing a new debugging tool on a collection of machines is complicated by the need to 

implement the tool on each machine. For example, a tool for providing program re-execution on message-passing 

parallel machines would trace the order in which messages are delivered during execution (so the same order can 

be reproduced during re-execution). To implement and test such a tool on a collection of n parallel machines 

would require developing n message-tracing libraries, one for each machine. Additionally, porting existing dis­

tributed programs to a number of different target machines requires program re-implementation. Portability tools 

and environments exist that allow users to develop programs using communication primitives that have been 

implemented on a collection of distributed machines. However, such tools do not apply to existing programs which 

have been developed using the communication primitives of a particular machine. For this reason developing and 

assessing new debugging tools and programs across a collection of parallel machines can be time consuming. This 

paper describes the design of Earl, a system for program portability and the portable implementing and testing of 

debugging techniques for message-passing parallel machines. A message-passing program (written for any paral­

lel machine) is linked with a special library that maps the machine's native message-passing primitives to our 

generic set. Another group of libraries maps the generic set back to the native primitives of some - but not neces­

sarily the same, parallel machine. To test a debugging tool using Earl, only a single instance of the tool need be 

implemented, and only for this generic set of message-passing routines (instead of for the peculiarities of the mes­

sage-passing primitives of a particular machine). This system allows the debugging tool to be implemented only 

once, but used on programs written for any of the machines. New debugging strategies can then be quickly imple­

mented and evaluated across a variety of programs and machines. 

Our main result is the design of a single set of generic message-passing routines. The set contains function­

ality common to that of all supported machines and the structural definition of each routine within the set is very 

general. These characteristics allow the primitives of all machines to be mapped to and from our one generic set. 

Subsequently, only two mappings are required to map the primitives of each machine to every other machine; 

allowing low maintenance (such as the addition of a new supported machine). Earl's infrastructure is a collection 

of message-passing libraries that implement the mappings to and from this seL Once this infrastructure is in place, 

debugging tools can be incorporated into the generic routines, and thus written only once. Programs developed 

with the communication primitives of a particular machine now become portable; their primitives can be mapped 

to this same generic set then back to the primitives of any supported machine. The debugging tools incorporated 

into these routines can now be used with any program on any supported machine. Combining program portability 

with portable debugging gives developers of debug/performance tools access to a wider range of quality test pro­

grams for which to analyze their algorithms (while only having to implement these algorithms once). Portability 

can be extended further when the communication primitives of a program are mapped (via the Earl Library) onto 

the primitives of an existing portability environment; mapping a program to these environments now allows the 

original program to be run on all target machines for which their primitives have been implemented. With the 
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portability environment of a message-passing interface standard almost complete (the MPI Standard)[4]6, Earl 

could be very useful in porting existing programs to this standard. 

Our results show little overhead both in the common case mappings (to and from the same machine) and 

cross-machine mappings. Below we first cover related work and then outline Earl's design and test implementa­

tion results for the mapping of PVM, iPSC/2 and MPI Standard programs. 

2. Related Work and Motivation 

Virtually no work has been published on portable debugging for parallel machines. However, systems for 

portable parallel programming are similar in spirit. Most provide a set of communication and tracing primitives 

that have been implemented on a collection of distributed machines. Each provides a means of writing portable 

programs: the user develops programs using the tools' primitives, and these programs can be run on a variety of 

machines without change. Examples of such systems are PICL (portable Instrumented Communication Library)5, 

PVM (parallel VIrtUal Machine)3, and Express1. Of particular importance among portability envirorunents is the 

soon to be Message Passing Interface Standard (MPI). The MPI effort is an attempt to establish a practical, 

portable, efficient. and flexible standard for message passing. It uses the most attractive features of a number of 

existing message passing systems. As a result, the design of the MPI interface is not much different from current 

practice (such as Express and PVM); the interfaces are written at an application level and are easy to use, open, 

and extendible. Major goals of the standard are to allow efficient and reliable communication while maintaining a 

design that can be quickly implemented on many vendor's platforms. Designers of the standard hope that the defi­

nition of a message passing standard will provide vendors with a clearly defined set of routines that they can be 

implemented efficiently, or in some cases, be provided with direct hardware support Furthermore, once estab­

lished as a community standard, it is highly probable that libraries of debug and performance algorithms will be 

applied to the interface7 (similar to PICL's tracing facilities which allow information useful for debugging to be 

collected). 

Although most existing portable systems are valuable tools, they were not designed to aid in porting and 

debugging programs already written for other systems. In contrast, Earl is a system that allows debugging tools to 

be written once and applied to programs that have been developed on any collection of machines. Existing sys­

tems can be viewed as a mapping of its' communication primitives onto any distributed machine. Earl can be 

viewed as two mappings: one from the communication primitives of a given machine to our generic set. and 

another from our generic set to any distributed machine. This pair of mappings allows a single debugging tool to 

be run on programs written for any supported machine. In addition, it allows programs written for one machine to 

be automatically run on another; giving developers access to a wider range of test programs with which to analyze 

their debug and performance tools (while only having to implement these tools once). In this sense, Earl can be 

thought of as an extension of other portable systems; instead of programming with a given set of primitives, the 

user can program in the primitives of any machine, and automatically port (and debug) the program to any other 

2
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machine (Earl only addresses portability issues for a program's communication primitives, issues which emerge 

from porting between different operating systems and underlying hardware are not considered). Used in conjunc­

tion with existing portable systems, Earl can be used to map the communication primitives of a particular machine 

to the primitives of some portable set In this way, the original program is able to run on all machines that portable 

system supports. This test implementation achieved this by mapping iPSC/2 programs[2] to the PVM System. 

These programs are now able to execute on such systems as the Connection Machine and workstation clusters such 

as a SUN or sm. It is hoped that mappings similar to our test implementation will be utilized to map programs 

developed for these portable systems (or that have been developed with with the communication primitives of any 

particular machine) to the MPI standard. 

3. System Design 

The following sections describe the Earl system design. The design allows both machine dependent pro­

grams and debug algorithms to become portable. Machine specific programs become portable by being mapped 

through the generic set and onto the message-passing primitives of other supported machines. Debug algorithms 

become portable since they are developed with the same generic set of routines; and thus implemented only once. 

The following sections illustrate how this portability can be achieved through Earl's unique system design (a two­

level mapping scheme) and the advantages of providing this portability within a single set of generic message­

passing routines. 

3.1. Two-Level Mapping Scheme 

The process of a two-level mapping is illustrated in Figure 1. The first level takes the message-passing 

primitives of one machine and maps them to our generic set. The second level then takes each generic routine and 

maps it back to the message-passing primitives of any of the target machines. Most existing portability systems 

begin with a set of primitives similar to those mapped to by our first level processing. It is this step which distin­

guishes Earl from such systems; by doing so it allows existing programs (those developed with the primitives of a 

particular machine) to become portable. The following illustrates a simplification of a two-level mapping for the 

common case (mapping to and from the same machine): 

3
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PVM program 

sndO 

rcvO 

probeO 

MPI program 

mpi_csendO 

mpi_crecvO 

mpi_probeO 

iPSC/2 program CM-5 program 

isendO sendO 

receiveQcsendO 

irecvO 

Program using 
Generic_Async_SendO 

Generic_Sync_SendO 

Portable debugging library 

Trace_messageQ 

Generic_ReceiveO 

Generic_Probe() 

generic routines 

sndO 

rcvO 

probe() 

PVM rogram 

mpi3sendO 

mpi_crecvO 

mpLprobeO 

MPI program 

All target systems which 
are supported by these 
environments. 

isendO sendO 

csendO receiveO 

irecvO 

iPSC/2 program CM-5 program 

Figure 1.	 Earl system design: A program is first mapped to one that uses 
only a generic set of message-passing routines, and then mapped to any 
target machine. 
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Details of 1st Level Details of 2nd level 

ftrstlevel_send("sarne param list as original instr") 
( 

Generic_send("most general parameter list") 
( 

1* Call Earl Generic Operation */ 

Generic_send("most general parameter list"); 

/* Call original primitive operation */ 
original_send("original parameter list"); 

The two-level mapping scheme is achieved by linking the program with a special library (consisting offtrstleveU) 

operations) to map any (supported) machine's message-passing primitives onto our generic sel The program is 

then linked with a second library (consisting of our Generic_() operations) to map each generic operation back to a 

machines' primitive operations. Mapping the primitives of all machines to and from a single generic set has 

required that the definition of that set's operations be very general (making it easy to map from any primitive) and 

that they combine to provide a superset of each machine's functionality (making it easy to map back to any primi­

tive). This superset of functionality allows programs from various machines (and thus varying levels of function­

ality) to be ported between on another. Providing these characteristics for our single set (and especially maintain­

ing them in the wake of new operations and functionality from a new supported machine), has led to a structural 

design which is open and extendable. The set is considered open since the need to modify an existing operation 

(due possibly to the addition of an equivalent operation for a new machine) may involve only modifying the 

already general parameter list for the respective generic routine. Similarly, the set is extendable since the addition 

of functionality from a new supported machine simply involves creating a generic operation of equivalent func­

tionality (or modifying an existing operation to have a wider range of functionality). The major result of our work 

is the design of a single generic set of message-passing routines which achieve this generality and functionality; by 

doing so they allow a common place in which to implement debug algorithms, efficient program portability, and 

easy maintenance such as the addition of new supported machines. The following sections describe how this gen­

erality is achieved within our single generic set while allowing efficient mappings for both the common and cross­

machine cases. 

3.1.1. Common-Case Mapping 

A common-case mapping involves mapping the communication primitives of one machine to our generic 

set; the generic set then maps back to the communication primitives of the same machine. The philosophy of the 

two-level mapping scheme for the common case was illustrated in the above example. The original primitive oper­

ation is first substituted with a first-level equivalent routine; this routine then maps to our generic set. The general 

structure of each generic routine (e.g. a very inclusive parameter list) and the existence of an operation to handle 

the functionality of each primitive for all machines makes mapping to this set easy. The second level mapping 

then ensures that the functionality of the original operation is translated to the target machine. Of course, in the 

5
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common case, this simply involves having the generic operation re-issue the original primitive; allowing the com­

mon case to remain extremely efficient 

3.1.2. Cross-Machine Mapping 

A cross-machine mapping is the mapping of primitives from one machine to our generic set; the generic set 

then maps the functionality of each primitive to some other machine. A principle concern for Earl's common 

generic set is that the functionality of the original primitive operation may not be directly supported on the target 

machine. The ability to map all machine's primitives to a single generic set depended on the generic set's general 

definition structure (making it easy to map from any primitive; as demonstrated in the common case example). 

Mapping/rom the generic set back to the primitive of any machine, however, requires that the set consists of all 

the functionality of any target machine; this allows the functionality for any primitive of the source machine to be 

mapped onto the target machine (even if this functionality is not directly supported). The following example illus­

trates how this functional superset can be achieved: 

Example. A program developed for a particular system may use a routine which can receive a message of 

multiple message types. When porting the same program to a machine which does not have a functionally equiva­

lent operation (e.g. iPSC/2), an Earl generic routine can be created by using a combination of the primitives avail­

able on the target machine. Earl first maps the primitive to the generic set via the first-level mapping. It is then the 

responsibility of the generic operation to create the funcionality needed to map the primitive to the target machine: 

1st Level Mapping Needed member of functional superset 

/* Original operation is mapped to */ 
/* a Generic equivalent. */ 

firstlevel_recvm(buf, len, mtype, num) ( 

/* This functionality is not directly */ 
/* supported on target machine. */ 

Generic_Recy_Multi(buf,len,mtype,num); 

Generic_Recy_Multi(buf, len, msgtype, num) ( 

/* Loop through all msgtypes */ 
while (true) { 

/* Use non-blocking probe and recvO of */ 
/* target machine to achieve functionality */ 

probe(-I); 
if message of "msgtype" has arrived 

RecvO the message in; 
return; 

else 

get next "msgtype"; 

Thus, the Earl library contains a Generic_RecY_MultO operation (and a library of others) which can be applied to 
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machines for which this functionality is not directly supported. There are many examples of such cases, the com­

mon philosophy of the Earl Library is to utilize the fundamental operations of each machine to create and support 

the widest range of functionality within the Generic Library. In this respect, the Earl Generic Library contains a 

superset of functionality for all supported machines. This functional superset allows programs from various sys­

tems (and thus varying levels of functionality) to be ported between one another. It is this characteristic (combined 

with each generic routines' general definition) that allows efficient mappings to and from the primitives of most 

distributed memory machines (and particularly to and from the primitives of existing portability environments). 

In addition to mapping the functionality of primitive operations, a somce and target machine's environment 

processing (process allocation, startup/initialization processing, etc) and communication methodologies may vary 

greatly. Thus, the benefits of the Earl design (program portability, portable debug algorithms, easy maintenance, 

etc) are dependent on the design's ability to port both the functionality and environment from one machine to any 

other. The following sections describe some of these important portability issues. 

3.1.2.1. Mapping StartuplInitialization Processing 

As noted throughout the on-going MPI effort, program startup/initialization processing is an important and 

difficult issue in establishing program portability. In fact, most portability issues (process initialization, establish­

ment of process communication names/ids, etc) occm during program startup. Just as most parallel applications 

utilize a host process to help initiate the parallel application (startup processing and the loading of subsequent pro­

cesses), the Earl system utilizes an Executive Process (EXEC) to 'help establish these portability issues. In the Earl 

system, the EXEC is loaded by the original program's host process. The EXEC's main responsibility is to perform 

all startup processing; that processing critical in establishing program portability. The EXEC is loaded on the first 

available processor; but not that of the host process (i.e. not the host processor). This is due to the requirement of 

many distributed systems that the host process be solely resident on a special host-like processor; that capable of 

performing special tasks such as file I/O, or having special restrictions such as a (reduced) maximum length for 

host destined/originated messages. The following two sections describe how the EXEC process helps to establish 

portability for target systems with various startup/initialization methodologies. 

3.1.2.1.1. Traditional Startup Schemes 

In most distributed systems, a program's host process is responsible for loading subsequent processes via 

one or more system load requests. Since this processing is critical to program portability, the Earl systems requires 

all such processing be done by the EXEC process. Figure 2 illustrates the role of the EXEC process. 

The host process first issues a load request message to the EXEC (instead of issuing the request directly via 

a system call) and remains suspended. We can assume for the scope of this paper that the host is loading all nodes 

with a single load request; individual requests (one for each node) requires similar but some additional 

7 
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Nodes are sentEARL Exec communication idProcess ........ ........ ® lookup table.
 
Request to 
node(s) ~"""" ................
 

................
 

Original Host 
process 

Node 0 _-.J 

o event order 

actual message 

control 

Figure 2. The Executive process is responsible for initiating processes 
and mapping a source machines communication ids to that of the target 
machine. 

processsing. Following the load request message, the EXEC then performs the system loading for all processes. 

During this loading phase, a system's process ids are usually created; establishment of these ids is an important 

portability issue critical to both communication and non-communication processing. For example, all communica­

tion primitives utilize some sort of id mechanism for specifying a source or desination process; mapping such 

primitives between machines also requires mapping these id values (examples of some id mechanisms are combin­

ing a group name with integer ids, postive integer values, specific integer range, etc). Additionally, programmers 
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often depend on these id values for non-communication processing; requiring the ids to be within the source sys­

tem's specifications. The following example illustrates the importance of mapping ids from the source system for 

non-communication processing: 

9
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mainO ( 

recv(type, buf, len); 

1* Keep track of tota1length of msgs from each node */ 

x =source_oCmsgO; 
Array[x] =Array[x] + len; 

1* The return value from the system call was expected */ 
1* to be within a certain range. */ 

The example illustrates the dependen~y between the original program code and the communication ids of the 

source system. The program is developed with knowledge of the system's id range (i.e. 0 -> n - 1); porting to a 

machine which uses arbitrary integer values (e.g. PVM) can result in quick program termination. To avoid such 

errors and to establish communication portability, the EXEC is responsible for creating and maintaining a table 

which maps the target machine's ids to that of the source machine. A message containing this lookup information 

is then sent to each process. Having this complete id set available to each node during initialization eliminates the 

need for a process to query (i.e. send additional messages) to the EXEC process during program execution. 

Following receipt of the communication id lookup table, each node then sends a node complete message 

back to the EXEC. Upon receiving all node complete messages, the EXEC issues the final load complete message 

to the original host process; allowing it to continue execution. Note that the ordering of events by the EXEC is 

very important. Recall that the original host process (after sending the initial request to load message) is blocked 

until all nodes have been initiated and received communication ids. Since the original host process is no longer 

actually initiating each node (i.e. it issues the EXEC to do it), continuing it's execution after the EXEC load 

request could result in the host sending a message to a node not yet loaded. Some environments (e.g. PVM) are 

sensitive to such issues and may yield system errors (rather than simply ignoring the sent message). 

Coordinating the Earl EXEC process with node programs (to establish the necessary process synchroniza­

tion and communication portability) can be achieved with little impact to execution of the original program. Most 

systems require each process to perform special (system) registration! de-registration processing; processing which 

is usually performed at the very beginning and end of each process. Porting a program from a system which does 

not require it to one that does, combined with Earl's to coordinate the EXEC process, had lead to the following 

design convention: 

10 
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Original program After mapping 

mainO { mainO ( 

1* no system calls made'"/ 1* Generic "Initialize" substituted in "'/ 
Generic_First_CallO; 

x =y; 
printf("%dO,x); x= y; 

printf("%dO,x); 

1* Generic "Finalize" substituted in "'/ 
Generic_Last_CallO. 

The Generic_First() and Generic_LastO routines are placed at the very beginning and end of a process's 

program (or are substituted for a program's original system calls); they help to accomplish two important tasks: 

perfonn all system registration/de-registration which may be required on the target system (but not on the source 

machine) and to receive and send appropriate initialization messages to and from the EXEC (those message neces­

sary in establishing the process synchronization and communication ids mentioned above). 

The design and role of the EXEC allows the addition of any new messages within the original program to 

occur only at startup. This is necessary since messages which are introduced throughout the execution of the pro­

gram could add difficulty to such debugging issues as race detection and message tracing. Combining low addi­

tional messages with the fact that the EXEC process is confined to the non-common case mapping, helps both the 

common and non-common case implementation to remain efficient 

3.1.2.1.2. Implicit and Interactive Startup 

In some distributed systems, the loading of subsequent processes is implicit to the developer. For example, 

in the MPI system, developers need not make any explicit system calls to load or initialize subsequent processes; 

this is done within the MPI_mainO function. Additionally, some systems (e.g. iPSC/2) provide the user with the 

option of initiating processes interactively within the distributed environment (instead of placing the loading or 

startup commands within the program code). When porting from such systems to one which requires explicit 

loading calls, the Earl system must detect (within the host process) the need for these node processes to be initi­

ated, and subsequently perfonn the loading. Having Earl simply place the load command(s) within the source pro­

gram's host process is fine for systems with implicit loading (since this is guaranteed to be the only loading com­

mand), but this technique may yield multiple (unnecessary) load commands in environments which provide the 

option of interactive loading. 

Earl accomplishes portability between these and traditional startup schemes by monitoring all system calls 

of the host process and detennining whether subsequent processes should have already been started. For example, 

the first instance that the host is to issue a send or receive operation (or any operation relating to communication, 

11
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such as probe oeany routine which queries infonnation about a pending or received message), Earl will invoke the 

EXEC process with the load request message. All subsequent loading and initiating of these processes (and the 

establishment of communication portability) is then accomplished by the EXEC in the same manner as in tradi­

tionalloading schemes (Figure 2). 

3.1.2.2. Mapping Send and Receive Operations 

Perhaps the most important portability issues (for both semantic and efficiency reasons) lie within the time 

critical send/receive operations. Although all systems provide some sort of communication operations, many dif­

fer in the methodology in which they are implemented. For example, a developer may utilize many different prim­

itives on the source machine which could be achieved with a single operation on the target machine. Additionally, 

message-passing systems differ in the types of operations they provide (e.g. synchronous, buffered, non-buffered). 

Thus, the challenge for Earl is to allow the communication routines for various machines to become portable; the 

generic library must ensure that this portability is not achieved at the expense of efficiency, a program's semantics, 

or the structure of the Earl library itself. The following sections discuss how Earl achieves these goals. 

3.1.2.2.1. Implementation Methodology 

One aspect of communication which may be implemented differently on various machines is bl{/fer packing 

(currently, Earl address only contiguous packing mechanisms). Buffer packing characterizes the method a buffer 

can be created (as for a send operation) and how it can be extracted (as for a receive operation). One traditional 

mechanism allows the user to simply provide a single starting address and length (of the contiguous message data) 

within the send operation. Another method for buffer packing is the "scatter/gather" technique. In such a system, 

data is gathered from the message buffer on the sending process, and subsequently scattered into a buffer on the 

receiving process. The data is contiguous but may be of mixed data types. The scatter/gather technique is imple­

mented with multiple primitive operations; allowing the user (in the case of a send) to clear, pack, and ultimately 

send the buffer. Porting programs from a traditional packing scheme to a scatter/gather technique requires that 

Earl perfonn any necessary packing/unpacking. For example: 

12
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Source program Send operation after 1st level mapping 

mainO { firstieveCsend("originai parameter list") { 

/* Traditional contiguous buffer */ 
/* packing program. */ /* All three generic operations are required */ 

/* when porting to a scatter/gather buffer */ 
csend(msgtype, buf, len, source, pid); /* packing system. */ 

Generic_clearbuffer(); 
Generic_Buildbuffer(buf. len); 
Generic_BBSend(buf, len, dest. mtype, pid); 

The original send operation is mapped to the three generic operations at the first level. These routines pro­

vide all the necessary functionality when porting to any scatter/gather implementation. The functionality of all 

three routines may not always be needed, but must be provided to handle various implementations. For example, 

some scatter/gather systems may not require a clearbufferO operation prior to sending a message, but it's absence 

from the library when porting to a particular system (e.g. PVM) could result in the new message data being 

appended to the end of the previously sent message. Generality is a necessary characteristic of the Earl generic 

library; this allows various implementations to be mapped between one another via our single set (avoiding the 

need to map the primitive operations of each machine to every other machine). One of the challenges of this, how­

ever, is keeping the common case mappings efficient. In the above example, only the original send operation 

would be necessary when mapping to and from the same machine. Earl achieves efficiency while maintaining 

generality (efficiency for the common case and generality for cross machine mappings) by having the generic 

clearbufferO and packbufferO be null routines in the libraries of all target machines which do not require this func­

tionality (i.e. all systems utilizing the traditional buffer packing mechanism which are mapped in the common 

case). 

Mapping buffer packing mechanisms in the reverse direction (from a scatter/gather technique to one which 

only requires a single send operation) involves similar processing; the buffer packing primitive(s) of the source 

program need to be simulated by Earl to provide the necessary starting address and length of the contiguous data. 

To achieve this, dynamic memory allocation is needed to create a single contiguous buffer large enough to hold the 

entire message. Allocation of memory is generally not a problem, particularly for blocking or synchronous send 

operations; memory can be released immediately after issuing the send (since the buffer has been safely sent or 

copied). Asynchronous send operations, however, may require Earl to monitor (within the same process via non­

blocking commmiication routines) whether the message has been sent. Only then can the allocated space be freed. 

Systems which utilize the scatter/gather buffer mechanism generally do not specify (within the recv commu­

nication primitive) the length of the expected message; the data is usually extracted using one or more unpacking 
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operations. Mapping such communication routines to a system which requires a specific length within this opera­

tion requires that Earl (in addition to packing and unpacking messages described above) determine the length of 

the packed message. This is accomplished with the following generic operation: 

Generic_Getpndj.ength(msgtype) ( 

int length; 

/* Wait for specified message */
 
blk_probe(msgtype);
 

/* Now determine length of pending message */
 
recvinfo(&length, &source, etc);
 

return(length); 

The original receive operation can now be mapped to the Generic library in the following manner: 

original program Same program after mapping 

mainO ( mainO { 
int len; 

/* No length specified */ /* Determine length of the pending message */ 
recv(msgtype); len =Generic_Getpnd_Length(msgtype); 

Generic_Block_Recv(buf, len, msgtype); 

The Generic_Getpndj.ength() routine is another example of the need for the Earl Library to be a functional super­

set for all supported machines. In this particular example, the generic operation allows programs of various buffer 

packing methodologies to be mapped to and from our single generic set 

3.1.2.2.2. Communication Modes 

When porting communication routines (send/receive) between machines, it is important to understand the 

characteristics (modes) of those operations for both the source and target machine. Communication modes and 

characteristics refer to such things as execution flow (such as suspending execution until an operation has com­

pleted) and message buffering (such as preserving the message buffer from corruption). Not all machines support 

all types of send/receive operations; porting an operation of one type to one which has different characteristics on 

the target machine may cause program ambiguities to occur (e.g. program deadlock, buffer corruption, etc). Thus, 

it is the responsibility of the Earl Library to map a specific operation to the generic library, and ensure (in the cases 
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where the semantics of the original operation are not directly supported on the target machine) that those charac­

teristics are supplied to prevent any program degradation. The following two examples illustrate this point 

Example 1. A synchronous send operation is one which suspends execution until the message being sent is 

received by the designated process (Le. the sending process receives an acknowledge from the destination pro­

cess). An asynchronous send operation is one which may suspend until the message buffer has been cleared (Le. 

until the message has actually been sent) but does not wait until the message is received by the designated process. 

Mapping a program containing asynchronous operations (via Earl) to a system utilizing only synchronous routines 

requires that Earl provide the needed functionality to avoid the potential of program degradation, such as deadlock: 

Program using asynchronous sends Program mapped to synchronous sends 

/* The sends do not wait for */ /* The send now waits until */ 
/* the message to be received */ /* the msg is received */ 

Async_send(type1); Generic_Sync_Send(, typel,); 
Async_send(type2); Generic_Sync_Send(, type2, ); 

/* The recvs can be posted */ /* The recvO for type2 will */ 
/* in any order. */ /* wait indefinitely. */ 

recv(type2); Generic-Receive(, type2, );
 
recv(typel); Generic-Receive(, typel,);
 

One can see that if the asynchronous sends of the source machine are simply mapped to a target system's 

synchronous operations, there is the potential that the second message (type2) may never be received (resulting in 

program deadlock). This can be avoided by modifying the Generic Receive() operation to ignore unintended mes­

sages (Le. put them back into the system message buffer) and return only when the intended message has been 

received: 
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Generic_Receive(buf, len, msgtype) { 

while (true) ( 

if "msgtype" arrived 

return that message; 

else 

recv(any message type); 
put this message back in message buffer; 

}
 
}
 

Example 2. Similar risks exist when buffered and non-buffered send operations are mapped to one another. 

A system which uses a buffered send operation is one which suspends execution until the data has been safely 

placed in the system buffer (but not necessarily received by the designated process). Users often rely on this tech­

nique and freely modify (immediately after the send operation) the message buffer. A non-buffered send operation 

is one which returns immediately after initiating the transfer to the destination process (the iPSC2 isend() is one 

such example of a non-buffered send operation). There is no guarantee, in this case, that the message has cleared 

the buffer; users often depend on other communication routines such as probe() or msgdone() to determine 

whether it is safe to modify the message data. Mapping the buffered send operations of a program to non-buffered 

sends on some target system presents the possibility that the message buffer will be corrupted before it is actually 

sent For example, 

Program using buffered sends Program mapped to non-buffered sends 

main 0; 

x= mynodeO; 
send(&x,len, msgtype) ( 

1* user assumes x is already sent and */ 
1* available forre-use. */ 

x++; 

main 0; 

x= mynodeO; 
Generic_NonBuLSend(&x,len, msgtype) { 

x++; 

1* The message buffer may not be free */ 
1* and the "x++" value may be sent */ 

To avoid such a situation, the Earl system maps the source machine's buffered send to the Generic Bul Send; this 
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operation may use the non-buffered send operation of the target machine, but Earl manually buffers the message 

within the generic routine to avoid the possibility of data corruption (i.e. the data is copied to a temp buffer to 

allow the user to freely modify data at the original address). Data corruption is not a concern for Earl when port­

ing synchronous send operations; this is ensured by the inherent characteristics of the operation (i.e. waiting for the 

message to be received by the designated process). 

It is the responsibility then for Earl to ensure that the semantics of the original program are preserved. Cur­

rently, the Earl library supports blocking and non-blocking send operations but only blocking receive operations. 

Support for non-blocking receives is complicated by limitations on some of the target machines. This processing 

could be provided within the generic library to allow portability to all target machines (even ones which do not 

directly support it). However, supplying this functionality would involve heavy message buffering; doing so in a 

portable environment (where target machines have different, and usually unknown buffering capacities4) could 

hinder reliability. 

3.2. Advantages of the Earl Design 

The key component of the Earl design is. that the communication primitives of all machines are mapped (via 

the library) to one set of generic routines. This design philosophy has some immediate advantages: 

(1). Mapping to a single generic set allows a common place in which to implement debug/performance 

algorithms; making these algorithms portable. The· algorithms can be developed using our generic routines (those 

which all primitives are mapped to) instead of using the peculiarities of any specific machine. The addition of a 

new supported machine does not require any modification to these algorithms; since the primitives of the new 

machine are mapped to the same generic set Thus, the time consuming task of implementing and analyzing debug 

algorithms across a collection of architectures is reduced. Additionally, one can quickly detennine any sensitivi­

ties a debug algorithm's implementation may have on a particular architecture. For example, a common mecha­

nism in playback for message-passing programs is to buffer a message that does not arrive in the same order as in 

the original execution. The debug algorithm may have originally been developed on a system with large buffering 

capacities. Running the algorithm in a portable environment involves the possibility that the buffering capacities of 

some of the target machines may not be sufficient. Because the tools are now developed with the Earl generic rou­

tines, however, this inadequacy can be discovered quickly (without having to re-implement the algorithm). 

(2). Existing programs which have their communication primitives mapped to our generic set not only 

become portable (by being mapped back to the primitives of any machine), but the debug algorithms incorporated 

into the same generic set can now be run with any program on any supported machine. Developers of such algo­

rithms now have access to a wider range of quality test programs for which to analyze their debug and perfor­

mance tools. 
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(3). Mapping to one generic set allows for easy maintenance. Only two library implementations are needed 

to map a machine's primitives to every other machine's primitives (by mapping first to our generic set). The addi­

tion of a new supported machine only requires implementing these two mappings. A mapping scheme which 

implements mappings directly from each machine's primitives to every other machine's primitives would require n 

implementations (a mapping from the new machine's primitives to every other machine's primitives). 

4. Relationship of the Earl Library to MPI 

The general design of the Earl Generic Library allows easy mapping of existing programs to the MPI stan­

dard (mapping programs/rom the MPI standard onto Earl is equivalently easy, however, mapping to a community 

standard seems much more useful). Once this standard is established. and there exists systems to directly support 

it, a user can take existing programs (those developed with the communication primitives of a particular machine) 

and map them (via Earl) onto this standard. Because the MPI standard is not a functional superset for all existing 

systems (Le. it has intentionally left some out), mapping primitives directly from an existing program to MPI 

(instead of mapping first to the Earl Library) is not possible. However, mapping the primitives of Earl to and from 

the MPI Standard primitives is quite easy; a result of the similar design goals of the two systems. 

Recall that the role of Earl (mapping the primitives of·all machines to and from one generic set) requires it's 

generic set to provide a superset of functionality for all supported machines; allowing mapping back to any 

machine's primitives easy. Also, the generic routines within this set have a very general structural definition, 

allowing easy mapping from any primitives. The design of the MPI standard is not much different from current 

practice, and provides the most attractive features of a number of message-passing systems. It is this common 

functionality of MPI to existing systems, combined with the functional superset and general structure of Earl rou­

tines, which yields efficient mappings between the primitives of the two systems. The Venn diagram in Figure 3 

helps to illustrate this relationship. The diagram can be applied to the commonalities seen in the message-passing 

operations used by both systems. For example, all (Earl) supported machines combine to use many different 

modes of communication routines (synchronous, blocking, nonblocking); all of which are popular. Likewise, the 

MPI standard recognizes the need and desire of programmers for these operations; thus providing the user the 

option of using all three types. As a result, mapping communication routines (those routines which are the core of 

any message-passing system) between Earl and MPI is straightforward and efficient. This was demonstrated in a 

simple mapping between an MPI ring.c program and the PVM system; the program was quickly mapped to the 

Earl Generic library with no structural modifications necessary to any of Earl's generic operations. 

The Earl system may prove useful once MPI is finalized and hardware exists to directly support the standard 

interface. Furthermore, once widely accepted, it is anticipated that libraries of debug and performance tools will 

be available within the MPI system (Le. tools will be developed with the MPI primitives instead of using the pecu­

liarities of any particular machine). Users can now apply the advantages of the MPI system (direct hardware 
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Ear1 Generic L1brary 

L1brary 

- Common functiona1ity between MPl: Standard and existing 
distr1buted systems (those supported by Ear1) . 

Operations of existing systems not desired in MPl: Standard. 

Operations not provided within Ear1 supported machines 
(or poss1b1y from any existing system) . 

Figure 3. Relationship or the Earl Library to the MPI Standard. 

support, developmental and debugging tools, etc) to existing distributed programs by mapping them (via Earl) to 

the standard interface. 

S. Results 

Tables 1,2 and 3 illustrate the results for our test implementation. The programs were executed with vari­

able factors such as number of processors, input data size, etc. This was done to acquire any correlation between 

the overhead invoked by Earl and the duration of program execution (due to the lack of extensively long executing 

programs). Programs were run both in the common case and between different machines. Table 1 describes the 

common case mappings for PVM programs (running a PVM developed program through the Earl Generic Library 

then back to PVM). One can see that the overhead invoked by Earl is quite small « 5%). In particular, programs 

with low message traffic show a decrease in overhead as program execution time is naturally extended (by increas­

ing matrix size for "chol" and increasing the number of processors for "fft"). One could speculate then that the 

overhead invoked by Earl is quite negligable for programs of low message traffic; particular for longer executing 

programs. For programs with heavy message traffic ("puzzle"), increasing their normal execution time (in this 
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Program 

"puzzle" 

"puzzle" 

I 
I 
I 
I 

"fft" 

"fft" 

I 
I 
I 

"chol" 

"chol" 

I 
I 
I 
I 

Original Mapped through 
Time Earl % increase Comments 

1. 81 I 1. 84 I 1.7 % I 30 levels, moderate 
message trafficI I I 

39.32 40.38 2.7 % 41 levels, HeavyI I I message traffic
I I I 

9.56 9.95 4.1 % 4 ProcessorsI I I 
12.65 I 12.85 I 1.6 % I 8 processors 

I I I 

I I I
1.29 1.3 1.1 % matrix size = 32 

I I I 
2.89 2.91 . 7 % matrix size = 100I I I 

I I I 

Table 1. PVM Programs· Common-case mappings. 

case by increasing the number of levels of the puzzle), shows a slight increase in overhead (although still quite 

small; from 1.7% -> 2.7% ). This may be due to the slight modifications made within the time critical sendlrecv 

operations. However, despite a significant increase in message traffic for the "puzzle" program (by increasing the 

number of levels from 30 to 41), the total execution time only increased by 2.7%. 

Table 2 illustrates the results for common case mappings for iPSC/2 programs. As with the PVM common 

case results, the overhead invoked is very small « 7%). However, unlike PVM, both programs ("HMult" and 

"Tester") show a slight increase in overhead as normal execution time is extended (in this case by increasing the 

number of processors). Since the implementations of the generic library will vary from machine to machine 

(depending on how easy it is to map to and from that machine), overhead will also vary. 

Table 3 illustrates Earls efficiency for cross-machine mappings (mapping a program developed for one 

machine onto the primitives (via Earl) of some other machine). This implementation mapped iPSC/2 programs to 

the PVM system; PVM was implemented on a network of SUN SPARC workstations. Although our test results 
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Original Mapped through 
Program Time Earl % increase Comments 

"HMult"	 I 2.02 I 2.08 I 2.97 % I 4 Processors 

I I I I"HMult" 2.24 2.35	 4.9 % 8 processors 
I I	 I I 

"Tester"	 I 2.25 I 2.33 I 3.6 % I 4 Processors 

I I I I"Tester" 2.37 2.53	 6.8 % 8 Processors 
I I	 I I 

Table 2. iPSC/2 Programs - Common-case mappings. 

are restricted to running the iPSC/2 programs on a collection of SUN workstations, porting these programs to the 

PVM system allows them to be executed on any PVM supported machine (e.g. Cmy, Connection Machine, etc). 

The "HMuit" and "Tester" programs were developed for the iPSC/2 and primarily provide low-moderate message 

traffic. Mapping the primitives of these programs to our generic set and then back to the primitives of PVM actu­

ally yielded faster execution times. The significant decrease in execution times (up to 82%) seems to be due to the 

low overhead invoked by the Earl mappings combined with the fact that the target machine is better suited for the 

characteristics of the program. The CPU intensive "HMult" program is able to run on the faster processors of the 

SPARCs; thus speeding up execution time. A similar correllation can be seen with the intense message-passing 

characteristic of the "cell" program. Message-passing is certainly faster on the program's source machine 

(iPSC/2) and thus some overhead is seen when ported to a machine not designed for such processing. This initial 

62% overhead could also be contributed to the additional processing invoked by the Earl EXEC process (addi­

tional messages in the loading sequence). However, one can see that as the normal execution time of the "cell" 

program is extended (in this case be increasing the number of processors), the overhead decreased from 62% to 
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less than 6%. The waning of this overhead (as the cell execution time is naturally extended) seems consistent with 

the fact that the EXEC overhead is confined to only startup processing. 

Overall, the programs in this test implementation show a negligible overhead invoked by Earl « 10%). 

Although we did not have any programs of siginificant execution time (hours) to test, increasing their nonnal exe­

cution times with variable factors such as input data size and number of processors, showed a positive correllation 

between exectuion time and Earl overhead. Additionally, significant speedup can be achieved when running a pro­

gram on a machine better suited for that program's inherent characteristics. The lack of significant overhead also 

helps developers of debugging tools to acquire quality programs for which to test their algorithms; developers are 

no longer restricted to using only those programs developed for machines currently available to them. The positive 

results allow those developers to use programs that have been devleoped for any machine, and run them without 

gross program degradation (at least no significant degradation stemming from portability, the debug algorithms 

themselves may invoke additional overhead). 

Program 

"cell" 

"cell" 

"HMult" 

"HMult" 

"Tester" 

"Tester" 

Original Execution on 
cube time PVM % increase Comments 

I 11.5 I 18.67 I 62.3% I 4 Processors 

I 
I 

38.5 
I 
I 

40.8 
I 
I 5.97% 

I 
I 

8 Processors 

I I I I 

I 
2.02 I .38 I -81. 2% I 4 Processors 

I 2.24 I .67 I -70.1% I 8 processors 
I I I I 

I 
2.25 I .58 I -74.2% I 4 Processors 

I 2.37 I .96 I -59.5% I 8 Processors 

I I I I 
I I I I 

Table 3. iPSC!2 programs· mapped to the PVM sytem (SUN SPARes). 
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6. System LimitationslRestrictions 

When porting programs via the Earl system, users should consider some of the following issues that have 

not been addressed/implemented (these issues apply only to cross machine mappings,full functionality is supplied 

in all common case mappings): 

- Non-blocking receive operations are not supported when porting to PVM. 

- Earl has been tested with programs which have consisted mainly of one process per node, and programs in 

which no more than one process initiates subsequent node programs (when porting to PVM). 

- No Real-Time Clock routine has been implemented when porting to PVM. 

- The PVM to iPSC/2 mapping has not been implemented. 

7. Conclusion 

Mapping the primitives of all machines to and from our generic set allows existing distributed programs to 

become portable. Debug and performance algorithms can be instrumented within this set, but applied to programs 

for many different machines. Additionally, a program can be run on a machine other than the one for which it was 

originally developed. This is particularly valuable for developers of debugging tools; developers are now provided 

with access to a much wider range of quality test programs with which to analyze these tools. Program portability 

is also useful when a program can be run on a machine which is better suited for that program's inherent character­

istics. For example, a program designed for heavy algorithmic calculations (and low message traffic) which has 

been developed on a machine with little CPU power, can now be ported (with low overhead) to a machine with 

much faster CPU capabilities. 

Finally, with the completion of the MPI Standard almost complete, users may depend solely on the standard 

for the development of subsequent distributed programs and tools; possibly making existing portable systems 

obsolete. The Earl Library, however, ensures that programs already developed for these tools (and for programs 

which use communication primitives of any particular machine) do not follow the same fate. 

Appendix: Generic Message.Passing Routines 

The following tables list the Earl generic operations currently implemented. These routines form a set of 

communication primitives which contain functionality common to all Earl supported machines; allowing iPSC/2, 

PVM, and simple MPI programs to be mapped between one another. The general structural definition of each rou­

tine yields a very general parameter list; however, given the small number of machines currently supported, not all 

parameters are utilized (and are thus not described). Also, each routine may be implemented differently for a 

given target machine, therefore, the descriptions are kept at a high level and return values are described only where 

applicable. For ease of reference, the routines are grouped into the following six categories: 
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Category I 
Process startup, initialization, and termination 

iot Generic_LEXEC (char *file, char *arch, long node, long pid) 

- Loads the Earl EXEC program on the next available processor (called inherently by original program's 

host process). 

int Generic_allocproc (long *numproc, char *name, char *type, char *snnname, long keep, long *me, 

long *host, long pid) 

- Allocates a cube or number of processors specified by numproc. Returns the id of the calling process. 

void Generic_attachprocs (char *cname)
 

- Attaches to a group of processors of cname and makes it the current group/cube.
 

void Generic_LastCall (int release) 

- Perfonns all tennination/c1eanup processing required by each process. This is the last executable state­

ment in each process. 

int GenericJoad (char *file , char *arch, long node, long pid) 

- Loads the executable file on the given architecture (arch). For systems which allow users to specify 

destination, the file is loaded on node number node with a process id of pid. Returns the process id for 

the process to be loaded. 
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int Generic loadm (char *file , char *machine,long node, long pid) 

- Same as Generic_load but initiates the file on the specified machine. 

int Generic_FirstCall (char *component,long *numproc, long *me, long *host) 

- Registers a process within the target system. Performs all necessary initialization processing which 

includes synchronization with Earl EXEC and receipt of the communication id lookup table during pro­

cess startup. Returns the process id of the calling process. 

void GenericJelcube (char *cname) 

Releases the group/cube specified by cname. 

void Generic_setpid (long pid) 

Sets the process id for the host process. 

int Generic_termgroup (char *component, long instance, long node,long pid) 

- Terminates the process(es) specified by component, instance, node, or pid. This routine also termi­

nates all pending messages. Returns < 0 if error. 

int Generic_termproc (char *component, long instance,long node,long pid) 
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- Same as Generic_termgroup but has no effect on pending messages.
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Category II 
Inter-process communication 

long Generic_Breceive (char *buf, long bytes, long msgtype)
 

- Receives a message of the specified msgtype (Blocking). Returns the actual message type.
 

long Generic_Breceivem (char *buf, long bytes, long *msgtype, int num) 

- Receives a message specified by any of the num message type values specified in *msgtype. (Block­

ing) 

long Generic_NBreceive (char *buf, long bytes, long msgtype) 

- Non-blocking receive operation. (Not supported when porting to PVM). 

long Generic_BBsend (char *buf, char *component, long bytes, long mtype, long inst, long pid, long 

node) 

- Send a message to process(es) specified by ( component and inst) or by (node and pid). (Buffered) 

long Generic_NBNBsend (char *buf, char *component, long bytes, long mtype, long inst, long pid, 

long node) 

- Same as Generic BBsend but is Non-buffered. 
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long Generic_Sync_send (char "'buf, char "'component, long bytes, long mtype, long inst, long pid,
 

long node)
 

- Same as Generic_BBsend but is synchronous. Not supported on iPSC/2 or PVM.
 

void Generic_clearbuf 0 

- Initializes/clears the send buffer. 

int Generic build[type] ([type] "'ptr, int num) 

- Inserts num values beginning at ptr into the send buffer. [type] can represent an integer, float, complex, 

string, bytes, double float, or double complex values. 

iot Generic_xtract[type] ([type] "'ptr, iot num) 

- Extracts num values of datatype [type] from received message and assigns it to ptr. [type] is the same 

as for Generic build. 
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Category III 
Pending or received message inquiries 

long Generic Bprobe (long msgtype) 

- Check if message of type msgtype has arrived (Blocking). Return value is dependent on target system 

(actual message type or status). 

long Generic_getmcount 0
 

- Returns the length of a pending or received message.
 

long Generic_getmpid 0
 

- Returns the process id of the process which sent the message.
 

long Generic_getmsource 0
 

- Returns the node id of the process which sent the message.
 

long Generic_getmtype 0
 

- Returns the message type of the pending or received message.
 

long Generic_getpnd_Length (long msgtype) 
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- Returns the actual length (in bytes) of the pending or receive message specified by msgtype. This rou­

tine is used by Earl when mapping programs from systems using scatter/gather buffer packing mecha­

nisms (where no length is specified within the receive operation) to systems utilizing traditional buffer 

packing schemes. 

void Generic_msgcancel (long id)
 

- Cancels an asynchronous send or receive message specified by id.
 

long Generic_msgdone (long id)
 

- Detennines whether the specified asynchronous send/receive operation has completed. (Non-blocking)
 

void Generic_msgwait (long id)
 

- Waits for the asynchronous message specified by id to complete. (Blocking)
 

long Genericyrobe (long msgtype)
 

- Same as Generic_Bprobe but is asynchronous. Return value dependent on target system.
 

long Genericyrobem (int num, long *msgtype) 

- Same as Generic_Bprobe but checks for messages specified by any of the num message types (*msg­

type). 

30 



December 22,1993 

int GenericJecvinfo (int *bytes, int *msgtype, char *component, int *pid, int *instance) 

- Returns the characteristics of a pending or received message including it's length, type, and sending 

process. Returns < 0 if error. 
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Category IV 

Process/environment inquiries 

long Generic cubeinfo (struct cubetable *ct, long numslots, long global) 

- Obtain infonnation about allocated cubes. 

long Generic_cubesize 0
 

- Returns the number of allocated processors in the group or attached cube.
 

int Generic groupstatus (char *component, int instance)
 

- Detennines whether the indicated process is active. Return v_alue dependent on target system.
 

long Generic_myhost 0
 

- Returns the node id of the host process.
 

long Generic_mynode 0
 

- Returns the node id of the calling process.
 

long Generic mypid 0
 

- Returns the process id of the calling process.
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long Generic_nodedim 0
 

- Returns the dimension of the allocated cube.
 

long Generic_numnodes (int "'nnodes, int "'nfonnats)
 

- Obtains the number of nodes and data fonnats. Returns the number of nodes.
 

long Generic_who (char "'component, int "'pid, int "'numproc, int "'instance, int "'host) 

- Obtains infonnation about the calling process and environment such as component name and instance, 

node and pid, number of processors allocated, and the node name/id of the host process. Return value 

dependent on target system. 
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Category V 
Process synchronization 

int Generic_barrsync (char *barrname, int num)
 

- Blocks caller until num calls with the same barrname have been made. Returns < 0 if error.
 

void Generic readysig (char *event) 

- Sends signal with the specified name. 

void Generic_wait_one_cmplt (long node, long pid, long *cnode, long *cpid, long *ccode) 

- Suspends caller until the specified process has completed. 

void Generic_wait_all_cmplt (long node, long pid) 

- Suspends caller until all specified processes have completed. 

void Generic_waitsignal (char *event)
 

- Suspends caller until the specified signal name occurs. Used in conjunction with GenericJeadysig.
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Category VI 
Miscellaneous 

double Generic_clock 0 

- Returns the actual ellapsed time in milliseconds (since node initialization or ellapsed time used by 

UNIX for the host process). Not supported in PVM. 

void Generic_CTOH[t] (unsigned long *sv, short n) 

- Swap byte order from cube to host. [t] represents float, long, short, or double values. Not supported in 

PVM. 

void Generic_HTOC[l] (unsigned long *sv, short n) 

- Swap byte order from host to cube. [t] represents float, long, short, or double values. Not supported in 

PVM. 

void Generic_flick 0
 

- Relinquish CPU to another process. Not supported in PVM.
 

void Generic_flushmsg (long typesel, long node, long pid) 

- Flush specified messages from the system. 
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long Generic_ginv (long num)
 

- Returns the inverse of Generic_gray. When porting to PVM, num is returned.
 

long Generic_gray (long num)
 

- Return the binary-reflected Gray code for an integer. When porting to PVM, num is returned.
 

void Generic_killsyslog 0
 

- Tenninate a syslog process. Not supported in PVM.
 

void Generic_led (long lstate)
 

- Turn the node board's green LED on or off (supported on iPSC/2 only).
 

long Generic masktrap (long mask)
 

- Enable or disable a receive trap. Not supported in PVM.
 

void Generic_newserver (char *cubename)
 

- Stan a new file server for the specified cube. Not supported in PVM.
 

void Generic_setsyslog (long stdfd) 
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, - Start a syslog program. Not supported in PVM. 

References 

[1]	 The Express Parallel Toolkit, ParaSoft Corporation O. 

[2]	 iPSCI2 User's Guide (Preliminary), Intel Scientific Computers (March 1988). 

[3]	 A. Beguelin, J. Dongarra, G. A. Geist, R. Mancheck, and V. S. Sunderam, "A Users' Guide to PVM: Paral­
lel Virtual Machine," Technical Report ORNLITM-11826, Oak Ridge National Laboratory, (July 1991). 

[4]	 J. Dongarra, R. Hempel, A. J. G. Hey, and D. W. Walker, "A Proposal for a User-Level, Message Passing 
Interface in a Distributed Memory Environment," Technical Report ORNLlTM-12231 , Oak Ridge National 
Laboratory, (June 1993). 

[5]	 G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley, "A Users' Guide to PICL: A Portable Instru­
mented Communication Library," Technical Report ORNLlTM-11616, Oak Ridge National Laboratory, 
(September 1992). 

[6]	 W. Gropp and E. Lusk, "A Test Implementation of the MPI Draft Message-Passing Standard," Technical 
Report ANL-92147, Argonne National Laboratory, (December 1992). 

[7]	 A. Skjellum, N. E. Doss, and P. V. Bangalore, "Writing Libraries in MPI," Mississippi State University 
Computer Science Department & NSF Center for Computational Field Simulation, O. 

37 


	Ira_Lough_1993
	temp

